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Abstract—The rapid advances in wireless communication
and sensor technologies facilitate the development of viable
mobile-Health applications that boost opportunity for ubiq-
uitous real-time healthcare monitoring without constraining
patients’ activities. However, remote healthcare monitoring
requires continuous sensing for different analog signals which
results in generating large volumes of data that needs to
be processed, recorded, and transmitted. Thus, developing
efficient in-network data reduction techniques is substantial
in such applications. In this paper, we propose an in-network
approach for data reduction, which is based on fuzzy formal
concept analysis. The goal is to reduce the amount of data
that is transmitted, by keeping the minimal-representative
data for each class of patients. Using such an approach, the
sender can effectively reconfigure its transmission settings
by varying the target precision level while maintaining the
required application classification accuracy. Our results show
the excellent performance of the proposed scheme in terms
of data reduction gain and classification accuracy, and the
advantages that it exhibits with respect to state-of-the-art
techniques.

Index Terms—Mobile-Health system, Fuzzy data reduction,
EEG signals, conceptual learning, wavelet compression.

I. INTRODUCTION

Wireless remote healthcare monitoring services can sig-
nificantly enhance traditional healthcare systems, espe-
cially in a variety of pre-hospital emergency care situa-
tions and for patients that are located in geographically
remote areas [1]. Advances in wireless communication and
sensor technologies have facilitated the implementation of
effective mobile-health (m-health) systems, without con-
straining patients’ activities [2]. However, neurologically-
oriented m-health applications are still very challenging, as
they require recording, processing and wireless transmis-
sion of large volumes of data. For instance, high-quality
EEG devices can consist of up to 100 electrodes. The
sampling rate at each electrode can be as high as 1000

samples/s, which, representing each sample by 2 bytes,
results in a data rate of 1600 kbps per single patient. This
clearly puts a significant load on the system design in terms
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of storage space, processing capabilities, and transmission
power.

Accordingly, reducing the amount of data originating
from sensing nodes is essential for such systems. This is
particularly true considering that m-health systems typi-
cally consist of several battery-operated devices that need
to run for a long time without replacement. Thus, a promis-
ing approach is to perform local in-network processing on
the raw data before their transmission. This can be done
by compressing the gathered data, or by transmitting only
some features of the signals that are pertinent to the spe-
cific application [3]. Existing solutions taking either one
of these approaches [4][5][6] vary in the lossiness, compu-
tational complexity, and the waveform transformation that
is applied (e.g., discrete cosine transform (DCT), vector
quantization, and repetition count compression methods
[4]). However, the intensive computational complexity of
such techniques might make the in-network processing on
battery-operated devices impractical.

In this paper, we focus on EEG signal, which is the
main source of information on brain electrical activity and
plays an important role in the diagnosis of several brain
disorders (such as epileptic disease, brain death, tumors,
and stroke) [7]. EEG signal also plays a primary role in
Brain Computer Interface (BCI) applications [8]. In this
context, we propose a fuzzy data reduction technique to
obtain the most representative EEG samples and neglecting
redundant ones without loss of knowledge. To this end,
we use fuzzy Formal Concept Analysis (FCA), which has
been recently developed and applied in many fields such as
learning, knowledge acquisition, and information retrieval
[9][10][11]. In FCA, crisp binary data is represented as a
two-entry table in a (object, property) relational database,
whose cells take value either 0 or 1 according to whether
the object has a certain property or not. If the properties are
represented in a fuzzy way, the table cells will contain the
degree to which these properties relate to the objects (e.g.,
’high’, ’medium’, ’low’). (More details and related work
in FCA and Fuzzy theory can be found in [12][13][14].)
We exploit this formalism to identify the most related non-
redundant samples, such that the association rules extracted
from such data are identical to the ones that can be



extracted from the original dataset. We call this approach
smart sensing, since instead of transmitting the whole
sensed data to the receiver side, we reduce the amount of
data originating from sensing nodes and transmit only the
most discriminant samples. To the best of our knowledge,
performing fuzzy data reduction at the transmitter side
to obtain and transmit the most representative samples
of EEG data has not been studied before. The proposed
scheme is evaluated through simulation and compared to
different data reduction techniques, discussing the tradeoff
between transmitted data length and classification accu-
racy. We remark here that aspects purely related to wireless
transmission and channel characterization are not within
the scope of this paper; the reader is referred to [15] for
such work.

The rest of the paper is organized as follows. Section II
describes the system model. Section III presents the pro-
posed smart sensing scheme, while Section IV introduces
adaptive DWT-based compression and frequency-domain
feature extraction. Section V shows our performance eval-
uation and, finally, Section VI concludes the paper.

II. SYSTEM MODEL

In this paper, we consider epileptic seizure detection
as an application of EEG-based diagnosis. EEG signal is
the main source of information carrying valuable infor-
mation describing epileptic seizure status. The dynamic
characteristics of EEG signals are used to differentiate
between healthy subjects and patients diagnosed with
epileptic disease. We consider the wireless EEG monitor-
ing system shown in Figure 1, where the Personal/Patient
Data Aggregator (PDA) collects data from the sensors,
possibly processes it, and forwards it to the M-Health
Cloud (MHC). The latter can further process the data and
store it. We remark here that the presented data reduction
techniques can be implemented at the sensor or at the PDA
level, in order to reduce the size of the transmitted data,
as well as at the MHC level with the aim to reduce the
amount of data to be stored and facilitate the data retrieving
process.

The main modules considered in this model are amplifier
and sampling, smart sensing component, Discrete Wavelet
Transform (DWT) compression, Feature Extraction (FE)
components, quantization, and encoding of the quantized
data. Herein, we implement three different options at the
transmitter: (i) sending raw EEG data without processing,
(ii) compressing and forwarding EEG data, or (iii) sending
EEG features (i.e., frequency-domain features). In feature
extraction, we start from the initial-gathered data and ob-
tain values (features) that are informative, non-redundant,
and pertinent epileptic to seizure detection. In this paper,
we consider Frequency-Domain Features Extraction (FD-
FE) by transforming EEG data into frequency domain, and
forwarding the whole or part of this data to the receiver
side based on the required classification accuracy and

power consumption. The drawback of FE techniques is
their irreversibility: we cannot retrieve the original data
at the receiver side. In the case of Compression-based
Reduction (CBR), we apply the DWT-based compression
with reconfigurable or adaptive compression ratio to con-
trol the size of the transmitted data. The disadvantage of
such lossy compression technique is that at the receiver
side a decompression technique should be implemented
to retrieve the data, and the reconstructed signal will
have some distortion compared to the original one. In
the proposed Smart Sensing (SS) approach, instead, we
obtain and transmit the most representative non-redundant
data without loss of knowledge. In other words, we save
in transmitted data size by neglecting redundant data,
while sending original-discriminant samples. At the MHC,
according to the transmitted data, signal reconstruction,
feature extraction, classification and distortion evaluation
can be performed to evaluate the patient’s status.
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Fig. 1. System model under study.

We leverage the EEG dataset in [16] considering three
classes of patients, namely, Healthy, Non-active, and
Active. Class Healthy represents healthy subjects, class
Non-active represents non-active patients diagnosed with
epileptic disorder, while class Active represents patients
with active epileptic seizure, as shown in Figure 2. Each
class in the considered dataset contains data that refer to
100 patients (rows), and for each patient there are 4096

samples (columns).
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Fig. 2. Three classes of EEG signal in the time domain.

III. SMART SENSING DATA REDUCTION APPROACH

The fundamental question here is the following: How
can we obtain the most representative EEG samples that



minimize data size without incurring in any knowledge
loss? By knowledge we mean the set of association rules
that can be extracted from the initial data. To answer the
above question, we propose a smart sensing approach that
leverages fuzzy data reduction. Specifically, we exploit
FCA to identify the samples that can be removed from
the initial fuzzy binary context, at a given precision level
�, and transmit only the samples that are representative of
the whole set.
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Fig. 3. Fuzzification of the original EEG signal.

Accordingly, we first convert the gathered EEG samples
into a fuzzy binary context R by normalizing them with
respect to their maximum value, as shown in Figure 3. A
fuzzy Binary context (or fuzzy binary relation) is a fuzzy
set given by the product of a set of objects, O, and a
set of properties, P , i.e., U = O ⇥ P , where U is called
universe of discourse. If we apply our method at the MHC
level (for efficient data representation and storage), the data
gathered from different patients is represented as a fuzzy
binary context by taking the set of patients as set of objects
O, and the set of samples for each patient as the set of
properties P . Instead, when the algorithm is executed at
the PDA or sensor level with the aim to reduce the size of
transmitted data, the sensed data for each individual patient
is first divided into batches, with each batch containing a
fixed number of samples. Then, a fuzzy binary context is
obtained defining O as the set of batches, and P as the set
of samples in each batch. Then, for each object, we verify
whether this object is equivalent to any set of objects in the
initial fuzzy binary context or not. The equivalent objects
are removed so that a reduced output fuzzy context ˜R is
obtained (see Algorithm 1).

In more details, we perform the following steps.
Step 1: For a given object x, find the set of equivalent

objects S
x

using function h
�

: B ! A, with B ⇢ P
and A ⇢ O. Specifically, denoting by B the fuzzy set of
properties associated to x, we identify S

x

as the set of
objects that satisfy the set of properties B, with precision
level �. More formally, S

x

= h
�

(B) = {y 2 O|b 2
P ) µ

B

(b) !
L

µ
R

(y, b) > �}, where !
L

denotes
the Lukasiewicz implication [17], i.e., for u, v 2 [0, 1] ,
u !

L

v = min(1, 1 � u + v), µ
B

(b) is the degree of
membership (weight) of property b, µ

R

(y, b) is the degree

of association between an object y and a property b.
Step 2: Find the minimum of the set S

x

using f(S
x

) =

{b/�|� = min{µ
R

(y, b)|y 2 S
x

}, b 2 P}, where f(S
x

) is
the fuzzy set of the properties shared by the objects in S

x

.
Step 3: If for every property of the objects in S

x

,
the associated weight is smaller than the weight of the
corresponding property of object x, then x can be removed.
This means that object x can be replaced by the objects
in S

x

. A numerical example with � = 0.7 is illustrated
in Figure 4, while the main steps of our SS algorithm are
presented in Algorithm 1.

P1 P2 P3

O1 0.2 0.3 0.5

O2 0.6 0.2 0.5

O3 0.5 0.1 0.7

O4 0.8 0.5 0.7

O5 0.7 0.4 0.2

4

μB(P1) = 0.6,  and μR(O1,P1) = 0.2

i) P1 = min(1,1-0.6+0.2) = min(1,0.6) = 0.6 < 0.7
P1 of O1 does not verify P1 of O2 at level δ, so O1 will not be added to Sx.

ii) P1 = min(1,1-0.6+0.5) = min(1,0.9) = 0.9   > 0.7
    P2 = min(1,1-0.2+0.1) = min(1,0.9) = 0.9   > 0.7
    P3 = min(1,1-0.5+0.7) = min(1,1.2) =  1     > 0.7
Three properties of O3 verify O2 at level δ, so O3 will be added to Sx.

Compare O2 Vs. Minimum

P1 P2 P3

O2 0.6 0.2 0.5

Minimum 0.5 0.1 0.24

iii) P1 = min(1,1-0.6+0.8) = min(1,1.2) =  1     > 0.7
    P2 = min(1,1-0.2+0.5) = min(1,1.3) =  1     > 0.7
    P3 = min(1,1-0.5+0.4) = min(1,0.9) = 0.9   > 0.7
Three properties of O4 verify O2 at level δ, so O4 will be added to Sx.

P1 P2 P3

O3 0.5 0.1 0.7

O4 0.8 0.5 0.7

O5 0.7 0.4 0.2

4

Each property of O2 is implied from corresponding property of Minimum at level 
0.7, so O2 can be removed without loss of knowledge.

For Object O2

Step 1:

Step 2:

Step 3:

Fig. 4. An example of objects reduction using Lukasiewicz implications.

We remark here that: 1) Varying � (0  �  1) allows
for the generation of a different number of fuzzy objects.
The smaller �, the more fuzzy objects are neglected, which
results in less precision level. 2) Considering for example
that the algorithm is executed at the sensor or PDA level,
its computational complexity is O(N ·K) where N is the
number of original samples and K is the number of data
batches that are created.

IV. ADAPTIVE COMPRESSION AND FEATURE
EXTRACTION SOLUTIONS

Several related works have explored the use of data
reduction techniques on EEG signals, such as compression
techniques, dynamic channel selection, and discontinuous
recording [3]. However, the computational complexity
needed for processing the signals and the resultant signal
distortion can severely impact the classification perfor-
mance. In this context, we consider two reduction schemes:
CBR based on DWT compression, and frequency-domain
feature extraction. We then use these as benchmark tech-
niques and compare their performance to that of our
proposed SS scheme.



Algorithm 1 Smart Sensing (SS) algorithm
1: Initialization:

R: initial fuzzy context,
˜R: output fuzzy context
�: precision level
˜R = R

2: Data acquisition
3: Transform collected EEG samples into fuzzy binary

context R
4: for all objects in R do
5: Find the set of properties verified by the object x

i

6: Find the set of objects S
x

verifying the required
values for the properties of x

i

at precision level �
7: if the objects in S

x

satisfy the same properties of
x
i

at precision level � then
8: Remove x

i

from ˜R
9: end if

10: end for
11: Output:

Reduced output fuzzy context ˜R.

A. DWT-based Adaptive Compression

Herein, we focus on threshold-based Discrete wavelet
transform (DWT) approach for EEG data compression.
The EEG signals are analyzed using one of the wavelet
families (such as the Daubechies family), [18][19]. For an
EEG signal x, we thus have:

x =  ↵
w

(1)

where  is the wavelet family basis, and ↵
w

is the vector
of wavelet domain coefficients. In the multi-stage DWT,
these coefficients are calculated recursively on multilevel
wavelet decomposition (i.e., decomposition levels). More-
over, the computation of DWT involves filtering, where
the wavelet filter length of the utilized wavelet family is
obtained as F = 2, with  being the wavelet family
order. The computational complexity of such compression
process, for an N-dimensional EEG signal, is calculated
as:

C
DWT

= F ·N
LX

l=0

1

2

l

(2)

where L is the number of decomposition levels [18].
Using threshold-based DWT, the coefficients that are

below a predefined threshold can be zeroed without much
signal quality loss [20]. Accordingly, by properly setting
such a threshold we can control the number of output
samples generated from DWT and, thus, the compression
ratio of the DWT. The compression ratio is evaluated as

C
r

= 1� M

N
⇥ 100 (3)

where M is the number of output samples generated after
DWT, and N is the number of the original samples.

The encoding distortion is measured by the percentage
Root-mean-square Difference (PRD) between the recov-
ered EEG data and the original one, as

D
s

=

kx� x
r

k
kxk ⇤ 100, (4)

where x is the original signal and x
r

is the reconstructed
one.

It is worth mentioning here that by leveraging such
adaptive compression technique, the PDA can effectively
reconfigure its transmitted data length by adjusting the
encoder parameters to meet the constraints on energy
consumption as well on the classification accuracy at the
receiver side.

B. Frequency-Domain Feature Extraction (FD-FE)
Reliable, yet energy-efficient, epileptic detection can be

also achieved by performing feature extraction (FE) and
classification at the PDA level: instead of transmitting
the raw/compressed EEG data, a set of epileptic-related
features can be selected to be transmitted. However, a
serious drawback of this approach is that raw data cannot
be retrieved at receiver side, which may be unacceptable
for some applications. Here we present a feature extraction
technique in the frequency domain (FD), which we later
compare to the SS scheme in terms of overall classification
accuracy and feature vector length.

In FD-FE, the gathered EEG data is transformed into
the frequency domain using Fast Fourier Transform (FFT)
[21]. FFT is considered as a classic frequency analysis
method with complexity O(N logN). In the frequency
domain, we observe that the different EEG classes have
different amplitude range (see Figure 5), which facilitates
the classification task compared with the case of time
domain analysis (see Figure 2).
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Fig. 5. Three classes of EEG signal in the frequency domain.

After that, the frequency spectrum of the EEG signal
can be segmented into multi-subbands, each one has a
certain number of frequency components. Different subsets
of these sub-bands can be selected as feature vector [22].
Thus, if the spectrum is divided into s sub-bands, we will
have 2

s different subsets that can be transmitted, which
results in complexity O(2

s

). Typically, the EEG spectrum



is segmented into five frequency sub-bands named ↵, �,
�, �, and ✓ with frequency ranges 8 � 12, 12 � 32,
0.2� 3, > 32, and 3� 8 Hz, respectively [23]. Thus, we
can control the length of the transmitted data by sending
different subsets of these frequency sub-bands: increasing
the number of transmitted frequency subsets, the length
of the transmitted data grows, which in turn increases
energy consumption while maintaining high classification
accuracy at the receiver side.

V. PERFORMANCE EVALUATION

A. Environment Setup

We consider 300 patients in our experiments. For each
patient, 4096 samples are gathered. Then, either the sensor
or the PDA decides to send the raw data, representative
samples of the data using SS, some features of this
data (i.e., frequency features), or compressed data, to the
M-Health Cloud (MHC). The MHC evaluates the EEG
feature extraction, classification and distortion so as to
detect the status of the patients. WEKA explorer, with
Random Forests classifier and cross validation, is used for
classification at the MHC [24].

B. Simulation Results

As mentioned, in our SS algorithm we can control
the number of transmitted samples by changing �: as �
decreases, more fuzzy objects are eliminated, which results
in less precision level and greater data reduction, as shown
in Table I. In particular, the results show that a significant
decrease in data size can be obtained for � < 0.6. It is
also worth mentioning here that the results depend on the
set of data that are initially considered. For example, at
the sensor or PDA level, for class Healthy or Non-active,
the number of samples is less than 70 for � < 0.8, while
for class Active there are 400 samples for � < 0.4. At
the MHC, when we consider the collective data from three
classes patients, we have less than 430 samples, per patient,
when � < 0.4, as shown in Figure 6. We remark here
that the proposed SS scheme obtains the transmitted data
size taking into consideration the data class (it can be
considered as a class-based reduction), unlike CBR and
FD-FE approaches. Thus, at normal condition (i.e., class
Healthy or Non-active), we can significantly reduce data
size without incurring any knowledge loss, while in the
case of emergency, the generated data size increases due
to the rapid variations of the signal in this case.

In FD-FE, the EEG signal is segmented into multiple
sub-bands, each sub-band has a certain number of fre-
quency components. Different subsets of these sub-bands
can be selected as feature vectors, in order to control
the length of the transmitted data (see Table I). On the
other hand, in CBR we can reduce the size of transmitted
data, hence the energy consumption, by increasing the
compression ratio C

r

, but at the expense of an increased
signal distortion. On the contrary, the greater the filter

 Class Healthy

Class Non-active
Class Active

(a)

(b)

Fig. 6. Generated number of samples with varying precision level �,
(a) at sensor or PDA level, (b) at MHC level.

length F , the more details are maintained in the sampled
signal, which leads to a smaller distortion (see Figure 7).
These two conflicting trends underline that there always
exists a tradeoff between energy consumption and encod-
ing distortion.
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Fig. 7. CBR method: relation among encoding distortion, compression
ratio and wavelet filter length.

Next, we assess the performance of FD-FE and CBR
techniques compared to that of the proposed SS algorithm.
Results are shown in Figure 8 and Table II in terms of



TABLE I
GENERATED NUMBER OF SAMPLES USING FD-FE AND SS

Frequency sub-bands Signal length in SS precision Signal length
� � ↵ ✓ � FD (samples) level � (samples)
0 0 0 0 1 133 0.0 78
0 0 0 1 0 236 0.1 442
0 0 0 1 1 369 0.2 254
0 0 1 1 1 557 0.3 427
0 1 1 1 1 1501 0.4 1001
1 0 0 0 1 2719 0.5 2269
1 0 1 0 0 2774 0.6 3793
1 1 1 1 0 3954 0.7 4096
1 1 1 1 1 4087 1.0 4096

classification accuracy and transmission energy consump-
tion, respectively. In general, by increasing the length of
the transmitted signal, classification accuracy at the MHC
increases for both FD-FE and SS, while it is almost con-
stant for CBR (see Figure 8). This happens because in SS
we transmit the most representative samples to the MHC,
thus with increasing �, the transmitted data size increases,
which results in a better accuracy at the MHC. The same
behavior holds for FD-FE: an increased transmitted signal
length facilitates the classification process at the MHC (see
Figure 8). On the contrary, in CBR the transmitted data
size is just a function of the compression ratio and is to-
tally blind to the importance of the eliminated/transmitted
samples. It follows that increasing the transmitted data size
does not necessarily improve the classification accuracy as
redundant samples may be added.
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Fig. 8. Classification accuracy versus transmitted signal length.

Regarding transmission energy consumption, we lever-
age the energy consumption model presented in [25] and
show the results in Table II. As energy consumption
increases with the transmitted signal length, our study can
be used to identify the best tradeoff between classification
accuracy and energy consumption, based on application
requirements, patient’s status, and energy availability at
the PDA.

In conclusion, on one hand, our SS algorithm surpasses
the lossy CBR technique by achieving higher classification

TABLE II
TRANSMISSION ENERGY CONSUMPTION VS. CLASSIFICATION

ACCURACY

Transmission Energy CA %
(nJ) FD-FE SS CBR
2.3 95.7 space 77 space 84
4 96 space a 81 space 84.5
7 95.4 space 83.7 space 83.7
9 93 space 86.8 space 82
11 87 space a 87 space a 83
13.3 92.5 space 87 space 84.2
15.5 97 space 87.2 space 85.4

accuracy while maintaining same energy consumption.
On the other hand, it outperforms both FD-FE and CBR
techniques through:

1) Implying no loss of knowledge, as it selects and
transmits the most representative samples (i.e., raw
data) while neglecting the redundant samples.

2) Taking into consideration the rapid and irregular
variations of the data, as well as the class of the
data.

As far as FD-FE is concerned, this achieves better perfor-
mance in terms of classification accuracy compared to SS
and CBR. However, it is irreversible at the MHC: the orig-
inal EEG signal cannot be reconstructed from its features,
which may not be acceptable for many applications.

VI. CONCLUSION

We addressed a wireless EEG monitoring system, and
investigated different data reduction techniques that can be
used for epileptic seizure detection. In particular, we pro-
posed a technique, named SS, which is based on reduced
fuzzy formal context. SS can be applied at sensor or PDA
level in order to reduce the amount of transmitted data, or
at the mobile health cloud to reduce the size of stored data.
We found that, by selecting only the most representative
EEG samples that are pertinent to seizure detection, our
solution is very effective in reducing the amount of data
while generating the same knowledge that can be extracted
from the initial data set. Our results also show that the
proposed SS scheme provides a level of classification
accuracy and data reduction that is comparable to that of
feature extraction, with the important advantage that SS



allows for EEG signal reconstruction at the receiver side.
When compared to compression-based reduction, given
the data size, SS achieves a much higher classification
accuracy.
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