
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automated Mobile UI Test Fragility: An Exploratory Assessment Study on Android / Coppola, Riccardo; Raffero,
Emanuele; Torchiano, Marco. - STAMPA. - (2016), pp. 11-20. (Intervento presentato al convegno 2nd International
Workshop on User Interface Test Automation - INTUITEST 2016 tenutosi a Saarbrücken, Germany nel July 18–20,
2016) [10.1145/2945404.2945406].

Original

Automated Mobile UI Test Fragility: An Exploratory Assessment Study on Android

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/2945404.2945406

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2644368 since: 2016-09-15T13:22:53Z

ACM

Automated Mobile UI Test Fragility: An Exploratory
Assessment Study on Android

Riccardo Coppola, Emanuele Raffero, Marco Torchiano
Dipartimento di Automatica e Informatica

Politecnico di Torino, Torino, Italy
{first.last}@polito.it

ABSTRACT
Automated UI testing suffers from fragility due to contin-
uous – although minor – changes in the UI of applications.
Such fragility has been shown especially for the web domain,
though no clear evidence is available for mobile applications.

Our goal is to perform an exploratory assessment of the
extent and causes of the fragiliy of UI automated tests for
mobile applications.

For this purpose, we analyzed a small test suite -that
we developed using five different testing frameworks- for an
Android application (K-9 Mail) and observed the changes
induced in the tests by the evolution of the UI.

We found that up to 75% of code-based tests, and up to
100% of image recognition tests, had to be adapted because
of the changes induced by the evolution of the application
between two different versions. In addition we identified
the main causes of such fragility: changes of identifiers, text
or graphics, removal or relocation of elements, activity flow
variation, execution time variation, and usage of physical
buttons.

The preliminary assessment showed that the fragility of UI
tests can be a relevant issue also for mobile applications. A
few common causes were found that can be used as the basis
for providing guidelines for fragility avoidance and repair.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Test; UI; Automated; Fragility; Empirical

1. INTRODUCTION
Heading towards its seventh release, the Android program-

ming platform provides the developer with a very vast collec-
tion of functionalities, as well as fashionable alternatives for
user interfaces. Current applications manage a vast array of

sensible data about the user and perform very complex tasks,
making mobile devices really close to universal computational
machines like desktop computers.

Among the characteristics that have caused the success of
Android, the large quantity of apps available on the market is
one of the most prominent [2]. The openness of the developing
platform, and the opportunity of rapidly reaching very huge
crowds of users, lead to very pressing competitive forces
for apps deployed on the Play Store. Thus, it is crucial
for applications to be capable of guaranteeing the promised
behavior to their users, assuring a sufficient level of reliability.

In addition to the typical unit testing, which makes use
of the JUnit4 testing framework, the developer can take
advantage of several APIs engineered for the execution of
instrumentation tests. The main difference between the two
categories of tests lies in the fact that, while the former can
be run on the Java Virtual Machine on the development
environment, the latter require an instance of the Android
system, either on an AVD (Android Virtual Device) or on an
actual physical device. Instrumentation tests are particularly
fit for automatic UI testing, that is ensuring that the final
user does not get improper behaviors when giving input to
the app -classifications of typical Android bugs have been
given in literature, for instance in [10]- without manually
repeating sequences of inputs to the application.

The creation of test cases for Android applications comes
with a set of domain-specific challenges that the developer
has to face. Applications are engineered to run on a very
large amount of different configurations of display sizes, pixel
densities, layouts and arrangements of buttons. Users may
use a set of different input channels (e.g., voice commands or
accelerometer inputs) and devices may have to change their
behaviour seamlessly if the battery status or the network to
which they are connected change [7]. Moreover, the dynamic
swapping of applications on actual Android devices may
easily lead them to unexpected behaviors, even during the
execution of test suites.

When the normal evolution of an application may lead to
a test to fail, when this failure is not due to an alteration of
the behavior but to other changes, e.g. in the UI, the test is
said to be fragile. Fragile tests may trigger extra effort upon
failure to: (i) verify no regression has occurred in the system
and then (ii) modify the test to adapt it to the changed UI [5].
There are techniques to automate such modification [14] but
they are not often applicable or used.

Therefore, care must be taken in the process of test cre-
ation, in order to make tests as robust and portable (i.e.
executable on various device classes), and less fragile as pos-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

INTUITEST’16, July 21, 2016, Saarbrücken, Germany
c© 2016 ACM. 978-1-4503-4412-8/16/07...

http://dx.doi.org/10.1145/2945404.2945406

11

Figure 1: Relationship between activities and GUI
in the Android OS.

sible, possibly running adapted versions of them on a set of
different configurations [1].

The main goal of our work is to provide an exploratory
study of the fragility of test suites in the context of mobile
development. Taking in consideration a set of tools commonly
used for the purpose of testing Android user interfaces, we
also evaluate the advantages and disadvantages they present
when applied to a popular open-source application.

Our aim is to obtain a basis for a taxonomy of the sources
of fragility for mobile automated UI testing. The differences
and the points of contact with other types of UI testing can be
investigated starting from such a preliminary classification.

The remainder of the paper is organized as follows: section
2 provides some information about the Android Platform and
the testing APIs we are considering. Section 3 introduces
the methodology we have used for our study, the application
we have chosen, and the test cases we developed. Section 4
presents the outcomes of the experiment and the fragilities
found. Finally, section 5 discusses the results and provides a
classification of the main causes of fragility we observed.

2. BACKGROUND
Android is an operating system as well as an application

development platform, based on the Linux Kernel. Its archi-
tecture is formed by four layers: the topmost one is made by
Android apps, each running its own process in a dedicated
user space and on a dedicated copy of the Dalvik virtual
machine, for security and data protection purposes. The
application layer is served by the libraries of the application
framework, and by the Linux Kernel layer.

The underlying hardware is accessed through the APIs pro-
vided by the Android SDK, with Java used as the privileged
programming language. To use specific functions offered by
the operating system, an application must require the related
permissions on its manifest XML file.

Android apps are composed by several components, each
one having its own lifecycle driven by the operating system
with the invocation of a set of methods (e.g., onCreate). The
app is alive if at least one of its component has not yet been
destroyed by the system.

Components can be divided in four classes: Activities, Ser-
vices, Content Providers and Broadcast Receivers. Services
allow the performance of lenghty operations in the back-
ground; Content Providers manipulate the data used by the
application; Broadcast Receivers listen for messages created
either by the Operating System (e.g., “low battery”) or by
other applications (as a form of interprocess communication).
Activities are the main components of each application, and
in particular they are the only ones providing a user interface
with which the user can interact (the work of activities is
schematized by figure 1).

User interfaces exposed by the Activities are composed
by a set of Views arranged on the screen according to a
particular layout. Such arrangement can be specified by
the programmer either using a static XML file describing
the layout, or instantiating the corresponding classes in the
Java code of the activity class, or using an hybrid approach.
Each view in the layout can be given a unique id to be
distinguished from the others, and to have the possibility of
getting a reference to it in the Java code. The user interaction
can actually have effects on the application once callbacks
are registered on the elements of the layout (for instance, the
setOnClickListener method is used to associate a particular
behaviour when the user presses a button of the interface).

From API 12 Fragments have been introduced as an inter-
mediate component between Views and Activities, in order
to manage more easily interfaces that must adapt in complex
ways to different classes of screens.

2.1 Testing Tools
Among the various tools available for testing the GUI of

Android Apps, we focused on five automated testing tools
that let the programmer write test cases simulating the
typical interaction patterns of the users, checking whether
the applications provides the expected behavior without
incurring in bugs or exceptions.

The Android Testing Support Library [4] offers a versatile
testing framework for developers, that enables the test of
single activities as well as multiple activities run on the same
device. The framework is based on AndroidJUnitRunner, a
Java class able to launch JUnit3 and JUnit4 tests on Android
applications: Espresso and UIAutomator rely on it to execute
their tests. Other libraries, like dumpsys [3] allow to check
the performance of the device (in terms of frame latency and
timing).

In addition to those frameworks directly supported by
Android, in our works we have also taken into account a
couple of adaptations of UI testing tools for web applications
(Selendroid and Sikuli) and a commercial tool (Silk Mobile).

Testing tools capable of automatically creating test cases
for interface -either randomly generated, or according to
some model- are also available in literature. A classification
of them is made in [6].

What follows is an overview on the testing tools that we
evaluated.

2.1.1 Espresso
Espresso provides a series of interfaces for the creation of

automatic UI tests for a single app, using a grey-box testing
approach. In fact, the internal arrangement of elements inside
the view tree of the application needs to be known to actuate
the most relevant input simulations of the framework.

12

The programmer has to specify the name of the class
that is istantiated by the first activity of the application.
With his onView() method, Espresso allows to locate specific
components of the application UI. The method receives as
parameter a Matcher, that permits to select the correct view
according to some criteria. For instance, views can be se-
lected according to their ids or class names, their actual state,
or their textual content. The onData() method provides sim-
ilar features, but is designed to work on AdapterViews. Once
a view has been selected, Espresso allows the execution of
operations on it (e.g., clicking, typing text, hitting buttons,
swiping) by means of ViewInteraction.perform() and DataIn-
teraction.perform().

The framework uses synchronization mechanisms, and is
capable to check whether activities are actually in a stable
state before performing operations on views [11].

2.1.2 UIAutomator
The tool is designed for black-box and grey-box testing, i.e.

it allows the interaction only with the elements of the inter-
face actually displayed on the device display, using content
or unique identifiers to retrieve elements of the interface.

In addition to the functionalities provided by Espresso,
UIAutomator enables the access to the device status. It is
possible to obtain information about the orientation of the
device, the screen dimensions and resolution, and to perform
operations like changing orientation and pressing physical
buttons.

To perform testing operations, UIAutomator offers the
classes UiDevice, to access the handheld device under exam-
ination, and UiObject, to refer specifically to a component
of the user interface actually shown on the screen. Objects
of interest can be identified using the function findObject()
or the class UiSelector. Actions are finally performed on the
UiObjects previously identified.

UIAutomator allows the creation of tests that span over
multiple applications, either user or system ones, and perform
operations on the system UI (e.g., the launcher, from which
applications are selected). This feature is of unquestionable
importance, since the architecture of Android encourages
the frequent switch between different applications to handle
particular user requests (for instance, an application may
ask for the control of the system camera application to take
a picture, instead of accessing the sensors by itself).

2.1.3 Selendroid
Selendroid is an open source testing framework based on

Selenium2 API and the JSON Wire Protocol, instruments
originally conceived for the test of web applications. It allows
the creation of automated test cases for native Android
applications, or for responsive websites tailored to handheld
devices.

A fundamental component of the architecture is the Se-
lendroid Server, installed and running on the target device.
The Selendroid Standalone Driver interacts with it and the
application under test is shown on the Inspector webpage
(see figure 2), accessing the HTTP Server. WebDriver Api
is leveraged for the purpose of creating Android tests.

The tool [18] has several interesting capabilities, like the
possibility of sending inputs to multiple devices at the same
time, or the ability of removing the current device and plug-
ging a new one with no interruptions for the test. Complex

Figure 2: Testing an application with Selendroid.

Figure 3: Silk Mobile User Interface.

gestures are also supported. Applications under test do not
need to be modified.

2.1.4 Silk Mobile
Silk Mobile is a commercial instrument developed by Micro

Focus and released by Borland, designed for the test of
applications on multiple devices. The interaction with the
user is recreated simulating the inputs on a mirrored interface
on the desktop pc. Commands like multi-touch, drag and
drop, zoom and swiping are allowed. Test results, alongside
all the interactions between user and device, are reported
in HTML format and are thus viewable by means of a web
browser. The Silk Mobile interface is shown in figure 3: the
proprietary emulator where the user can perform the inputs
is on the right, whereas the central panel lists the recorded
inputs, that are subsequently exportable and repeatable.

The tool supports several programming languages for the
export and adaptation of tests in different contexts. The
programmer can modify in any moment the registered test,
inserting new commands in any point of it. As pointed out
in [17], Silk Mobile is capable of testing apps in parallel on
multiple devices, tracking memory and CPU usage on the
device during the execution of tests, supporting complex ges-

13

Figure 4: Sikuli IDE.

tures, aiding the inclusion of mobile testing in the Continuous
Integration process.

2.1.5 Sikuli GUI Automation Tool
Sikuli is an open source image recognition tool that uses

screenshots to identify specific elements of the user interface
under test. Presented in [21], it was originally intended for
the testing of web apps and applications written in Flash.
Visual references to elements allow the developer to put
screenshots straight into the test code (see figure 4), and
then to specify what kind of operations must be performed
on the corresponding GUI elements. Despite an intrinsic
fragility due to the constant variation of user interfaces, the
use of screenshots, in some cases, can make the creation of
tests faster and more intuitive.

Although the specific developing environment for Sikuli
uses Python, a Java library is also available, with methods
capable of automating mouse and keyboard inputs given to
a pc. To use Sikuli for the creation of mobile tests, it is
necessary to run an emulator like androidscreencast [9] or
Vysor [19], capable of executing remote operations on the
device under test, by means of mouse and keyboard.

3. METHODOLOGY
The goal of this work can be formulated using the GQM

(Goal, Question, Metric) template [20] as: analyze a set
of automated UI tests for the purpose of characterizing the
evolution with respect to their fragility from the point of view
of the testers in the context of an Android mobile application.

The goal of our work gives rise to the following research
questions:

RQ1 What are the main advantages and disadvantages of
common tools for automated Android UI testing?

RQ2 How many tests have to be modified to adapt to subse-
quent releases of the same app?

RQ3 Which are the intrinsic causes of the fragilities of UI
tests?

As it has been briefly introduced in previous sections, UI
testing is a fundamental practice for the development of
reliable Android apps. Testing can be performed either man-
ually (with testers physically executing sequences of inputs
on devices running the app under test) or through automated
testing tools. However, since writing valid automated UI

tests may be complex and time-consuming, it is important
to investigate, on a case by case basis, whether it is worth
investing in their development instead of doing manual tests.
For this reason, we evaluated some testing tools, underlining
their strenghts and weaknesses (RQ1).

Since Android apps are rapidly changed and kept at pace
with the evolution of the operating system, it is important to
assess whether the tests are reusable for subsequent releases,
or are invalidated (RQ2). In the latter case, it may be useful
to estimate how much effort is required on testers side to
adapt the implementation of test to the new version of the
application. Similar evaluations have been done in the field
of Web application testing [12, 13]. The metric we use to
answer RQ2 is the number of tests failed when updating the
application to the subsequent version.

Finally, a study and a classification of the typical causes
of fragility in user interfaces (RQ3) may lead to a set of best
practices that can be adopted a priori in the development of
Android apps, in order to obtain more robust and portable
testing later. The metric we use to answer RQ3 is the number
of occurrences of each of the kinds of fragilities we identify.

3.1 Selected Application and Tools
The development and execution of test is typically con-

ducted within an Integrated Development Environment (IDE).
We have used the Android Studio 1.1 IDE for the creation of
Espresso and UIAutomator test suites, and the Eclipse Mars
IDE for Selendroid and Sikuli test suites.

Our tests have been executed on two different handheld
devices, using Android API 23 and Android API 19 (since
Selendroid 0.10.0, the version we have used, supports only
API prior to 20). We have used Vysor to simulate inputs to
the handheld device using mouse and keyboard.

We selected K-9 Mail as the mobile application to be
tested. We have based our tests on the localized version (in
Italian) of the application. The app, whose original release
dates back to 2009, has recently reached its 5.010 release [8].
The open-source nature of the application is fundamental
since instruments like Espresso and UI Automator have a
strong connection to the application code (for instance, for
the retrieval of identifiers used to pick out elements of the
user interface). The application was selected after a search
on the GitHub platform for an open-source application with
the suitable characteristics, i.e. a long enough life and a sig-
nificant code base. K-9 Mail, quite a large software project
with more than 120 thousand lines of Java code, is a stable
and widespread application with a long release history (6306
commits and 336 releases until today), and presents an es-
tablished graphic interface which is not significantly subject
to changes among subsequent releases.

K-9 Mail is an e-mail client supporting multiple accounts at
the same time, relieving the user of the trouble of managing
different mailboxes. Typical e-mail client functionalities are
hence provided for each account. In addition to them, the
application allows to save the account data (i.e., the e-mails
in the various folder) and preferences, and to retrieve them
when the application is used on a different device (those
features, however, are not available in earlier releases).

As we detail later, a test suite of ten tests has been written
by one of the author of this paper and tested on the latest
stable version of the application. All the main functionalities
offered by the application have been considered by the test
cases. The tests have also been applied, when possible, to

14

Figure 5: K-9 Mail v2.995 User Interface.

five previous versions of the application. We have selected
the last stable versions belonging to three major releases:
v2.995, released in April 2010; v 3.993, released in December
2011; v4.804, released in June 2014. In addition to them,
we have chosen randomly other two versions of the applica-
tion: v2.102, released in November 2009; v3.309, released in
November 2010.

It can be seen that, in the first four releases considered, sev-
eral features are delegated to a Menu reachable by pressing a
physical button on the device (see figure 5). These operations
are therefore no longer executable with the majority of cur-
rent devices, since Android 3.0 Honeycomb interrupted the
use of physical buttons and started to rely on Action Bars
instead. With version v4.804, the UI starts to look similar to
the one of the latest versions (see figure 6), with the addition
of two bars at the top and at the bottom of the screen, and
the dismissal of the use of physical buttons. The versions
of the app also differ in how the views can be identified (in
the older ones, unique identifiers are not provided for the
elements of the visual hierarchy).

3.2 Procedure
All the main features of the app, discussed in the previous

section, have been exercised in ten different test cases that are
listed below. Since the application requires an authentication
phase, tests are intended to run sequentially, so just one
authentication has to be performed.

The application starts from a known state, then the tests
produce a series of operations in some cases dependent from
each other.

The tests are:

• Successful authentication;

• Send a message;

• Reply to a message;

• Delete a message;

• Add user account;

Figure 6: K-9 Mail v5.010 User Interface.

• Delete user account;

• Delete account data;

• Restore account data;

• Export account settings;

• Import account settings.

Each test case has been implemented in an automated
test script using all the five testing frameworks under con-
sideration. For the latest version of the application, we
implemented 10 tests for each framework, thus obtaining
a total of 50 distinct test methods. We adapted them to
different versions of the app when needed.

Since earlier versions of the application do not offer all
the listed functionalities, only the available tests have been
performed on them. In particular only seven cases were
applicable to version 2.102, and eight test cases to versions
2.995, 3.309 and 3.993.

Although Silk Mobile allows the export of the generated
test cases for the use with several frameworks (e.g., JUnit)
we did not take advantage of this facility and we just used
the proprietary IDE of the application. We had not written
the complete test suite with Silk Mobile, due to the absence
of the possibility of simulating physical buttons of the device.
The same limitation applies also to Sikuli, but we managed to
get around it by using Mobizen [15], a tool for controlling an
Android smartphone (simulating even the physical buttons)
from a desktop PC.

4. RESULTS
In this section, we discuss how the tests have been writ-

ten for the individual versions of the application, and the
fragilities we have found for each one of them. We highlight
which test cases applied to subsequent versions and, on the
converse, what changes have had to be made in order to
adapt them.

We have limited our discussion to the tools with which we
were able to write the full set of tests, thus excluding Silk

15

Mobile. However, we noticed that the weakness exhibited by
tests written in Silk Mobile are similar to those of Espresso,
UIAutomator and Selendroid.

4.1 K-9 Mail v2.102
Seven tests out of ten can be written for this version of

the app, according to the functionalities it provides.
For the Successful authentication test, unique identifiers

can be used for the detection of the specific buttons and
textboxes. For the test case Send a message, it is necessary
to pass through a menu that can be opened pressing the
physical Menu button of the device. Buttons that have to be
pressed have no unique identifier, and are detected through
their textual description. Text boxes used to compose the
message are instead detected using the unique identifier they
are given in the application layout.

The Reply to a message test case opens an incoming mes-
sage from the inbox. A click in a specific portion of the screen
is done in order to obtain the first message in the inbox folder.
The reply functionality is retrieved by its unique identifier.
The same is done for the Delete a message test case, that
leverages the unique identifier given to the delete button.
Also Add user account needs the pressing of the physical
menu button, and the access to a menu in which elements
have no unique identifier. Delete user account, Delete Ac-
count Data require the access to a contextual menu with a
long click on an account name. Unique identifiers are not
present even in these cases.

As it can be seen, in this release various actions are avail-
able through the physical Menu button of the device. These
actions are not distinguished by an identifier. This defect
makes tests weaker because it forces the developer to find el-
ements through textual description. This kind of description
is not so safe, because some test instruments cannot access
the textual language resources of the application. Therefore,
the text to be searched cannot be dynamically linked to the
text actually appearing in the elements of the user inter-
face, according to the device language. Moreover, textual
descriptions of the elements can be slightly different accord-
ing to screen sizes and between subsequent releases of the
application.

In general, the need for a device button instead of a GUI
button represents a weakness point for testing instruments
which do not support the automation of this kind of inputs.

We have considered, as the starting point of our tests,
the initial activity shown once the authentication has been
performed. If this starting activity is changed in future
releases, tests cannot pass anymore.

4.2 K-9 Mail v2.995
Eight tests out of ten can be written for this version of the

app.
Authentication, Send a message, Reply to a message, Delete

a message test cases are completely compatible with the ones
written for release v2.102.

The functionalities Delete account data and Delete user
account have been moved to an advanced options menu,
hence the related tests had to be rewritten.

The feature Restore account data, that allows the restora-
tion of an user’s messages, is available in this version of the
application and therefore has been tested as well. It is also
placed in the advanced options menu, and -since the button

Figure 7: User Interface differences between v2.995
and v3.309.

to perform it has no unique identifier- its textual description
has to be used to test it.

The textual description of the feature Add user account
has slightly different colour and dimensions with respect to
the previous version. Even though the difference is little,
the related test case in Sikuli has required the re-creation of
the screenshot used for the button identification. The test
did not show any fragility with Espresso, UIAutomator and
Selendroid.

4.3 K-9 Mail v3.309
Eight tests out of ten can be written for this version of the

app.
All tests written for v2.995 are compatible with this version,

except the Add user account realized with Sikuli: once again,
a slight difference in the appearance of the commands creates
the need for new captures (see figure 7).

4.4 K-9 Mail v3.993
Eight tests out of ten can be written for this version of the

app.
Authentication, Send a message, Reply to a message, Delete

a message, Add user account, Delete user account tests are
completely compatible with the ones written for release
v3.309.

The buttons to perform the operations of the tests Delete
account data and Restore account data have had their text
description changed: these descriptions are mantained in
English in v3.309, even though the application is localized to
Italian; in v3.993 such inaccuracy has been fixed. Therefore,
the previous tests are invalidated since the identification
phase for the involved views must be updated. Obviously it
is so also for Sikuli: new captures have to be taken to enclose
the new text descriptions.

The problems related to the physical button are still
present in this version. In many menus of the application
there are still no unique identifiers for the options.

16

4.5 K-9 Mail v4.804
All the ten tests can be written for this version of the

application. Most tests needed to be rewritten -the entire
test suite, with Sikuli- since the organization of menu changed
significantly with respect to the previous considered version.

Authentication and Delete a message tests, done with
Espresso, UIAutomator and Selendroid, are the only one
completely compatible with the previous release.

For the test Send a message, the commands to compose a
new message and to send it are moved with respect to the
previously analyzed version. In fact, they are available in
two toolbars on the lower and on the upper border of the
application, respectively. The toolbar has unique identifiers
for each of its commands, thus making the writing of test
easier. The commands to perform the test case Add user
account are also located in the new toolbar. To perform
the operation Reply to a message, the view which shows a
received e-mail is different too. In fact, a new pop-up menu
with various replying and forwarding options is provided.
Once again, fragilities due to the absence of unique identifiers
are present in some menus. Since the options menu varies
with respect to the previous version that has been tested
and there is no longer an “advanced options” menu, the test
cases Delete account data, Restore account data and Delete
user account had to be updated too.

Two new test cases have been written for the new function-
alities Export account settings and Import account settings.

4.6 K-9 Mail v5.010
For this version, all functional tests analyzed for release

4.804 are still valid, as all the graphics of the user interface
are the same, and the activity flow that starts once the
authentication has been performed remains the same as well.

Identifiers and textual descriptions are the same of the
previous versions of the application. Once again, some menus
lack unique identifiers for all of their options.

5. DISCUSSION
Based on the test cases explained in the previous para-

graphs, we now discuss the process of creating test suites with
each of the tools under study. Starting from the fragilities
found when adapting the test cases to different versions of the
same application, we give some indications about practices
leading to fragilities, that may be useful for the creation of
guidelines for programmers aimed at avoiding such problems
for the testing phase.

5.1 Evaluation of Testing Tools (RQ1)
Upsides and downsides of the five considered testing tech-

niques are explained hereafter.

5.1.1 Espresso
Espresso is integrated in the Android development envi-

ronment, so it can use direct references to the GUI elements
and to the textual resources of the application.

A major advantage of Espresso is the possibility of auto-
matically recognizing the loading times of the application:
thanks to this feature, it is possible to reduce slightly the
number of instructions to write for each test case, since wait-
ing instructions can be omitted. Moreover, few operations
are needed, in general, to pick specific elements of the user
interface. The framework offers a rather simple instrument
(the onView() method) that receives a single identification

method as parameter. The execution of user inputs on the
views is simply described as well. In general, Espresso has a
well organized API, easier to use with respect to the other
testing tools considered.

The framework offers a specific object for the definition
of the entry point of the test (it may be unclear, since an
Android application may have multiple ones). Methods are
available for the simulation of physical buttons, hence testing
is made possible also for rather old applications.

However, the possibility to go to arbitrary views of the
application may be considered a drawback of the framework,
since it makes the execution flow differ from the typical
human usage of the application and thus limits the validity
of tests.

5.1.2 UIAutomator
The test code is integrated in the Android development

environment and therefore it can use references to the ap-
plication resources. Writing tests using this tool is rather
simple. The object representing the Android device offers
also methods for the simulation of the pressure of physical
buttons. References to the textual resources of the applica-
tion are no longer direct like in Espresso, but are instead
obtained through a Context object, opportunely initialized
for the application under test.

The most important feature provided by UI Automator is
the possibility to access system applications (like Settings or
Contacts) and perform operations on them.

UIAutomator does not wait automatically for the loading
times of the application, so sleep() and wait() functions are
needed. Another downside of the tool is the limited support
for older versions of Android: in fact, UI Automator works
only on versions of the API higher or equal to Android 4.3
(API 18) [16].

5.1.3 Selendroid
As an evolution of Selenium, Selendroid takes advantage of

an already established framework originally thought for web
application testing. The functionalities offered are slightly
more comprehensive with respect to Espresso and UIAutoma-
tor.

Selendroid does not need any modification of the appli-
cation under test, since the only requirement is to have its
binary file. An advantage of this testing tool lies in the
fact that the data produced by the application is deleted
after each test session. This allows to have the application
immediately ready for a new test session.

After a set-up procedure, that is more complex to manage
with respect to the other techniques, the amount of methods
necessary to perform operations is quite small.

The web interface provided by the framework allows a
really easy retrieval of information and identifiers about each
element of the visual hierarchy, by just clicking on it.

The tool allows an easy management of physical buttons (it
is sufficient to import the AndroidKeys library), and elements
of ListViews.

Selendroid does not allow the performance testing of the
devices running the applications, like other testing tools can
do.

5.1.4 Silk Mobile
The principal strength of Silk Mobile is its rapidity in

the generation of commands to be executed in a test. The

17

Table 1: Test suite implementation on various versions of K-9 Mail, with Espresso, UIAutomator and Selen-
droid.

Test case v2.102 v2.995 v3.309 v3.993 v4.804 v5.010

Authentication n o o o o o
Send a message n o o o x o
Reply to a message n o o o x o
Delete a message n o o o o o
Add user account n o o o x o
Delete user account n x o o x o
Delete account data n x o x x o
Restore account data - n o x x o
Export account settings - - - - n o
Import account settings - - - - n o

’-’ feature not supported, ’x’ test had to be modified, ’n’ new test written,
’o’ previous version of test still working

Table 2: Tests compatible with previous versions, with Espresso, UIAutomator and Selendroid.

v2.995 v3.309 v3.993 v4.804 v5.010

Number of unmodified tests still working 5/7 8/8 6/8 2/8 10/10
Percentage of unmodified tests still working 71% 100% 75% 25% 100%

Table 3: Causes of fragilities in broken test cases.

Cause v2.995 v3.993 v4.804

Text change 0/2 2/2 3/6
Identifier change 0/2 0/2 3/6
Deletion or relocation 2/2 0/2 3/6
Physical buttons 0/2 0/2 3/6

commands given in input by an user can be easily registered
and repeated, and the test cases can be furtherly enriched by
inserting additional operations. The tool allows to perform a
complete monitoring of the device performance (e.g., memory
and CPU usage, frame latency).

Silk Mobile does not automatically wait for the loading
time of the applications.

Since the development environment for the test is not
integrated with the one used to write the code of the appli-
cation, it is not possible to access the textual resources for
the language used by the application.

Silk Mobile does not allow the automatization of physical
buttons of the device (like Menu and Back), hence it may be
impossible to test old applications using this tool.

Without exporting the suite to a test framework, the Silk
Mobile IDE exhibits a few limitations: it is not possible
to launch a series of test cases but the programmer has to
execute them one at a time; it is not possible to manage
exceptions, like it can be done with tests written in Java,
therefore it is not possible to handle undesired behaviors
generated by the components of the interface; finally, it is
not possible to generate routines that can be used in different
test cases to perform recurrent operations.

5.1.5 Sikuli
An important advantage of Sikuli is the possibility of

operating on elements of the GUI based on Flash, since they

have no identifiers and are therefore hardly spottable by
other testing tools.

Sikuli is not affected by fragilities caused by changing
identifiers, since it does not use them to identify elements
of the application. However, it is really vulnerable to text
change and graphics change.

The correspondence between the reference image specified
by the programmer, and the actual element of the interface,
may be not precise for matters of resolutions and color tuning
of the device. In these cases, the recognition procedure may
fail.

The tests may take a big amount of memory if the number
of images used is high. Naturally, in order to make the test
succeed, the absence of multiple correspondence to the same
screenshot is needed; otherwise, a wrong element may be
selected, or the test may end up in failure.

Sikuli does not allow performance testing of the running
applications.

5.2 Changes in Test Suite (RQ2)
In table 1 we show the compatibility of individual test

cases between subsequent versions of K-9 Mail, with three
testing tools that showed the same fragilities and hence had
the same test cases broken (Espresso, UIAutomator and
Selendroid). We do the same for Sikuli in table 4.

In table 2 we show the number (and the percentage with
respect to the whole test suite) of tests that, for each version

18

Table 4: Test suite implementation on various versions of K-9 Mail, with Sikuli.

Test case v2.102 v2.995 v3.309 v3.993 v4.804 v5.010

Authentication n o o o x o
Send a message n o o o x o
Reply to a message n o o o x o
Delete a message n o o o x o
Add user account n x x o x o
Delete user account n x o o x o
Delete account data n x o x x o
Restore account data - n o x x o
Export account settings - - - - n o
Import account settings - - - - n o

’-’ feature not supported, ’x’ test had to be modified, ’n’ new test written,
’o’ previous version of test still working

Table 5: Tests compatible with previous versions, with Sikuli.

v2.995 v3.309 v3.993 v4.804 v5.010

Number of unmodified tests still working 4/7 7/8 6/8 0/8 10/10
Percentage of unmodified tests still working 57% 87% 75% 0% 100%

of the application, could be maintained as they were written
for the previous version (with Espresso, UIAutomator and
Selendroid). We do the same for Sikuli in table 5.

As it is expected, in correspondence with tangible interface
modifications, as it happens between the third and fourth
major releases, the majority of test cases has to be rewritten.

On the other hand, in correspondence with releases that
have mainly corrected bugs and added support for additional
languages and protocols, no test case was broken.

5.3 Fragilities Found (RQ3)
On the basis of the analysis of test fragilities induced by

the evolution, as discussed in § 4, we classified the causes of
the fragilities that were observed in our study.

• Identifier change: a test that detects elements by their
identifier is invalidated if one of these attributes is
changed.

• Text change: elements that do not possess a unique
identifier, but contain text, can be detected by their tex-
tual description. This case is frequent in menus where
options have no individual identifier but obviously show
distinct textual description. This strategy is not safe
for tests, because the textual attribute depends from
the device language, so the tests must use the language
corresponding to the device settings.

Moreover, the textual description of an element is more
likely to be changed in future releases than identifiers.
In this case, obviously, test cases based on textual
recognition are invalidated.

It is worth highlighting that image recognition testing
tools -like Sikuli-, which cannot rely on identifiers to
discrimine between the elements of the user interface,
are particularly subject to this kind of vulnerability.

• Deletion or relocation: between different releases of the
same app, it may occur that an element is removed or

moved to another activity. Consequently, a test which
has to use it is invalidated.

• Physical buttons: older Android applications made
use of physical buttons, deprecated since Android 4.0
and replaced with the use of Action Bars. The corre-
sponding features are no longer testable with specific
testing tools that are unable to simulate the input given
through such buttons.

• Graphics change: as stated before, image recognition
testing techniques discriminate the elements of the GUI
by their graphic appearance. A new arrangement of the
elements in the graphical layout -or even just a simple
modification in the style of the application- invalidates
all tests written with such tools.

Table 3 summarizes the main causes of the fragilities we
have found for our Espresso, UIAutomator and Selendroid
test suites. The same test case can be weakened by multiple
causes.

The test writing process has also made us notice two issues
that, albeit not happening in our test suite, may harm test
cases in general.

• Activity flow change: operations performed in tests are
designed to be applied starting from specific views. If
the flow between the activities is changed inside the
application, tests are invalidated consequently.

• Execution time variability : in some cases an application
may require a few seconds to perform a given opera-
tion; for instance, while performing an authentication
that has to establish a secure connection with a server.
Network and system resources may significantly affect
the latency. Moreover, if the tests are performed on
real handheld devices, other applications running con-
currently may cause additional delays to the loading
time.

19

In general, if testing instruments are not able to wait
for loading times implicitly, explicit pause commands
have to be used, to wait for the availability of the user
interface elements. The duration of such pauses can be
estimated empirically, performing repeated executions,
or a safe upper bound can be set. Tests are invalidated
when network and system resources are not enough
and latency overtakes pauses in the test, and so the
requested elements are still not available when the
pause inside the test runs out.

6. CONCLUSIONS
The goal of our work was to conduct a preliminary as-

sessment of the test fragility phenomenon in the mobile
application context.

We analyzed five distinct mobile UI testing frameworks,
each showing distinctive strengths and weaknesses.

The analysis of the test suite changes induced by the ap-
plication evolution showed that, depending on the specific
modification applied in each release, up to 75% of the tests
for code-based testing tools, and up to 100% for image recog-
nition testing tools, had to be adapted. This fact supports
the idea that test fragility is a relevant problem also in the
context of mobile UI testing.

The main objective of our exploration was to assess the
importance of the problem of test fragility in a mobile environ-
ment and identify the relative main causes and characteristics.
The classification resulting from our observations, although
preliminary, can be the basis for a more extensive taxonomy
of the causes of fragility.

As future work we plan to apply our analysis to other
large applications, in particular focusing on large test suites
and long-lived projects. We also plan to run the same test
suites on different devices and OS versions, and to study the
types of fragility exposed by hybrid applications compared
to native mobile ones. The goal is to extend our taxonomy of
causes of fragility. A sound taxonomy is a fundamental asset
to enable automatic detection of test fragilities in existing
testing code.

Moreover we aim at providing guidelines for test definition
to avoid or at least minimize the fragility of the UI tests for
Android applications.

7. ACKNOWLEDGMENTS
This work was supported by a fellowship from TIM.

8. REFERENCES
[1] D. Amalfitano, A. R. Fasolino, and P. Tramontana. A

gui crawling-based technique for android mobile
application testing. In Software Testing, Verification
and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on, pages 252–261,
2011.

[2] D. Amalfitano, A. R. Fasolino, and P. Tramontana.
Mobiguitar: Automated model-based testing of mobile
apps. Software, IEEE, pages 53–59, 2015.

[3] Android Developer’s Guide. Testing display
performance. http://developer.android.com/training/
testing/performance.html/.

[4] Android Developer’s Guide. Testing support library.
http://developer.android.com/tools/testing-support-
library/index.html/.

[5] S. Berner, R. Weber, and R. K. Keller. Observations
and lessons learned from automated testing. In
Proceedings of the 27th International Conference on
Software Engineering, ICSE ’05, pages 571–579, New
York, NY, USA, 2005. ACM.

[6] S. R. Choudhary, A. Gorla, and A. Orso. Automated
test input generation for android: Are we there yet? In
Proc. 30th IEEE/ACM International Conference on
Automated Software Engineering, pages 429–440, 2015.

[7] J. Gao, X. Bai, W.-T. Tsai, and T. Uehara. Mobile
application testing: A tutorial. IEEE Computer,
47(2):46–55, 2014.

[8] GitHub. K-9 mail - advanced email for android.
https://github.com/k9mail/k-9/.

[9] Google Code Archive. androidscreencast.
https://code.google.com/archive/p/androidscreencast/.

[10] C. Hu and I. Neamtiu. Automating gui testing for
android applications. In Proceedings of the 6th
International Workshop on Automation of Software
Test, pages 77–83, 2011.

[11] T. W. Knych and A. Baliga. Android application
development and testability. In MOBILESoft’ 14, pages
37–40, 2014.

[12] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella.
Capture-replay vs. programmable web testing: An
empirical assessment during test case evolution. In
Proc. of 20th Working Conference on Reverse
Engineering (WCRE), 2013.

[13] M. Leotta et al. Visual vs. dom-based web locators: An
empirical study. Web Engineering. Springer
International Publishing, pages 322–340, 2014.

[14] A. M. Memon. Automatically repairing event
sequence-based gui test suites for regression testing.
ACM Trans. Softw. Eng. Methodol., 18(2):4:1–4:36,
Nov. 2008.

[15] Mobizen Homepage. http://www.mobizen.com/.

[16] S. Gunasekaran and V. Bargavi. Survey on automation
testing tools for mobile applications. International
journal of Advanced Engineering Research and Science
(IJIAERS), 2(11), 2015.

[17] N. Saas, A. A. Bakar Husna, and N. Sham. Automated
testing tools for mobile applications. In Information
and Communication Technology for The Muslim World
(ICT4M), 2014 The 5th International Conference on.,
2014.

[18] Selendroid Homepage. Quickstart.
http://selendroid.io/quickStart.html/.

[19] Vysor Homepage. http://www.vysor.io/.

[20] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
Software Engineering - An Introduction. Kluwer
Academic Publishers, 2000.

[21] T. Yeh, C. Tsung-Hsiang, and R. C. Miller. Sikuli:
using gui screenshots for search and automation. In
Proc. 22nd annual ACM symposium on User interface

software and technology., 2009.

20

