
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Dottorato in Ingegneria Informatica e dei Sistemi – XXVIII ciclo

Tesi di Dottorato

Distributed Security Policy Analysis
The complete solution

Christian PITSCHEIDER

Tutore Coordinatore del corso di dottorato
Prof. Antonio Lioy prof. Matteo Sonza Reorda

Marzo 2016

Summary

Computer networks have become an important part of modern society, and computer net-
work security is crucial for their correct and continuous operation. The security aspects of
computer networks are defined by network security policies. The term policy, in general,
is defined as “a definite goal, course or method of action to guide and determine present
and future decisions” [1]. In the context of computer networks, a policy is “a set of rules
to administer, manage, and control access to network resources” [2]. Network security
policies are enforced by special network appliances, so called security controls. Different
types of security policies are enforced by different types of security controls.

Network security policies are hard to manage, and errors are quite common. The
problem exists because network administrators do not have a good overview of the net-
work, the defined policies and the interaction between them. Researchers have proposed
different techniques for network security policy analysis, which aim to identify errors
within policies so that administrators can correct them. There are three different solution
approaches: anomaly analysis, reachability analysis and policy comparison. Anomaly
analysis searches for potential semantic errors within policy rules, and can also be used
to identify possible policy optimizations. Reachability analysis evaluates allowed com-
munication within a computer network and can determine if a certain host can reach a
service or a set of services. Policy comparison compares two or more network security
policies and represents the differences between them in an intuitive way. Although re-
search in this field has been carried out for over a decade, there is still no clear answer on
how to reduce policy errors. The different analysis techniques have their pros and cons,
but none of them is a sufficient solution. More precisely, they are mainly complements
to each other, as one analysis technique finds policy errors which remain unknown to an-
other. Therefore, to be able to have a complete analysis of the computer network, multiple
models must be instantiated.

An analysis model that can perform all types of analysis techniques is desirable and
has three main advantages. Firstly, the model can cover the greatest number of possible
policy errors. Secondly, the computational overhead of instantiating the model is required

II

only once. Thirdly, research effort is reduced because improvements and extensions to the
model are applied to all three analysis types at the same time. Fourthly, new algorithms
can be evaluated by comparing their performance directly to each other.

This work proposes a new analysis model which is capable of performing all three
analysis techniques. Security policies and the network topology are represented by the
so-called Geometric-Model. The Geometric-Model is a formal model based on the set
theory and geometric interpretation of policy rules. Policy rules are defined according to
the condition-action format: if the condition holds then the action is applied. A security
policy is expressed as a set of rules, a resolution strategy which selects the action when
more than one rule applies, external data used by the resolution strategy and a default
action in case no rule applies.

This work also introduces the concept of Equivalent-Policy, which is calculated on
the network topology and the policies involved. All analysis techniques are performed on
it with a much higher performance. A precomputation phase is required for two reasons.
Firstly, security policies which modify the traffic must be transformed to gain linear be-
haviour. Secondly, there are much fewer rules required to represent the global behaviour
of a set of policies than the sum of the rules in the involved policies.

The analysis model can handle the most common security policies and is designed
to be extensible for future security policy types. As already mentioned the Geometric-
Model can represent all types of security policies, but the calculation of the Equivalent-
Policy has some small dependencies on the details of different policy types. Therefore,
the computation of the Equivalent-Policy must be tweaked to support new types. Since
the model and the computation of the Equivalent-Policy was designed to be extendible,
the effort required to introduce a new security policy type is minimal. The anomaly anal-
ysis can be performed on computer networks containing different security policies. The
policy comparison can perform an Implementation-verification among high-level security
requirements and an entire computer network containing different security policies. The
policy comparison can perform a Change-impact-analysis of an entire network containing
different security policies.

The proposed model is implemented in a working prototype, and a performance evalu-
ation has been performed. The performance of the implementation is more than sufficient
for real scenarios. Although the calculation of the Equivalent-Policy requires a signifi-
cant amount of time, it is still manageable and is required only once. The execution of the
different analysis techniques is fast, and generally the results are calculated in real time.
The implementation also exposes an API for future integration in different frameworks or
software packages. Based on the API, a complete tool was implemented, with a graphical
user interface and additional features.

III

Contents

Summary II

I Introduction and problem statement 1

1 Introduction 2

II Background 8

2 Policy Analysis 9
2.1 Policy . 9

2.1.1 Type of security policy . 10
2.1.2 Security control . 11

2.2 Policy Analysis . 11
2.3 Anomaly analysis . 12

2.3.1 Intra-policy filtering anomaly 13
2.3.2 Inter-policy filtering anomaly 14
2.3.3 Inter-state filtering anomaly . 15
2.3.4 IPsec anomaly . 15
2.3.5 Inter-technology anomalies . 16

2.4 Reachability analysis . 17
2.4.1 Online . 17
2.4.2 Offline . 17

2.5 Policy comparison . 18
2.5.1 Single policy - Change-impact-analysis 19
2.5.2 Multiple policies - Change-impact-analysis 20
2.5.3 Single policy - Implementation-verification 20
2.5.4 Multiple policies - Implementation-verification 20

IV

3 State of the art 21
3.1 Anomaly analysis . 21

3.1.1 Filtering . 21
3.1.2 Data-Protection . 25

3.2 Reachability analysis . 26
3.3 Policy comparison . 28

4 State of the art - summary 31
4.1 Anomaly analysis . 31

4.1.1 Filtering summary . 32
4.1.2 Data-protection summary . 34

4.2 Reachability analysis . 35
4.3 Policy comparison . 36
4.4 Summary . 38

4.4.1 Interoperability . 38
4.4.2 Performance evaluation . 38
4.4.3 User interface . 39
4.4.4 Implementation . 39

III Proposal 40

5 Requirements, Design and Contribution 41
5.1 Policy Analysis workflows . 41

5.1.1 Policy generation workflows . 42
5.1.2 Policy verification workflows 43
5.1.3 Policy troubleshooting workflows 43
5.1.4 Policy modification workflows 43

5.2 Requirements . 44
5.2.1 Interoperability . 44
5.2.2 Expansibility . 44
5.2.3 Internal format . 44
5.2.4 Representation of results . 45

5.3 Design . 45
5.3.1 Geometric-Model . 46
5.3.2 Equivalent-Policy . 46
5.3.3 Anomaly Analysis . 46
5.3.4 Reachability Analysis . 47

V

5.3.5 Policy Comparison . 47
5.4 Contribution . 47

6 Geometric-Model 49
6.1 Packets . 49
6.2 Conditions . 50

6.2.1 Selector representation . 50
6.3 Actions . 53
6.4 Resolution strategy . 55
6.5 Policies . 56

6.5.1 Policy operations . 57

7 Equivalent-Policy 60
7.1 Transformation Resolution . 60

7.1.1 Multiple transformations . 63
7.1.2 Inverse transformations . 64

7.2 Canonical From . 64
7.2.1 Canonical Form Calculation . 67

7.3 Semantic preserving morphism . 67

8 Conflict Analysis Model 71
8.1 Intra-policy anomalies . 71

8.1.1 Redundancy anomaly . 72
8.1.2 Generalization anomaly . 73
8.1.3 Shadowing anomaly . 74
8.1.4 Generally hidden . 75

8.2 Inter-policy anomalies . 75
8.2.1 Blocked traffic anomalies . 76
8.2.2 Transformed traffic anomalies 78

8.3 Anomaly verification . 80
8.3.1 Effective function computation 80
8.3.2 Effective cover function computation 80

9 Reachability Analysis Model 81
9.1 The model . 81
9.2 Reachability Queries . 83

9.2.1 Query format . 84
9.2.2 Query condition . 86

VI

9.2.3 Query matching function . 86
9.3 Query result . 87

9.3.1 Result domain . 87
9.3.2 Query result accuracy . 89

10 Policy Comparison Model 90
10.1 Model . 90
10.2 Algorithm . 93
10.3 Policy definition . 95
10.4 Application . 97

10.4.1 Single Policy Change-impact-analysis 97
10.4.2 Single Policy Implementation-verification 98
10.4.3 Multiple Policies Change-impact-analysis 99
10.4.4 Multiple Policies Implementation-verification 100

IV Results 101

11 Implementation 102
11.1 Implementation Overview . 102
11.2 Data Types . 103

11.2.1 PolicyAnalysisModel . 104
11.2.2 AnomalyAnalyser . 104
11.2.3 ReachabilityAnalyser . 104
11.2.4 PolicyComparator . 104
11.2.5 Landscape . 105
11.2.6 RuleTransformationResolver . 105
11.2.7 Policy . 105
11.2.8 ResolutionStrategy . 106
11.2.9 GenericRule . 107
11.2.10 ConditionClause . 108
11.2.11 Selector . 108
11.2.12 Action . 109

11.3 Graphical User Interface . 110
11.3.1 Editor . 110
11.3.2 Analysis Execution . 112
11.3.3 Result representation . 112

VII

12 Validation 114
12.1 Test environment . 114
12.2 Synthetic network . 115

12.2.1 Security Policy Generation . 115
12.2.2 Equivalent-Policy creation . 116
12.2.3 Anomaly Analysis . 121
12.2.4 Reachability Analysis . 122
12.2.5 Policy Comparison . 123

12.3 Campus network . 124

V Conclusion 127

13 Conclusion 128

VI Appendix 131

Bibliography 138

VIII

List of Tables

4.1 Filtering summary . 33
4.2 Data-protection summary . 34
4.3 Reachability analysis summary . 35
4.4 Policy comparison summary . 37
7.1 FMR-morphism: the ordered rule list . 70
9.1 Example stateful filtering policy. 88
9.2 Query result in policy format. 89

IX

List of Figures

2.1 Graphical representation of Intra-policy anomalies. 13
2.2 Graphical representation of Inter-policy anomalies. 14
2.3 Graphical representation of IPsec anomalies. 15
2.4 Graphical representation of Inter-technology anomalies. 16
2.5 Online reachability . 17
2.6 Offline reachability . 18
2.7 Policy Comparison . 19
5.1 Policy analysis workflows . 42
5.2 Function blocks . 45
6.1 Condition c = s1 × s2 in a selection space formed by two fields F1 and F2 51
6.2 Range-based selector. 52
6.3 Intersection of two deterministic automata. 52
6.4 Example of matchR . 57
6.5 The effp(r1) is represented by the grey part 58
6.6 The effcp(r1) is represented by the grey/white pattern part 59
7.1 Composition of transformation and filtering policies. 62
7.2 Multiple transformation resolution of policy p. 63
7.3 Inverse transformation resolution of policy p. 64
7.4 R∗ of policy (R = {r1, r2, r3} ,RE, E, d) 65
7.5 ry can substitute rx · ry as it enforces the same action. 69
7.6 Usage of the proposed FMR-morphism to sample policy p. 69
8.1 Redundancy Anomaly types . 72
8.2 Generalization Anomaly types . 73
8.3 Shadowing anomaly types . 74
8.4 Generally Hidden . 75
8.5 Inter-policy Shadowing Anomaly . 76
8.6 Inter-policy Spuriousness Anomaly . 77
8.7 Inter-policy Redundancy Anomaly . 78

X

9.1 Offline reachability model . 81
9.2 Multi-zone Equivalent-Policy . 82
9.3 Example of QmatchR . 86
10.1 Policy comparison example . 91
10.2 Comparison example between policy pa and pb 92
10.3 Single Policy Change-impact-analysis 97
10.4 Single Policy Implementation-verification 98
10.5 Multiple Policy Change-impact-analysis 99
10.6 Multiple Policy Implementation Verificatio 100
11.1 UML Data Types . 103
11.2 UML Policy . 105
11.3 UML Resolution Strategy . 106
11.4 UML GenericRule . 107
11.5 UML ConditionClause . 108
11.6 UML Selector . 109
11.7 UML Action . 110
11.8 Network Topology Editor. 110
11.9 Policy Editor Window. 111
11.10Rule editor. 111
11.11Policy Analysis Execution. 112
11.12Intra-Policy Analysis Result Window. 113
11.13Reachability Analysis Result Window. 113
11.14Policy Comparison Result Window. 113
12.1 Time to compute a Equivalent-Policy depending on sc and r with t = 25. 116
12.2 Time to compute a Equivalent-Policy depending on t and r with sc = 5. . 117
12.3 Number of rules in Equivalent-Policy depending on sc and r with t = 25. 118
12.4 Number of rules in Equivalent-Policy depending on t and r with sc = 5. . 119
12.5 Time to compute Equivalent-Policy based on number of rules. 120
12.6 Time to perform an Anomaly Analysis. 121
12.7 Time to execute a reachability query. 122
12.8 Time to perform a policy comparison. 123
12.9 The campus network. 124

XI

Part I

Introduction and problem statement

Chapter 1

Introduction

Computer networks have become the backbone of several services for citizens, companies
and public administrations. Therefore, the correct and continual operation of these net-
works has become a critical factor. More and more computer networks are connected to
the Internet, and remote sites are becoming more frequent. This global connectivity also
has a downside, cyber attacks are becoming more frequent and are now the biggest threat
to businesses worldwide. An annual study of the cost of cyber crime [3] concludes that
although “activities relating to IT security in the network layer receive the highest budget
allocation [...] cyber crimes continue to be on the rise for organizations”. Furthermore,
they state that “all industries fall victim to cybercrime, but to different degrees” and that
“business disruption represents the highest external cost, followed by the costs associated
with information loss”.

Different studies exist about how to calculate the cost of a cyber attack. According
to Patterson [4] the “estimated average cost of 1 hour of downtime = employee costs per
hour * fraction employees affected by outage + Average Income per hour * Fraction in-
come affected by outage”. Gwebu et al. [5] state that “the damage of a breach most likely
stems from direct costs such as compensation and litigation costs rather than indirect
costs such as tarnished reputation and a decrease in market share and sales”. Although
Ko and Dorantes [6] confirm these findings “information security breaches have minimal
longterm economic impact”, cyber crimes also have an impact on the shareholders wealth.
Gatzlaff and McCullough [7] conclude that “the stock market responds negatively to an-
nouncements of breaches of customer and/or employee data at publicly traded firms” and
“negative reaction is stronger for firms with higher growth opportunities”.

Goldstein et al. [8] define two broad categories of IT operational risk, which are based
on the types of assets comprising IT systems. Data-related IT operational risk is defined
as any threat to the confidentiality of data assets which can result in the disclosure, misuse,

2

1 – Introduction

or destruction of these assets. Function-related IT operational risk is defined as any threat
to the availability or to the integrity of functional IT assets (that may eventually affect
data assets). Their research examines the economic impact of these two categories and
IT operational risk. They conclude that “IT operational risk events are value relevant in
the sense that they impose a strong negative impact on the market values of organizations
that experience such events” and that “these results are largely driven by Function events,
such as Data events do not result in a significant effect on firms’ market value”

The main reason for cyber attacks is not that computer networks are not protected at
all, but that the attack surface is too big to handle. The main line of defence of modern
computer networks is a firewall, but as some studies have shown, firewall configuration
errors are quite frequent [9]. Network administrators have to configure firewalls and other
security controls based on high-level business-oriented directives. According to Wool
et al. [10] the enforcement of high-level directives requires the configuration of tens of
security controls with hundreds of rules each.

Other reports that have investigated this area conclude that human errors are one of
the biggest threats to computer security. The Data Breach Investigations Report from
2008 [11] concluded that “misconfiguration was the leading category of error contribut-
ing to data compromise”. In recent years [12], [13] misconfiguration was still in the top
5 threat action varieties. Furthermore, the Data Breach Investigations Report from 2015
[13] states that “60% of incidents were attributed to errors made by system administrators
- prime actors responsible for a significant volume of breaches and records”. The UK
Security Breach Investigations Report [14] states that “whilst many of the organizations
investigated actually had firewalls installed, poor configuration of these devices rendered
most of them useless. In over 96% of cases, requirement 1 of PCI-DSS [15] was not
adequately adhered to”. In general, their conclusion about PCI-DSS compliance is dev-
astating: “The maximum number of requirements met by an individual organisation was
only 6 out of 12, in approximately 4% of cases.” These studies conclude that network
administrators are unable to implement high-level security directives correctly. A report
by Forrester Research [16] states that “The majority of organizations today have a set of
comprehensive information security policies, but very few can confidently say that they
enforce these policies consistently across the organization.” and that “they cannot prove
enforcement, or it is prohibitively expensive to do so”.

Oppenheimer [17] concludes that service availability is influenced by incorrect sys-
tem configurations in two ways: Firstly: “An operator performing any kind of action on
a service (e.g., establishing a new configuration, adding a new back-end node, moving a
component or user from one server to another, deleting files considered unnecessary, etc.)

3

1 – Introduction

may perform the task incorrectly if she does not understand the existing system configura-
tion.” Secondly: “When diagnosing a problem (be it operator-induced or not), an operator
must understand the existing system configuration and sometimes the history of system
configurations before the problem began – in order to follow cause-and-effect chains back
to the problem’s root cause.”

Network Functions Virtualization (NFV) [18] and Software-Defined Networks (SDN)
[19] are new network technologies which promote a more efficient and dynamic use of
network resources. The goal of Network Functions Virtualization (NFV) is to trans-
form network functions into software modules, named Virtual Network Functions (VNF),
which can be executed on standard high-volume servers. NFV defines a virtualized infras-
tructure which supports a dynamic and flexible deployment of VNFs. This infrastructure
has the advantage that administration tasks, response times and costs are reduced. The
goal of Software-Defined Networks (SDN) is to reconfigure dynamically the network, by
selecting arbitrary parts and redirecting traffic through specific middleboxes. This has
the advantage that network resources are utilized more efficiently because the network
traffic is processed by a minimal number of middleboxes. The combination of these two
technologies enables the deployment of an elastic, dynamic and more efficient network
architecture. However, these advantages come at a cost as the complexity of computer
networks increases even further.

Although NFV and SDN are still research concepts, a widespread adoption can be
expected in the coming years. Some commercial products based on these technologies al-
ready exist, and open-source implementations are available. Since the complexity of com-
puter networks is expected to increase, network administrators require dedicated tools to
reduce configuration errors. Over the last decade researchers have examined different ap-
proaches to reduce configuration errors. This research area is called security policy anal-
ysis and includes anomaly analysis, reachability analysis and policy comparison. Each of
the three analysis techniques provides a part of the overall solution and has its advantages
and disadvantages [20].

Anomaly analysis is designed to identify potential semantic errors between correlated
policy rules. It is called Intra-Policy analysis when a single policy is analysed and Inter-
Policy analysis when a set of interconnected policies are analysed. Rule anomalies are
also used as a starting point for policy optimization.

Reachability analysis is designed to evaluate allowed communications within a com-
puter network. It verifies if a certain host can reach a service or a set of services. Reach-
ability analysis can be performed online on a deployed network or offline on an accurate
representation of the network and its security policies. Online reachability analysis is gen-
erally executed by using tools such as “ping” or “traceroute”, whereas offline reachability

4

1 – Introduction

analysis evaluates reachability queries on a model of the network.
Policy comparison has two use-cases: Change-impact-analysis and Implementation-

verification. Change-impact-analysis evaluates possible side-effects introduced by a pol-
icy modification. Implementation-verification verifies that a high-level policy has been
correctly deployed into the network. In both cases two or more security policies are com-
pared to each other and differences are highlighted. The security policy involved can have
different abstraction levels; it can be a single concrete security control configuration, sets
of configurations, and high-level policies of an entire network.

By comparing the different solution approaches to each other, it becomes evident that
there is no interoperability among the various models [20]. Furthermore, the number of
supported security policy types is very limited and the performance tests executed are also
very limited or inexistent [20]. Therefore, future research and practical usage will have to
confront various disadvantages. The most significant disadvantage for future research is
that the model of a security policy type for one solution can not be reused by another one.
From a practical point of view, the biggest disadvantage is that the instantiation time of a
model must be repeated for each analysis type. Another disadvantage is that it is nearly
impossible to compare the different approaches based on their performance.

This work proposes to overcome these disadvantages by incorporating all three anal-
ysis types into a unified analysis model. This new analysis framework is designed to be
extensible and, therefore, a solid base for future research. The main advantages of a uni-
fied analysis model are as follows: firstly, the model can cover the greatest possible error
types; secondly, to execute all three analysis types the network administrator must instan-
tiate only one model and, therefore, insert the information about the network topology
and the security policies only once; thirdly, a new security policy type must be modelled
only once and can then be used by all three analysis techniques; fourthly, improvements
to different analysis techniques can be evaluated and compared more efficiently.

The proposed model also includes some new properties never proposed before, par-
tially enabled by the unified design. The support for different security policy types is
an essential feature of this work. Consequently, all analysis types also support a great
variety of security policies. The supported security policy types are packet-filter, state-
full, Layer7, Routing, IPsec, SSL, NAT/NAPT, Web-Proxies and Monitoring. This also
highlights one of the main advantages of the unified model, a new security policy type is
modelled only once but was accessible to three analysis types.

The anomaly analysis can be performed on computer networks containing all sup-
ported security policy types. The state-of-the-art solutions can only handle packet-filter
policies and IPsec Policies. Furthermore, a new anomaly class is introduced to represent
inconsistencies between different policy types.

5

1 – Introduction

The reachability analysis can verify reachability queries on computer networks con-
taining all supported security policy types. The advantage over the state of the art is that
now IPsec policies are also supported. Furthermore, the expressiveness of the reachability
queries has been improved.

The policy comparison can be performed between high-level security requirements
and an entire computer network containing different security policies. The policy com-
parison is also able to perform a Change-impact-analysis of an entire network containing
different security policies. In comparison with the state of the art these two features are
new, because past research focused mainly on single filtering policies.

The model takes the network topology as input, and the network security policies
written in different formats and for different security controls. For example, the input
taken could be the global network security policy, defined in a technology-independent
formal language, and the complete network structure with all its concrete configurations.
The model can then perform a policy comparison between the two input formats and
verify that the implementation follows the desired network security policy. As a further
step, network administrators can verify reachability of critical components or perform a
conflict analysis to identify potential policy errors. Furthermore, the proposed model is
extensible and flexible and can accommodate all types of security controls and network
topologies. To support the different types of computer networks, the model can compose
different security controls in a different order. Security controls are modelled so that they
are completely independent of the network topology. To be prepared for future security
controls, the model can include new security controls without significant changes to the
model itself.

These key properties are accomplished by representing the network topology and its
security policies with the Geometric-Model [21] and the use of a new concept called
Equivalent-Policy. The Equivalent-Policy is like a black-box representation of the entire
network and is calculated on the network topology and the policies involved. The anal-
ysis techniques are performed on the Equivalent-Policy, since it is a much more efficient
representation of the network topology. The biggest advantage of the Equivalent-Policy
is that it requires fewer rules to represent a complete network than the sum of all policy
rules involved.

The Geometric-Model is a formal model based on the set-theory and and geometric
interpretation of policy rules. It can represent all types of security policies. Policy rules
are represented in the condition-action form, where the condition expresses a particular
state which must be verified to enforce the action. A condition, for example, can be
a specific source address of a network packet and the action can be that the packet is

6

1 – Introduction

dropped. If multiple conditions are verified in a policy at the same time, then the so-
called resolution strategy decides which action to enforce. The resolution strategy makes
its decision based on external data, for example, a priority that is associated with each
rule. When no condition is verified, the policy applies a predefined action, the so-called
default action. The Geometric-Model is, therefore, a 4-tuple, the rule set, the resolution
strategy, the external data and the default action.

The different analysis techniques are performed on the Equivalent-Policy and are
therefore independent of the network topology and the policies involved. This has the
advantage that once the Equivalent-Policy is calculated all analysis types can be executed
with much higher performance since the base model does not need to be instantiated every
single time. Furthermore, when new types of security policies are introduced, only the
computation of the Equivalent-Policy must be modified.

The Equivalent-Policy creation and the different analysis types have been implemented
for performance evaluation. The implementation is designed to be reusable for future re-
search and, therefore, exposes a well-defined API. Based on this API a graphical user
interface also has been implemented. The GUI was helpful for two reasons, firstly to
prove that the API is complete and secondly to be able to perform some usability tests.
The performance evaluation shows that the proposed models are sufficient fast for practi-
cal usage. Furthermore, the performance is at least equivalent to the state of the art and in
some aspects also faster.

This work is structure as follows: Chapter 2 presents an introduction to policies and
policy types and gives detail overview of the different policy analysis techniques. Chap-
ter 3 presents the state of the art in policy analysis. Chapter 4 presents the pros and cons
of different approaches and compares them to each other. Chapter 5 presents the archi-
tecture of the proposed model and how it can be used in practice. Chapter 6 presents
the mathematical model, called Geometric-Model, used to represent security policies and
network topologies. Chapter 7 presents the Equivalent-Policy and how it is calculated.
Chapter 8 presents the mathematical model for anomaly analysis based on the Geometric-
Model. Chapter 9 presents the mathematical model for reachability analysis based on the
Geometric-Model and how reachability queries are expressed and evaluated. Chapter 10
presents the mathematical model for policy comparison based on the Geometric-Model.
Chapter 11 presents the implemented prototype, its components, the graphical user inter-
face and the API. Chapter 12 presents the performance evaluation of the model and the
different analysis techniques. Chapter 13 presents the conclusions and future work.

7

Part II

Background

Chapter 2

Policy Analysis

This chapter presents the definition of a policy and its components. It also gives an
overview of the different types of policies and their main application. Furthermore, the
devices that enforce security policies is introduced. The term policy analysis is defined,
and the most important policy analysis technique are presented.

2.1 Policy

According to RFC3060 [2], the definition of policy is as follows: “policies are a set of
rules to administer, manage, and control access to network resources.” RFC3198 [1] also
defines a policy as: “A definite goal, course or method of action to guide and determine
present and future decisions. Policies are implemented or executed within a particular
context (such as policies defined within a business unit).” Therefore, the term policy ab-
straction has been introduced to highlight different abstraction levels. A policy can be
written in natural language, expressing security features of the entire network. For ex-
ample the policy rule “User A can access the Internet” does not consider where user A
is allocated in the network and which security controls are involved when processing this
traffic. On the other hand, a policy expressed with device-specific configuration parame-
ters is specific for one type of security control of one particular vendor. Depending on the
requirements a policy is specified on this spectrum and must be elaborated accordingly.

RFC3198 [1] presents a glossary of policy-related terms, which are also used in this
work and here are presented the most relevant ones. The basic building block of a policy
is a policy rule, which is a set of rule condition (also named policy condition) and a
rule action (also named policy action). A policy condition represents the necessary states
and/or pre-requirements to perform the rule action. The rule action defines what should

9

2 – Policy Analysis

be enforced by the policy. A rule action may result in the execution of one or more
operations on the network traffic. A policy conflict occurs when two rule condition are
satisfied simultaneously, and the rule actions contradict each other. A policy anomaly
occurs when two or more rule condition are met simultaneously without the rule actions
been necessary contradicting.

RFC3060 [2] defines different policy groups according to the purpose and intend of
a policy. Various groups are Motivational, Configuration, Installation, Error and Event,
Usage, Security, and Service Policies. In particular, it defines: “Security Policies deal with
verifying that the client is actually who the client purports to be, permitting or denying
access to resources, selecting and applying appropriate authentication mechanisms, and
performing accounting and auditing of resources.”

2.1.1 Type of security policy

There are many different security policies which drop, protect, alter, log, or redirect traffic.
This work considers five types of security policies: filtering, communication protection,
transformation, logging, and routing.

A filtering policy limits the access of packets to a network based on the filtering ac-
tion used. There are two filtering actions, allow and deny. Allow permits a packet to enter
or exit a secure network and deny blocks the access. Filtering policies can be catego-
rized based on the expressiveness of the policy condition into: packet filter, stateful and
application-layer. A packet filter condition is composed only of five fields: protocol type,
source IP address, destination IP address, source port, and destination port. A stateful
condition is also composed in addition to the five fields with a sixth field, the packet state.
An application-layer condition is also composed in addition to the five fields with specific
application conditions like URL, HTTP method, etc.

A communication protection policy defines the type of traffic that should be protected.
The communication protection action defines which protection to apply (header and/or
payload, integrity and/or confidentiality) and which cipher algorithm to use. It can also
be used to create tunnels by encrypting and encapsulating packets in a new packet header.
The most common communication protection policies are IPsec and SSL/TLS.

Transformation policies modify the packet header according to the transformation ac-
tion. Network Address Translation (NAT) and Network Address and Port Translation
(NAPT) are for example in this category. NAT modifies the source or destination IP ad-
dresses and NAPT also changes in addition to the IP addresses the port number. Another
implementation of transformation policies are proxies, an HTTP proxy policies, for ex-
ample, modify the HTTP header.

10

2 – Policy Analysis

A logging policy is used to monitor the network traffic and create statistics about it.
Network traffic can be monitored in different ways, and the logging action specifies that.
The logging action can be set to count the number of packets, or save the IP addresses
from where the packet comes form or where it is send to. It can also specify to save the
complete packet for future usage.

A routing policy is not considered a real security policy, but it is important to con-
sider because it alters the path packets traverse through a network. Routing policies are
implemented based on a static routing tables or dynamic routing protocols. In the case
of a static routing table, the routing policy specifies the concrete path through the net-
work hop by hop. Each hop has his static routing table which specifies the interface on
which a packet must be forwarded. In the case of dynamic routing protocols, the routing
policy only specifies metrics based on which the routing protocol calculates the outgoing
interface.

2.1.2 Security control

Network security policies are enforced by security controls, which are appliances or soft-
ware modules within a computer network. Different types of security policies are en-
forced by various types of security controls. Filtering policies are enforced by Packet Fil-
ter, Stateful Firewalls, and Application-layer Firewalls. Communication protection poli-
cies are enforced by IPsec Gateways, VPN Terminators, and SSL Client/Server. Transfor-
mation policies are enforced by NAT/NAPT Appliances and Proxies. Logging policies are
enforced by Network Monitors, and routing policies are enforced by Routers.

Security controls implement the required functionalities to enforce a security policy.
They can be deployed in three different ways, dedicated appliance, software module,
or virtualized. Currently, security controls are deployed for the most part as software
modules in dedicated appliances. A typical firewall appliance is capable of enforcing
stateful firewall policies, NAT/NAPT policies, and IPsec policies.

With the advantages in NFV, the trend goes to deploy security controls as so-called
Virtual Network Functions in virtualized environments. The advantage of this approach
is that the deployment is much more flexible and cost efficient.

2.2 Policy Analysis

Policy analysis is a technique which analyses policies to find errors. There are three
primary policy analysis approaches: Anomaly analysis, Reachability analysis, and Policy
comparison. Each of the approaches focuses on a different aspect of policy analysis, they

11

2 – Policy Analysis

have overlapping functionalities but, in general, are complement to each other. The union
of all three approaches covers the complete spectrum of policy analysis and, therefore,
uncovers the grates number of errors.

Anomaly analysis searches for potential semantic errors (so-called anomalies) within
a single or a set of security policies. Policy anomalies are not always errors, but can lead
to unintended behaviours of the policy enforcement. They can be compared with com-
pilation warnings of computer programs, the program complies and can usually execute,
but there can be execution stages where the program fails. The analysis is based on rule
relations, it searches for policy rules where the condition matches similar network pack-
ets. It can also be used for policy optimization since identified rule relations are good
places to apply policy optimization techniques. Anomaly analysis has the advantage that
it can be applied without any detailed knowledge of the policy. The disadvantage is that
this approach has no usage without a reference policy (high-level policy or unmodified
policy).

Reachability analysis searches for allowed traffic in a computer network. It evaluates
if a host can communicate with a specific service or a set of services, or vice versa it
evaluates if a service is reachable by which hosts. It can be performed online (by actively
probing a network) and offline (by simulating an accurate representation of the network).
Reachability analysis has the advantage that the network administrator can verify specific
properties of a network, which at the same time is also its disadvantage. Since when a
network administrator does not perform a verification where an error resides, it will never
be found.

Policy comparison searches for differences between two policies, where the policies
can also be written in different policy abstraction. One possible application of policy
comparison is to confront a concrete configuration with the desired policy written in a
high-level language. Another application is the verification of a policy change, where the
modified policy is compared with the original one. The advantage of policy comparison
is that it can efficiently find misconfiguration or verify the impact of a policy change. The
disadvantage is that without a reference policy (high-level policy or unmodified policy)
this approach has no usage.

2.3 Anomaly analysis

Anomaly analysis is a technique that searches for possible anomalies within a single pol-
icy or between multiple policies. It can be applied to different types of policies, where
different policy types contain different anomaly types. There is also a distinction between

12

2 – Policy Analysis

anomalies from one single policy (intra-policy) and anomalies within multiple policies
(Inter-policy). This section presents the three most important anomaly types, first Intra-
policy, Inter-policy, and Inter-state filtering anomalies and then IPsec anomalies. The
section concludes by presenting Inter-technology anomalies, which are a new anomaly
class defined by this work.

2.3.1 Intra-policy filtering anomaly

Intra-policy filtering anomalies occur between rules within a filtering policy. In literature,
the most important intra-policy anomaly types are shadowing, correlation, generalization,
and redundancy.

F2

F1

r2

r1

(a) Shadowing

F2

F1

r2

r1

(b) Correlation

F2

F1

r2

r1

(c) Generalization

F2

F1

r2

r1

(d) Redundancy

Figure 2.1: Graphical representation of Intra-policy anomalies.

A rule is classified as shadowed when there is a second rule with higher priority which
matches the same packets and enforces different actions. This anomaly implies that the
shadowed rule can be removed since it will never be activated. Figure 2.1a shows two
rules r1 and r2, where r1 is shadowed by the rule r2. A special sub-case of the shadowing
anomaly is the general shadowing anomaly, which occurs when a rule is shadowed by the
union of multiple rules.

Two rules are classified as correlated when they rules have some matching packets
in common and enforce different actions. This anomaly implies that one rule partly is
unnecessary, and there is the possibility to simplify it. Figure 2.1b shows two correlated
rules r1 and r2, both rules enforce a different action to where they intersect.

A rule is a generalization of a second rule when it matches the same packets as the first
one and enforce different an action. Figure 2.1c shows two rules r1 and r2 with different
actions, rule r2 is a generalization of rule r1.

A rule is redundant when it enforces the same action and matches the same packets
as a second rule. This anomaly implies that the rule can be removed without changing
the behaviour of the policy. Figure 2.1d shows two rules r1 and r2 that enforce the same

13

2 – Policy Analysis

action, r2 is redundant to r1. A special sub-case of the redundancy anomaly is the general
redundancy anomaly occurs when a rule is redundant to the union of multiple rules.

2.3.2 Inter-policy filtering anomaly

Inter-policy filtering anomalies occur between rules of different filtering policies. The
most important Inter-policy filtering anomalies are shadowing, spuriousness, redundancy,
correlation, and irrelevance.

fw1 fw2

z1 z2

(a) Shadowing
fw1 fw2

z1 z2

(b) Spuriousness

fw1 fw2

z1 z2

(c) Redundancy
fw1 fw2

z1 z2

(d) Correlation

Figure 2.2: Graphical representation of Inter-policy anomalies.

Two rules from two different firewalls are shadowed when they match the same pack-
ets and the rule from the first firewall blocks a packet that is permitted by the second
rule. Figure 2.2a shows two firewalls connected in series, fw1 has a rule which blocks the
traffic and fw2 has a rule which permits the same traffic.

Two rules from two different firewalls are spurious when they match the same packets
and the rule from the first firewall permits the packet which is blocked by the second rule.
Figure 2.2b shows two firewalls connected in series, fw1 has a rule which permits the
traffic and fw2 has a rule which blocks the same traffic.

Two rules from two different firewalls are redundant when they match the same pack-
ets and both rules block the packet. Figure 2.2c shows two firewalls connected in series,
fw1 has a rule which blocks the traffic and fw2 has a rule which also blocks the same
traffic.

Two rules from two different firewalls are correlated when they have some matching
packets in common and enforce different actions. Figure 2.2d shows two firewalls con-
nected in series, fw1 has a rule which permits the traffic and fw2 has a rule which blocks
the same traffic and vice versa.

A rule is classified as irrelevant if there is no possible traffic that can be matched by
the rule. An important sub-case of the irrelevance anomaly is the reflexivity anomaly. A

14

2 – Policy Analysis

rule is classified as reflexive when the source and destination address belongs to the same
zone.

2.3.3 Inter-state filtering anomaly

Inter-state rule anomalies are caused by stateful and stateless firewall rules. They occur
when application layer protocol tries to establish a stateful connection and the connections
is blocked. This anomaly can occur in two distinct moments of the connection protocol.
Therefore, two Inter-state anomalies are defined.

The first type occurs when a filtering policy blocks packets during the three-way hand-
shake. In this case, one of the three handshake packets are blocked, either the SYN, or
the SYN+ACK, or the ACK packet.

The second type in this class occurs when a filtering policy blocks packets during the
connection termination. In this case, there are four possible packets which can be blocked,
either the first FIN, or the first ACK, or the second FIN, or the second ACK.

2.3.4 IPsec anomaly

IPsec anomalies occur between rules of IPsec policies. Therefore, they are anomalies in
communication protection policies. IPsec anomalies can be divided into two categories,
namely overlapping-session and multi-transform anomalies. Both anomaly categories can
be found within one single policy (Intra-policy) and multiple policies (Inter-policy).

SC1 SC2 SC3SC2

z1 z2

(a) Overlapping Session

z1 z2

SC1 SC2

(b) Multi Transfrom

Figure 2.3: Graphical representation of IPsec anomalies.

The overlapping session anomaly occurs when on the path from source to destination
multiple IPsec sessions are established, and the earlier IPsec sessions terminate before
the later ones. This anomaly causes a triangular routing, because when the outer IPsec
session terminates the packet is first send back to terminate the inner IPsec session before
it continues the path to its destination. Figure 2.3a shows an overlapping session anomaly
where two IPsec sessions are started at security control SC1. The inner IPsec session
terminates on security control SC2, and the outer IPsec session terminates on security
control SC3. The packet itself first is send to SC3 where the outer IPsec header is removed

15

2 – Policy Analysis

and then it is send back to SC2 where the inner IPsec header is removed. Finally, the
packet is send to its destination by traversing a second time security control SC3.

The multi-transform anomaly occurs when multiple IPsec transformations are applied
to a packet, and the later transformations have a weaker protection the previous one. IPsec
allows to apply multiple transformations to a packet, which in some cases is desirable. For
example, the ESP transformation does not protect the header and therefore afterward the
AH transformation must be applied. Figure 2.3b shows an example where an AH trans-
formastion is applied after an ESP transformation. In this case, the second transformation
does not improve the security properties of the packet and is therefore unnecessary.

2.3.5 Inter-technology anomalies

Inter-technology anomalies were first introduced in [22] and represent a complete new
anomaly class. This new class includes three new anomalies: Blocked traffic anomaly,
Encrypted traffic anomaly, and Modified traffic anomaly.

SC1 SC2

z1 z2

(a) Blocked traffic
SC1 SC2

z1 z2

(b) Encrypted traffic
fw1 fw2

z1 z2

(c) Modified traffic

Figure 2.4: Graphical representation of Inter-technology anomalies.

The Blocked traffic anomaly occurs when a security policy contains a rule defined
for a packet that previously has been blocked by another security policy. The Blocked
traffic anomaly is equivalent with the Inter-policy filtering shadowing anomaly, when
both security policies are filtering ones. Figure 2.4a shows an example of this anomaly.
Security control SC1 blocks the packet for which security control SC2 has a rule defined.

The Encrypted traffic anomaly occurs when a security policy contains a rule defined
for a packet that previously has been encrypted by another security policy. In this case the
rule can not match the correct packet because the required information is encrypted and
is not accessible. Figure 2.4b shows an example of this anomaly. Security control SC1
encrypts the packet for which security control SC2 has a rule defined.

The Modified traffic anomaly occurs when a security policy contains a rule defined for
a packet that previously has been modified by another security policy. Figure 2.4c shows
an example of this anomaly. Security control SC1 modifies the packet for which security
control SC2 has a rule defined.

16

2 – Policy Analysis

2.4 Reachability analysis

Reachability analysis can be performed both online and offline. Online reachability anal-
ysis is carried on a deployed system by injecting test packets and verifying on different
points of the network that those packets are present. Offline reachability analysis is carried
on a model of the system without direct interaction with a real network.

2.4.1 Online

Online reachability is performed on a deployed system, with all security controls in place
and configured. The most common applications to perform online reachability analysis
are ping and traceroute. A more advanced approach are dedicated traffic generators and
traffic probes installed in critical sections of the network. The traffic generators create test
packets and send them to the network probes. The results of the anaysis are based on the
number and types of packets revived by the probes.

sender
cloud

reciver

Figure 2.5: Online reachability

Online reachability analysis has the advantage that the result is correct all the time,
and it is instantaneous. The correctness is guaranteed because real packets are injected
into the network and are processed by all device on the path. The disadvantage is that to
perform the analysis special probes have to be install within the network. Inserting these
probes for the most use-cases is difficult and involves a precise planning and execution.
Due to this limitation, online reachability is mainly used to verify the correct behaviour
of single network components and not for policy validation of an entire network.

2.4.2 Offline

Offline reachability analysis is performed by expressing queries to the analysis system,
which evaluates them and returns the answer. Reachability queries are defined in different
ways varying from a query language to a graphical query definition wizard. Also the

17

2 – Policy Analysis

expressiveness of different queries has a broad spectrum. A query can be very specific and
request if a certain host can reach a certain service, or very general and request which hosts
can reach which services. The analysis system may also include some predefined queries
to verify well-known network vulnerabilities or to audit the network for certifications such
as PCI-DSS.

query model result

Figure 2.6: Offline reachability

Offline reachability is much more dynamic, and the planning and execution is much
less invasive the the online approach. It has the advantage that it can also be applied during
the design phase since the system does not need to be deployed. Additionally, different
path in the network can be verified without reconfiguring the system. This gives the
opportunity to test the fault-tolerance properties of the systems. The disadvantage is that
the correctness of the result is based on the correctness of the model. This also implies
that all parts of the network must be included in the mode. Otherwise, the analysis is
limited or even impossible. Furthermore, all policies must be represented correctly by the
instantiated model.

2.5 Policy comparison

Policy comparison has different application scopes, in general, it can be divided into four
categories: a single policy, an entire network, Change-impact-analysis and Implementation-
verification. The classification is based on two dimensions, the first dimension is the num-
ber of policies involved and the second dimension is the application type. Therefore the
the different scopes can be mapped as displayed in Figure 2.7.

18

2 – Policy Analysis

Change
impact

(verify modifications)

Implementation
verification
(verify specification)

Single policy
(single security control) 1 3

Multi policy
(entire network) 2 4

Figure 2.7: Policy Comparison

Single policy comparison is performed between two single policies one to one. This
approach is limited to one single policy type. Therefore, a filtering policy can not be
confronted with a data protection policy.

Multiple policies comparison is performed between to complete network configura-
tions and associated policies. In this case different types of policies can be involved at the
same time.

Change-impact-analysis is used to verify the actual impact on a policy after inserting,
removing and/or modifying a policy. Therefore, the original policy is compared with the
modified one.

Implementation-verification is used to verify that a policy implementation is correct
and enforces all rules as specified in the policy definition. In this scenario, the policy
definition, for the most part, is written in a high-level language. In some use-cases, the
policy definition is already deployed in the network by another security control. In others,
the policy definition can also be a policy written by another network administrator.

2.5.1 Single policy - Change-impact-analysis

Change-impact-analysis of a single policy confronts a policy with a modified iteration of
itself. This allows administrators to make modifications to a policy and verify the effective
impact. Modifications to a policy include inserting a new rule, deleting a rule, modifying
a rule and changing rule priority. Therefore, by applying a Change-impact-analysis to a
modified policy, the network operator can verify that the modification did not have any
collateral effects.

19

2 – Policy Analysis

2.5.2 Multiple policies - Change-impact-analysis

Change-impact-analysis of multiple policies is used by administrators to verify the impact
of a policy change within the network. It can also be used to verify changes in the network
structure. In this case the complete network configuration with all involved policies is
compared, and the global effect is evaluated.

2.5.3 Single policy - Implementation-verification

Single policy Implementation-verification is used to verify that a policy implementation
is correct respect to a policy definition. The policy definition can be expressed in a high-
level language which captures the general concepts, or in a low-level language defined by
another network administrator or used by another security control. The policy implemen-
tation is then evaluated, and all violations of the policy definition are highlighted.

2.5.4 Multiple policies - Implementation-verification

Multiple policies Implementation-verification is used to verify that an entire network im-
plementation is correct respect to a network policy definition. Also, in this case, policy
definition is expressed in a high-level language which captures the general concepts of
the entire network. The complete network configuration with all involved policies is eval-
uated, and all violations of the policy definition are highlighted.

20

Chapter 3

State of the art

This chapter presents the state of the art in policy analysis. First the research regard-
ing anomaly analysis is presented, starting from the analysis of filtering policies to data-
protection policies. Afterwards, the research regarding reachability analysis is presented.
Than the different papers on policy comparison are presented.

3.1 Anomaly analysis

The greatest research effort in anomaly analysis is spent on single filtering policies and
computer networks containing only filtering policies. There are only a few research ap-
proaches that incorporate different types of security policies into a single analysis model.
Research efforts apart of filtering policies have been concentrated on analysing IPsec con-
figurations. Some of these works also include filtering policies, but they are the minority.

This section is therefore divided into two parts, first the state of the art of filtering
policy anomaly analysis is presented and afterwards the research on IPsec configuration
analysis.

3.1.1 Filtering

Qian et al. [23] had one of the first attends to resolve policy misconfigurations by propos-
ing a framework for automatic access control list (ACL) analysis. The propose algorithm
can detect and remove redundant rules and discover and repair inconsistent rules. Fur-
thermore, it can also merge overlapping or adjacent rules, and rewrite ACLs to be more
readable. The shortcoming of this paper is that it does not consider all types of policy
anomalies introduced in future works.

21

3 – State of the art

Al-Shaer and Hamed [24] first introduce the anomaly analysis of filtering policy. They
defined five filtering rule relations: completely disjoint, exactly matching, inclusively
matching, partially disjoint and correlated. Based on these rule relations they presented
the definitions for Intra-policy rule anomalies (shadowing, correlation, generalization and
redundancy). The shadowing anomaly occurs when two rules match the same packets but
enforce different actions. The correlation anomaly occurs when two rules match similar
packets but enforce different actions. The generalization anomaly occurs when a second
rule matches the same packets as the first one but not vice versa, and they enforce different
actions. The redundancy anomaly occurs when two rules match the same packets and
enforce the same action.

Al-Shaer et al. also propose the definition for anomalies between serially-connected
packet filters [25][26] and named it inter-policy anomalies. Inter-policy anomalies as
defined by Al-Shaer include shadowing, spuriousness, redundancy, correlation and irrel-
evance. The shadowing anomaly occurs when two rules from two different packet filters
match the same packets and the first rule blocks a packet that is permitted by the second
rule. The spurious anomaly occurs when two rules from two different packet filters match
the same packets and the first rule permits a packet that is blocked by the second rule. The
redundancy anomaly occurs when two rules from two different packet filters match the
same packets and both rules block the packet. The correlation anomaly occurs when two
rules from two different packet filters match similar packets and enforce different actions.
The irrelevant anomaly occurs when a rule is defined for which exist no possible packet.

The anomaly classification of Al-Shaer et al. has been the base of alternatives mod-
els and classification schemas. These research has shown that the results of Al-Shaer
are correct and can be applied to real-world applications. However, all of this research
focuses only on packet filters and ignore other security policies. Firecrocodile [27], pro-
pose by Lehmann et al., analyses PIX firewall configurations for Intra-policy anomalies.
Additionally, it also verifies the configuration for policy violations. Yuan et al. propose
FIREMAN [28], an Intra-Policy analysis tool based on binary decision diagrams (BDDs)
to represent packet filtering policies. The tool is also able to verify that an end-to-end
policy is correctly implemented. Jeffrey et al. [29] propose to reduce the complexity of
the problem by using an SAT-solver instead of BDDs. To proof, their claim they reim-
plemented FIREMAN with their SAT-solver. Hu et al. [30], [31] propose a tool called
Firewall Anomaly Management Environment (FAME). It uses a rule-based segmentation
technique and a grid-based representation to identify policy anomalies. Krombi et al. [32]
propose an automata-based approach to develop three analysis procedures. Their algo-
rithm can verify completeness, detect anomalies and functional discrepancies between
several implementations of a security policy.

22

3 – State of the art

There are also research proposals which focus on a formal proof of their analysis
model. Capretta et al. [33] present one of the first formal anomaly detection algorithms
for packet filter policies. The disadvantage of the propose algorithm is that it can not
distinguish between different anomaly types. Their implementation has been verified with
the Coq Proof Assistant and is sound and complete. Abbes et al. [34] suggest using an
inference system for detecting Intra-policy anomalies. The inference system constructs a
tree representation of the policy and stops the construction of a particular branch when no
anomaly can be found. The resulting classification tree contains potential rule anomalies
in its leaves. Basumatary et al. [35] represent firewall rules by a topological-temporal
model and use a model checker to verify the firewall policy.

Other researchers inspired by these results focused their efforts to find new types of
Intra- and Inter-policy anomalies. Golnabi et al. [36] propose two new non-systematic
Inter-policy anomalies: Blocking existing service and Allowing traffic to non-existing ser-
vice. The first anomaly occurs when legitimate traffic from a trusted network to a valid
service is blocked. The second anomaly occurs when traffic to a non-existing service is
permitted. Basile et al. [37] propose two new anomaly types: general redundancy and
general shadowing. The general redundancy anomaly occurs when a rule is redundant
to the union of a set of rules. The general shadowing anomaly occurs when a rule is
shadowed by the union of a set of rules.

An important aspect that was neglected by most research efforts is the introduction
of new security policy types in the analysis process. Garcia-Alfaro et al. [38] propose to
integrate network intrusion detection systems (NIDS) into anomaly analysis tools. The
propose model is based on their previous work [39] and has been integrated into the MI-
RAGE [40] tool. Their model can detect both Intra- and Inter-policy packet filter rule
anomalies. Additionally, it can also verify, based on its source and destination address,
which security controls are on the path of a given packet. A solution for Intra-policy anal-
ysis of stateful firewalls has been propose by Cuppens and Garcia-Alfaro [41], [42]. They
also introduce two new anomaly classes, namely Intra-state and Inter-state rule anoma-
lies. The Intra-state anomalies include the stateless anomalies as presented by Al-Shaer
and two new anomaly types for stateful rules. The first stateful anomaly occurs when
a security control blocks a packet during the three-way handshake. The second stateful
anomaly occurs when a security control blocks a packet during the connection termina-
tion. The Inter-state anomalies occur when a stateless rule blocks packets required by a
stateful connection. An example of an Inter-state anomaly is for example when the FTP
protocol operates in active mode and the data channel traffic is blocked. Basile et al. [43]
present an algorithm for anomaly analysis of application-level firewall policies. Their
algorithm can identify all anomaly types defined by Al-Shaer for packet filter policies,

23

3 – State of the art

but applied to application-level firewall policies. The main difference between packet fil-
ter policies and application-level policies is the possibility to define regular expressions
within the rule conditions. Therefore, the main contribution of this paper is the calcula-
tion of rule relations based on regular expressions. The presented algorithm transforms
regular expressions into deterministic automata, which can be manipulated much more
efficiently.

Other research approaches also tried to resolve the detected anomalies. Liu et al.
[44] focus in their paper only on redundant rules in packet filter configurations. Their
algorithm can identify and remove two types of redundant rules: upward redundant rules
and downward redundant rules. Rules which are never matched are upward redundant
rules, this definition is similar to the definition of shadowed rules by Al-Ahaer. Rules
which are matched but enforce the same action as rules with lower priority are down-
ward redundant rules. Cuppens at al. [45] also propose an algorithm that is capable of
resolving Intra-policy anomalies. Like Liu et al. they also only handle shadowed and
redundant anomalies. The authors extend their model to support also Inter-policy anoma-
lies [46]. Additionally, the authors introduce the reflexivity anomaly, which is sub-case
of the irrelevance anomaly. It occurs when the source and destination address are part
of the same filtering zone. Abedin et al. [47] generate a new anomaly free policy by
reordering and splitting conflicting rules. The presented algorithm reduced the rule num-
ber and, therefore, increase the efficiency of the firewall. Ferraresi et al. [48] propose
to resolve all policy conflicts by rewriting the policy with only disjoint rules. Their al-
gorithm does not operate completely autonomous. The user is required to decide which
rule to delete or modify when the algorithm can not take a decision. Prometheus is an
open-source firewall analysis tool propose by Oliveira et al. [49]. The tool can perform
anomaly and reachability analysis of firewall policies. The algorithm can detect redun-
dancy, shadowing, generalization and correlation anomalies. Furthermore, a verification
is performed to ensure that all possible paths in the network enforce the same security
policies. The anomaly resolution is not performed autonomous instead possible solutions
are suggested, and the user can select which to apply. Saadaoui et al. [50] propose a
formal approach for detecting and resolving firewall misconfigurations. Their approach
also detects anomalies between multiple rules and not only rule pairs. Furthermore, they
introduce a new classification of firewall anomalies: superfluous rule-class anomalies and
conflicting rules-class anomalies. Superfluous rule-class anomalies include the shadow-
ing and redundant anomaly and conflicting rules-class anomalies include the correlation
and generalization anomaly. The new classification is used because superfluous rule-class
anomalies can be resolved by their algorithm.

24

3 – State of the art

3.1.2 Data-Protection

IPsec policy anomaly detection was first introduced by Fu et al. [51]. The authors
propose to identify anomalies by verifying that the policy implementation satisfies the
requirements of a desired policy. The policy implementation and the desired policy are
written in a high-level language. Additionally, to the anomaly identification they also
propose an anomaly resolution process. The anomaly resolution process creates a new
policy based on the policy implementation that satisfies the desired policy.

Al-Shaer [52] proposes an anomaly classification scheme based on the work of Fu et
al. [51]. He creates a complete taxonomy [53] of rule anomalies for packet-filter and IPsec
policies. This research is the only one that combines anomaly analysis for two different
security controls. The taxonomy also includes two new IPsec anomalies: overlapping-
session and multi-transform anomaly. The overlapping-session anomaly occurs when
from the same source two or more nested IPsec sessions are established to different des-
tinations and the inner session terminates on a nearer host then the outer one. The multi-
transform anomaly occurs when an encapsulated IPsec traffic is encrypted a second time
and the second protection is weaker than the first one. Additionally to the classification,
Al-Shaer also propose a new model for detection them. The new model can detect packet
filter and IPsec anomalies, and is based on OBDD (Ordered Binary Decision Diagrams).

Another anomaly classification model for IPsec policies has been presented by Li et
al. [54]. This model is designed to handle similar Intra- and Inter-policy anomalies as
defined by Al-Shaer. However, the two models are not compatible to each other. Li et al.
use a slightly different classification that has a clearer structure and is, therefore, easier to
implement.

An improved version of Al-Shaer’s [52] IPsec anomaly classification has been pre-
sented by Niksefat and Sabaei [55]. Their detection algorithm identifies only IPsec anoma-
lies and uses Binary Decision Diagrams (BDD) to represent the policies. The main ad-
vantage of this approach over Al-Shaer’s is that it has better performance. Furthermore,
Niksefat and Sabaei also include an anomaly resolution algorithm in their solution.

Valenza et al. [56] present a novel classification of communication protection pol-
icy anomaly. The propose model allows the detection of some anomalies arising from
the interactions between various protection protocols that work at different layers of the
ISO/OSI stack (IPSec, TLS, SSH and WS-Security), security proprieties and communi-
cation scenario such as end-to-end connection, VPNs and remote access.

25

3 – State of the art

3.2 Reachability analysis

Reachability analysis can be performed online or offline. Online reachability analysis, in
general, is performed by injecting test packets into a deployed network and verifying that
they arrive at their destination. Offline reachbility analysis is performed by instantiating
and querying a model of the network. Research efforts are mainly focused on offline
reachability analysis techniques.

Although online reachability analysis has been performed in practice for a long time
with tools such as ping, traceroute, and tcpdump, the scientific community has given
only a little attention to this topic. In recent years, there has been an effort to create
new commercially available tools for online reachability analysis. The most important
are SATAN [57], Nessus[58], and FTester[59]. These solutions are based on a traffic
generator and a traffic analyser. The traffic generator sends packets to the traffic analyser
that creates a statistic on which packets have arrived and which not. In literature solutions
for online reachability analysis are presented by El-Atawy et al. [60] and Al-Shaer et al.
[61]. Their traffic generator first analyses the security policy and then generates the most
relevant packets. The limitation of this two solutions is that they work only with single
packet filters. Brugger et al. [62] propose a tool for model-based conformance testing of
firewalls called HOL-TESTGEN/FW. Their approach uses a test-policy from which the
effective reachability queries are generated. Test-policy have the advantage that queries
can be written in a more abstract level, and the reachability analysis is closer to a policy
comparison.

One of the first Offline reachability solutions was propose by Mayer, Wool, and
Ziskind [63]. This firewall analysis engine was called FANG (Firewall Analysis En-
gine) and is designed for computer networks containing only packet filters. It takes as
input the network topology and the packet filter configuration files. Reachability queries
are defined by a user interface, and FANG evaluates them. The query interface has been
improved in the extended versions of the paper [64] and [65]. The newer solutions also
generated the most relevant queries automatically.

Eronen et al. [66] propose to use logic programming and a generic inference engine
to analyse Cisco ACLs. Their approach has the advantage that reachability algorithms are
not hard-coded. New rule analysing functions can easily be added, and the expert knowl-
edge can be expressed in a compact form. Furthermore, their model can also analyse the
rule structure, for example if a rule is never matched.

Hazelhurst [67] presents a model for reachability analysis and policy comparison.
The model represents packet filter rules internally as BDDs and has a GUI for human
interaction. To perform a reachability analysis, the user expresses a query as a Boolean

26

3 – State of the art

expression, and the result is displayed in tabular form. The user can express queries
for packets which are allowed and denied. Furthermore, the output can be formatted to
achieve different levels of abstraction.

Xie et al. propose a reachability analysis algorithm based on graph theory and dynamic
programming [68]. The algorithm supports static NAT, routing, and filtering and operates
in one of two modes: upper and lower bound. The upper bound verifies that at least
one possible path ensures reachability and the lower bound verifies that all possible paths
ensure reachability. However, it is only a theoretical model and has no practical validation.
To overcome this limitation Bandhakavi et al. [69] present an extension of this work. The
extended algorithm is based on a general model for representing firewalls, packet filtering
and transformation rules. It also handles policies defined for the source addresses and
filtering states.

Marmorstein and Kearns [70] [71] [72] propose a tool for analysing IPtables policies
named ITVal. The main contribution of this research is to be the first open source imple-
mentation of a firewall analyser capable of performing simple reachability queries. The
tool represents IPtables policies as multi-way decision diagrams (MDD) where each level
represents one attribute of the rule condition. Since the tool was designed for IPtables
policies, it is also able to handle state-full conditions. Unfortunately, the propose algo-
rithm is not able to perform an Inter-policy analysis and can not handle transformation
policies.

Matousek et. al. [73] present a reachability analysis model for networks containing
packet filters and dynamic routing policies. The authors propose to represent ACLs as
Interval Decision Diagrams (IDDs) [74]. IDDs are an efficient data structure on which
different operations can be performed. Routing information is modelled as additional
rules in the IDD and is used to test link failures.

Khakpour and Liu [75] propose Quarnet, a reachability analysis tool. Their solution
calculates the network reachability metrics and supports connectionless (stateless router/-
firewall and static NAPT) and connection-oriented transport protocols (stateful router/-
firewall and dynamic NAPT). The network reachability metrics are based on Firewall
Decision Diagram (FDD) and used to solve reachability queries. The computation of the
FDD takes a long time but afterwards the reachability queries are resolved very fast.

Prometheus is an open-source firewall analysis tool propose by Oliveira et al. [49].
The tool can perform anomaly analysis but also performs a flow connectivity analysis.
The algorithm verifies that a server is accessible from different locations in the network.
First all possible routes between the nodes are calculated and eliminates all routes on
which a firewall blocks the traffic. If no route remains, Prometheus points out which
firewall rules block the traffic.

27

3 – State of the art

Nelson et al. [76] propose a reachability analysis tool named Margrave. The tool can
perform basic reachability queries of on firewall policies and can also be used to perform
a Change-impact-analysis. The authors define a first-order language to represent both
policies and reachability queries. Their model is also able to handle NAT and routing
policies.

Mai et al. [77] present a tool for reachability verification called Anteater. Their al-
gorithm collects data plane information from network devices and models data plane be-
haviour as instances of satisfiability problems. Reachability queries are represented as a
boolean formula which is evaluated by an SAT solver. The reachability query is true if
and only if the Boolean formula is satisfied.

Al-Shaer et al. [78] propose an algorithm for general reachability verification. The
authors have implemented the algorithm in a tool and called it ConfigChecker. The tool
models the global end-to-end behaviour of a network and performs reachability verifi-
cation. Furthermore, it can also identify bogus entries, verify IPsec tunnel integrity and
discover backdoors.

Sveda et al. [79] propose another theoretical approach for resolving network-wide
reachability queries. Their research is not based on an ad-hoc algorithm like [68] and
[69], but use traditional graph-based algorithms such as Floyd-Marshall. They encode the
reachability problem for an SAT instance and solve it with automatized solvers. Their
solution supports routing and filtering policies but is not able to handle transformation
policies.

Kazemian et al. [80] propose an extension of Xie’s work [68]. Their solution is based
on the so-called “Header space” information of packets. It supports filtering, routing and
transformation policies, but only at the lower layer of the ISO/OSI stack.

3.3 Policy comparison

In literature exist two distinct approaches that utilize policy comparison: Implementation-
verification and Change-impact-analysis. Implementation-verification compares a de-
ployed policy with the desired one and verifies that the desired policy is correctly im-
plemented. Change-impact-analysis evaluates the impact of a modification to a security
policy. Research efforts have been focused first on Implementation-verification and only
later on Change-impact-analysis. Implementation-verification has been applied to both
filtering and IPsec policies, wears Change-impact-analysis is applied only to filtering poli-
cies.

28

3 – State of the art

Guttman [81] presents one of the first tools for Implementation-verification. The au-
thor propose a simple language for expressing a global filtering policy. The propose model
compares the global policy with a network topology containing access control lists and
verifies that it is implemented correctly. The verification algorithm compares each policy
rule with all non-cyclic path in the network. This model has also been extended [82] to
support IPsec gateways within the network.

Fu et al. [51] present the first solution to verify the correct implementation of IPsec
policies. Their algorithm compares a high-level security policy, describing an implemen-
tation, with a desired end-to-end policy. However, it is designed only for implementation
validation and not for Change-impact-analysis. In general is this approach more directed
towards anomaly analysis then policy comparison.

Hazelhurst [67] presents a model for reachability analysis and policy comparison. The
model represents packet filter rules internally as BDDs and has a GUI for human inter-
action. The policy comparison algorithm can compare an original policy with a modified
one. The result of shows if the two policies are equivalent or contain differences. The
differences can be displayed in two modes, newdeny and newallow. The newdeny mode
highlights the packets which are blocked by the modified policy, but where allowed by
the original one, the newallow mode does the opposite.

Liu et al. [83] present a firewall verification tool that verifies a given property within
a packet filter policy. Their algorithm is designed for offline firewall debugging and trou-
bleshooting. It first computes an FDD representation of the policy and afterwards the ver-
ification is performed on the FDD. The verification compares the action saved in the leafs
of the FDD with the desired action given by the property. The authors have implemented
the algorithm and tested it for performance. Although it has excellent performance, it is
limited to one single firewall and cannot verify the correct implementation of a complete
network.

Krombi et al. [32] propose to represent a packet filter policy as an automaton. Their al-
gorithm can verify completeness, detect anomalies and functional discrepancies between
several implementations of a security policy. The comparison of two packet filter policies
is based on three fundamental steps. First both policies are transformed into automata.
Then they are combined into a single one, where each leaf notates the actions of both
automatons. The final step is to verify that all leafs contain the same actions and each
leaf where the actions contradict each other a discrepancy between the input policies is
present.

Liu et al. [84] and [85] propose an algorithm that compares filtering policies written
by two different network administrators. First the two policies are converted into FDDs
and afterwards the two FDDs are compared to each other. The comparison algorithm

29

3 – State of the art

confronts the actions in the leafs of the two FDDs and highlights each leaf where the
action differs. The differences found in the two policies are presented to the administra-
tors, which must choose the correct action to enforce. This approach is simmilar to the
Change-impact-analysis because one policy can be seen as the original and the other one
as the modified policy.

Yin and Bhuvaneswaran [86] are the first ones to evaluate the impact of rule changes
on the policy. Correlations between rules are modelled as spatial relations, and filtering
policies are represented by the so-called SIERRA tree. A SIERRA tree is similar to an
FDD, each level of the tree represents a dimension of the special division. The algorithm
can only verify single modifications to the policy. The verified modifications include
adding a new rule and removing or modifying an existing rule. The performance of the
algorithm is not very promising because the verification of a policy with only 30 rules
takes already several seconds.

The Margrave Tool by Nelson et al. [76] can perform Change-impact-analysis of sin-
gle firewall policies. The tool represents firewall policies with a first-order language and is
also able to perform reachability analysis. The implemented algorithm compares a modi-
fied firewall policy with the original one and lists all packets which are treated differently
by the two policies. Although the algorithm can perform reachability queries on entire
networks with multiple firewalls and NAT, the Change-impact-analysis is designed only
for single policies.

Liu et al. have propose an algorithm for Change-impact-analysis of firewall policies
[87] [88]. The algorithm first converts the packet filter policies into FDDs and eliminates
all overlapping rules. It supports four basic modification operations: rule deletion, rule
insertion, rule modification, and rule swap. The result of the algorithm is an accurate rep-
resentation of the effective modification. The algorithm is also able to correlate the impact
with a high-level security policy. However, a representative performance evaluation of the
algorithm has not been presented.

Youssef et al. [89] propose to use a inference system for automatic Implementation-
verification. The propose algorithm verifies that a filtering policy is sound and complete
compared to the desired policy. All differences are presented to the user that must resolve
them manually. Youssef et al. [90] propose an improved algorithm to check also statefull
firewall policies.

30

Chapter 4

State of the art - summary

This chapter presents the advantages and disadvantages of the different research ap-
proaches in the state of the art. First advantages and disadvantages of the research ap-
proaches regarding anomaly analysis are presented. Afterwards, advantages and disad-
vantages of the research regarding reachability analysis are presented. Then the advan-
tages and disadvantages of different papers on policy comparison are presented. Finally,
a summary of all the articles is made by confronting the similarities and uniqueness.

4.1 Anomaly analysis

Anomaly analysis is one of the first approaches to identify security policy errors and,
therefore, includes also the most research papers. Another important consideration is that
initially anomaly analysis focused mainly on single filtering policies. The analysis of
entire computer networks containing filtering policies has gained less attention. Research
efforts have also been concentrated on analysing IPsec configurations. However, there
are only a few research approaches that incorporate different types of security policies
into a single analysis model. Some of these models also include filtering policies and
IPsec configurations, but they are the minority. This section is therefore divided into two
parts. First advantages and disadvantages of the state of the art on filtering policy anomaly
analysis are presented. Afterwards the advantages and disadvantages of research on IPsec
configuration analysis.

31

4 – State of the art - summary

4.1.1 Filtering summary

For the last decade, there have been many publications regarding filtering policy analysis.
In general, can be concluded that filtering policy analysis is a well-studied field. It is
mature enough to apply the research outcomes to solve real policy problems. However,
some minor details could be improved, and some functionalities can be added.

Table 4.1 gives an overview of the main properties of these articles, and this subsec-
tion summarizes the overall research outcome. In the first column-group, the supported
security policy types are marked. The second column-group marks if the presented anal-
ysis model can also be applied for Inter-policy analysis and if it can resolve the identified
anomalies. The third column-group represents how the analysis model has been tested
and evaluated.

The main conclusion from this summary is that for the biggest part only packet filter
policies have been considered. Only a small part of the publications also considered
other filtering policy types, such as stateful and application layer firewalls. This is not a
real disadvantage since these publications have a an excellent coverage of the analysed
policies. Therefore, from a general perspective, all relevant filtering policies are present.
However, the fact that application layer firewalls have been ignored in the most recent
publications may be an indication that the research focus points in the wrong direction.

A more important conclusion is that not even half of the articles considered inter-
policy anomalies. This is a major disadvantage since without considering the interactions
of a policy with other policies the performed analysis is incomplete. Inter-policy anoma-
lies have a significant effect on the global network behaviour and must therefore always
be considered.

Furthermore, although there are research results regarding anomaly resolution, they
focus only on Intra-policy anomalies and are only able to resolve redundant rules. There-
fore can this topic not been considered mature enough and more research effort should be
focused on it.

Finally, the performance evaluation of the presented algorithm also leaks consistency.
Although almost all analysis algorithms have been implemented and tested, the test cases
are not well documented. Therefore, a conclusive performance comparison is impossible.
Some papers also have performed an empirical and theoretical evaluation of the presented
algorithm.

32

4 – State of the art - summary

Paper Pa
ck

et
Fi

lte
r

St
at

ef
ul

FW

A
pp

lic
at

io
n

FW
In

te
r-P

ol
ic

y

R
es

ol
ut

io
n

Pr
ot

ot
yp

e

Pe
rf

or
m

an
ce

te
st

s
Em

pi
ric

al
ev

al
.

Th
eo

re
tic

al
ev

al
.

[24] 4

[25] 4 4 4 4 4

[26] 4 4 4 4 4

[27] 4 4 4 4

[28] 4 4 4 4

[29] 4 4 4

[30] 4 4 4 4 4

[31] 4 4 4 4 4

[32] 4

[33] 4 4 4 4

[34] 4 4 4

[35] 4 4 4

[36] 4 4 4 4

[37] 4 4 4

[38] 4 4 4 4

[39] 4 4 4 4

[40] 4 4 4 4

[41] 4 4 4 4 4

[42] 4 4 4 4 4

[43] 4 4 4 4 4

[44] 4 4

[45] 4 4 4

[46] 4 4 4 4 4

[47] 4 4 4

[48] 4 4 4 4 4

[49] 4 4 4 4 4

[50] 4 4 4

Table 4.1: Filtering summary

33

4 – State of the art - summary

4.1.2 Data-protection summary

The research of policy analysis techniques for data-protection policy has got less atten-
tion then filtering policies. The different papers only focus on one data-protection policy
type, namely IPsec policies. There was only one publication which also considered Inter-
protocol data-protection anomalies and, therefore, the interaction with other policy types.

Paper IP
se

c

Fi
lte

rin
g

In
te

r-p
ro

to
co

l
R

es
ol

ut
io

n

Pr
ot

ot
yp

e

Pe
rf

or
m

an
ce

te
st

s
Em

pi
ric

al
Ev

al
.

Th
eo

re
tic

al
Ev

al
.

[51] 4 4 4

[52] 4 4 4 4 4

[53] 4 4 4 4

[54] 4 4 4

[55] 4 4 4 4

[56] 4 4 4 4 4

Table 4.2: Data-protection summary

Table 4.2 gives an overview of the key-properties of those research approaches. In the
first column-group, the supported security policy types (IPsec and filtering) are marked.
The second column-group marks if the presented analysis model can also be applied for
Inter-protocol data-protection analysis and if it can resolve the identified anomalies. The
third column-group represents how the analysis model has been tested and evaluated.

About half of the presented algorithms is also capable of handling other policy types
beside data-protection. They also included filtering policies and can, therefore, analyse
computer networks which include data-protection and filtering policies at the same time.
This is a significant advancement but still not enough, because computer networks with
transformation policies can invalidate the whole analysis result. Interestingly researchers
that considered filtering policies did not propose any anomaly resolution and vice versa.

All proposed algorithms have been implemented and about the half performed a per-
formance evaluation. However like in the case of filtering policies, also these papers do
not explain well enough how the performance evaluation was conducted and how the test
policies have been created. Therefore, is it impossible to compare the results to each other
and decide which algorithm performs the best.

34

4 – State of the art - summary

4.2 Reachability analysis

Reachability analysis can be performed online or offline. Online reachability analysis, in
general, is performed by injecting test packets into a deployed network and verifying that
they arrive at their destination. Offline reachability analysis is performed by instantiating
and querying a model of the network. Research efforts are mainly focused on offline
reachability analysis techniques.

Papers Pa
ck

et
Fi

lte
r

N
AT

/N
A

PT

R
ou

tin
g

O
n-

lin
e

O
ff-

lin
e

Pr
ot

ot
yp

e

Pe
rf

or
m

an
ce

te
st

s
Em

pi
ric

al
Ev

al
.

Th
eo

re
tic

al
Ev

al
.

[60] 4 4 4 4

[61] 4 4 4 4

[62] 4 4 4 4 4 4

[63] 4 4 4

[64] 4 4 4 4

[65] 4 4 4 4

[66] 4 4 4

[67] 4 4 4

[68] 4 4 4 4

[69] 4 4 4 4

[70] 4 4 4

[71] 4 4 4

[72] 4 4 4

[73] 4 4 4 4

[75] 4 4 4 4 4 4 4

[49] 4 4

[76] 4 4 4 4

[77] 4 4 4 4 4 4 4

[78] 4 4

[79] 4 4 4

[80] 4 4 4 4 4

Table 4.3: Reachability analysis summary

Table 4.3 presents the key properties of the presented papers. In the first column-
group, the supported security policy types are marked. The second column-group marks

35

4 – State of the art - summary

if the presented reachability analysis is performed online or offline. The third column-
group represents how the analysis model has been tested and evaluated.

This summary also includes the papers on online reachability analysis. However,
those are not relevant for the proposed solution. Research on reachability analysis which
does not consider security aspects of computer networks were not considered, therefore
all included papers can manage filtering policies.

Nearly half of the presented reachability algorithms can also handle NAT/NAPT and
routing policies. However, none of them can manage data-protection policies or applica-
tion layer policies. Therefore computer networks with such security policies can not be
analysed. This is a significant disadvantage since data-protection policies and application
layer policies are fairly common in today computer networks.

Although the majority of the algorithms have been implemented, only a few have
conducted a performance analysis. Furthermore, the results are not very conclusive, es-
pecially because like in other research papers on policy analysis the methodology was not
presented clearly. Therefore, also, in this case, it is not possible to compare the perfor-
mance of the different algorithms.

4.3 Policy comparison

In literature exist two distinct approaches that utilize policy comparison: Implementation-
verification and Change-impact-analysis. Implementation-verification compares a de-
ployed policy with the desired one and verifies that the desired policy is correctly imple-
mented. Change-impact-analysis evaluates the outcomes of a modification on a security
policy.

Research efforts have been focused first on Implementation-verification and, only
later, on Change-impact-analysis. Implementation-verification has been applied to both
filtering and IPsec policies, wears Change-impact-analysis is applied only to filtering poli-
cies. It is important to point out that all presented papers on Change-impact-analysis focus
only on single policy analysis. There has been no solution that supports multiple policies
analysis. Therefore Change-impact-analysis can not be applied to entire computer net-
works.

Table 4.4 presents the key properties of the presented papers on policy comparison.
In the first column-group the supported security policy types are marked. The second
column-group marks if the presented policy comparison model is designed for Change-
impact-analysis and/or Implementation-verification. The third column-group represents
how the analysis model has been tested and evaluated.

36

4 – State of the art - summary

Papers Pa
ck

et
Fi

lte
r

St
at

ef
ul

FW

IP
se

c

C
ha

ng
e

Im
pa

ct
Ve

r.
Im

pl
em

en
ta

tio
n

Ve
r.

Pr
ot

ot
yp

e

Pe
rf

or
m

an
ce

te
st

s
Em

pi
ric

al
Ev

al
.

Th
eo

re
tic

al
Ev

al
.

[81] 4 4 4 4 4

[82] 4 4 4 4

[51] 4 4 4

[67] 4 4 4

[83] 4 4 4 4 4

[90] 4 4 4

[32] 4 4

[84] 4 4 4 4 4

[85] 4 4 4 4 4

[86] 4 4 4 4

[76] 4 4 4

[87] 4 4

[88] 4 4 4 4 4

[89] 4 4 4 4

Table 4.4: Policy comparison summary

Like in the other field of policy analysis the majority of work focuses on filtering
policies. Only a few of them also consider stateful or IPsec policies, and none of them
included application layer policies. Therefore also, in the case of policy comparison, there
is no solution that can be applied to all computer networks.

The application of the policy comparison algorithm is divided 50-50 between Change-
impact-analysis and Implementation-verification. In recent years, there is no clear indica-
tion that one of the two application has gained more attention than the other. Interestingly
in all papers only one of the two comparison scope has been chosen. No research approach
tried to propose a comparison model that can perform both scopes.

Nearly all of the presented algorithms have been implemented, and the majority has
also been validated for performance. However, like for all other policy analysis tech-
niques, it is not possible to confront the performance of the different algorithms to each
other.

37

4 – State of the art - summary

4.4 Summary

After heaving presented the different research papers and compared them to each other,
based on their analysis technique, it is time to perform a global comparison and summa-
rize the state of the art based on different indicators. This section compares the state of
the are in policy analysis based on interoperability, performance evaluation, user interface,
and implementation.

4.4.1 Interoperability

The comparison of the different research approaches clearly shows that there is almost no
interoperability between the different analysis techniques. For the most part the presented
analysis model focus on only one analysis technique. Only a few researchers tried to in-
corporate more than one policy analysis technique into their model. This has a significant
disadvantage for future research and practical usage.

The negative impact on future research is present because improvements in one anal-
ysis technique can not be directly applied to another one. For example, if a new security
policy category is introduced it must be modelled for each of the three analysis techniques.
This can be a significant overhead and substantial research time is lost.

Form a practical perspective this situation is suboptimal since to cover the complete
analysis spectrum multiple tools must be instantiated. Since different analysis techniques
are designed to identify specific policy errors, all three techniques are required. Therefore,
the execution time increases. Furthermore, supporting software modules, such as policy
parsers and graphical interfaces, must be implemented multiple times.

4.4.2 Performance evaluation

The performance evaluation is performed by only a few papers and for the most part, the
results are not reproducible. Furthermore, it is not clear how the test policies have been
generated and what is the topology of the network. The description of the test cases is
very superficial or not present at all.

The main problem for a representative performance comparison between the different
algorithms is that there is no clear description of how to perform a representative perfor-
mance evaluation. A unified analysis model may not solve this problem completely but it
provides a common base that enables a better comparison and evaluation.

38

4 – State of the art - summary

4.4.3 User interface

Although the user interface is not the main consideration to evaluate research efforts, it
should not be ignored. Only a few research papers include a description of their user
interface and how end-users must interpret the analysis results. This is a crucial aspect
because when the user is not able to read and understand the analysis results, they are
useless.

The user interface is necessary for the end user in two distinct ways. Firstly, to define
the network topology and the security policies. Should a user not be able to model the
input data in a efficient way he is not able to perform an analyse. Secondly, to represent
the analysis results in a clear way. The most advanced analysis model has no sense when
the analysis result can not be represented in an clear way.

4.4.4 Implementation

For a complete validation of a policy analysis algorithm, its implementation is necessary.
Unfortunately, not all algorithms have been implemented. Therefore, a correct validation
is impossible. Another important consideration is if the implementation is available to the
public and other researchers. Here the situation is even worse because only a handful off
algorithms have been released, either as commercial products or as open source.

A widely available implementation of the research outcomes has two major advan-
tages. Firstly, it gives application developers easy access to new and correct functional-
ities for their products. Secondly, it guarantees to support future research efforts in this
field, since researchers have a working implementation which they can work on and im-
prove. For this reason, an open-source implementation is required for an effective research
validation and to reduce future research efforts.

39

Part III

Proposal

Chapter 5

Requirements, Design and Contribution

This section introduces the proposed solution and gives a brief overview of the function
blocks and their key features. First a general description of how the solution can be used in
practice is given, different workflows and use-cases are presented. Then the requirements
and main features of the solution are shown. Afterwards, the single function blocks of
the solution are presented and described how they interact with each other. Finally, the
contributions to the state of the are presented.

5.1 Policy Analysis workflows

A security policy goes through different stages, including the design stage, the imple-
mentation stage, the test stage and the maintenance stage. In the design stage, a security
policy is designed and defined. In the implementation stage, the policy is implemented
in a security control. In the test stage, the enforced policy is tested and validated. In
the maintenance stage, the security policy is maintained to ensure continuous and correct
operation.

Each stage can introduce new policy errors and requires different analysis techniques
to find and resolve them. The various policy analysis techniques are designed for differ-
ent purposes and can help at different stages. Anomaly analysis searches for potential
errors within a policy, it is based on rule relations. Reachability analysis verifies that
specific properties of a security policy are correct, it is based on reachability queries.
Policy comparison identifies the differences between two policies or between entire net-
work configurations. During a complete life-cycle of a security policy, all three analysis
approaches are applied.

41

5 – Requirements, Design and Contribution

This section presents four analysis workflows namely policy generation, policy verifi-
cation, policy modification and policy troubleshooting. It also shows that all three analysis
techniques are required when performing these workflows. The policy generation work-
flow is applied when an entire network is designed, and new policies are created. The
policy verification workflow is used to verify the correctness of a network deployment
and its security policies. The policy modification workflow is applied when a policy or
network modification must be validated. The policy troubleshooting workflow is used to
find the cause of a network problem. Figure 5.1 shows the different workflows, at which
stage they are applied and how they are correlated.

Design Implementation Test Maintenance

Generation Verification

Throubleshooting

Modification

Figure 5.1: Policy analysis workflows

5.1.1 Policy generation workflows

During the policy generation workflow, network administrators translate network security
policies from high-level directives into device-specific configurations. Before all security
controls are configured and deployed, the different security control configurations must
be verified. The first verification to be performed is the anomaly analysis, where potential
errors, performance issues and irrelevant rules are identified and removed. Afterwards key
aspects of the security directives are verified by performing a reachability analysis. A this
point, the network administrator wants to check that essential services are reachable, and
unwanted traffic is blocked. Finally, the network administrator desires to compare high-
level directives with the device-specific configurations. Therefore, a policy comparison
for Implementation-verification is executed.

42

5 – Requirements, Design and Contribution

5.1.2 Policy verification workflows

The policy verification workflow is applied after the security policies have been deployed,
and network administrators want to verify that they are working properly. Another use-
case for this workflow is when a new attack-path has been discovered, and administrators
want to ensure that the network is not vulnerable to it. The main policy analysis tech-
nique applied in this workflow is reachability analysis. By executing different reachabil-
ity queries, network administrators can verify that key security properties are still valid.
Should one reachability query not respond with the desired result, one ore more policies
must be modified, and the policy modification workflow is applied.

5.1.3 Policy troubleshooting workflows

A common problem in a computer network is that a service is not reachable. Therefore,
network administrators want to troubleshoot the connection problem and verify that it is
not caused by a policy error. The implemented policies are verified by using the reachabil-
ity analysis. Should a policy error be the reason for the connection problem, the involved
policies are modified. Afterwards, the administrator must ensure that the modification did
not introduce new anomalies and that the desired change is applied. Therefore, also, in
this case, the policy modification workflow is performed.

5.1.4 Policy modification workflows

There are different reasons why a policy must be modified: a new service or host is
deployed, a service or host is removed, or a network vulnerability is found. In all these
scenarios, at least, one security policy is modified and after the modification has been
performed the new policy must be validated. The validation of a modified policy has
several steps, and each step uses a different policy analysis technique. In the first, step
anomaly analysis is applied, and it is verified so that no policy anomaly is introduced.
The next step is to verify that the desired modification has been performed correctly by
performing a reachability analysis. The reachability query is modelled according to the
performed modification. In case the result confirms the intention, the next step can be
performed, otherwise, the modification must be redone. The last step is performed by
using policy comparison for Change-impact-analysis. The administrators verify that the
modification does not introduce undesired side effects. The modified policy is compared
to the original one, and the comparison algorithm highlights all differences.

43

5 – Requirements, Design and Contribution

5.2 Requirements

The proposed model must follow some essential requirements to be completely functional
and future-proof. These requirements are necessary not only for a correct operation but
also to ensure an improvement over the state of the art.

The overall solution must guarantee interoperability and must be able to work with as
many as possible security policies. Since new types of security policies can be introduced
in the future, the solution must be expansible. Furthermore, the solution must have a well
defined internal format that can model all required information. Finally, the representa-
tion of results of the different analysis techniques must be clear to the user and easy to
read.

5.2.1 Interoperability

The proposed model should be able to accommodate the most common types of secu-
rity policies and all possible network topologies. Different network topologies should be
modelled by combining various security controls, and security control should be mod-
elled independently from the network topology itself. Security policies should be associ-
ated with the security controls in the network topology. The separation between network
topology and security policies provides the greatest possible flexibility. Security poli-
cies do not need to include topology specific information because they are associated to
security controls and not directly to the network topology.

5.2.2 Expansibility

The proposed model should be able to support future security policy types without chang-
ing the complete solution. The different analysis techniques should be independent of
the input policies and should remain unchanged when a new security policy type is intro-
duced. When a new security policy type is required, only the instantiation of the analysis
model should be modified. This means that the impact is reduced because only one modi-
fication is required instead of three. Therefore, the impact is minimal, and the support for
future security policy types is guaranteed.

5.2.3 Internal format

The solution should model the network topology and all involved network security poli-
cies with a common format. This model should also provide the appropriate abstraction
between input policies and analysis algorithms. The internal format should enable the

44

5 – Requirements, Design and Contribution

model to compare concrete configurations with a high-level policy. Therefore, it should
be possible to populate the internal format with input policies expressed at different ab-
straction levels. Furthermore, should the internal format be as simple as possible because
it is the key enabler for the expansibility requirement.

5.2.4 Representation of results

A correct and complete analysis has no value without a well-defined representation of
the results. Therefore, an important part of the overall solution is the result format. It
should have a clear structure, and it should be easy to read and interpret. An important
consideration is that the main stakeholders are the network administrators. Therefore, the
representation of the results should be designed for them and be very familiar.

5.3 Design

The overall model has been designed to incorporate all requirements and to improve the
state of the art. It consists of a mathematical model to represent the network topology and
the security policies, the internal representation, and one algorithm for each of the three
analysis types. The mathematical model used to represent the security policies is called
Geometric-Model, it uses hyper-rectangles to represent rule conditions. The internal rep-
resentation, called Equivalent-Policy, is computed by a transformation algorithm. The
three analysis algorithms use the Equivalent-Policy to perform the analysis. Figure 5.2
shows the different function blocks and how they are interconnected.

Network Topology

Security Policies Geometric-Model

Equivalent-Policy

Anomaly Analysis

Rechability Analysis

Policy Comparison

Figure 5.2: Function blocks

45

5 – Requirements, Design and Contribution

5.3.1 Geometric-Model

The Geometric-Model is a mathematical representation of security policies. It is based
on the set theory where security policies are represented by a four-tuple consisting of the
default action, the rule set, the external data and the resolution strategy. The default action
is applied when no rule from the rule set matches a certain packet. The external data is
used by the resolution strategy to decided which action to apply when more than one rule
matches a packet. A policy rule is composed of the rule condition and the rule action.
Rule conditions are represented as hyper-rectangles, where each dimension represents
one selector type. Rule relations can be verified by calculating the intersections of the
hyper-rectangles.

5.3.2 Equivalent-Policy

The Equivalent-Policy is based on the Geometric-Model and structured the same way as
a normal policy. Like a normal policy, it is also composed of a set of rules, a default
action, external data and a resolution strategy. It enforces the same action to a packet
as the sum of all the other security policies within the network. The Equivalent-Policy
is much more efficient in terms of size than a set of policies because fewer rules are
required. Although the Equivalent-Policy has fewer rules to evaluate, it still has all the
required information to allow the analysis algorithms to retrieve the information about
the original rules if necessary. Additionally, it enables an abstraction from the original
policies. Therefore, the analysis algorithms must not be modified when a new security
policy type is introduced and only the transformation algorithm changes.

5.3.3 Anomaly Analysis

The anomaly analysis algorithm supports Intra-Policy, Inter-Policy and Inter-Technology
anomaly analysis. The Intra-Policy anomaly analysis is based on the research performed
by Al-Shaer et al. [25] and Basile et al. [37] and has been extended to support a more
precise analysis. The Inter-Policy anomaly analysis is also improvement on the works
of Al-Shear at al. [26] and includes new anomaly types. A primarily work on Inter-
Technology anomaly analysis has been presented in [22]. This work combines all these
previous anomaly definitions and proposes a complete solution.

All different anomaly analysis types are performed on the Equivalent-Policy since it
contains all the required rule relations. In the case of an Intra-policy analysis, only the
rule relations of one policy are required. Therefore, the Equivalent-Policy is filtered, and
rule relations must not be recalculated.

46

5 – Requirements, Design and Contribution

5.3.4 Reachability Analysis

The reachability analysis algorithm receives as input the Equivalent-Policy and a reach-
ability query. The reachability query is defined with an improved version of Structured
Reachability Query Language (SRQL) [75]. The query result is structured the same way
a policy is, and, therefore, well readable by network administrators. The primary work on
a reachability analysis algorithm based on the Geometric-Model is presented in [91]. The
reachability queries are evaluated by the reachability algorithm on the Equivalent-Policy.
The Equivalent-Policy is a compact representation of the global network behaviour and,
therefore, ideal for reachability analysis. Furthermore, the Equivalent-Policy contains
also all information about the original rules which can be included in the reachability
result.

5.3.5 Policy Comparison

The policy comparison algorithm supports all four comparison scopes: Single Policy
Change-impact-analysis, Single Policy Implementation-verification, Multiple Policy Change-
impact-analysis and Multiple Policy Implementation-verification. The result is in all four
cases structured as a policy and is therefore, easily readable by network administrators.

The Equivalent-Policy is best suited for multiple policy comparison because it is a
compact representation of the computer network with its security policies. For single pol-
icy comparison, the Equivalent-Policy is filtered like in the case of Intra-policy anomaly
analysis. The comparison result contains all required information because the Equivalent-
Policy contains all information about the original policies.

5.4 Contribution

The main contribution to the state of the art is a new analysis model that can perform
all three types of policy analysis. The model and the policy analysis are based on a new
concept called Equivalent-Policy. Furthermore, the analysis types are improve the state
of the art, and new analysis algorithms are introduced. Finally, the overall approach is
more general and can be applied to more scenarios that what has been proposed so far.

The Equivalent-Policy is an innovative concept on how to represent in an efficient
way the security behaviour of an entire network. It supports the following security policy
types: packet-filter, stateful, Layer7, Routing, IPsec, SSL, NAT/NAPT, Web-Proxies and
Monitoring. Such an approach has never been proposed in the state of the art and is,
therefore, unique.

47

5 – Requirements, Design and Contribution

The anomaly analysis algorithm has improved and supports new anomaly types in re-
spect to the state of the art. The new anomaly class, called Transformed Traffic Anomaly,
occurs when a packet is encrypted or modified and, therefore, can not be evaluated by
other policies. The algorithms in the state of the art are designed to evaluate anomalies
between rule pairs of the same policy type. The proposed algorithm is designed to iden-
tify anomalies also among a set of rules of different policy types. Furthermore, this work
supports also more security policies types then the solutions in the state of the art. For the
most part, the proposed solutions only support packet-filter policies and IPsec policies.

The reachability analysis algorithm has been improved in three aspects over the state
of the art: the query language, the supported security policy types, and the result for-
mat. The reachability query language has significantly more features than the solutions
proposed in the state of the art. The reachability algorithm supports all types of security
policies proposed so far and additionally IPsec policies. The result is structured as a pol-
icy and, therefore, well readable. Furthermore, the query result accuracy is introduced,
which has never been done before.

The policy comparison algorithm is the first approach that can compare entire net-
work configurations containing different security policies. The comparison algorithms in
the state of the only compare single policies of the same type, mainly filtering policies.
Furthermore, this model is the first approach that includes all four comparison scopes.
This model can perform Implementation-verification and Change-impact-analysis of sin-
gle policies and entire network configurations. Past research focuses only on one compar-
ison scope, either Change-impact-analysis or Implementation-verification.

The proposed solution will integrate all three policy analysis techniques in one exten-
sible model. This has several advantages, both regarding application but also for future
research and development. This is also a significant advantage over the state of the art
because a new security policy type needed to be modelled only once but is accessible to
three analysis types.

The advantages for the end user are that he has to access and use only one tool for
policy analysis. This means that the network topology and the involved security policies
must be modelled only once. Furthermore, after the internal model is instantiated the
performance of all the analyses is much higher.

The advantages for future research and development are similar and also are based
on the fact that only one model exists. By using one internal model and performing all
analyses on it, the research effort is reduced. This is because research time is not lost
by defining yet another model and it can be used to improve the analysis algorithms of
the model itself. Furthermore, it allows the comparison of the performance of different
algorithms, because they are executed in the same environment.

48

Chapter 6

Geometric-Model

This chapter presents the Geometric-Model and how it is used to represent different types
of security policies. In particular, the a description for network packets is given. Fur-
thermore, how rule conditions and rule actions are mapped to the Geometric-Model is
explained.

6.1 Packets

Before explaining how a security policy and its components are represented by the Geometric-
Model, it is important to understand what a security policy is going to inspect, namely
network packets. A network packet is a bitstring that is mapped to a set of fields. The
fields of a packet are for example the source/destination IP address or the source/destina-
tion port number. Packet fields in a higher layer include for example the TCP-flags or the
HTTP method.

The set of all possible fields is called packet space P and formally described as P =
{F1, . . . ,Fn}. The packet space P is the set of all the possible fields assignments. In
general, a packet does not include all possible field but only a subset expressed as PI ⊂ P
indexed by some set I ⊆ [1,m].

PI = {Fi | i ∈ I ⊆ [1,m]}

Furthermore, since fields are disjoint parts of a packet, the union of different fields is the
subset of all fields

PI =
∏
i∈I

Fi

Packet fields are characterised by their length. Every packet field Fi is composed of
li bits thus Fi is isomorphic to

[
0,2li − 1

]
⊂ N. In the case of packet fields are part of

49

6 – Geometric-Model

the packet header the field length is known and constant, whereas the length can also be
unknown in other instances. A packet x can be expressed as a set of values, one value for
each field. x = {fi ∈ Fi, Fi ∈ PI , I ⊆ [1, n]}, that is x ∈ PI , for some set I .

6.2 Conditions

Policy rules define conditions c = s1×s2×· · ·×sm ⊆ S to match a packet. The condition
c is a set of values si, called selector, which represents a set of all possible values for a
packet field.

c =
∏
i∈I
si si ⊆ Fi I ⊆ [1,m]

The selection space S = F1 × F2 × · · · × Fm is a subset of packet fields used to define
the condition.

C =
∏
i∈I

Fi Fi ∈ PI I ⊆ [1,m]

A condition c matches a packet x ∈ FI if and only if all selectors si match the cor-
responding packet field of x. A selector si matches the corresponding packet field if and
only if :

• the packet x contains the corresponding field fi in Fi

• fi is in si.

For example, a condition c ∈ F1 is defined over one selector and the selector is the
destination port of the packet. The value assigned to this selector is s1 = {80,8080},
therefore, there are only two packets that match this condition. The two packets have the
value of the packet field f1 ∈ F1 equal to 80 or equal to 8080, where f1 is the destination
port of the packet.

Selectors are linked together by a Cartesian product and form, therefore, a hyper-
rectangle. Figure 6.1 shows a condition c composed of two selectors s1 ∈ F1 and s2 ∈ F2.
The condition c matches packet x1 but not packet x2.

6.2.1 Selector representation

Different selector types represent different packet fields. The presented model consists
of three selector types: exact match, range-based, prefix match selectors [92] and regular

50

6 – Geometric-Model

F1

F2

s1

s2 c

x1

x2

Figure 6.1: Condition c = s1 × s2 in a selection space formed by two fields F1 and F2

expression match. The elements of an exact match selector are part of a unordered set
and can only be compared by equality. The elements of a range-based selector are part
of a ordered set and consecutive elements can be grouped, groups are defined by their
minimum and maximum element. The elements of a prefix match selector are part of a
unordered set, but can be grouped based on a common prefix. The elements of a regular
expression match selector are part of a set with an unknown number of elements.

Exact match

Exact match selectors are an unordered set of elements. This is the simplest type of
selectors and is best described by the set theory. The intersection between two selectors
si,1 and si,2 contains all elements present in both selectors.

si,1 = {⊕,	,⊗}

si,2 = {�,⊕,	}
si,1 ∩ si,2 = {⊕,	}

Range-based

Range-based selectors si,j consist of groups of consecutively ordered elements. The range
is defined by its minimum si,jmin

and maximum si,jmin
value. The intersection between

to range-based selectors si,1 and si,2 is easy to calculate. At least, the minimum value or
the maximum element of si,2 is between the minimum and the maximum element si,1.

si,1min
< si,2min

< si,1max
or si,1min

< si,2max
< si,1max

51

6 – Geometric-Model

An example of range-based selectors and their intersection is shown in Figure 6.2. It
shows the two selectors si,1 and si,2 which intersect each other. The intersecting set of
elements of formed by the minimum element of si,2 and the maximum element of si,1.

Fi

si,1min
si,1max

si,2min
si,2max

si,1
si,2

Figure 6.2: Range-based selector.

Regular expression match

Regular expressions are primarily used to define selectors for strings. Although regular
expressions are a very compact representation, it is difficult to calculate the intersection
between them. The intersection between two regular expressions is best calculated by
converting them into deterministic automata [93]. Operations on deterministic automata
are much easier and therefore of advantage. The conversion of regular expressions into
automata and the intersection between automata is well studied and efficient algorithms
are widely available. An example of the intersection of two regular expressions performed
using automata is shown in Figure 6.3.

a[bc]*

a b

c

*

*

a[bd]c*

a
b

d

c

c
*∩

abc

a b c
*

Figure 6.3: Intersection of two deterministic automata.

The conversion from automata into regular expressions, on the other hand, is much
more difficult. There are different methods for this, each method has advantages and

52

6 – Geometric-Model

disadvantages. The three most common solutions are the transitive closure [94], the alge-
braic approach (Brzozowski’s method) [95], and the state removal [96]. The advantage of
the transitive closure is that is fairly simple to implement, but the results are sub-optimal
because the created regular expressions are quite long. The advantage of the algebraic
approach is that it creates compact regular expressions, but the implementation is very
complex. The state removal approach sits between the other two since it is fairly easy to
implement and creates reasonable small regular expressions.

Prefix match

Prefix match selectors define the common prefix that all elements in the set start with.
Prefix match selectors can be converted into range-based selectors or regular expression
match selector. The conversion into range-based selectors is only possible if the dimen-
sion of the set is know. The conversion into regular expression match selectors is always
possible, however, range-based selectors are preferred because they are more efficient.

For example, a prefix match selector for IP addresses can be converted into a range-
based selector because the total number of possible IP addresses is known. The prefix
match selector s = 1.1.1.∗ can be converted into the range-based selector s′ = {1.1.1.0−
1.1.1.255} where s′min = 1.1.1.0 and s′max = 1.1.1.255.

Prefix match selectors for strings, on the other hand, can not be converted into range-
based selectors, but in theory only regular expression match selectors because strings are
unbounded. The prefix match selector s = google∗ can be converted into the regular
expression match selector s′ = ∧google · ∗.

6.3 Actions

A policy rule is composed a policy action in addition to the policy condition. A policy
action is formally defined as a function a : P → P ∪ ∅ applied to a packet. The function
transforms the packet from the packet space P to the packet space P ∪ ∅ including the
so-called “null packet”. The null packet is composed of no bits and serves to describe
when a packet is dropped.

The action a is a set of values σi, called transformations, which represents a set of all
modified values for a packet field.

γ =
∏
j∈IT

σj σj ⊆ Fj IT ⊆ [1,m]

53

6 – Geometric-Model

The transformation space T = F1 × F2 × · · · × Fm is a subset of packet fields used to
define the action.

T =
∏
j∈IT

Fj Fj ∈ P IT ⊆ [1,m]

The action set A = {a : P→ P ∪ ∅} includes all possible actions. Examples of valid
actions are: ALLOW and DENY in case of firewalls, MONITOR in case of network
monitors, REDIRECT in case of routers, MODIFY in case of NATs, NEW HEADER in
case of IPsec AH, ENCRYPT in case of IPsec ESP. These actions can be modelled by
means of the action function a as follows:
The ALLOW action applies the identity function to the packet and leaves the packet there-
fore unchanged:

ALLOW : P→ P ∪ ∅ such that x→ x

The MONITOR action is very similar to the ALLOW action because the packet remains
unchanged and therefore it also applies the identity function:

MONITOR : P→ P ∪ ∅ such that x→ x

The DENY action blocks a packet and therefore maps it to the null packet:

DENY : P→ P ∪ ∅ such that x→ ∅
The REDIRECT action forwards a packet to a certain network interface and therefore can
be maps the packet to the identity function in case of the forwarded interface IFW and to
the null packet for all other interfaces:

REDIRECT : P→ P ∪ ∅ such that x→ ∅ ∀ In /= IFW and x→ x ∀ In = IFW

The MODIFY action changes the value of certain packet fields, therefore the action clause
contains the fields and the new values to assign:

MODIFY : P→ P ∪ ∅ such that x→ xa

The NEW HEADER action encapsulates a packet in a new header and can be modelled
such as the original header is overwritten by the new one, therefore the action clause all
packet fields of the new header and the assigned values:

NEWHEADER : P→ P ∪ ∅ such that x→ xa

54

6 – Geometric-Model

The ENCRYPT action encrypts either the entire payload of a specific layer or only a single
packet field The action clause contains the layer (layer 4 PL4, layer 7 PL7) or the packet
field that will be encrypted. This action is modelled by setting the value of the encrypted
packet field to 0:

ENCRYPT : P→ P ∪ ∅ such that x→ x0

6.4 Resolution strategy

The resolution strategy decides which rule to enforce when more than one rule matches
a packet. It takes its decision based on three different criteria: condition clause, action
clause and external data. An example for a resolution strategy that takes its decision based
on the condition clause is the Most Specific Takes Precedence (MSTP), more specific
rules prevail over more general rules. An example for a resolution strategy that takes its
decision based on the action clause is the Deny Takes Precedence (DTP), the DENY action
is applied when at least one rule enforces DENY. An example for a resolution strategy that
takes its decision based on an external data is the First Matching Rule (FMR), the rule with
the highest priority prevails.

Because the condition clause and the action clause is part of the rule itself, it is easy to
model a resolution strategy based on them. The external data, however, is not part of the
rule and must be associated first to each rule before a resolution strategy can be applied.
The association of external data to a rule ri can be expressed by the external data function
εE:

εE(ri) = (ri, f1(ri), f2(ri), f3(ri), . . .)

where E is a set of functions that associate rules with external attributes Xj

E = {fj : R→ Xj}j

The external data function εE is composed with the external data resolution strategy
RE resulting in a resolution function R able to handle all three decision criteria:

R = RE ◦ εE

that is,

R : {rl, rm, . . .} εE−→ {εE(rl), εE(rm), . . .} RE−→ a

55

6 – Geometric-Model

6.5 Policies

Security policies are composed of policy rules, the resolution strategy, optional external
data and a default action. Formally policies are represented by the four-tuple (R,R,E, ad).
This representation is independent of the applied resolution strategy. Should the resolu-
tion strategy not require external data, the set E is empty, and the policy is represented as
(R,R, ∅, ad). The single components of the policy model are:

• R = {ri}i, i ∈ [1, n] represents the set of rules, where each rule is an association
r = (c, a) of the condition clause c ⊆ C and a the action a ∈ A

• R : 2R → A represents the resolution strategy, it returns the action to enforce in
case more than one rule matches a packet.

• E = {E1, E2, . . .} represents the optional external data, the external data functions
εk : R→ Ek associates the external data to the rules.

• ad represents the default action.

The policy itself can be modelled as a function from the selection space S to the
action space A.

p : S→ A
It applies the appropriate action to a packet x based on the rule set, the resolution strategy
and the default action. The first step is to identify the rules from the rules set where the
packet x satisfies the rule condition. This step is called rule matching and performed
by the matching function matchR. The matching function returns either an empty set, a
single rule or a set of rules. In case, the set contains more than one rule the resolution
strategy R is applied to the set

R : 2R → A
that decides which action to enforce. If the set is empty, the action to enforce is defined
by the default action ad. Therefore, a policy can be modelled as follows:

p(x) =

d if matchR(x) = ∅
ai if matchR(x) = {ri}
R({rl, rm, . . .}) if matchR(x) = {rl, rm, . . .}

However by defining R(∅) = d and R(ri) = ai, the policy p can be simplified as:

p(x) = R(matchR(x))

56

6 – Geometric-Model

6.5.1 Policy operations

A policy can perform different operations on the rule set to evaluate its properties and
identify specific rules. Additionally to the matching function, already introduced in the
previous section, a policy can also perform the effective function and the effective cover
function. The effective function identifies the part of the condition clause which effec-
tively enforces an action. The effective cover function identifies the action that is covered
by the effective part of the condition clause.

Matching function

When a policy must enforce an action to a packet, it first must identify all rules that are
defined for the packet. The matching function matchR returns the subset M of rules in R
whose conditions match the packet x.

matchR : S −→ 2R

x −→ M = {ri ∈ R | x ∈ ci}

S2

S1

r3
r2

r1
x1

x2

matchR(x1) = {r1, r2, r3})

matchR(x2) = ∅

Figure 6.4: Example of matchR

Figure 6.4 shows an example of the matching function matchR applied to the rule
set R for two packets x1 and x2. The packet x1 is matched by the rules r1, r2 and r3.
Therefore, the matching function returns a set containing these three rules matchR(x1) =
{r1, r2, r3}. The packet x2 is not matched by any rule and, therefore, the matching func-
tion returns an empty set matchR(x2) = ∅.

Effective Function

Another important evaluation the policy model can make is to calculate the part of a rule
that effective will be enforced. The simplest method to evaluate this is to eliminate all

57

6 – Geometric-Model

parts of the condition clause which are covered by other rules. The remaining part is
what effectually enforces an action and if the rule is completely covered nothing remains.
Formally this algorithm is applied by the effective function effp(r):

effp : R → 2S

r → x ∈ c such that R(matchR(x)) /= R(matchR(x) \ {r})

S2

S1

r3
r2

effp(r1) /= ∅

Figure 6.5: The effp(r1) is represented by the grey part

Figure 6.5 shows an example of the effective function applied to rule r1. Rule r1
is partly covered by rule r2 and covers rule r3. The part of rule r1 that effectually is
enforced (effp(r1)) is effp(r1) = c1 \ c2 and highlighted in gray. It is worth mentioning
that in general it is not possible to represent effp(r1) as a single hyper-rectangle. In this
example, it is represented as the relative complement of two conditions clauses. However,
it is not required to perform this computation.

Effective Cover Function

The counter part of the effective function is the effective cover function effcp(r). This
function evaluates which rules covered by the effective part of a rule r enforce a different
action. This can also be described as the parts of the decision space that change the
enforced action in case the rule is deleted. The simplest method to evaluate this is to
eliminate al parts from the effective parts that cover other rules that enforce the same
action. The remaining part is what effectually enforces an action and does not cover any
other effective part with the same action. If the rule is completely covered or the effective
part covers completely the same actions, nothing remains.

effcp : R → 2S

r → x ∈ c such that R(matchR(x)) /= R(matchR(x) \ {r})

58

6 – Geometric-Model

S2

S1

r3
r2

effcp(r1) /= ∅

Figure 6.6: The effcp(r1) is represented by the grey/white pattern part

Figure 6.6 shows an example of the effective cover function applied to rule r1. This
example uses the same rules and rule priority as the previous one (Figure 6.5). All rules
enforce the same action, and the default action is different than the action enforced by
the rules. Rule r1 is partly covered by the rules r2 and covers rule r3, the remaining
part (effp(r1)) is highlighted. The effective cover function effcp(r1) is highlighted by the
grey/white pattern, it is effp(r1) \ r3. Rule r3 enforces the same action as rule r1 does,
and therefore, this part will not alter the enforced action. The remaining part effcp(r1),
however, will, because the default action is different than the action of rule r1.

59

Chapter 7

Equivalent-Policy

This chapter presents how the Equivalent-Policy is calculated. The Equivalent-Policy is
a black-box representation of the entire network that summarizes its end-to-end security
behaviour. The calculation is subdivided into three steps. Firstly, all transformation rules
are processed to represent all changes applied to the packet fields in the downstream
security policies. Secondly, all rule relations and the resulting policy action is calculated.
Thirdly, the minimum number of rules is exported as the Equivalent-Policy.

7.1 Transformation Resolution

The first step when calculating the Equivalent-Policy is to resolve all transformation ap-
plied by the action MODIFY and NEW HEADER. The transformation resolution is re-
quired only by these two actions because they modify the packet structure. Therefore, the
linear evaluation with other downstream rules is not possible. After the transformation,
the ability for linear evaluation is restored, and the analysis processes have a much better
performance.

The rule action clause γi defines which transformations must be applied. The transfor-
mation resolution selects all rules r = (c, a) from the rule set R where the rule condition
c = s1 × s2 × · · · ×sm intersects the action clause γi. For each of them, it creates a new
rule rT =

(
cT, a

)
where cT = sT

1 ×sT
2 ×· · ·×sT

m and each sT
i ⊆ Fi is obtained as follows:

• sT
i = ci ⊆ Fi from ci if Fi is in T ;

• sT
i = si if Fi is not in T .

60

7 – Equivalent-Policy

For a formal definition of this operation some additional functions are required:

• transformation-condition extraction : in(τi) = c;

• transformation-action extraction : out(τi) = γi;

• projection on transformation space : Ψ (ri) = ∏
j∈IT

sij;

• rule condition extraction : C(ri) = ci.

The new rules created by the rule transformation function Θ are inserted in the down-
stream policy. The transformation function returns only a new rule r(j)

i if its condition
clause ci intersects the transformation-action clause.

Θ(ri, τj) : ri −→ r
(j)
i

where r(j)
i is defined as:

r
(j)
i =

 (Σ(ci, in(τi)), ai) if Ψ (ri) ∩ out(τj) /= ∅
∅ if Ψ (ri) ∩ out(τj) = ∅

By abuse of notation, ri = Θ−1
(
r

(j)
i

)
if r(j)

i = Θ(ri, c) for some τj . The new rules inherit
the values of the external data from the original rules:

∀k, εk(r(j)
i) = εk(ri)

A special case to consider is when a transformed packet is not matched by any rule.
This means that the default action must be applied, and the transformation resolution
must operate accordingly. This requirement is ensured by the transformation resolution
that creates an additional rule called default transformation rule. It enforces the default
action and has the condition clause equal to the transformation-action clause. Formally
this it is defined as ∀ri,Ψ (ri)∩ out(τj) = ∅ and the transformation rule r(τj) is created as
follows:

r(τj) = (Σ(FI , in(τj)), ad)

The set of all default transformation rules r(τj) is named D(T) and has the highest priority.
The cardinality of D(T) is always less than or equal to the cardinality of T .

In summary, the transformation resolution calculates D(T) and applies Θ(ri, τj) to all
rules ri ∈ R and transformation actions τj ∈ T :

R(T) = {Θ(ri, τj)}i,j ∪D(T), with i ≤ m, j ≤ t

61

7 – Equivalent-Policy

Figure 7.1 shows an example of a policy before and after the transformation reso-
lution is applied. Figure 7.1a shows the original policy that is composed by two rules
{r1, r2}. There are two transformation rules defined rt1 = (c1, γ1) and rt2 = (c2, γ2). rt1
maps the x-interval c1 into γ1 and rt2 maps c2 into γ2. The first rule r1 covers the entire
transformation-action γ1. The second rule r2 covers both transformation-action γ1 and
γ3. Figure 7.1b shows the resulting policy after the transformation resolution. Rule r(1)

1 is
added by the transformation function Θ(r1, τ1). Rule r(1)

2 is added by the transformation
function Θ(r2, τ1). Rule r(2)

2 is added by the transformation function Θ(r2, τ2).

F1

F 2

c1 γ1c2 γ2

τ1

τ2

r1

r2

(a) A policy p with rules intersecting some γ.

F1

F 2

c1 γ1c2 γ2

τ1

τ2

r1

r2

r
(1)
1

r
(1)
2 r

(2)
2

Θ(r1, ν1)

Θ(r3, ν2)

Θ(r3, ν1)

(b) The policy p after the transformation.

Figure 7.1: Composition of transformation and filtering policies.

After applying a transformation resolution to a policy p = (R,R,E, d) a new T -
modified policy p(T) is created:

p(T) = (R ∪R(T),T, E, d)

The T -modified policy uses the T -modified resolution strategy T:

T :2R∪R(T) → A

Meq ⊆ R ∪R(T) −→
 R (H) if M (T) /= ∅

R (M) if M (T) = ∅

where Meq = matchR∪R(T)(x) = M ∪M (T), M ⊆ R, M (T) ⊆ R(T)

and H = {Θ−1
(
r

(j)
i

)
| r(j)

i ∈M (T)} ⊆ R.
The T -modified resolution strategy can calculate a result for any subset of R ∪ R(T)

and is, therefore, sound. The reason is that it uses the original resolution strategy R and

62

7 – Equivalent-Policy

the external data inherited form the original policy. This assumption is also valid for
resolution strategies, such as FMR, that require unique value external data. The transfor-
mation resolution may introduce duplicate external data, but it is never used at the same
time because transformed rules and the original ones will never intersect.

7.1.1 Multiple transformations

A packet from source to destination may encounter multiple transformation rules, and
therefore, the transformation resolution must be applied multiple times. For example,
on the path from source to destination are two transformation policies T1 and T2 before
another security policy p. The security policy p will be (T1, T2)-modified recursively and
result in p(T1,T2):

p(T1,T2) =
(
p(T1)

)(T2)

and the resulting rule set is:

R ∪R(T1) ∪
(
R ∪R(T)

)(T2)
= R ∪R(T1) ∪R(T2) ∪R(T2,T1)

The (T1, T2)-modified resolution strategy operates in stages, firstR(T2,T1), thenR(T2), then
R(T1) and finally R.

T1 p1 T2 p2

p
(T1)
1 p(T1,T2)

Figure 7.2: Multiple transformation resolution of policy p.

Figure 7.2 shows an example of four in series connected security policies, two policies
(T1, T2) that require a transformation resolution and two (p1, p2) that do not. After the
resolution transformation is applied, only two policies remain:

• p(T1)
1 is the T1-modified policy p1 (i.e., the inner dashed rectangle);

• p(T1,T2)
2 is the (T1, T2)-modified p2 (i.e., the external dashed rectangle).

63

7 – Equivalent-Policy

7.1.2 Inverse transformations

When a packet is encapsulated in a tunnel two transformations are applied, one when
it enters the tunnel and one when it exits. The first transformation resolution is already
applied, but the inverse one must be explicit modelled. Therefore, for the inverse cases,
all security policies in the path are pre-processed and such cases are identified. When an
inverse case is identified the corresponding transformation rule is removed from future
transformation resolutions.

T1 p1 T2 p2

p
(T1)
1

p

Figure 7.3: Inverse transformation resolution of policy p.

Figure 7.3 shows an example of four in series connected security policies, two policies
(T1, T2) that require a transformation resolution and two (p1, p2) that do not. In particu-
lar, the T2 applies the inverse transformation of T1 and therefore the policy p2 remains
unchanged. After the resolution transformation is applied, only two policies remain

7.2 Canonical From

After all transformation rules have been substituted the Equivalent-Policy can be calcu-
lated. The Equivalent-Policy relies only on set operations to represent all rules. The first
step when calculating the Equivalent-Policy is to compose all correlated rules and the
interconnected policies. The result of this operation is the so-called Canonical Form.

Rule composition

The rule composition is applied when two or more rules are correlated, which means
that their condition clauses intersect. It enforces the action calculated by means of the
resolution strategy of the involved policies.

The rule composition “◦” of k rules ri ∈ R in a policy p is formally defined as:

◦ : R×R× · · · ×R → kS ×A
r1,2,··· ,k = r1 ◦ r2 ◦ · · · ◦ rk → (c1 ∩ c2 ∩ · · · ∩ ck,R({r1, r2, . . . , rk}))

64

7 – Equivalent-Policy

The set of all possible compositions of rules in R is called closure R:

∀ r ∈ R⇒ r ∈ R ∧ ∀ r1, r2 ∈ R⇒ r1 · r2 ∈ R

The closure R also contains rules with equivalent condition clauses and, therefore,
redundant information. R∗ is defined as the subset of R that contains unique condition
clauses. When two or more rules in R have the same condition clause only the rule
composed by the greatest number of rules is selected.

{r1}

{r2}

{r3}

{r1,2,3}
{r1,3}

Figure 7.4: R∗ of policy (R = {r1, r2, r3} ,RE, E, d)

Fig. 7.4 represents a policy containing three rules r1, r2 and r3. The closure R of
this policy is composed of {r1, r2, r3, r1,3, r1,2, r2,3, r1,2,3} where the intersecting rules
r1,2, r2,3, r1,2,3 are equivalent. Therefore R∗ only contains the rules {r1, r2, r3, r1,3, r1,2,3}
but not r1,2, r2,3.

R∗ has the following properties:

• all rules in R∗ have distinct condition clauses;

• given two intersecting rules r1, r2 ∈ R∗, there exists a rule in R∗ whose condition
clause is the intersection of the condition clauses of r1 and r2, that is, there exists a
rule r = (c1 ∩ c2, a) (closure with respect to the intersection).

It is possible to define an order relation “≤” for R∗ based on the dimension of the
condition clauses:

r1, r2 ∈ R∗, r1 ≤ r2 ⇐⇒ c1 ⊇ c2

65

7 – Equivalent-Policy

The structure (R∗,≤) is a partially ordered set with respect to ≤ and, therefore, a semi-
lattice. Furthermore, the least upper bound of {r1, r2} = (c1 ∩ c2, a) is contained in R∗

due to the closure with respect to the intersection.
The composition of rules with conditions containing different selectors is also possi-

ble. It is sufficient to add the missing selectors to each rule and assume its value tautolog-
ical, that is, the value will be as big as the entire selector. This operation is called decision
space homogenisation.

Policy composition

The policy composition is applied when the Equivalent-Policy of two or more intercon-
nected security controls is calculated. An important property of interconnected security
controls is that they do not interact directly with each other. There is no information flow
between them, a downstream policy receives the packets from the upstream policy but
does not know what action have been applied.

Security controls enforce different actions, but a packet can arrive at its destination
only if no policy on the path enforces the DENY action. The serial composition function
models these interactions between policies:

+ : A×A → A

it describes the composition of actions of two in series connected security controls:

a+ a = a

a+ d = d+ a = d+ d = d

The result of the serial composition is ALLOW only when both actions are ALLOW.
Two policies p1 = (R1,R1, E1, ad1) and p2 = (R2,R2, E2, ad2) are composed by

applying the serial composition +. The serial composed policy p1 + p2 is defined as
(R1 ∪R2,R+,R1,R2 , ∅, ad1 + ad2), where the default action is the serial composition of the
two default actions and the composed resolution strategy R+,R1,R2 is defined as:

R+,R1,R2 : 2R1∪R2 −→ A
S1 ∪ S2 −→ R1(S1) + R2(S2)

The serial composition is an associative operation and can, therefore, be applied also
to more than two in series connected security controls. For example, if there are three
in series connected security controls the composition of all three is (p1 + p2) + p3 =
p1 + (p2 + p3) represented as (R1 ∪R2 ∪R3,R+,R1,R2,R3 , ad1 + ad2 + ad3).

66

7 – Equivalent-Policy

7.2.1 Canonical Form Calculation

Based on the order relation “≤” of R∗ a new resolution strategy called canonical form
(CAN) is defined. The canonical form decides which action to enforce based on the least
upper bound rule in R∗:

CAN : 2R∗ → A
{rl, rm, . . .} → a such that r = (c, a) =

= lub
R∗
{rl, rm, . . .}

A policy pCAN = (R∗,CAN, ∅, d) is called canonical form policy when R∗ is cal-
culated from the rule-set R of another policy p = (R,RE, E, d). The canonical form
policy is semantically equivalent to the original policy, but often has a greater number of
rules. The main advantage of the canonical form is that has all possible rule compositions
pre-computed. Therefore, any algorithm working on the canonical form does not need
to consider them any more and is independent of the original policy and its resolution
strategy.

Different security policies on a path have many similar rules, the reason being to al-
low end-to-end communication on a path all security controls must enforce the ALLOW
action. This property is of advantage for the creation of the Equivalent-Policy because
duplicate rules are combined into one and, therefore, fewer rules are required. Further-
more, all rules that do not concern the source and the destination of the path can also be
eliminated.

7.3 Semantic preserving morphism

Starting from the semi-lattice representation of the canonical form a policy with a generic
resolution strategy can be extracted. The policy extraction algorithm is called semantic
preserving morphism.

This section presents the semantic preserving morphism for FMR-policies, the so-
called FMR-morphism. The FMR-morphism extracts from the canonical form policy
(R∗,CAN, ∅, d) a set of rules RFMR and associates to each rule of this set a priority
π : RFMR → N. The algorithm will map the partially ordered set (semi-lattice) to a
graph, the so-called cover graph. The graph representation is optimal for selecting the
required rules and associating them a priority.

The cover graph of a partially ordered set (S,≤) is a directed acyclic graph. The
vertices of the graph represent the elements in S, and the edges of the graph represent the

67

7 – Equivalent-Policy

cover relation. Since every policy p is representable as a partially ordered set (R∗,≤) by
the canonical form, it is also possible to represent it as a cover graph G(p). Consequently,
the R∗ always contains a top element T which is greater than all others, even if c1 ∩ c2 ∩
· · · ∩ cn = ∅ where n is the number of rules in R.

T = lub
r∈R∗
{r} = r1 · r2 · . . . · rn =

= (c1 ∩ c2 ∩ · · · ∩ cn,R{r1, r2, . . . , rn})

After the cover graph has been created the necessary rules can be extracted and prior-
ities assigned to them. For example, if R∗ contains two distinct conflicting rules rx and ry
such that rx ≤ ry and CAN{rx, ry} = ay. This means ry has the higher order in R∗, and
the FMR-morphism must assign a higher priority to rule ry. In general, this is also valid
for the least upper bounds:

π(lub
R∗
{r1, r2}) < π(r1) ∧ π(lub

R∗
{r1, r2}) < π(r2)

The algorithm that selects the rules and their priorities is based on a modified breadth-
first backward traversal in G(p) and all unnecessary rules are discarded. In order to dis-
card a rule, its condition clause must be strictly included in one of its parents or ancestors.
To verify this condition the concept of maximal domainM(r) associated with a rule r,
named the base rule, is introduced. The maximal domain is a sub-graph of G(p) and in-
cludes only the required rules. The reduced maximal domain is the subset M∗ ⊆ M that
contains the rules whose ancestors are not in M . All the condition clauses of rules in M
are subsets of at least one rule in the reduced maximal domain.

Formally, the maximal domainM(r) of a base rule r ∈ G(p) is the set computed as
follows:

1. (base clause) r ∈M(r);

2. (inductive clause) if r′′ ∈ G(p) and r′ ∈ M(r) are such that r′′ ≺ r′, ar′′ = ar
and all the rules in every path between r′′ and r enforce the same action ar, then
r′′ ∈M(r)

The maximal domain is based on two statements, the base clause and the inductive
clause. The base clause requires that the rule is in the maximal domain. The inductive
clause requires that in order to substitute r with one of its ancestors ra, all rules on the
path from r to ra enforce the same action. The ancestor ra is suitable because it is never
overwritten by a different action of a covering rule. Therefore, r is unnecessary in the
FMR representation and can be discarded.

68

7 – Equivalent-Policy

rx
ry

rx

ry

rx ◦ ry

Figure 7.5: ry can substitute rx · ry as it enforces the same action.

Figure 7.5 shows an example of a maximal domain where the base rule is rx ◦ ry
and its ancestor is ry. Both rules enforce the same action and therefore according to the
definition of maximal domain can be discarded. To calculate all maximal domains of an
entire cover graph G(p), first top element is used as base rule and then sequentially all
rules not part of a maximal domain are evaluated.

r1 r2

r3

r4

{r1, r3}

{r1, r2, r3, r4}

{r1, r2, r3}

{r1, r2, r4}

{r1, r4}

(a) Geometric representation.

r1

r3

r4

r1,2

r1,3

r1,2,3

r1,2,4

r1,2,3,4

r1,4

(b) canonical form semi-lattice

Figure 7.6: Usage of the proposed FMR-morphism to sample policy p.

Figure 7.6 shows an example of the maximal domain of a policy. Figure 7.6a repre-
sents the geometric representation of a policy whose canonical form semi-lattice is rep-
resented in Figure 7.6b. The maximal domains of the semi-lattice are highlighted with
circles in Figure 7.6b. The first base rule is r1,2,3,4 and its resulting maximal domain is:

M1 =M(r1,2,3,4) = {r1,2,3, r1,2,4, r1,2, r1,3, r3}

At this point the remaining rules to evaluate are r1,4, r4 and r1. r1,4 and r4 are not in the
maximal domainM1 because the enforce a different action. r1 is not included because the

69

7 – Equivalent-Policy

path from the base rule r1,2,3,4 to r1 includes also r1,4 which has a different action. The
next base rule to evaluate is r1,4 and its resulting maximal domain is:

M2 =M(r1,4) = {r4, r1,4}

Finally, the remaining base rule to evaluate is r1 and its resulting maximal domain is the
rule itself:

M3 =M(r1) = {r1}
After all maximal domains have been calculated, the irrelevant rules from the single

domains are removed:

M∗
1 = {r3, r1,2} and M∗

2 = {r4} and M∗
3 = {r1}

The rule set RFMR is the union of all maximal domains obtained:

RFMR = M∗
1 ∪M∗

2 ∪ · · · ∪M∗
x

The priorities of the single rules are assigned according to the order in the reduced cover
graph, ∀ri ∈ M∗

i and ∀rj ∈ M∗
j , i < j implies that π(ri) < π(rj). The relative priorities

in one maximal domain are not important since all rules enforce the same action. There-
fore, assigning priority 1 to rule r3 (π(r3) = 1) and priority 2 to rule 1,2 (π(r1,2 = 2) or
vice versa are both valid. Table 7.1 shows the equivalent FMR policy obtained from the
example policy.

Rule Priority
r3 π(r3) = 1
r1,2 π(r1,2) = 2
r4 π(r4) = 3
r1 π(r1) = 4

Table 7.1: FMR-morphism: the ordered rule list

70

Chapter 8

Conflict Analysis Model

This chapter presents the supported policy anomalies and how they are identified. The
anomaly analysis detection is computed on the Equivalent-Policy. Intra-policy and Inter-
policy anomalies are based on previous works of Al-Shaer but have been extended to
support a wider range of anomaly types. Inter-policy anomalies are categorized into
three anomaly classes: Blocked traffic anomalies, Encrypted traffic anomalies, and Mod-
ified traffic anomalies. The blocked traffic anomalies include the Inter-policy filtering
anomalies of Al-Shaer, and the encrypted traffic anomalies include the Inter-policy IPsec
anomalies. This chapter concludes by presenting how the presented anomaly classes can
be identified by relying on the Equivalent-Policy.

8.1 Intra-policy anomalies

The Intra-policy anomaly analysis is based on the works of Al-Shaer et al. [25] and Basile
et al. [37]. Rule pair Intra-policy anomaly analysis can be applied to the Geometric-
Model the same way as presented by Al-Shaer et al. [25]. However, by also taking into
consideration the complete rule-set and the resolution strategy a more precise analysis
can be performed. As already introduced by Basile et al. [37], the redundancy and the
shadowing anomalies can be extended to the generally shadowing/redundancy anomaly.
However, this generalisation can go a step further, and other classes can be introduced.

In this new classification, the correlation anomaly as introduced by Al-Shaer becomes
obsolete because it is included in one of the extended anomaly types: generalization or
shadowed. The new anomaly types are based on rule-sets and not rule-pairs. Therefore,
correlated rules are always detected when evaluating them together with other intersecting
rules or together with the default action.

71

8 – Conflict Analysis Model

8.1.1 Redundancy anomaly

The redundancy anomaly of Al-Shaer has been extend to verify also if a rule is redundant
to a set of rules with equal action. In particular there are three cases: the rule covers a set
of rules, the rule is covered by a set of rules, and the rule is partially covered and partially
covers a set of rules.
A rule r = (c, a) is completely unnecessary redundancy if the effective function returns
an empty set and all rules covering the rule r have the same action a as the rule itself.

effp(r) = ∅ ∧ ∀x ∈ c, p(x) = a

A rule r = (c, a) is completely hidden redundant if the effective function returns the rule
itself and the effective cover function returns an empty set.

effp(r) = r ∧ effcp(r) = ∅

A rule r = (c, a) is partially redundant if the effective function returns a non-empty set,
all covering rules enforce the same action as the rule r and effective cover function returns
an empty set.

effp(r) /= ∅ /= r ∧ effcp(r) = ∅ ∧ ∀x ∈ c, p(x) = a

S2

S1

r4

r2

r3

r1

(a) Completely unnecessary redun-
dancy

S2

S1

r4

r2

r3

r1

(b) Completely hidden redundancy

S2

S1

r4

r2

r3

r1

(c) Partially redundancy

Figure 8.1: Redundancy Anomaly types

Figure 8.1 shows examples for all three cases of redundancy. In all three examples the
involved rules have the same condition clause and the same action. The only thing that
changes is the priority between the rules. In Figure 8.1a rule r1 is completely unnecessary
redundant to the rules r2, r3 and r4. In Figure 8.1b rule r1 is completely hidden redundant
by the rules r2, r3 and r4. In Figure 8.1c rule r1 is partially redundant, it covers rule r4
and is covered by the rules r2 and r3.

72

8 – Conflict Analysis Model

8.1.2 Generalization anomaly

The generalization anomaly of Al-Shaer can be extended by verifying if a rule is the gen-
eralization of a set of rules. Al-Shaer considers only rule pairs, where this new definition
is still valid when the set contains only one rule.
A rule r = (c, a) is a complete overriding generalization if the effective function returns
an empty set and the effective cover function returns the rule itself.

effp(r) = ∅ ∧ effcp(r) /= ∅ = r ∧ ∀x ∈ c, p(x) = a

A rule r = (c, a) is a partially generalization if the effective function returns the same
non-empty set as the effective cover function and all covering rules enforce the same
action as the rule r itself.

effp(r) = effcp(r) /= ∅ ∧ ∀x ∈ c, p(x) = a

S2

S1

r4

r2

r3

r1

(a) Complete overriding generalization

S2

S1

r4

r2
r1

r3

(b) Partially generalization

Figure 8.2: Generalization Anomaly types

Figure8.2 shows the two cases of the generalization anomalies. Figure 8.2a shows an
example of the complete generalization anomaly, where rule r1 is the generalization of the
set of rules r2, r3 and r4. Figure 8.2b shows an example of the generally generalization
anomaly, where rule r1 is the generalization of the set of rules r2 and r3.

This extended definition of the generalization anomaly is one of the new anomaly
types that made the correlated rule anomaly obsolete. This new definition of the general-
ization anomaly, in general, is based on correlated rules that are evaluated contemporane-
ously.

73

8 – Conflict Analysis Model

8.1.3 Shadowing anomaly

The shadowing anomaly of Al-Shaer can be extended by verifying if a rule is shadowing
a set of rules. Al-Shaer considers only rule pairs, where this new definition is still valid
when the set contains only one rule.
A rule r = (c, a) is completely shadowed if the effective function returns an empty set
and all covering rules enforce a different action as the rule r itself.

effp(r) = ∅ ∧ ∀x ∈ c, p(x) /= a

A rule r = (c, a) is partially shadowed if the effective function returns a non-empty set,
the effective cover function returns an empty set and all covering rules enforce a different
action as the rule r itself.

effp(r) /= ∅ ∧ effcp(r) = ∅ ∧ ∀x ∈ c \ effp(r), p(x) /= a

S2

S1

r4

r2

r3

r1

(a) Completely shadowing

S2

S1

r4

r2

r3

r1

(b) Partially shadowing

Figure 8.3: Shadowing anomaly types

Figure 8.3 shows the two cases of the shadowing anomalies. Figure 8.3a shows an
example of the completely shadowing anomaly, where rule r1 is shadowed by the set of
rules r2, r3 and r4. Figure 8.3b shows an example of the partially shadowing anomaly,
where rule r1 is shadowed by the rule r3.

This extended definition of the shadowing anomaly is the second new anomaly type
that made the correlated rule anomaly obsolete. This new definition of the shadowing
anomaly, in general, is based on correlated rules that are evaluated contemporaneously.
Another instance of correlated rules that is included is when the default action is equal to
the action enforced by the lower-priority rule. In this case, a partially shadowing of two
rules is detected.

74

8 – Conflict Analysis Model

8.1.4 Generally hidden

The generally hidden anomaly is a complete new anomaly class. It occurs when a rule is
completely covered by a set of rules enforcing different actions.
A rule r = (c, a) is generally hidden if the effective function returns an empty set, some
covering rules enforce a different action as the rule r itself and some covering rules en-
force the same action as the rule r itself.

effp(r) = ∅ ∧ ∃x ∈ c, p(x) /= a ∧ ∃x ∈ c, p(x) = a

S2

S1

r4

r2

r3

r1

Figure 8.4: Generally Hidden

Figure 8.4 shows an example of this anomaly. The rule r1 is completely covered by
the rules r2, r3 and r4.

8.2 Inter-policy anomalies

Inter-policy anomalies occur among rules of different policies, this includes also policies
of different type. As already proposed for Intra-policy anomalies, this work also extends
the definition of Al-Shear at al. [26] for Inter-policy anomalies. It is not sufficient to
evaluate rule pairs to correctly identify all possible anomalies. Therefore, the proposed
model consider the enforced actions of the involved policies on a packeted basis.

The filtering anomalies of Al-Shaer are represented by the Blocked traffic anomalies.
This anomaly class does not only consider filtering actions such as ALLOW and DENY,
but includes all possible actions.

The IPsec anomalies of Al-Shaer are represented by the Transformed traffic anoma-
lies. This anomaly class also contains two new anomalies: the Encrypted traffic anomalies
and the Modified traffic anomalies

75

8 – Conflict Analysis Model

8.2.1 Blocked traffic anomalies

The blocked traffic anomaly may be caused by a filtering policy or by a routing policy.
The first case is when a security policy contains a rule for a packet that has been blocked
by an upstream filtering policy. The second case is when a security policy contains a rule
for a packet that has not been forwarded by an upstream routing policy.

The proposed algorithm is based on the rule relations present in the Equivalent-Policy.
Therefore, some anomalies that are detected by the model of Al-Shaer are ignored by this
model because they are hidden by other rules and, therefore, not influence the enforced
action. Furthermore, the correlation anomaly as defined by Al-Shaer is going to be sub-
stituted by more precise definition. Rules that are classified as correlated by Al-Shaer are
classified by this model as shadowing or spuriousness depending on the enforced action
of the rules. This is because only the effective part of the rules is taken into consideration
and, therefore, the correlation definition is not applicable.

Shadowing Anomaly

The shadowing anomaly occurs when a downstream security policy blocks a packet that
has been allowed by an upstream security policies. Formally, two policies pa and pb
contain a shadowing anomaly if there are two rules ri ∈ pa and rj ∈ pb with the following
properties:

X = effpa(ri) ∩ effpb
(rj) /= ∅ ∧ ∀x ∈ X pa(x) = ALLOW ∧ pb(x) = DENY

pa pb pa + pb

S2

S1

ra1

ra2

S2

S1

rb1

S2

S1

ra1

ra2
rb1

shadowed

Figure 8.5: Inter-policy Shadowing Anomaly

76

8 – Conflict Analysis Model

Figure 8.5 shows an example of a shadowing anomaly between two cascaded security
policies. The first policy p1 contains two rules ra1 and ra2, both enforcing the ALLOW
action and the second policy p2 contains one rule rb1 enforcing the DENY action. The
composition of these two policies results in a new policy p1 + p2 where rule rb1 is shad-
owing one part of rule ra1 and one part of rule ra2.

Spuriousness Anomaly

The spuriousness anomaly occurs when a downstream security policy allows a packet that
has already been blocked by an upstream security policy. Formally, two policies pa and
pb contain a spuriousness anomaly if there are two rules ri ∈ pa and rj ∈ pa = b with the
following properties:

X = effpa(ri) ∩ effpb
(rj) /= ∅ ∧ ∀x ∈ X pa(x) = DENY ∧ pb(x) = ALLOW

pa pb pa + pb

S2

S1

ra1

ra2

S2

S1

rb1

S2

S1

ra1

rb1
ra2

spurious

Figure 8.6: Inter-policy Spuriousness Anomaly

Figure 8.6 shows an example of a spuriousness anomaly between two cascaded se-
curity policies. The first policy p1 contains two rules, one ra1 that enforces the ALLOW
action and one ra2 that enforces the DENY action. The second policy p2 contains one rule
rb1 enforcing the ALLOW action. The composition of these two policies results in a new
policy p1 + p2 where rule rb1 is spurious on the one part of rule ra2 but has no anomaly to
the other part of rule ra1.

77

8 – Conflict Analysis Model

Redundancy Anomaly

The shadowing anomaly occurs when a downstream security policy blocks a packet that
is also blocked by an upstream security policy. Formally, two policies pa and pb contain
a redundancy anomaly if there are two rules ri ∈ pa and rj ∈ pb with the following
properties:

X = effpa(ri) ∩ effpb
(rj) /= ∅ ∧ ∀x ∈ X pa(x) = DENY ∧ pb(x) = DENY

pa pb pa + pb

S2

S1

r3

r2

S2

S1

r1
S2

S1

r3

r2
r1

redundant

Figure 8.7: Inter-policy Redundancy Anomaly

Figure 8.7 shows an example of a redundancy anomaly between two cascaded security
policies. The first policy p1 contains two rules, one ra1 that enforces action DENY and
one ra2 that enforces action ALLOW. The second policy p2 contains one rule rb1 enforcing
action DENY. The composition of these two policies results in a new policy p1 +p2 where
rule rb1 is redundant on the one part of rule ra1 but has no anomaly to the other part on
rule ra2.

8.2.2 Transformed traffic anomalies

Transformed traffic anomalies occur when a security policies applies a transformation to
a rule, therefore, cannot be matched by a downstream policy. The transformed traffic
anomalies are: the Encrypted traffic anomaly, the Overlapping session anomaly and the
Modified traffic anomaly.

Encrypted traffic anomaly

The encrypted traffic anomaly occurs when a security policy encrypts a packet for which
another security policy has defined a rule. In this case, the packet can not be matched

78

8 – Conflict Analysis Model

because the required packet fields are encrypted and, therefore, the rule will never be
applied.

Formally two policies pa and pb contain an encrypted traffic anomaly if there are two
rules ri ∈ pa and rj ∈ pb with the following properties:

X = effpa(ri) ∩ effpb
(rj) /= ∅ ∧

∀x ∈ X pa(x) = ENCRYPT = x0 ∧

x0 /∈ effpb
(rj)

Overlapping session anomaly

The overlapping session anomaly occurs when a security policy encrypts a packet that is
also encrypted by another security policy. In this case, however, the packet is correctly
matched by the second policy.

Formally two policies pa and pb contain an overlapping session anomaly if there are
two rules ri ∈ pa and rj ∈ pb with the following properties:

X = effpa(ri) ∩ effpb
(rj) /= ∅ ∧

∀x ∈ X pa(x) = ENCRYPT = x0 ∧

pb(x0) = ENCRYPT = x′0

Modified traffic anomaly

The modified traffic anomaly occurs when a security policy modifies the packet header
and/or the payload and, therefore, a downstream policy can not match it any more. This
anomaly originates form security policies that enforce the MODIFY or the NEW HEADER
action.

Formally two policies pa and pb contains a modified traffic anomaly if there are two
rules ri ∈ pa and rj ∈ pb with the following properties:

X = effpa(ri) ∩ effpb
(rj) /= ∅ ∧

∀x ∈ X pa(x) = MODIFY = x0 ∧

x0 /∈ effpb
(rj)

79

8 – Conflict Analysis Model

8.3 Anomaly verification

The previous sections have presented all possible anomaly types within a single security
policy or between security policies of different type. The identification of these anomalies
relies on the effective function effp computation and the effective cover function effcp.
These two functions are complex to compute because they require the computation of set
union operation, however the Equivalent-Policy supports them. Indeed, the evaluation of
these two functions is very efficient when using key properties of the canonical form and
the semi-lattice. The semi-lattice, in particular its cover graph representation, enables the
computation of this two functions without resorting to the set union.

8.3.1 Effective function computation

The effective function effp(r) can be computed by evaluating the outgoing vertices r′ =
(c′, a′) of the rule r in the cover graph G(p):

effp(r) = ∅ ⇐⇒
⋃
r≺r′

c′ ∩ c = c

The condition verification for this function is performed in two steps, first the simple
verification and then the full verification.

The first step verifies that each selector of the rule r is a subset of the union of each
selector in the covering rules. Should this verification fail, the algorithm concludes that
effp(r) /= ∅, otherwise the next step is performed.

The second step verifies that the union of all intersections between the condition clause
of the rule r and the covering condition clauses is equal to the condition clause of the rule
r itself. Should this verification fail, the algorithm concludes that effp(r) /= ∅, otherwise
effp(r) = ∅.

8.3.2 Effective cover function computation

The effective cover function effcp(r) can also be computed by evaluating the outgoing
vertices r′ = (c′, a′) of the rule r in the cover graph G(p):

effcp(r) = ∅ ⇐⇒
⋃
r≺r′

c′ ∩ c = c

The condition verification for this function is performed by evaluating if all nodes in
the semi-lattice of the rule r, where the rule is not covered, enforce the same action a
also after removing the rule r. Should this verification fail the algorithm concludes that
effp(r) /= ∅, otherwise effp(r) = ∅.

80

Chapter 9

Reachability Analysis Model

This chapter presents the algorithms and data models required to perform an offline reach-
ability analysis based on the Equivalent-Policy. The proposed reachability analysis is
based on a custom query structure, which is also presented in this chapter. The query
structure allows the definition of different reachability scopes. The reachability model
evaluates the query and returns the reachability results.

9.1 The model

Offline reachability analysis is based on reachability queries. Reachability queries define
the reachability condition that must be verified. The reachability model takes in input the
query, evaluated, and the result is returned. Figure 9.1 shows this basic concept.

query model result

Figure 9.1: Offline reachability model

Reachability queries can define a very precise reachability condition such as: Can host
A reach the Web-server on host B? However, they can also express much more complex
reachability conditions, including multiple host, entire subnets, connection states, and
routing information. The complexity of a reachability analysis model relies on the ex-
pressiveness of the reachability query language how is is evaluated. This section presents

81

9 – Reachability Analysis Model

the basic concepts that are included in the proposed reachability analysis model. Further-
more, the key reachability conditions are presented and how the model evaluates them.

All reachability queries are executed on the precomputed Equivalent-Policy, not on
the network model itself. This has the advantage that the number of involved policy rules
is drastically reduced, and the internal complexity of the network can be ignored. The
Equivalent-Policy requires fewer rules to describe the end-to-end security behaviour of a
computer network because it eliminates all redundant rules. Furthermore, it is possible to
identify the cause of a reachability problem since rules in the Equivalent-Policy maintain
a reference to the original rules. The computation of the Equivalent-Policy is described in
previous chapters and, therefore, will not be presented here.

An Equivalent-Policy is always defined between two zones in the computer network.
In case a reachability query involves more than one source-zone and/or more than one
destination zone, a multi-zone Equivalent-Policy is created on the fly. Since different
zones have non-overlapping IP addresses, also rules from different Equivalent-Policy are
not correlated. The creation of the multi-zone Equivalent-Policy has no impact on the
performance since it is merely the union of two or more Equivalent-Policies.

r

fw1

z1

fw7

z7

z8

fw4

z5z4

fw3

z3

fw2

z2

fw6

z6

Multi-Zone
Equivalent Policy

z1
z2

z3

z4
z5

z6

z7

z8

Figure 9.2: Multi-zone Equivalent-Policy

The routing policy defines the path in a computer network that a packet must follow.
However, the default path may change in case of routing changes and, therefore, these
alternative paths are also part of the analysis. The reachability algorithm supports two
types of analysis: static analysis for the default path and dynamic analysis for alternative
paths. The dynamic reachability analysis takes into account all possible paths from source
to destination. The type of analysis to perform is specified by the reachability query.

The dynamic analysis has the objective to identify different reachability properties on
the alternative paths. The reachability analysis handles differences among paths according
to a defined strategy: lower bound, upper bound and highlight path anomalies. The lower
bound strategy evaluates a packet as allowed only if all it is allowed on all possible paths.

82

9 – Reachability Analysis Model

The upper bound strategy evaluates a packet as allowed when it is allowed at least on
one path. The highlight path anomalies strategy highlights all possible packets which are
treated differently on different paths and evaluates a packet as allowed or denied only if
all it is allowed or denied on all possible paths.

The algorithm is also able to support different connection types in addition to the
static and dynamic reachability analysis. The supported connection oriented queries are:
stateless communication, stateful communication, and multiple stateful communication.
The stateless communication query evaluates if a packet send by the source can reach the
destination. The stateful communication query evaluates if a packet send by the source
can reach the destination and that the destination can send a reply. The multiple stateful
communication query evaluates if a host can establish more than one stateful connection
to a destination.

The algorithm transforms the reachability query into a rule condition, the so-called
query condition. The query condition, just like a rule condition, is a set of selectors si
representing the values of a packet field. The values of the packet fields are defined in the
reachability query. The query condition is applied to the Equivalent-Policy by means of
the query matching function matchq(). This function identifies all policy rules that are
relevant for the query evaluation. Depending on the analysis type (static, dynamic) the
query condition is applied to one or multiple Equivalent-Policies. The resulting rule sets
are the base for the query result.

9.2 Reachability Queries

The reachability query allows the user to specify the details about the reachability analysis
he wants to perform. In literature have been different proposals for reachability query
languages. One of the first languages proposes was SFQL, the Structured Firewall Query
Language [97]. SFQL was designed to query one single firewall and has the following
syntax:

select Si
from f

where (X1 ∈ S1) ∧ · · · ∧ (Xk ∈ Sk) ∧ (action = 〈dec〉)

Si represents the protocol field (e.g., source or destination address) that must be
present in the result. Xi are non-empty subsets of protocol fields Si and are used to
restrict the query domain. 〈dec〉 specifies if the query searches for allowed or denied
communications.

83

9 – Reachability Analysis Model

The main limitation of SFQL is that it supports only one protocol field in the select
clause. Therefore, the expressiveness of the query result is very limited. To overcome the
limitations of SFQL Liu et al. extended the language and defined the Structured Reacha-
bility Query Language (SRQL) [75]. SRQL is designed to support multiple firewalls and
has the following syntax:

reachability_type T
connection_type O
select Si
where (X1 ∈ S1) ∧ · · · ∧ (Xk ∈ Sk) ∧ (action = 〈dec〉)

SRQL supports three reachability types T = instantaneous, T = upper-bound and
T = lower-bound. The instantaneous reachability is calculated over a pre-defied path,
whereas the other two take into consideration all possible paths. The upper-bound reach-
ability is the union of the allowed communications of all paths. Therefore, a communica-
tion is evaluated as allowed by the reachability model when all paths allow the communi-
cation. The lower-bound reachability is the intersection of the allowed communications of
all paths. Therefore, a communication is evaluated as allowed by the reachability model
when at least one paths allows the communication.

SRQL also supports two connection type: O =connection-oriented andO =connectionless.
Connection-oriented protocols is, for example, the Transmission Control Protocol (TCP).
Connectionless protocols are for example IP and User Datagram Protocol (UDP).

Si represents the protocol field that must be present in the result: source and destina-
tion IP address (S, D), source and destination port (SP, DP), and protocol type (PT. Xi are
non-empty subsets of protocol fields Si and are used to restrict the query domain.

9.2.1 Query format

The query language used in the proposed model is based on SRQL but has more features
significantly. The new query language has the following syntax:

reachability_type T
connection_type O
fixed_path P
Equivalent-Policy E
select F
where B ∧ (action = 〈dec〉)

84

9 – Reachability Analysis Model

T defines the type of reachability to perform, allowed reachability types are:

– instantaneous queries (I)

– lower-bound (LB)

– upper-bound (UB)

– unspecified strategy (U)

– static routing information (S)

O defines the connection type to use:

– stateful (SF)

– stateless (SL)

– multiple stateful (MSF)

P defines the path from source to destination expressed as a list of network nodes

E defines when the Equivalent-Policy is calculated:

– zone-to-zone Equivalent-Policy (Z)

– query-specific Equivalent-Policy (Q)

F defines the set of packet fields Si used in the query:

– source (S) and destination (D) IP address

– source (SP) and destination (DP) port

– protocol type (PT)

– protocol state (PS)

– application protocol (AP)

– time (T) and date (D)

– HTTP_method (QM), HTTP_req_header (QH), HTTP_rep_header (PH)

– hit-limit (L)

– hit-limit-burst (LB)

– URL domains (UD), URL paths (UP), URLs (U)

B defines a Boolean expression of conditions on the previous fields:
(F1 ∈ S1) ∧ · · · ∧ (Fk ∈ Sk) ∧ (action = 〈dec〉)

85

9 – Reachability Analysis Model

9.2.2 Query condition

The query condition is created based on the Boolean expression B from the reachability
query. Since the boolean expression is defined over a set of packet fields the transforma-
tion from a reachability query to the query condition is straightforward. Each packet field
in the boolean condition corresponds to a field in the query condition.

For example, the query condition representing the following reachability query

reachability_type LB

connection_type SL

select S,SP,D,DP,PT,PS

where D = 10.1.1.8 ∧ DP = 80 ∧ action = ALLOW

is cq = s1 × s2 with s1 = 10.1.1.8 and s2 = 80 and its selection space S = F1 × F2 is
defined over F1 for the destination address and F2 for the destination port.

9.2.3 Query matching function

The query matching function QmatchR returns the subset Q of rules ri = (ci, ai) ri ∈ R
whose condition ci = s1 × s2 × · · · ×sm intersects the query condition cq.

QmatchR : S −→ 2R

x −→ M = {ri ∈ R | cq ∪ ci /= ∅}

S2

S1

r1
r2

r3

cq

Figure 9.3: Example of QmatchR

Figure 9.3 shows an example of the query matching function QmatchR applied to the
rule set R = {r1, r2, r3} for query condition cq. The query condition cq is intersecting
the rules r1 and r2. Therefore, the query matching function returns a set containing these
two rules QmatchR(cq) = {r1, r2}. Rule r3 is not intersecting the query condition cq and,
therefore, it is not contained in the result set.

86

9 – Reachability Analysis Model

9.3 Query result

The result of a reachability analysis is composed of four fields: (answer, query result
domain, stateful domain and accuracy):

• answer: The answer field is signed to Allow, Deny or Partly. It is Allow if the traffic
defined in the reachability query is always allowed. It is Deny if the traffic defined
in the reachability query is always blocked. It is Partly if only a subset of the traffic
defined in the reachability query is allowed.

• query result domain: The query result domain represents all the allowed traffic, it
is expressed as a set of rules derived from the Equivalent-Policy. This field is only
used when the answer is Partly, and it is restricted according to the query conditions
(via intersection).

• stateful result domain: The stateful domain field represents all the communications
from the destination to the source that are allowed by some stateful rules as replies
to allowed communications. This field is only used for stateful queries, and the
answer is Partly.

• accuracy: The accuracy field highlights possible irregularities in the result. Irreg-
ularities may occur when the path contains unsupported security policies or when
any of the involved security policies contains unsupported selectors.

The following subsections present the result domain and the query accuracy in more
detail. Some practical examples are included for better understanding. The result domain
as explained in the next subsection is valid for both the query result domain and the
stateful result domain.

9.3.1 Result domain

By default both, the query result domain and the stateful result domain, include all se-
lectors and associated values in order to provide all information. The user can specify in
the select clause which selectors to include in them if only a subset is required. How-
ever since the query result domain and the stateful result domain is modelled just like
a normal policy, the user can also navigate (e.g., to inspect fields where conditions are
non-tautological) them directly.

87

9 – Reachability Analysis Model

The query asks if a host in the subnet 10.1.2.0/24 is allowed to establish a TCP con-
nection with a service 10.1.1.8:80. The following query is an example which is performed
on the policy in Table 9.1:

reachability_type LB

connection_type SL

select S,SP,D,DP,PT,PS

where

S = 10.1.2.0/24 ∧
D = 10.1.1.8 ∧
DP = 80 ∧
PT = TCP ∧
action = ALLOW

Source IP S.Port Dest IP D.Port Proto Protocol States Action
r1 any any any any any ESTABLISHED ALLOW
r2 10.1.2.7 any 10.1.1.9 any any any DENY
r3 10.1.2.7 any 10.1.1.19 any any any DENY
r4 10.1.2.0/24 >1023 10.1.1.0/24 80 TCP NEW ALLOW
r5 10.2.2.1 >1023 10.1.1.1 80 TCP NEW ALLOW
· · ·

* * * * * * DENY

Table 9.1: Example stateful filtering policy.

In this case, the hosts are only allowed to establish a TCP connection using a source
port greater than 1023. Therefore, the answer field is set to Partly, and the query result
domain contains the following expression:

S ∈ 10.1.2.0/24 ∧ SP > 1023 ∧ D = 10.1.1.8 ∧
∧ DP = 80 ∧ PT = TCP ∧ PS = any

where PS indicates conditions on protocol states.
In some cases, the query result domain can also be represented compactly. For exam-

ple, the previous query result domain can also be represented as SP > 1023. The compact
representation is possible if and only if the allowed and blocked connections can be ex-
pressed as a single Boolean expression containing only ANDs ((X1 ∈ S1) ∧ · · · ∧ (Xk ∈
Sk)).

88

9 – Reachability Analysis Model

However, this is not always possible and therefore, in this cases, the query result
domain is best expressed as security policy. An example of such a query:

reachability_type LB

connection_type SL

select S,SP,D,DP,PT,PS

where

S = 10.1.2.0/24 ∧
D = 10.1.1.0/24 ∧
action = ALLOW

This query asks if there is a host in the subnet 10.1.2.0/24 which can reach any service in
the subnet 10.1.1.0/24. The result domain of this query is as follows:

(S = 10.1.2.7 ∧ SP = ∗ ∧ (D = 10.1.1.9 ∨ D = 10.1.1.19)∧
DP = 80 ∧ PT = TCP) ∧ ¬(S ∈ 10.1.2.0/24∧
SP = ∗ ∧ D ∈ 10.1.1.0/24 ∧ DP = ∗ ∧ PT = ∗)

Representing the result domain as a security policy is much clearer as Table 9.2 shows.

Source IP S.Port Destination IP D.Port Proto Protocol States Action
10.1.2.7 any 10.1.1.9 OR 10.1.1.19 any any any DENY

10.1.2.0/24 >1023 10.1.1.0/24 80 TCP NEW ALLOW

* * * * * * DENY

Table 9.2: Query result in policy format.

9.3.2 Query result accuracy

The query result accuracy has been ignored in previous research, although it is crucial.
The accuracy is influenced by unsupported security policies or unsupported rule condi-
tions within the analysed computer network. Formally this means that the query result
domain is not tautological in the domain of the unsupported condition.

For example, the path from source to destination contains an application level firewall
which blocks all encrypted traffic, a model which does not support application level fire-
walls will incorrectly conclude that the traffic is permitted. In this case, the accuracy field
will flag the reachability result as potentially false. This has the advantage that although
the model does not support a certain security policy, the analysis can still be performed,
and the user is informed about possible inconsistencies.

89

Chapter 10

Policy Comparison Model

This chapter presents the proposed policy comparison model based on the Equivalent-
Policy. In particular, the four different comparison scopes (Single Policy Change-impact-
analysis, Single Policy Implementation-verification, Multiple Policy Change-impact-analysis
and Multiple Policy Implementation-verification) are explained.

10.1 Model

Policy comparison is no easy task because the policies with a very different rule structure
may enforce the same action. The following example shows such a case: the two policies
p1 and p2 respectively use both the FMR resolution strategy and have the default action
DENY. They are composed of entirely different rules but enforce the same action to all
packets. Both policies will block packets with destination address 10.1.5.2 and destination
port 80 and 81. Policy p1 contains the following rules:

r1 = (D = 10.1.5.2, DP = 80,81) → DENY
r2 = (D = 10.1.5.2, DP = ∗) → ALLOW

Policy p2 contains the following rules:

r1 = (D = 10.1.5.2, DP = 1− 79) → ALLOW
r2 = (D = 10.1.5.2, DP = 82− 1024) → ALLOW
r3 = (D = 10.1.5.2, DP > 1024) → ALLOW

Policy p1 defines a rule with higher propriety that blocks specifically the undesired ports
and a second low priority rule that permits the traffic on all ports. Therefore, a packet
with destination port 80 or 81 is matched by the first rule and blocked. Policy p2 defines

90

10 – Policy Comparison Model

only rules with ALLOW action and packets that should be blocked are enforced by the
default action. Therefore, a packet with destination port 80 or 81 is matched by no rule
and blocked by the default action.

A more complex example of such a case is shown in Figure 10.1. In this case, the two
policies (Policy 1 and Policy 2) have much more rules and the rule structure of the two
policies is very different. The enforced action of both policies, however, is the same in
the whole decision space. The comparison of the two policies is quite easy by having the
geometric representation side-by-side. Therefore, can policies be effectively compared
by evaluating their geometric superposition.

S1

S2

(a) Policy 1

S1

S2

(b) Policy 2

Figure 10.1: Policy comparison example

The Geometric-Model is, therefore, best suited for this task. However, the representa-
tion of policy differences is no easy task. Differences can have a very complex structure
and are difficult to represent in an easily readable way. Without proper representation,
however, the computed differences are without meaning.

The comparison among the two policies, policy pa and policy pb, is a good example.
Both policies use the FMR resolution strategy and have the default action DENY. Policy
pa permits traffic for the destination address within the subnet 10.0.0.0/16 and directed
to the destination port between 80 and 100. Policy pb permits traffic for the destination
address within the subnet 10.0.0.0/16 and directed to the destination port between 90 and
110.
Policy pa composed by one rule:

ra1 = (D = 10.0.0.0/16, DP = 80− 100)→ ALLOW

Policy pb is also composed by one rule:

rb1 = (D = 10.0.0.0/16, DP = 90− 110)→ ALLOW

91

10 – Policy Comparison Model

The differences between the two policies pa and pb are well highlighted by superposing
the two policies in the decision space. Figure 10.2 highlights the differences between the
two policies in grey.

pa pb pa ' pb

DP

D

ra1

80 90 100 11010.0.0.0

10.0.255.255

DP

D

rb1

80 90 100 11010.0.0.0

10.0.255.255

DP

D

d1

d2

80 90 100 11010.0.0.0

10.0.255.255

Figure 10.2: Comparison example between policy pa and pb

The differences between these two policies can also be represented as two hyper-
rectangles in the decision space:

d1 = (D = 10.0.0.0/16, DP = 80− 90)

d2 = (D = 10.0.0.0/16, DP = 100− 110)

However, in general, differences can not be represented with a single condition clause
(that is, one single compact hyper-rectangle).

The relative complement of two n-dimensional hyper-rectangles, requires up to n− 1
hyper-rectangles to be represented. The relative complement representation of more than
two hyper-rectangles requires exponentially more. However this is not a limitation of the
Geometric-Model itself, but it is also valid for the all other representations. However,
other approaches are also no valid solution, for example decorrelating the rules (Liu et
al. [84]). Because also in this approaches the calculation of the relative complement
is required and the number of resulting rules would be exponential. Therefore, is the
relative complement representation not suitable for representing rule differences based on
this considerations.

Another important aspect to consider is that one and the same difference can be repre-
sented in different ways. The proposed model solves this issues by representing the result

92

10 – Policy Comparison Model

of the comparison as a policy, called Difference Policy. The policy itself is represented
by the Geometric-Model as a semi-lattice where the rule actions are substituted by the
two fictitious actions, ’identical’ (ID) and ’different’ (DIFF). The Difference Policy can
formally be represented as:

d = (D,R, E, ID)

For instance, the differences between pa and pb could be represented by a policy with
default action ID composed of these three rules:

d1 = (D = 10.0.0.0/16, D = 80− 100)→ DIFF

d2 = (D = 10.0.0.0/16, D = 90− 110)→ DIFF

d1,2 = (D = 10.0.0.0/16, D = 90− 100)→ ID

The resulting Difference Policy d is a very compact representation of the differences.
Its rule set D contains the minimal number of rules and, in case, the compared policies
are equal, it contains no rule at all.

Another advantage of this approach is that network administrators are already familiar
with the policy format. Therefore differences represented as a policy are easy to compre-
hend for administrators. Furthermore, the rules in the Difference Policy d have a direct
correlation to the original rules and, therefore, it is very clear which rules are the cause of
the differences.

10.2 Algorithm

This section presents the algorithm applied in all four policy comparison scopes. The al-
gorithm creates the Difference Policy, as presented in the previous section, and revives as
input two policies pa and pb. Before going in detail, for better understanding a simplified
version of the algorithm is presented:

• Each rule in policy pa that enforces a different action as the default action of policy
pb is added to D.

– With respect to the previous example, ra1 satisfies this condition and, there-
fore, d1 is added in D

• Each rule in policy pb that enforces a different action as the default action of policy
pa is added to D.

93

10 – Policy Comparison Model

– With respect to the previous example, rb1 satisfies this condition and, there-
fore, d2 is added in D

• For each rule in D that intersects another rule and have the same action, a new rule
is created that has as condition clause the intersection of the condition clauses of
the two rules and as action ID.

– With respect to the previous example, d1 and d2 intersect each other and there-
fore d1,2 (that has c1 ∩ c2 as condition clause and ID as action) is added to D.

• All rules created by intersections of other rules have higher priority than the original
rules.

– With respect to the previous example, d1 and d2 have a lower priority then
d1,2.

• All rules in D with action ID that do not intersect any rule with action DIFF are
removed. Indeed, they enforce the same action as the default action. Therefore,
they do not add any information.

From a computational point of view, this simplified algorithm is very inefficient. How-
ever, by using the canonical form generation algorithm (Section 7.2) and the Semantic
preserving morphism (Section 7.3) a much more efficient algorithm can be created.

To use the canonical form generation algorithm, some parts must change. The rule
composition (Section 7.2) remains the same as presented. The policy composition (Sec-
tion 7.2) must be modified for the integration.

The rule composition “◦” of k rules ri ∈ R in a policy p is formally defined as:

◦ : R×R× · · · ×R → kS ×A
r1,2,··· ,k = r1 ◦ r2 ◦ · · · ◦ rk → (c1 ∩ c2 ∩ · · · ∩ ck,R({r1, r2, . . . , rk}))

The policy composition computes when applied to the Equivalent-Policy, the resulting
action depending on where the policy is allocated (in serial or parallel). In this case,
however, the important aspect to evaluate is not which action prevails over another, but
if the actions are equal or different. The comparison composition function models these
interactions between policies:

∼: A×A → A
it describes the comparison of actions of two security policies:

a ∼ a = d ∼ d = ID
a ∼ d = d ∼ a = DIFF

94

10 – Policy Comparison Model

The result of the comparison composition is ID only when both actions are equal and
DIFF when the actions are different.

Two policies p1 = (R1,R1, E1, ad1) and p2 = (R2,R2, E2, ad2) are composed by
applying the comparison composition ∼. The comparison policy p1 ∼ p2 is defined as
(R1∪R2,R∼,R1,R2 , ∅, ad1 ∼ ad2), where the default action is the comparison composition
of the two default actions and the comparison resolution strategy R∼,R1,R2 is defined as:

R∼,R1,R2 : 2R1∪R2 −→ A
S1 ∪ S2 −→ R1(S1) ∼ R2(S2)

The final step is to apply the Semantic-Preserving Morphism to the resulting canon-
ical form. It removes all unnecessary rules form the rule set D and returns a compact
representation of the Difference Policy d

10.3 Policy definition

The policy definition is used for the Implementation-verification and defines the desired
security behaviour. It is used for both, single policy and multiple policies Implementation-
verification In the case of single policy Implementation-verification the policy definition
defines the desired security behaviour of the single policy. In the case of multiple policies
Implementation-verification the policy definition defines the desired security behaviour
of the entire computer network.

The policy definition is expressed in a high-level security policy language. The used
high-level language has many similarities with the Geometric-Model and can, therefore,
be easily mapped to it. It is defined as an XML document (Listing 10.1). In the high-
level language, a policy is composed of a name (PolicyName), a type (PolicyType),
a resolution strategy (Resolver), the external data type (ExternalDataClass),
a default action (DefAction) and a set of rules (Rule). A rule is composed by an
optional external data(ExternalDataValue), a set of selectors(Selector), an op-
tional transformation(Transformation), and an action data(ActionData). A rule
also has two attributes, the rule action(Action) and the rule name(Label). The rule
action can be set to one of the following values: ALLOW, DENY, AH, INVERT_AH,

ESP, INVERT_ESP, PRENAT, POSTNAT, LOGGING. A selector has one attribute
(Label) that specifies its name, and the only element is the selectors value. The transfor-
mation is composed of a list of selectors that define which part of he packet is modified.
The action data defines additional information about the action used by the rule.

95

10 – Policy Comparison Model

Listing 10.1: High-level security policy language�
<!ELEMENT Policy (PolicyName,

PolicyType,

Resolver,

ExternalDataClass,

DefAction,

Rule*)>

<!ELEMENT PolicyName (#PCDATA)>
<!ELEMENT PolicyType (#PCDATA)>
<!ELEMENT Resolver (#PCDATA)>
<!ELEMENT ExternalDataClass (#PCDATA)>
<!ELEMENT DefAction (#PCDATA)>

<!ELEMENT Rule (ExternalDataValue?,

Selector+,

Transformation?,

ActionData*)>

<!ATTLIST Rule

Action (ALLOW | DENY |

AH | INVERT_AH |

ESP | INVERT_ESP |

PRENAT | POSTNAT |

LOGGING) #REQUIRED
Label CDATA #IMPLIED>

<!ELEMENT ExternalDataValue (#PCDATA) >

<!ELEMENT Transformation (Selector+) >

<!ELEMENT ActionData EMPTY>
<!ATTLIST ActionData

Name CDATA #REQUIRED
Value CDATA #REQUIRED>

<!ELEMENT Selector (#PCDATA) >

<!ATTLIST Selector

Label CDATA #REQUIRED>� �
96

10 – Policy Comparison Model

10.4 Application

The comparison model and algorithm presented so far are a general description that does
not go into the details of how to apply it to real world scenarios. This section explains
how to apply the general comparison model and algorithm to each of the four comparison
scopes.

10.4.1 Single Policy Change-impact-analysis

A security policy is modified by the network administrator and the performed changes
must be verified. The Single Policy Change-impact-analysis is very similar to the general
model and algorithm. Hence, the comparison model is instantiated by setting policy pa to
the original one and policy pb to the modified one.

original policy

compare

modified policy

result

Figure 10.3: Single Policy Change-impact-analysis

pa = original policy

pb = modified policy

The policy modification can be applied directly to a policy represented in low-level
language or represented by the Geometric-Model. Low-Level policies are mapped to the
Geometric-Model, which is then given as input to the comparison algorithm.

This comparison scope does not require a precomputed Equivalent-Policy, after all, it
also gets no performance advantage from using it. However, it can use the Equivalent-
Policy by filtering it the same way as in the Intra-Policy anomaly analysis does.

97

10 – Policy Comparison Model

10.4.2 Single Policy Implementation-verification

The network administrator wants to verify that a policy is correct with respect to the
policy definition. The Single Policy Implementation-verification analysis is quite similar
to the previous comparison scope. Hence, the comparison model is instantiated by setting
policy pa to the policy in question and policy pb to the policy definition.

policy

compare

policy
definition

result

Figure 10.4: Single Policy Implementation-verification

pa = policy

pb = policy definition

The policy definition can be derived from different sources, depending on the use-
case. It can be expressed in different policy abstractions: low-level, Geometric-Model
and/or high-level. The high-level policy is the most general use-case, for a security con-
trol the desired behaviour is defined and the enforced policy must be verified. The low-
level policy is used when a security control is substituted by a never model or from a
different vendor and the new policy must enforce the same behaviour as the old one. The
Geometric-Model can be used as input when two network administrators have defined a
policy and want to compare them to each other. In case the policy definition is expressed
in a high-level or low-level language it is mapped to the Geometric-Model.

98

10 – Policy Comparison Model

10.4.3 Multiple Policies Change-impact-analysis

A security policy is modified by the network administrator and the performed changes
must be verified with respect to its global behaviour. Therefore, the Equivalent-Policy
of the network must be taken inconsideration. The Multiple Policies Change-impact-
analysis is at first glance very different to the general comparison model, because in this
case multiple policies are involved. However by applying the Equivalent-Policy as de-
scription in chapter 7, the application of the comparison model becomes intuitive. For
each path, the Equivalent-Policy is computed and, therefore, all policies are united into
one Equivalent-Policy that is given as input. Hence, the comparison model is instanti-
ated by setting policy pa to the original Equivalent-Policy and policy pb to the modified
Equivalent-Policy.

original
Equivalent-Policy

compare

modified
Equivalent-Policy

result

Figure 10.5: Multiple Policy Change-impact-analysis

pa = original Equivalent-Policy

pb = modified Equivalent-Policy

The policy modification is always performed on the original policies and afterwards,
the modified Equivalent-Policy is computed. It is possible to improve the performance
of this operation by applying the changes to the Equivalent-Policy instead of completely
recomputing it.

99

10 – Policy Comparison Model

10.4.4 Multiple Policies Implementation-verification

The network administrator wants to verify that the global behaviour of a computer net-
work is correct with respect to the policy definition. The Multiple Policies Implementation-
verification analysis is a combination of all previous comparison scope. The Equivalent-
Policy is calculated for all security policies in question and the policy definition describes
the global behaviour of the computer network. Hence, the comparison model is instanti-
ated by setting policy pa to the Equivalent-Policy in question and policy pb to the policy
definition.

Equivalent-Policy

compare

policy definition

result

Figure 10.6: Multiple Policy Implementation Verificatio

pa = Equivalent-Policy

pb = policy definition

Also in this case, the policy definition can be derived from different sources, de-
pending on the use-case. It can be expressed in different policy abstractions: low-level,
Geometric-Model and/or high-level.

100

Part IV

Results

Chapter 11

Implementation

This chapter presents how the Policy Analysis Model has been implemented. The imple-
mentation of the Geometric-Model is shown and the generation of the Equivalent-Policy
is explained. The implementation of the single analysis modules and their interactions
are explained. Furthermore, the API that the implementation exposes is presented. Fi-
nally, the Graphical User Interface (GUI) is presented and explained how it supports the
administrator by using the Policy Analysis Model.

11.1 Implementation Overview

The Policy Analysis Model has been implemented as a Java library that exposes a well-
defined API, and by itself has no user interface. For a representative test and evaluation
of the implementation, a GUI has been implemented that uses the API of the Java library.

All essential components of the Policy Analysis Model are modelled by Java classes
and interfaces. The most important classes are for security policies, rules, actions, net-
work topologies and the analysis techniques itself. The Java classes expose the required
functions for a correct and complete behaviour.

Another important part of the implementation for future development is a comprehen-
sive API. It enables the addition of future extensions to the implementation and also gives
the opportunity for integration in already existing tools. The primary functions provided
by the API are to read policies from different file formats, to extend the model for new
policy types and to execute the different analyses when integrated into an existing tool.

The implemented GUI is based on the API and therefore also proofs that it is complete
and usable. A working tool which includes a GUI is also important for empirical tests of
the implemented algorithms. The GUI allows the user to define new policies and network

102

11 – Implementation

topologies, to execute the different analysis techniques, and to review the results.

Finally, the implementation also includes a complete test-suite to validate the correct-
ness of the algorithms and to perform a performance evaluation. The test-suite includes
a network topology generator and security policy generator. The test-suite gives the op-
portunity to evaluate the solution on a much greater scale without having access to big
physical networks. A detailed description of how the security policy generator has been
implemented is out of the scope of this work.

11.2 Data Types

This section presents the primary Java classes of the policy analysis library. Figure 11.1
shows the UML class-diagram of the principal classes. The main Java class of the library
is the PolicyAnalysisModel, it exposes all public API functions. The policy analy-
sis techniques are implemented by the AnomalyAnalyser, ReachabilityAnalser
and PolicyComparator class. The Landscape class models the network topology
and the Policy class is used to save the involved security policies. The Equivalent-
Policy is computed by the RuleTransformationResolver class.

«interface»
PolicyAnalysisModel

+ PolicyAnalysisModel(String fileName, String name): void
+ getSingleAnomalies(Policy policy) : Set<PolicyAnomaly>
+ getDistributedConflicts(String START, String END) : Set<PolicyAnomaly>
+ setReachabilityQuerry() : HashSet<GenericRule>
+ comparPolicy(Policy policy) : HashSet<GenericRule>

Policy Landscape RuleTransformationResolver

AnomalyAnalyser

+ getIntraPolicyAnomalies(Policy policy): Set<PolicyAnomaly>
+ getInterPolicyAnomalies(EquivalenPolicy equivalenPolicy) : Set<PolicyAnomaly>

PolicyComparator

+ compare(Policy policy1, Policy policy2): Set<Semilattice<GenericRule»

ReachabilityAnalyser

+ executeQuerry(ConditionClause zone_rule): HashSet<GenericRule>

Figure 11.1: UML Data Types

103

11 – Implementation

11.2.1 PolicyAnalysisModel

The PolicyAnalysisModel class is the main Java class, it exposes all public func-
tions provided by the library. This class is instantiated with a network topology and all
associated security policies. It manages the computation of the Equivalent-Policy and
caches it for continues usage. The constructor PolicyAnalysisModel(String
fileName, String name) receives two parameters. The first one is the name of
the file that contains all information about the network topology and the security policies.
The second one is a symbolic name for the computer network. Furthermore, when a pol-
icy analysis technique must be executed, this class calls the appropriate function from the
one of the policy analysis classes: AnomalyAnalyser, ReachabilityAnalser
and PolicyComparator.

11.2.2 AnomalyAnalyser

The AnomalyAnalyser class implements all anomaly analysis techniques and exposes
one function for each technique. The function getIntraPolicyAnomalies() takes
as parameter the security policy to analyse and returns the identified Intra-Policy anoma-
lies. The function getInterPolicyAnomalies() takes as parameter the Equivalent-
Policy and returns the identified Inter-Policy anomalies.

11.2.3 ReachabilityAnalyser

The ReachabilityAnalyser class implements the reachability analysis algorithm
and exposes one public function. The constructor ReachabilityAnalyser() re-
ceives as parameters the network topology and the list of Equivalent-Policies. The func-
tion executeQuery() takes the reachability query as parameter, and returns the reach-
ability result.

11.2.4 PolicyComparator

The PolicyComparator class implements the policy comparison algorithm and ex-
poses one public function. The constructor PolicyComparator receives as only pa-
rameter the list of selector types. The function compare() takes two parameters, the
two policies to compare, and returns the comparison result.

104

11 – Implementation

11.2.5 Landscape

The Landscape class implements all the required functions to represent and manage a
network topology. This class contains the list of security controls, their security policies
and how they are interconnected. Furthermore, it contains the list of filtering zones and
the list of connected hosts. It provides the functions to compute the path from different
zones and the traversed security controls.

11.2.6 RuleTransformationResolver

The RuleTransformationResolver class exposes one single function that com-
putes the Equivalent-Policy, which is then returned. This function takes as parameters the
ordered list of security policies for which the Equivalent-Policy must be computed.

11.2.7 Policy

Figure 11.2 shows the UML class diagram of the interface and classes involving a policy.
The Policy interface is used by the Java library to model all types of security policies.
The UML class diagram includes the most important functions, this interface defines. The
function getPolicyType() returns the policy type. The function insertRule()

inserts a new rule into the rule set. There are two versions of this function, one for res-
olution strategies that do not require an external data and one for those which do. The
function getDefaultAction() returns the default action of the policy. The function
getResolutionStrategy() returns the resolution strategy of the policy. The func-
tion match() returns all rules from the rule set that intersect a given condition clause.
The function evalAction() returns the action that is enforced by the policy for a given
packet. In the implementation, a network packet is represented as a condition clause.

«interface»
Policy

+ getPolicyType() : PolicyType
+ insertRule(GenericRule rule) : void
+ insertRule(GenericRule rule, S externalData) : void
+ getDefaultAction() : Action
+ getResolutionStrategy() : ResolutionStrategy
+ evalAction(ConditionClause packet) : Action
+ match(ConditionClause packet) : HashSet<GenericRule>

PolicyImpl

- policyType : PolicyType
- name : String

GenericRule ResolutionStrategy Action

Figure 11.2: UML Policy

105

11 – Implementation

The PolicyImpl class implements the Policy interface and is a basic security
policy implementation. The PolicyImpl class is composed of a set of Rules, a
ResolutionStrategy and an Action as the default action.

11.2.8 ResolutionStrategy

Figure 11.3 shows the UML class diagram regarding the ResolutionStrategy class. The
abstract ResolutionStrategy class is the base class for all types of resolution strate-
gies. It exposes the most important functions for comparing and composing rules and
actions. The function cloneResolutionStrategy() returns an exact copy of the
resolution strategy. The function compare() compares two rules to each other and re-
turns how they are correlated. The function composeActions() composes the actions
of a set of rules based on the resolution strategy. The function composeRules() com-
poses a set of rules and it returns the composed rule. A composed rule is the intersection
of the given rules and the enforced action is computed by the composeActions()
function. The function isActionEquivalent() compares the action of two given
rules and returns if they are equivalent.

ResolutionStrategy

+ cloneResolutionStrategy() : void
+ compare(GenericRule r1, GenericRule r2) : ResolutionComparison
+ composeActions(Collection<GenericRule> rules) : Action
+ composeRules(GenericRule r1, GenericRule r2) : GenericRule
+ isActionEquivalent(GenericRule r1, GenericRule r2) : Boolean

ExternalDataResolutionStrategy

+ composeExternalData(GenericRule r1, GenericRule r2) : S
+ getExternalData(GenericRule rule) : S
+ setExternalData(GenericRule rule, S externalData) : void

GenericRule,S

ExternalDataManager

- HashMap<GenericRule, S> data

+ getExternalData(GenericRule rule) : S
+ setExternalData(GenericRule rule, S externalData) : void

GenericRule,S

FMRResolutionStrategy

ATPResolutionStrategy

DTPResolutionStrategy

Figure 11.3: UML Resolution Strategy

106

11 – Implementation

The two classes ATPResolutionStrategy and DTPResolutionStrategy

extend the abstract class ResolutionStrategy and implement real resolution strate-
gies. They enforce the allow-takes-precedence and deny-takes-precedence resolution
strategies respectively. The ResolutionStrategy class does not consider external
data. Therefore, the abstract class ExternalDataResolutionStrategy extends
it and provides the support for external data. The function composeExternalData()
composes the external data of two given rules. The function getExternalData() re-
turns the external data associated with a given rule. The function setExternalData()
associates the external data to a rule. The class ExternalDataManager stores and
manages the associations between rules and external data. The FMR resolution strategy
is implemented by the FMRResolutionStrategy class.

11.2.9 GenericRule

The GenericRule models policy rules and is used by the Policy class. This class is
composed by the Action class and the ConditionClause. The Action represents
the enforced rule action and the ConditionClause represents the rule condition.

Figure 11.4 shows the UML class diagram for the GenericRule class. It exposes
functions that evaluate the correlation between rules. The function getAction() re-
turns the action enforced by the rule. The function getConditionClause() returns
the rule condition. The function isIntersecting() evaluates if the rule intersects a
given rule. The function ruleClone() creates an exact copy of the rule and returns it.

GenericRule

+ getAction(): Action
+ getConditionClause(): ConditionClause
+ isIntersecting(GenericRule r): Boolean
+ ruleClone(): GenericRule

ConditionClause

Action

Figure 11.4: UML GenericRule

107

11 – Implementation

11.2.10 ConditionClause

The ConditionClause class contains a list of Selector to model the different
dimensions of the hyper-rectangle. It exposes functions that provide the functional-
ity to compose condition clauses and to evaluate the correlation between them. Fig-
ure 11.5 shows the UML class diagram of the ConditionClause class. The function
conditionClauseClone() creates a complete copy of the condition clause. The
function intersection() computes the intersection with a given condition clause.
The function isConditionEquivalent() evaluates if the given condition clause
is equivalent. The function isConditionSubset() evaluates if the given condition
clause is a subset. The function isConditionSubsetOrEquivalent() evaluates
if the given condition clause is a subset or equivalent. The function isIntersecting()
evaluates if the given condition clause is intersecting. The function addSelector()

inserts the given selector into the selector list. The function setSelector() substi-
tutes a given selector in the selector list.

ConditionClause

+ conditionClauseClone(): ConditionClause
+ intersection(ConditionClause c): void
+ isConditionEquivalent(ConditionClause c): Boolean
+ isConditionSubset(ConditionClause c): Boolean
+ isConditionSubsetOrEquivalent(ConditionClause c): Boolean
+ isIntersecting(ConditionClause c): Boolean
+ addSelector(String selctorName, Selector selector): void
+ setSelector(String selectorName, Selector selector): void

«interface»
Selector

Figure 11.5: UML ConditionClause

11.2.11 Selector

The ConditionClause interface is implemented by the different selector implemen-
tations. It exposes functions that are used to compute the intersection of two selectors and
to verify the correlation between them. The function intersect() computes the inter-
section of the selector with a given selector. The function isEquivalent() evaluates
if the selector is equivalent to a given selector. The function isSubset() evaluates if
the selector is a subset of a given selector. The function isSubsetOrEquivalent()
evaluates if the selector is a subset of or equivalent to a given selector. The function
isIntersecting() evaluates if the selector intersects the given selector. For each
type of packet field, there exists a selector class.

108

11 – Implementation

For example, IP addresses are modelled by the IpSelector class, a port num-
ber is modelled by the PortSelector class and a protocol type is modelled by the
ProtocolSelector.

«interface»
Selector

+ intersect(s : Selector) : void
+ isEquivalent(Selector s) : Boolean
+ isSubset(Selector s) : Boolean
+ isSubsetOrEquivalent(Selector s) : Boolean
+ isIntersecting(s : Selector) : Boolean

IPselector PortSelector ProtocolSelector

Figure 11.6: UML Selector

11.2.12 Action

The Action interface is implemented by the different action classes. It exposes very
few functions because a rule action, in general, is a very simple structure. The most
important function is the actionClone() function, it creates an exact copy of the
action. The FilteringAction class, for example, is implemented as an enum that
contains the filtering actions ALLOW and DENY. The TransformatonAction class
is an abstract class to model more complex transformation actions such as NAT or IPsec.
The transformation condition is accessible by the function getTransformation().
This class contains a ConditionClause that represents the transformation applied to
a packet. The IPSecAction class is used to represent IPsec actions and, therefore,
contains also encryption and authentication parameters. The function getKey() returns
the IPsec key. The function getHashKey() returns the IPsec key hash. The function
getType() returns the IPsec type, AH or ESP. The function isEqual() evaluates
if the IPsec action is equivalent to a given IPsec action. The NATAction class is used
to represent NAT actions and, therefore, contains also the NAT action type, PRENAT or
POSTNAT. The function getNATAction() returns the NAT action type. Figure 11.7
shows the UML class diagram for this classes and interfaces.

109

11 – Implementation

«interface»
Action

+ actionClone() : Action

FilteringAction

TransformationAction

- transformation : ConditionClause

+ getTransformation(): ConditionClause

IPsecAction

- key : String
- hash_key : String
- type : IPSecActionType

+ getKey() : String
+ getHashKey() : String
+ getType() : IPSecActionType
+ isEqual(IPSecAction ipSecAction) : Boolean

NATAction

- NATAction : NATActionType

+ getNATAction() : NATActionType

Figure 11.7: UML Action

11.3 Graphical User Interface

The Graphical User Interface (GUI) is based on the Eclipse Rich Client Platform (RCP)
and uses the API exposed by the Analysis Model Library. The GUI provides additional
features to improve the usability of the tool. It can save and load a computer network
topology and the associated security policies to and from a file. It also provides a policy
and network topology editor. All analysis techniques can be executed and the results are
presented within the GUI.

11.3.1 Editor

Figure 11.8 shows the network topology editor. It can be used to inspect the topology and
allows to add new security controls, hosts and filtering zones.

Figure 11.8: Network Topology Editor.

110

11 – Implementation

Figure 11.9 shows the policy editor. It can be used to inspect the security policy and
allows to add, modify and delete policy rules. When a new rule gets inserted, the New
Rule wizard is shown. When a rule gets modified the Modify Rule wizard is shown.

Figure 11.9: Policy Editor Window.

Figure 11.10 shows the New Rule Wizard and the Modify Rule Wizard. The New
Rule Wizard enables the user to define a new rule based on all possible selectors. The
Modify Rule Wizard shows all defined selectors of the rule that can be modified or deleted.
Furthermore, new selectors can be added to the rule. Both wizards verify the input of the
user and only valid values are accepted. Non-valid values are highlighted and the user is
alerted.

(a) New Rule Wizard. (b) Modify Rule Wizard.

Figure 11.10: Rule editor.

111

11 – Implementation

11.3.2 Analysis Execution

The different policy analysis techniques can be performed by selecting the appropriated
menu point. Figure 11.11 shows the different possibilities.

The Intra-Policy anomaly analysis is performed by right-clicking on the policy name
in the PolicyExplorerWindow and selecting the menu point Analyse from the drop-down
menu. The result is then presented in the Analyser Result tap.

The Inter-Policy anomaly analysis is performed by selecting the menu point Dis-
tributed Analysis from the Execute menu. In the appearing wizard, the user must select the
source and destination zone for the analysis. The result is then presented in the Analyser
Result tap.

The reachability analysis is performed by selecting the menu point Reachability Anal-
ysis from the Execute menu. In the appearing wizard, the user must specify the reacha-
bility query he wants to execute. The result is then presented in the Reachability Result
tap.

The Policy Comparison is performed by selecting the menu point Policy Comparison
from the Execute menu. In the appearing wizard, the user must select the policy he wants
to compare. The result is then presented in the Comparison Result tap.

Figure 11.11: Policy Analysis Execution.

11.3.3 Result representation

Figure 11.12 shows the result window of the Intra-Policy analysis. When the mouse hov-
ers over an anomaly the involved rule with all its selectors and enforced action is shown.
The result window for the Inter-Policy analysis has the same structure. Figure 11.13
shows the result window of a reachability analysis. Figure 11.14 shows the result window
of a policy comparison.

112

11 – Implementation

Figure 11.12: Intra-Policy Analysis Result Window.

Figure 11.13: Reachability Analysis Result Window.

Figure 11.14: Policy Comparison Result Window.

113

Chapter 12

Validation

This chapter presents the performance evaluation of the Policy Analysis Model imple-
mentation. First the test environment is presented, in particular, the test hardware and the
test cases. There have been performed two test cases, one on a synthetic network and one
on a campus network. Each of the test cases is described, and the performance results are
presented.

12.1 Test environment

The performance tests evaluate the execution time of the different policy analysis tech-
niques. The tests are designed to cover the greatest number of possible network topologies
and configurations. The first performance test is performed on several synthetic networks
to prove scalability of the model. The second performance test is performed on the repre-
sentation of a campus network to prove real world application. The synthetic networks are
generated for different numbers of serially connected security controls. A security policy
generator was used to generate the policies for the synthetic networks. The security policy
generator generates security policies according to real statistical properties. Furthermore,
it also takes into consideration the network topology, for which the policy is generated,
to enable end-to-end reachability. The test on the campus network proofs the validity of
the analysis model for real networks. The campus network has a reasonable size to be
representative. Furthermore, it also contains different security policy categories.

As already presented in the previous chapter, the analysis model has been imple-
mented in Java 1.6. All test have been executed on OpenJDK Runtime Environment
(IcedTea 2.5.3). The test environment is based on an Intel Core i7-3630QM (2.4 GHz)
CPU, with 16 GB RAM under Debian Linux 8 operating system.

114

12 – Validation

12.2 Synthetic network

The synthetic network is composed of a variable number of serially connected security
controls. Each security control is configured by a security policy containing a variable
number of policy rules. The different types of security policies are applied: filtering,
communication protection, logging, transformation and routing. In particular, three inde-
pendent variable parameters characterize the synthetic network:

• sc, the number of security controls on each path, variable from 1 to 5;

• r, the average number of rules for each security policy, variable from 50 to 500;

• t, the number of transformation and communication protection rules for each path,
which ranges from 1 to 25.

The most complex synthetic network is composed of five security controls with 500
rules each and 25 transformation and communication protection rules. According to a sur-
vey by Algosec [98] security policies include in general less than 200 rules. The synthetic
network should represent very well a real worst case and, therefore, is the performance
evaluation representative.

The performance tests have been executed 100 times for each synthetic network, and
the presented results are the average of them. Additionally, the 95% confidence interval
has been computed and its also shown in the graphs as a grey area around the graph
curves.

12.2.1 Security Policy Generation

Implementing the security policy generation is no easy task, different aspects must be
taken into consideration. One very important aspect is the end-to-end communication
in case the generated policies are interconnected. Therefore, the security policy genera-
tion takes this into consideration and specific "allow rules" are inserted into the policies.
Furthermore, all policies are generated according to the statistical properties presented
by Taylor [99] with an average number of anomalies according to Al-Shaer [100]. The
survey work reported that that no more than 25% of rules intersect each other and that at
most five rules intersect simultaneously. Therefore, security policies with such statistical
properties should represent very well actual policies and, therefore, allow a representative
performance evaluation.

115

12 – Validation

12.2.2 Equivalent-Policy creation

The Equivalent-Policy creation is the first task to perform because the all policy analysis
techniques are performed on it. This subsection presents the performance evaluation of
the Equivalent-Policy creation depending on different factors. First, the time to create the
Equivalent-Policy is evaluated. Second, the size of the Equivalent-Policy is evaluated.
And finally, the dependency between the final size and the creation time.

Equivalent-Policy creation time

First, it will be evaluated how long it takes to compute the Equivalent-Policy depend-
ing on the number of security controls, the average number of rules and the number of
transformation and communication protection rules. The time to compute the Equivalent-
Policy of a synthetic network based on different parameters is shown in Figure 12.1 and
Figure 12.2.

100 200 300 400 500
0

20

40

60

80

r (avg. # of rules in Policies)

tim
e

(s
)

sc=1

sc=2

sc=3

sc=4

sc=5

Figure 12.1: Time to compute a Equivalent-Policy depending on sc and r with t = 25.

Figure 12.1 shows the time required to compute the Equivalent-Policy for different
numbers of rules and security controls. The average number of rules in the security poli-
cies varies from 100 to 500 and is reported on the x-axis of the graph. The number of
security controls varies from 1 to 5 and is reported as different plots within the graph.
The number of transformation and communication protection rules is fixed at 25 for all
tests.

116

12 – Validation

Figure 12.2 shows the time required to compute the Equivalent-Policy for different
numbers of rules and transformation and communication protection rules. The average
number of rules in the security policies varies from 100 to 500 and is reported on the x-
axis of the graph. The average number of transformation and communication protection
rules in the security policies varies from 5 to 25 and is reported as different plots within
the graph. The number of security controls is fixed at 5 for all tests.

100 200 300 400 500
0

20

40

60

80

r (avg. # of rules in Policies)

tim
e

(s
)

t=5

t=10

t=15

t=20

t=25

Figure 12.2: Time to compute a Equivalent-Policy depending on t and r with sc = 5.

The number of security controls on the path (Figure 12.1) and the number of transfor-
mation and communication protection rules per path (Figure 12.2) slightly more than a
linear influence on the computation time. The number of rules has the biggest impact on
the computation time. The Equivalent-Policy computation takes about 70 s in the worst
case. Considering that the Equivalent-Policy must be computed only once, these results
are very promising.

Furthermore, by also taking into consideration that the average number of rules is big-
ger than the real security policies, this result are more than sufficient. In general a security
control has less than 200 rules [98] and in this case, the computation takes less than 10 s.
Furthermore, the number of security controls and the number of transformation and com-
munication protection rules have very little impact when working with less than 200 rules
per security policy. Therefore, the performance of the Equivalent-Policy creation is very
good.

117

12 – Validation

Equivalent-Policy size

The Equivalent-Policy is generated starting from interconnected security policies by sub-
stituting all transformation and channel protection policies. Furthermore, redundant and
unnecessary rules are removed from the Equivalent-Policy. The following tests evalu-
ate the number of rules in the Equivalent-Policy depending on the number of security
controls, the number of rules and the number of transformation and communication pro-
tection rules. The number of rules in the Equivalent-Policy of a synthetic network based
on different parameters is shown in Figure 12.3 and Figure 12.4

Figure 12.3 shows the number of rules in the Equivalent-Policy for different numbers
of rules and security controls. The average number of rules in the security policies varies
from 100 to 500 and is reported on the x-axis of the graph. The number of security
controls varies from 1 to 5 and is reported as different plots within the graph. The number
of transformation and communication protection rules is fixed at 25 for all tests.

100 200 300 400 500
0

200

400

600

r (avg. # of rules in Policies)

#
of

ru
le

sc=1

sc=2

sc=3

sc=4

sc=5

Figure 12.3: Number of rules in Equivalent-Policy depending on sc and r with t = 25.

The number of security controls (Figure 12.3) has essentially no impact on the number
of rules in the Equivalent-Policy. They are relatively independent of each other because
all rules in the security controls are very similar to allow end-to-end communication.
Therefore, the policy composition includes many redundant rules which are removed from
the Equivalent-Policy.

118

12 – Validation

Figure 12.4 shows the number of rules in the Equivalent-Policy for different numbers
of rules and transformation and communication protection rules. The average number of
rules in the security policies varies from 100 to 500 and is reported on the x-axis of the
graph. The average number of transformation and communication protection rules in the
security policies varies from 5 to 25 and is reported as different plots within the graph.
The number of security controls is fixed at 5 for all tests.

100 200 300 400 500
0

200

400

600

r (avg. # of rules in Policies)

#
of

ru
le

t=5

t=10

t=15

t=20

t=25

Figure 12.4: Number of rules in Equivalent-Policy depending on t and r with sc = 5.

The number of transformation and communication protection rules (Figure 12.4) has
a greater impact on the number of rules in the Equivalent-Policy. Each transformation
and communication protection rules is transformed during the Equivalent-Policy creation,
and new policy rules are inserted. Therefore, the overall size of the Equivalent-Policy
increases. However, it can be expected that the number of transformation and communi-
cation protection rules is limited.

In summary, the overall size of the Equivalent-Policy is manly influenced by the av-
erage number of rules and the number of transformation and communication protection
rules. However, this dependency does not affect the scalability of the model significantly
because the number of security controls does not affect at all the size of the Equivalent-
Policy.

119

12 – Validation

Equivalent-Policy size-time

The last test for evaluating the Equivalent-Policy computation compares the creation time
with the number of rules included in the Equivalent-Policy. The synthetic networks, used
for the tests, contain a variable number of security controls from 1 to 5, a variable number
of rules from 50 to 500 and a variable number of transformation and communication
protection rules for each path from 1 to 25.

Figure 12.5 shows the time required to compute a Equivalent-Policy of a certain size.
The x-axis represents the number of rules in the Equivalent-Policy and the y-axis rep-
resents the computation time. The computation time has a nearly linear dependency on
the number of rules in the Equivalent-Policy. This test has a greater confidence interval
because the computation time depends not only on the number of rules in the Equivalent-
Policy.

100 200 300 400 500 600
0

10

20

30

40

50

of rules in Equivalent-Policy

tim
e

(s
)

Figure 12.5: Time to compute Equivalent-Policy based on number of rules.

These test results are mainly necessary for the evaluation of the performance test for
the analysis techniques. The different analysis techniques are preformed on precomputed
Equivalent-Policies. Therefore, they are directly correlated with this tests.

120

12 – Validation

12.2.3 Anomaly Analysis

The anomaly analysis is performed on a precomputed Equivalent-Policy. Therefore, the
performance evaluation of the anomaly analysis is based on the number of rules in the
Equivalent-Policy.

Figure 12.6 plots the average time required to perform the anomaly analysis based on
the different number of rules in the Equivalent-Policy. The number of identified anomalies
is not reported because they are not statistical representative.

100 200 300 400 500 600
0

10

20

30

of rules in Equivalent-Policy

tim
e

(m
s)

Figure 12.6: Time to perform an Anomaly Analysis.

The time required to perform the analysis has a linear dependency on the number of
rules in the Equivalent-Policy. In the worst case tested the execution time was less than
30 milliseconds. The confidence interval increases with the number of rules because the
standard deviation of the number of identified anomalies is correlated with the number
of rules. The correlation between the number of rules and the standard deviation of the
number of identified anomalies exists only because the rules are randomly generated.
However, even the upper bound of the confidence interval has a sufficient performance.
Therefore, the imprecisions due to the random generation can be ignored.

121

12 – Validation

12.2.4 Reachability Analysis

The reachability analysis is performed on a precomputed Equivalent-Policy. Therefore,
the performance evaluation of the reachability analysis is based on the number of rules in
the Equivalent-Policy.

Figure 12.7 plots the average time required to perform a reachability analysis based
on the different number of rules in the Equivalent-Policy. Three distinct reachability
queries have been performed: host-host, host-zone and zone-zone. The first query (1-
1) evaluates the reachability between two hosts. The second query (1-x) evaluates the
reachability between a host and the rest of the network. The third query (x-x) evaluates
the reachability of the entire network.

100 200 300 400 500 600
0

0.5

1

1.5

2

of rules in Equivalent-Policy

tim
e

(m
s)

1-1

1-x
x-x

Figure 12.7: Time to execute a reachability query.

The time required to execute the query has a linear dependency on the number of rules
in the Equivalent-Policy. In the worst case tested the execution time was less than two
milliseconds. The confidence interval is relatively big because of the measurement impre-
cisions. The measurements have a precision of one millisecond, and because the results
are also in this range, they are not very precise. However, the measurement imprecisions
are not important in this case because the test results are very good even from a worst-case
perspective.

122

12 – Validation

12.2.5 Policy Comparison

The policy comparison is performed on a precomputed Equivalent-Policy. Therefore, the
performance evaluation of the policy comparison is based on the number of rules in the
Equivalent-Policy.

Figure 12.8 plots the average time to perform a policy comparison based on the differ-
ent number of rules in the Equivalent-Policy. Three comparisons with various numbers
of differences have been performed: The first comparison (# 0) compares the network
configuration with itself and, therefore, identifies no differences. The second comparison
(# 1) compares the network configuration with one modification. The third comparison (#
10) compares the network configuration with ten modification.

100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

of rules in Equivalent-Policy

tim
e

(m
s)

0

1

10

Figure 12.8: Time to perform a policy comparison.

The time required to perform the comparison is nearly constant and is independent of
the number of rules in the Equivalent-Policy. In the worst case tested the execution time
was less than three milliseconds. Also, in this case, the confidence interval is relatively
big because of the measurement imprecisions. The measurements have a precision of
one millisecond, and because the results are also in this range, they are not very precise.
However, the measurement imprecisions are not important in this case because the test
results are very good even from a worst-case perspective.

123

12 – Validation

12.3 Campus network

The second set of test has been performed on a representation of a campus network. These
tests validate the performance of the proposed model on a real network. Furthermore, the
results of the tests also prove that the synthetic network tests are representative.

The campus network is composed of 19 security controls, one router, three NAT de-
vices, 12 firewalls with NAT functionality, one firewall with IPSec VPN functionality and
two packet-filter firewalls. There are about 10,000 connected hosts, subdivided into 36
filtering zones with private IP addresses and 30 additional zones with public IP addresses.
All filtering zones with private IP addresses are connected through a NAT devices with
the rest of the network, where each NAT device handles 12 filtering zones.

fwI

Internet

fwDEP

fwA

×5×5

fwDC
×10

fwWLAN
×10

NAT
×5

×11

×3

Figure 12.9: The campus network.

Figure 12.9 shows the network topology of the campus network and all its connected
security controls and filtering zones. The network topology is a star topology with one
central core router. Therefore, each filtering zone is interconnected through three security
devices to each other filtering zone in the network.

124

12 – Validation

In detail the campus network is composed of the following security controls:

• The core router is the center of the star topology, it is connected to the Internet
through the border firewall fwI.

• The border firewall fwI is configured by a security policy with about 150 rules, it
also provides VPN functionalities for external remote connections.

• The campus network includes 11 department networks, where each department net-
works consists of two filtering zones: a private and a public zone. The private zone
is connected to the core router by means of a NAT/NAPT and a firewall (fwDIP) and
can only connect to the rest of the campus network. The public zone is connected
to the core router by just the firewall (fwDIP) and is reachable from the Internet.

• The campus network includes three laboratory networks composed of five filtering
zones each. Laboratory network is connected to the core router via an individ-
ual NAT/NAPT device (NAT). These networks are allowed to access the campus
network, and the Internet, but not incoming connections from the Internet are per-
mitted.

• The campus network includes one administration network that is composed of five
filtering zones for servers and five filtering zones for the employees’ workstations.
All filtering zones are connected to the core router by the firewall (fwA) that contains
approximately 250 rules. The five filtering zones for servers have higher security
requirements than the other ones and are accessed mainly by the users from the five
administration user zones.

• The campus network includes one data center that is composed of ten filtering
zones. These filtering zones contain various servers (web, e-mail, file servers, . . .),
some of which are also accessible from the Internet. The data-center is connected
to the core router by a single firewall (fwDC) with about 50 rules.

• The campus network includes ten wireless networks that are connected to the core
router by one firewall (fwWLAN) with about 20 rules (acting as NAT/NAPT and
firewall). Wireless clients can access the Internet. However, they can only access
the public parts of the campus network.

125

12 – Validation

The performance evaluation on the campus network has been executed in two steps.
First, the Equivalent-Policy for all 4624 possible paths has been computed. Afterwards,
the different analysis techniques have been applied. The anomaly analysis applied searches
for Inter-policy anomalies within the entire network. The reachability analysis that has
been applied computes the reachability parameters of the entire network. The policy com-
parison applied compares the network with itself and without modifications.

The computation of the Equivalent-Policy took about 487 seconds. Considering the
network size it is very efficient, and compared to the state of the art has a better perfor-
mance. The anomaly analysis took about 14 milliseconds and can therefore be used for
real-time execution. The reachability analysis took about 83 milliseconds to compute the
reachability parameters of the entire network. The policy comparison took about 696 mil-
liseconds, and is therefore the computational most intensive task. These results proof that
the performance of the proposed model is adequate to be applied to real networks.

Although, the actual security policies of the campus network were not used it is still a
valid performance evaluation because the network topology, the size and policy statistics
are the equivalent. The security policies have been generated by the security policy gener-
ator according to the real policy statistics. Furthermore, the filtering zones in the network
topology are interconnected through different paths and therefore through different policy
transformations.

126

Part V

Conclusion

Chapter 13

Conclusion

This work has proposed an innovative security policy analysis model that combines dif-
ferent policy analysis techniques. The supported policy analysis techniques are: anomaly
analysis, reachability analysis and policy comparison. This work has proposed the first
model in the state of the art that combines all three analysis techniques. It is the only one
that covers the complete analysis spectrum and supports the most use-cases.

Anomaly analysis searches for potential misconfigurations within one policy (Intra-
Policy analysis) or between multiple policies (Inter-Policy analysis). Policy analysis has
been studied for over a decade and is a very promising research area. This work improves
the state of the art even further by introducing a new anomaly classification and the sup-
port for new security controls. The proposed anomaly classification also includes a new
anomaly class, the Transformed Traffic anomalies. A Transformed Traffic anomaly oc-
curs when a packet can not be evaluated by a security policy because it was modified or
encrypted by a previous security policy. Furthermore, the analysis algorithm is improved
by using the Geometric-Model, which allows a more detailed analysis. The new model
can identify rule anomalies not only among rule pairs but also among an entire rule set.

Reachability analysis verifies specific properties within a security policy or an entire
computer network. It can be performed online by injecting test packets into a deployed
network or offline by querying a model. This work presents an offline reachability anal-
ysis that supports the most important security policy types. The main improvement over
the state of the art is the improved expressiveness of the query language and the result
representation. The query language supports different reachability and connection types.
The result representation is also an important aspect of the performed research. The reach-
ability analysis result is structured like a security policy and therefore well readable by
network administrators. Furthermore, the proposed model is extensible to future security
policy types.

128

13 – Conclusion

Policy comparison is used to compare one or more security policies to each other.
There are two main use-cases: Implementation-verification and Change-impact-analysis.
Implementation-verification evaluates that a high-level policy is correctly implemented.
Change-impact-analysis evaluates a modification that has been performed on a security
policy or the network topology. The proposed model supports both types, Implementation-
verification and Change-impact-analysis. Furthermore, the model is not only able to com-
pare single policies but also entire computer network configurations. The solutions in the
state of the art support only one use-case, whereas the proposed model supports all four
use-cases. The proposed model can therefore be applied to the most use-cases.

A central feature of the proposed analysis model is an innovative concept called
Equivalent-Policy. The Equivalent-Policy is a compact representation of the entire com-
puter network with all its security policies. The Equivalent-Policy is computed by follow-
ing three steps: Firstly, substituting all transformation and channel protection policies.
Secondly, composing the remaining security policies. Thirdly, eliminating all redundant
and unnecessary rules. It supports the following security policy types: packet-filter, state-
ful, Layer7, Routing, IPsec, SSL, NAT/NAPT, Web-Proxies and Monitoring. Further-
more, the Equivalent-Policy is designed to be extensible for future security policy types.
The Equivalent-Policy is the key component because all policy analysis techniques are
performed on it.

The proposed model has several advantages and improvements over the state of the
art. First of all, it is the first one to include all three analysis techniques. Secondly, each
analysis technique is improves the state of the art. Thirdly, the model covers the most
security policy types. Fourthly, it is extensible and easy to adapt to new types of security
policies.

The proposed model was implemented as a Java prototype to prove its validity. Fur-
thermore, a GUI was implemented for ease of use and to show that the prototype could be
extended into legitimate software. Extensive tests was performed on the implementation
to validate its performance. The results show that the proposed model is valid and could
be used to analyse real computer networks. Therefore, this model could be integrated into
future network architectures such as VNF/SDN. The implemented prototype is a good
starting point for such improvements because it is a library with a well-defined API.

Although the proposed model is a major improvement over the state of the art and
also its performance evaluation was successful, it can still be improved in future work.
First of all, the functionalities of the model can be extended by incorporating an anomaly
resolution algorithm. Secondly, the expressiveness of the high-level policy language can
be improved. And last but not least, new security policy types can be integrated and
potentially new anomaly categories identified.

129

13 – Conclusion

An anomaly resolution algorithm has the advantage that no human interaction during
the resolution of the identified anomalies is required. In the state of the art there have
already been some attempts to for such an algorithm. These algorithms are not very
advanced and focus primarily on filtering policies. However, they can be the foundation
for future research. The first step could be to integrate these algorithms into the proposed
model. Afterwards, they can be improved and extended to support other security policies.

The high-level security policy language is mainly important for policy comparison
when performing Implementation-verification. In the current state the high-level lan-
guage, used for the policy definition, can express the most important security aspects of
a computer network. However, it is still very technical and requires a decent background
knowledge in computer network security. Future research could focus on defining an im-
proved version that is closer to human language and, therefore, easier to use by network
administrators. Also non tech-savvy people could use the tool when a policy language is
provided that is closer to human language.

The proposed model is designed for future extensions and integration of new secu-
rity policy types. Therefore, this advantage should be exploited, and the integration of
additional security policy types should be studied.

130

Part VI

Appendix

Abbreviations and Symbols

Abbreviations

ACL Access Control List

AH Authentication Header

ATP Allow Takes Precedence

BDD Binary Decision Diagram

CAN Canonical Form

D.Port Destination Port

DC Data-Center

DEP Department

DIFF Different

DTP Deny Takes Precedence

eqPolicy Equivalent-Policy

ESP Encapsulating Security Payload

FAME Firewall Anomaly Management Environment

FANG Firewall Analysis Engine

FDD Firewall Decision Diagram

FMR First Matching Rule

FTP File Transfer Protocol

132

FW Firewall

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

ID Identical

IDD Interval Decision Diagram

IP Internet Protocol

IPsec Internet Protocol Security

ISO International Organization for Standardization

IT Information Technology

LUB Least Upper Bound

MDD Multi-way Decision Diagram

MSTP Most Specific Takes Precedence

NAPT Network Address and Port Translation

NAT Network Address Translation

NFV Network Functions Virtualization

NIDS Network Intrusion Detection System

OBDD Ordered Binary Decision Diagrams

OSI Open Systems Interconnection

PCI-DSS Payment Card Industry Data Security Standard

RCP Rich Client Platform

S.Port Source Port

SAT Boolean Satisfiability Problem

SC Security Control

133

SDN Software-Defined Networks

SFQL Structured Firewall Query Language

SRQL Structured Reachability Query Language

SSH Secure Shell

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UML Unified Modeling Language

URL Uniform Resource Identifier

VPN Virtual Private Network

WSS WS-Security, Web Services Security

XML Extensible Markup Language

134

Symbols

Fi Packet field

P = {F1, . . . ,Fn} Packet space

x = {fi ∈ Fi, Fi ∈ PI , I ⊆ [1, n]} Packet

C = ∏
i∈I

Fi Fi ∈ PI I ⊆ [1,m] Selection space

si Selector

c = ∏
i∈I
si si ⊆ Fi I ⊆ [1,m]c ∈ C Condition

a : P→ P ∪ ∅a ∈ A Action

A Action space

σi Action transformation value

γ = ∏
j∈IT

σj σj ⊆ Fj IT ⊆ [1,m] Action clause

T = ∏
j∈IT

Fj Fj ∈ P IT ⊆ [1,m] Transformation space

εE(ri) = (ri, f1(ri), f2(ri), f3(ri), . . .) External data function

E = {fj : R→ Xj}j External data

Xj External data attribute

RE External data resolution strategy

R : {rl, rm, . . .} εE−→ {εE(rl), εE(rm), . . .} RE−→ a Resolution strategy

r = (c, a) Rule

R = {ri}i, i ∈ [1, n] Rule set

135

R : 2R → A Generic resolution strategy

E = {E1, E2, . . .} External data set

ad Default action

(R,R, ∅, ad) Policy

matchR Matching function

effp(r) Effective Function

effcp(r) Effective Cover Function

rT =
(
cT, a

)
Transformed rule

cT = sT
1 × sT

2 × · · · × sT
m Transformed condition clause

in(τi) = c Transformation-condition extraction

out(τi) = γi Transformation-action extraction

Ψ (ri) = ∏
j∈IT

sij Projection on transformation space

C(ri) = ci Rule condition extraction

Θ(ri, τj) : ri −→ r
(j)
i Rule transformation function

r(τj) = (Σ(FI , in(τj)), ad)r(τj)∈D(T) Default transformation rule

D(T) Default transformation rule-set

p(T) = (R ∪R(T),T, E, d) T -modified policy

T T -modified resolution strategy

R(T) = {Θ(ri, τj)}i,j ∪D(T), with i ≤ m, j ≤ t T -modified rule-set

p(T1,T2) (T1, T2)-modified policy

R ∪R(T1) ∪
(
R ∪R(T)

)(T2)
= R ∪R(T1) ∪R(T2) ∪R(T2,T1) (T1, T2)-modified rule-set

136

◦ : R×R× · · · ×R→ kS ×A Rule composition

R Closure

+ : A×A → A Serial action composition

R+,R1,R2 : 2R1∪R2 Composed resolution strategy

(R1 ∪R2,R+,R1,R2 , ∅, ad1 + ad2) Serial composed policy

CAN : 2R∗ → A Canonical form

G(p) Cover graph

d = (D,R, E, ID) Difference policy

∼: A×A → A Action comparison composition

R∼,R1,R2 : 2R1∪R2 Comparison resolution strategy

p1 ∼ p2 = (R1 ∪R2,R∼,R1,R2 , ∅, ad1 ∼ ad2) Comparison policy

137

Bibliography

[1] A.Westerinen, J.Schnizlein, J.Strassner, M.Scherling, “Terminology for Policy-
Based Management”, RFC-RFC-3198, November 2001.

[2] B.Moore, E.Ellesson, J.Strassner, W.A., “Policy Core Information Model”, RFC-
RFC-3060, February 2001.

[3] Ponemon Institute, “2014 Global Report on the Cost of Cyber Crime” 2014.
[4] D. A.Patterson, “A simple way to estimate the cost of downtime”, LISA2002 : 16th

Systems Administration Conference, Usenix, , Philadelphia, US-PE, November 3–
8 2002, pp. 185–188.

[5] K. L.Gwebu, J.Wang, W.Xie, “Understanding the Cost associated with Data Se-
curity Breaches”, PACIS2014 : Pacific Asia Conference on Information Systems,
Chengdu, China, June 24–28 2014.

[6] M.Ko, C.Dorantes, “The Impact of Information Security Breaches on Financial
Performance of the Breached Firms: an Empirical Investigation”, Information Re-
sources Management Journal, Vol. 17, No. 2 2006, pp. 13–22.

[7] K. M.Gatzlaff, K. A.McCullough, “The effect of data breaches on shareholder
wealth”, Risk Management and Insurance Review, Vol. 13, No. 1, March 2010,
pp. 61–83, doi:10.1111/j.1540-6296.2010.01178.x.

[8] J.Goldstein, A.Chernobai, M.Benaroch, “An event study analysis of the economic
impact of IT operational risk and its subcategories”, Journal of the Association for
Information Systems, Vol. 12, No. 9, September 2011, pp. 606–631.

[9] A.Wool, “Firewall Configuration Errors Revisited”, CoRR, Vol. abs/0911.1240
2009, pp. 103–122.

[10] W.Avishai, “Trends in Firewall Configuration Errors: Measuring the Holes in
Swiss Cheese”, IEEE Internet Computing, Vol. 14, No. 4, July 2010, pp. 58–65,
doi:10.1109/MIC.2010.29.

[11] Verizon Enterprise, “Data Breach Investigations Report” 2008,
www.verizonenterprise.com/resources/security/reports/2009_databreach_rp.pdf.

[12] Verizon Enterprise, “Data Breach Investigations Report” 2014,

138

http://dx.doi.org/10.1111/j.1540-6296.2010.01178.x
http://dx.doi.org/10.1109/MIC.2010.29

Bibliography

www.verizonenterprise.com/DBIR/2014/reports/rp_Verizon-DBIR-
2014_en_xg.pdf.

[13] Verizon Enterprise, “Data Breach Investigations Report” 2015,
www.verizonenterprise.com/resources/reports/rp_data-breach-investigation-
report-2015_en_xg.pdf.

[14] 7Safe Limited, “UK Security Breach Investigations Report” 2010,
www.7safe.com/breach_report/Breach_report_2010.pdf.

[15] S.Wright, “PCI DSS V1.2: A Practical Guide to Implementation”, It Governance
Ltd, 2009, ISBN: 978-1849280235.

[16] Forrester Research, “How To Manage Your Information Security Policy Frame-
work” 2006.

[17] D.Oppenheimer, “The importance of understanding distributed system configura-
tion”, CHI03 : Human Factors in Computer Systems, Ft. Lauderdale, US-FL, April
5 2003.

[18] T.European Telecommunications Standards Institute, “Network function virtual-
ization - White Paper 2”, October 2013.

[19] N.Feamster, J.Rexford, E.Zegura, “The Road to SDN: An Intellectual History of
Programmable Networks”, ACM SIGCOMM Computer Communication Review,
Vol. 44, No. 2, April 2014, pp. 87–98, doi:10.1145/2602204.2602219.

[20] C.Pitscheider, “Network-Security-Policy Analysis”, DEPEND 2014, 7th Interna-
tional Conference on Dependability, Lisbon, Portugal, November 16–20 2014,
pp. 10–16.

[21] C.Basile, A.Cappadonia, A.Lioy, “Geometric interpretation of policy spec-
ification”, POLICY 2008 : IEEE Workshop on Policies for Distributed
Systems and Networks, Palisades, NY-US, June 2–4 2008, pp. 78–81,
doi:10.1109/POLICY.2008.36.

[22] C.Basile, D.Canavese, A.Lioy, C.Pitscheider, F.Valenza, “Inter-function anomaly
analysis for correct SDN/NFV deployment”, International Journal of Network
Management, Vol. 26, No. 1, January 2016, pp. 25–43, doi:10.1002/nem.1917.

[23] J.Qian, S.Hinrichs, K.Nahrstedt, “ACLA: A Framework for Access Control List
(ACL) Analysis and Optimization”, CMS01 : 5th Joint Working Conference on
Communications and Multimedia Security, Darmstadt, Germany, May 21-22 2001,
pp. 197–211, doi:10.1007/978-0-387-35413-2_18.

[24] E.Al-Shaer, H.Hamed, “Firewall Policy Advisor for anomaly discovery and
rule editing”, IFIP/IEEE 8th International Symposium on Integrated Network
Management, Colorado Springs, CO-US, March 24–28 2003, pp. 17–30,
doi:10.1109/INM.2003.1194157.

139

http://dx.doi.org/10.1145/2602204.2602219
http://dx.doi.org/10.1109/POLICY.2008.36
http://dx.doi.org/10.1002/nem.1917
http://dx.doi.org/10.1007/978-0-387-35413-2_18
http://dx.doi.org/10.1109/INM.2003.1194157

Bibliography

[25] E.Al-Shaer, H.Hamed, “Discovery of policy anomalies in distributed firewalls”,
INFOCOM2004 : 23rd AnnualJoint Conference of the IEEE Computer and Com-
munications Societies, Hong Kong, Cina, March 7–11 2004, pp. 2605–2616,
doi:10.1109/INFCOM.2004.1354680.

[26] E.Al-Shaer, H.Hamed, R.Boutaba, M.Hasan, “Conflict classification and
analysis of distributed firewall policies”, IEEE Journal on Selected Ar-
eas in Communications, Vol. 23, No. 10, October 2005, pp. 2069–2084,
doi:10.1109/JSAC.2005.854119.

[27] N.Lehmann, R.Schwarz, J.Keller, “FIRECROCODILE: A Checker for Static Fire-
wall Configurations”, SAM06: International Conference on Security & Manage-
ment, Las Vegas, NV, June 26–29 2006, pp. 193–199, doi:10.1.1.88.3899.

[28] L.Yuan, H.Chen, J.Mai, C.-n.Chuah, “FIREMAN: A Toolkit for FIREwall Model-
ing and ANalysis”, IEEE Symposium on Security and Privacy, Berkeley/Oakland,
CA-US, May 21–24 2006, pp. 199–213, doi:10.1109/SP.2006.16.

[29] A.Jeffrey, T.Samak, “Model Checking Firewall Policy Configurations”, POL-
ICY2009 : IEEE International Symposium on Policies for Distributed Sys-
tems and Networks 2009, London, UK, July 20–22 2009, pp. 60–67,
doi:10.1109/POLICY.2009.32.

[30] H.Hu, G.-J.Ahn, K.Kulkarni, “FAME: a firewall anomaly management en-
vironment”, SafeConfig10 : 3rd ACM workshop on Assurable and us-
able security configuration, Chicago, IL-US, October 4-8 2010, pp. 17–26,
doi:10.1145/1866898.1866902.

[31] H.Hu, G. J.Ahn, K.Kulkarni, “Detecting and resolving firewall policy anomalies”,
IEEE Transactions on Dependable and Secure Computing, Vol. 9, No. 3, May-June
2012, pp. 318–331, doi:10.1109/TDSC.2012.20.

[32] W.Krombi, M.Erradi, A.Khoumsi, “Automata-Based Approach to Design and
Analyze Security Policies”, PST2014 : 12th International Conference on Pri-
vacy, Security and Trust, Toronto, Canada, July 23-24 2014, pp. 306–313,
doi:10.1109/PST.2014.6890953.

[33] V.Capretta, B.Stepien, A.Felty, S.Matwin, “Formal correctness of conflict detec-
tion for firewalls”, FMSE07 : ACM Workshop on Formal Methods in Secu-
rity Engineering, Alexandria, VA, October 29 - November 2 2007, pp. 22–30,
doi:10.1145/1314436.1314440.

[34] T.Abbes, A.Bouhoula, M.Rusinowitch, “An inference system for detecting firewall
filtering rules anomalies”, SAC08: ACM Symposium on Applied Computing, For-
taleza, Brazil, March 16–20 2008, pp. 2122–2128, doi:10.1145/1363686.1364197.

140

http://dx.doi.org/10.1109/INFCOM.2004.1354680
http://dx.doi.org/10.1109/JSAC.2005.854119
http://dx.doi.org/10.1.1.88.3899
http://dx.doi.org/10.1109/SP.2006.16
http://dx.doi.org/10.1109/POLICY.2009.32
http://dx.doi.org/10.1145/1866898.1866902
http://dx.doi.org/10.1109/TDSC.2012.20
http://dx.doi.org/10.1109/PST.2014.6890953
http://dx.doi.org/10.1145/1314436.1314440
http://dx.doi.org/10.1145/1363686.1364197

Bibliography

[35] N.Basumatary, S. M.Hazarika, “Model checking a firewall for anomalies”, IC-
ETACS2013 : 1st International Conference on Emerging Trends and Applica-
tions in Computer Science, Shillong, India, September 13-14 2013, pp. 92–96,
doi:10.1109/ICETACS.2013.6691402.

[36] K.Golnabi, R. K.Min, L.Khan, E.Al-Shaer, “Analysis of firewall policy rules us-
ing data mining techniques”, NOMS2006 : 10th IEEE/IFIP Network Operations
and Management Symposium, Vancouver, Canada, April 3–7 2006, pp. 305–315,
doi:10.1109/NOMS.2006.1687561.

[37] C.Basile, A.Cappadonia, A.Lioy, “Network-Level Access Control Policy Analy-
sis and Transformation”, IEEE/ACM Transactions on Networking, Vol. 20, No. 4,
August 2012, pp. 985–998, doi:10.1109/TNET.2011.2178431.

[38] J.Garcia-Alfaro, N.Boulahia, F.Cuppens, “Complete analysis of configuration rules
to guarantee reliable network security policies”, International Journal of Informa-
tion Security, Vol. 7, No. 2, April 2007, pp. 103–122, doi:10.1007/s10207-007-
0045-7.

[39] J.Alfaro, F.Cuppens, N.Cuppens, “Analysis of Policy Anomalies on Distributed
Network Security Setups”, ESORICS2006 : 11th European Symposium on
Research in Computer Security, Hamburg, Germany, September 18–20 2006,
pp. 496–511, doi:10.1007/11863908_30.

[40] J.Garcia-Alfaro, F.Cuppens, N.Boulahia, P.Stere, “MIRAGE: a management tool
for the analysis and deployment of network security policies”, SETOP2010: 3rd In-
ternational Workshop on Autonomous and Spontaneous Security, Athens, Greece,
September 23 2011, pp. 203–215, doi:10.1007/978-3-642-19348-4_15.

[41] F.Cuppens, “Handling Stateful Firewall Anomalies”, SEC2012: 27th IFIP TC 11
Information Security and Privacy Conference, Heraklion, Greece, June 4–6 2012,
pp. 174–186, doi:10.1007/978-3-642-30436-1_15.

[42] J.Garcia-Alfaro, F.Cuppens, N.Boulahia, S.Martinez, J.Cabot, “Management of
stateful firewall misconfiguration”, Computers & Security, Vol. 39, No. A, Novem-
ber 2013, pp. 64–85, doi:10.1016/j.cose.2013.01.004.

[43] C.Basile, A.Lioy, “Analysis of Application-Layer Filtering Policies With Applica-
tion to HTTP”, IEEE/ACM Transactions on Networking, Vol. 23, No. 1, February
2015, pp. 28 – 41, doi:10.1109/TNET.2013.2293625.

[44] A. X.Liu, M. G.Gouda, “Complete Redundancy Detection in Firewalls”, IFIP WG
11.3 : 19th Working Conference on Data and Applications Security, Storrs, CT-US,
August 7-10 2005, pp. 193–206, doi:10.1007/11535706_15.

[45] J. G.-A.F. Cuppens, N. Boulahia, “Detection and Removal of Firewall Misconfig-
uration”, IASTED2015 : International Conference on Communication, Network

141

http://dx.doi.org/10.1109/ICETACS.2013.6691402
http://dx.doi.org/10.1109/NOMS.2006.1687561
http://dx.doi.org/10.1109/TNET.2011.2178431
http://dx.doi.org/10.1007/s10207-007-0045-7
http://dx.doi.org/10.1007/s10207-007-0045-7
http://dx.doi.org/10.1007/11863908_30
http://dx.doi.org/10.1007/978-3-642-19348-4_15
http://dx.doi.org/10.1007/978-3-642-30436-1_15
http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1109/TNET.2013.2293625
http://dx.doi.org/10.1007/11535706_15

Bibliography

and Information Security, Phoenix, AZ-US, November 14–16 2005, pp. 42–53,
doi:10.1.1.145.2112.

[46] F.Cuppens, N.Boulahia, J.Garcia, “Detection of network security component mis-
configuration by rewriting and correlation”, PPDP11 : 13th international ACM
SIGPLAN symposium on Principles and practices of declarative programming,
Odense, Denmark, July 20–22 2006, pp. 77–88, doi:10.1145/2003476.2003489.

[47] M.Abedin, S.Nessa, L.Khan, B.Thuraisingham, “Detection and Resolution of
Anomalies in Firewall Policy Rules”, 20th Annual IFIP WG 11.3 Working Con-
ference on Data and Applications Security, Sophia Antipolis, France, July 31 –
August 2 2006, pp. 15–29, doi:10.1007/11805588_2.

[48] S.Ferraresi, S.Pesic, L.Trazza, A.Baiocchi, “Automatic conflict analysis and reso-
lution of traffic filtering policy for firewall and security gateway”, ICC07 : IEEE
International Conference on Communications, Glasgow, UK, June 24–28 2007,
pp. 1304–1310, doi:10.1109/ICC.2007.220.

[49] R.Oliveira, S.Lee, H.Kim, “Automatic detection of firewall misconfigurations us-
ing firewall and network routing policies”, PFARM: Workshop on proactive failure
avoidance, recovery and maintenance, Lisbon, Portugal, June 29–July 2 2009.

[50] A.Saadaoui, N. B. Y. B.Souayeh, A.Bouhoula, “Formal approach for managing
firewall misconfigurations”, RCIS2014 : IEEE 8th International Conference on
Research Challenges in Information Science, Marrakech, Morocco, May 28-30
2014, pp. 1–10, doi:10.1109/RCIS.2014.6861044.

[51] Z.Fu, S. F.Wu, H.Huang, K.Loh, F.Gong, I.Baldine, C.Xu, “IPSec/VPN Security
Policy: Correctness, Conflict Detection, and Resolution”, POLICY2001 : Interna-
tional Workshop on Policies for Distributed Systems and Networks, Bristol, UK,
January 29–31 2001, pp. 39–56, doi:10.1007/3-540-44569-2_3.

[52] E.Al-Shaer, H.Hamed, W.Marrero, “Modeling and Verification of IPSec and
VPN Security Policies”, ICNP2005 : 13th IEEE International Conference
on Network Protocols, Boston, MA-US, November 6–9 2005, pp. 259–278,
doi:10.1109/ICNP.2005.25.

[53] E.Al-Shaer, H.Hamed, “Taxonomy of conflicts in network security policies”,
IEEE Communications Magazine, Vol. 44, No. 3, March 2006, pp. 134–141,
doi:10.1109/MCOM.2006.1607877.

[54] Z.Li, X.Cui, L.Chen, “Analysis And Classification of IPSec Security Policy Con-
flicts”, FCST06: Japan-China Joint Workshop on Frontier of Computer Sci-
ence and Technology, Fukushimna, Japan, November 17–18 2006, pp. 83–88,
doi:10.1109/FCST.2006.10.

142

http://dx.doi.org/10.1.1.145.2112
http://dx.doi.org/10.1145/2003476.2003489
http://dx.doi.org/10.1007/11805588_2
http://dx.doi.org/10.1109/ICC.2007.220
http://dx.doi.org/10.1109/RCIS.2014.6861044
http://dx.doi.org/10.1007/3-540-44569-2_3
http://dx.doi.org/10.1109/ICNP.2005.25
http://dx.doi.org/10.1109/MCOM.2006.1607877
http://dx.doi.org/10.1109/FCST.2006.10

Bibliography

[55] S.Niksefat, M.Sabaei, “Efficient Algorithms for Dynamic Detection and Resolu-
tion of IPSec/VPN Security Policy Conflicts”, AINA2010 : 24th IEEE Interna-
tional Conference on Advanced Information Networking and Applications, Perth,
WA, April 20–23 2010, pp. 737–744, doi:10.1109/AINA.2010.99.

[56] F.Valenza, C.Basile, D.Canavese, A.Lioy, “Inter-technology conflict analysis for
communication protection policies”, CRiSIS2014: 9th International Conference
on Risks and Security of Internet and Systems, Trento, Italy, August 27–29 2014,
pp. 148–163, doi:10.1007/978-3-319-17127-2_10.

[57] Dan, Farmer and Wietse Venema, “SATAN: Security Administrator’s Tool for An-
alyzing Networks” 1995.

[58] Harry Anderson, “Introduction ti Nessus” 2001.
[59] Andrea Barisani, “Testing firewalls and IDS with FTester” 2001.
[60] A.El-Atawy, T.Samak, Z.Wali, E.Al-Shaer, F.Lin, C.Pham, S.Li, “An Auto-

mated Framework for Validating Firewall Policy Enforcement”, POLICY07 : 8th
IEEE International Workshop on Policies for Distributed Systems and Networks,
Bologna, Italy, June 13–15 2007, pp. 151–160, doi:10.1109/POLICY.2007.5.

[61] E.Al-Shaer, A.El-Atawy, T.Samak, “Automated pseudo-live testing of firewall con-
figuration enforcement”, IEEE Journal on Selected Areas in Communications,
Vol. 27, No. 3, April 2009, pp. 302–314, doi:10.1109/JSAC.2009.090406.

[62] A. D.Brucker, L.BrÃ¼gger, B.Wolff, “hol-TestGen/fw”, 10th International Collo-
quium, Shanghai, China, September 4-6 2013, pp. 112–121, doi:10.1007/978-3-
642-39718-9_7.

[63] a.Mayer, a.Wool, E.Ziskind, “Fang: a firewall analysis engine”, S&P2000 : IEEE
Symposium on Security and Privacy, Berkeley, CA, May 14–17 2000, pp. 177–187,
doi:10.1109/SECPRI.2000.848455.

[64] A.Wool, “Architecting the Lumeta Firewall Analyzer”, SSYM01 : 10th USENIX
Security Symposium, Washington, DC, August 13–17 2001, pp. 85–97.

[65] A.Mayer, A.Wool, E.Ziskind, “Offline firewall analysis”, International Journal of
Information Security, Vol. 5, No. 3, July 2006, pp. 125–144, doi:10.1007/s10207-
005-0074-z.

[66] P.Eronen, J.Zitting, “An expert system for analyzing firewall rules”, NordSec2001 :
6th Nordic Workshop on Secure IT Systems, Lyngby, Denmark 2001, pp. 100–107,
doi:10.1.1.21.4430.

[67] S.Hazelhurst, “Algorithms for Verifying Firewall and Router Access Lists”, 2003
46th Midwest Symposium on Circuits and Systems, Cairo, Egypt, December 27–
30 2003, pp. 512–515, doi:10.1109/MWSCAS.2003.1562330.

143

http://dx.doi.org/10.1109/AINA.2010.99
http://dx.doi.org/10.1007/978-3-319-17127-2_10
http://dx.doi.org/10.1109/POLICY.2007.5
http://dx.doi.org/10.1109/JSAC.2009.090406
http://dx.doi.org/10.1007/978-3-642-39718-9_7
http://dx.doi.org/10.1007/978-3-642-39718-9_7
http://dx.doi.org/10.1109/SECPRI.2000.848455
http://dx.doi.org/10.1007/s10207-005-0074-z
http://dx.doi.org/10.1007/s10207-005-0074-z
http://dx.doi.org/10.1.1.21.4430
http://dx.doi.org/10.1109/MWSCAS.2003.1562330

Bibliography

[68] G.Xie, D.Maltz, A.Greenberg, G.Hjalmtysson, J.Rexford, “On static reachabil-
ity analysis of IP networks”, INFOCOM2005: 24th Annual Joint Conference of
the IEEE Computer and Communications Societies, Miami, FL-US, March 13–17
2005, pp. 2170–2183, doi:10.1109/INFCOM.2005.1498492.

[69] S.Bandhakavi, S.Bhatt, C.Okita, P.Rao, “Analyzing end-to-end network reach-
ability”, IM09: IFIP/IEEE International Symposium on Integrated Net-
work Management, Long Island, NY-US, June 1–5 2009, pp. 585–590,
doi:10.1109/INM.2009.5188865.

[70] R.Marmorstein, P.Kearns, “A Tool for Automated iptables Firewall Analysis”,
ATEC05 : USENIX Annual Technical Conference, Anaheim, CA-US, April 10–15
2005, pp. 71–81, doi:10.1.1.99.1191.

[71] R.Marmorstein, P.Kearns, “An open source solution for testing NAT’d and
nested iptables firewalls”, LISA05 : 19th Large Installation Systems Admin-
istration Conference, San Diego, CA-US, December 4–9 2005, pp. 103–112,
doi:10.1.1.436.5766.

[72] R.Marmorstein, P.Kearns, “Debugging a firewall policy with policy mapping”, ;lo-
gin:, Vol. 32, No. 1, February 2007, pp. 44–51.

[73] P.Matoušek, J.Ráb, O.Ryšavý, M.Švéda, “A formal model for network-wide secu-
rity analysis”, ECBS2008 : 15th IEEE International Conference and Workshops
on the Engineering of Computer-Based Systems, Belfast, UK, March 31 – April 4
2008, pp. 171–181, doi:10.1109/ECBS.2008.13.

[74] M.Christiansen, E.Fleury, M.Christiansen, E.Fleury, “An Interval Decision Dia-
gram Based Firewall”, ICN04 : 3th IEEE International Conference on Networking,
Point-Ã -Pitre, Guadeloupe, March 1–4 2004.

[75] A.Khakpour, A.Liu, “Quarnet: A Tool for Quantifying Static Network Reachabil-
ity”, IEEE/ACM Trans. Netw., Vol. 21, No. 2, February 2009, pp. 551 – 565.

[76] T.Nelson, D. J.Dougherty, C.Barratt, K.Fisler, “The Margrave Tool for Firewall
Analysis”, LISA10 : 24th USENIX Conference on Large Installation System Ad-
ministration, San Jose, CA-US, November 7–12 2010.

[77] H.Mai, A.Khurshid, R.Agarwal, M.Caesar, P. B.Godfrey, S. T.King, “Debug-
ging the data plane with anteater”, SIGCOMM11 : ACM Special Interest Group
on Data Communication, Toronto, Canada, August 15–19 2011, pp. 290–301,
doi:10.1145/2043164.2018470.

[78] E.Al-Shaer, M. N.Alsaleh, “ConfigChecker: A tool for comprehensive security
configuration analytics”, SAFECONFIG2011 : 4th Symposium on Configuration
Analytics and Automation, Arlington, US-VA, October 31 - November 1 2011,
pp. 1–2, doi:10.1109/SafeConfig.2011.6111667.

144

http://dx.doi.org/10.1109/INFCOM.2005.1498492
http://dx.doi.org/10.1109/INM.2009.5188865
http://dx.doi.org/10.1.1.99.1191
http://dx.doi.org/10.1.1.436.5766
http://dx.doi.org/10.1109/ECBS.2008.13
http://dx.doi.org/10.1145/2043164.2018470
http://dx.doi.org/10.1109/SafeConfig.2011.6111667

Bibliography

[79] M.Sveda, O.Rysavy, G. D.Silva, “Static Analysis of Routing and Firewall Policy
Configurations”, ICETE10: 7th International Joint Conference, Athens, Greece,
July 26–28 2010, pp. 39–53, doi:10.1007/978-3-642-25206-8_2.

[80] P.Kazemian, G.Varghese, N.McKeown, “Header space analysis: Static checking
for networks”, NSDI12: 9th USENIX conference on Networked Systems Design
and Implementation, San Jose, CA, April 25–27 2012, pp. 9–9.

[81] J.Guttman, “Filtering postures: Local enforcement for global policies”, IEEE Sym-
posium on Security and Privacy 1997, Oakland, CA-US, May 4–7 1997, pp. 120 –
129, doi:10.1109/SECPRI.1997.601327.

[82] J. D.Guttman, A. L.Herzog, “Rigorous automated network security management”,
International Journal of Information Security, Vol. 4, No. 1-2, February 2005,
pp. 29–48, doi:10.1007/s10207-004-0052-x.

[83] A.Liu, “Formal Verification of Firewall Policies”, ICC2008 : IEEE International
Conference on Communications, Beijing, China, May 19–23 2008, pp. 1494–1498,
doi:10.1109/ICC.2008.289.

[84] A.Liu, M.Gouda, “Diverse Firewall Design”, DSN04 : International Conference
on Dependable Systems and Networks, Florence, Italy, June 28 – July 1 2004,
pp. 595–604, doi:10.1109/DSN.2004.1311930.

[85] A.Liu, M.Gouda, “Diverse Firewall Design”, IEEE Transactions on Parallel
and Distributed Systems, Vol. 19, No. 9, September 2008, pp. 1237–1251,
doi:10.1109/TPDS.2007.70802.

[86] Y.Yin, R.Bhuvaneswaran, “Inferring the Impact of Firewall Policy Changes by An-
alyzing Spatial Relations between Packet Filters”, ICCT06: International Confer-
ence on Communication Technology, Guilin, China, November 27–30 2006, pp. 1–
6, doi:10.1109/ICCT.2006.341930.

[87] A.Liu, “Change-impact analysis of firewall policies”, 12th European Symposium
On Research In Computer Security, Dresden, Germany, September 24–26 2007,
pp. 155–170, doi:10.1007/978-3-540-74835-9_11.

[88] A.Liu, “Firewall policy change-impact analysis”, ACM Transactions on Internet
Technology, Vol. 11, No. 4, March 2012, pp. 1–24, doi:10.1145/2109211.2109212.

[89] N.Ben Youssef, A.Bouhoula, F.Jacquemard, “Automatic verification of confor-
mance of firewall configurations to security policies”, ISCC2009 : 20th IEEE
Symposium on Computers and Communications, Sousse, Tunisia, July 5–8 2009,
pp. 526–531, doi:10.1109/ISCC.2009.5202309.

[90] N. B.Youssef, A.Bouhoula, “Dealing with Stateful Firewall Checking”, DIC-
TAP2011 : International Conference on Digital Information and Communication
Technology and its Applications, Dijon, France, June 21–23 2011, pp. 493–507,

145

http://dx.doi.org/10.1007/978-3-642-25206-8_2
http://dx.doi.org/10.1109/SECPRI.1997.601327
http://dx.doi.org/10.1007/s10207-004-0052-x
http://dx.doi.org/10.1109/ICC.2008.289
http://dx.doi.org/10.1109/DSN.2004.1311930
http://dx.doi.org/10.1109/TPDS.2007.70802
http://dx.doi.org/10.1109/ICCT.2006.341930
http://dx.doi.org/10.1007/978-3-540-74835-9_11
http://dx.doi.org/10.1145/2109211.2109212
http://dx.doi.org/10.1109/ISCC.2009.5202309

Bibliography

doi:10.1007/978-3-642-21984-9_42.
[91] C.Basile, D.Canavese, A.Lioy, C.Pitscheider, “Improved reachability analysis for

security management”, PDP2013 : 21st Euromicro International Conference on
Parallel, Distributed and Network-Based Processing, Belfast, UK, February 27 –
March 1 2013, pp. 534–541, doi:10.1109/PDP.2013.86.

[92] J.van Lunteren, T.Engbersen, “Fast and scalable packet classification”, IEEE Jour-
nal on Selected Areas in Communications, Vol. 21, No. 4, May 2003, pp. 560–571,
doi:10.1109/JSAC.2003.810527.

[93] J. E.Hopcroft, R.Motwani, J. D.Ullman, “Introduction to Automata Theory, Lan-
guages, and Computation”, Addison Wesley, 1979, ISBN: 978-0321455369.

[94] P.Linz, “An Introduction to Formal Languages and Automata”, Jones & Bartlett
Learning, 2001, ISBN: 978-1449615529.

[95] J. A.Brzozowski, “Derivatives of Regular Expressions”, Journal of the ACM,
Vol. 11, No. 4, October 1964, pp. 481–494, doi:10.1145/321239.321249.

[96] S.Kleene, “Representation of Events in Nerve Nets and Finite Automata” 1951.
[97] A. X.Liu, M. G.Gouda, H.Ma, A. H.Ngu, “Firewall Queries”, OPODIS2004 : 8th

International Conference on Principles of Distributed Systems, Grenoble, France,
December 15–17 2004, pp. 124–139, doi:10.1007/11516798_15.

[98] AlgoSec Inc., “Examining the Dangers of Complexity in Net-
work Security Environments: AlgoSec Survey Insights” 2012,
www.algosec.com/resources/files/Specials/Survey%20files/12_10_11_security
_complexity.pdf.

[99] D.Taylor, “Survey and taxonomy of packet classification techniques”, ACM
Computing Surveys, Vol. 37, No. 3, September 2005, pp. 238–275,
doi:10.1145/1108956.1108958.

[100] E.Al-Shaer, H.Hamed, “Modeling and Management of Firewall Policies”, IEEE
Transactions on Network and Service Management, Vol. 1, No. 1, April 2004,
pp. 2–10, doi:10.1109/TNSM.2004.4623689.

146

http://dx.doi.org/10.1007/978-3-642-21984-9_42
http://dx.doi.org/10.1109/PDP.2013.86
http://dx.doi.org/10.1109/JSAC.2003.810527
http://dx.doi.org/10.1145/321239.321249
http://dx.doi.org/10.1007/11516798_15
http://dx.doi.org/10.1145/1108956.1108958
http://dx.doi.org/10.1109/TNSM.2004.4623689

	Summary
	I Introduction and problem statement
	Introduction

	II Background
	Policy Analysis
	Policy
	Type of security policy
	Security control

	Policy Analysis
	Anomaly analysis
	Intra-policy filtering anomaly
	Inter-policy filtering anomaly
	Inter-state filtering anomaly
	IPsec anomaly
	Inter-technology anomalies

	Reachability analysis
	Online
	Offline

	Policy comparison
	Single policy - Change-impact-analysis
	Multiple policies - Change-impact-analysis
	Single policy - Implementation-verification
	Multiple policies - Implementation-verification

	State of the art
	Anomaly analysis
	Filtering
	Data-Protection

	Reachability analysis
	Policy comparison

	State of the art - summary
	Anomaly analysis
	Filtering summary
	Data-protection summary

	Reachability analysis
	Policy comparison
	Summary
	Interoperability
	Performance evaluation
	User interface
	Implementation

	III Proposal
	Requirements, Design and Contribution
	Policy Analysis workflows
	Policy generation workflows
	Policy verification workflows
	Policy troubleshooting workflows
	Policy modification workflows

	Requirements
	Interoperability
	Expansibility
	Internal format
	Representation of results

	Design
	Geometric-Model
	Equivalent-Policy
	Anomaly Analysis
	Reachability Analysis
	Policy Comparison

	Contribution

	Geometric-Model
	Packets
	Conditions
	Selector representation

	Actions
	Resolution strategy
	Policies
	Policy operations

	Equivalent-Policy
	Transformation Resolution
	Multiple transformations
	Inverse transformations

	Canonical From
	Canonical Form Calculation

	Semantic preserving morphism

	Conflict Analysis Model
	Intra-policy anomalies
	Redundancy anomaly
	Generalization anomaly
	Shadowing anomaly
	Generally hidden

	Inter-policy anomalies
	Blocked traffic anomalies
	Transformed traffic anomalies

	Anomaly verification
	Effective function computation
	Effective cover function computation

	Reachability Analysis Model
	The model
	Reachability Queries
	Query format
	Query condition
	Query matching function

	Query result
	Result domain
	Query result accuracy

	Policy Comparison Model
	Model
	Algorithm
	Policy definition
	Application
	Single Policy Change-impact-analysis
	Single Policy Implementation-verification
	Multiple Policies Change-impact-analysis
	Multiple Policies Implementation-verification

	IV Results
	Implementation
	Implementation Overview
	Data Types
	PolicyAnalysisModel
	AnomalyAnalyser
	ReachabilityAnalyser
	PolicyComparator
	Landscape
	RuleTransformationResolver
	Policy
	ResolutionStrategy
	GenericRule
	ConditionClause
	Selector
	Action

	Graphical User Interface
	Editor
	Analysis Execution
	Result representation

	Validation
	Test environment
	Synthetic network
	Security Policy Generation
	Equivalent-Policy creation
	Anomaly Analysis
	Reachability Analysis
	Policy Comparison

	Campus network

	V Conclusion
	Conclusion

	VI Appendix
	Bibliography

