
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Ph.D. in Electronics and Communications Engineering – XXVIII cycle

Ph.D. Dissertation

VLSI architectures design for
encoders of High Efficiency Video

Coding (HEVC) standard

Guoping Xiao

Supervisor Coordinator of the Ph.D. course
Prof. Guido Masera

Prof. Maurizio Martina Prof. Ivo Montrosset

May 2016

To my parents, Zhao Heyun
and Xiao Caiheng, and
my beloved fiancee, Liu
Yu

Summary

The growing popularity of high resolution video and the continuously increasing demands
for high quality video on mobile devices are producing stronger needs for more efficient
video encoder. Concerning these desires, HEVC, a newest video coding standard, has
been developed by a joint team formed by ISO/IEO MPEG and ITU/T VCEG. Its de-
sign goal is to achieve a 50% compression gain over its predecessor H.264 with an equal or
even higher perceptual video quality. Motion Estimation (ME) being as one of the most
critical module in video coding contributes almost 50%-70% of computational complexity
in the video encoder. This high consumption of the computational resources puts a limit
on the performance of encoders, especially for full HD or ultra HD videos, in terms of
coding speed, bit-rate and video quality. Thus the major part of this work concentrates
on the computational complexity reduction and improvement of timing performance of
motion estimation algorithms for HEVC standard.

First, a new strategy to calculate the SAD (Sum of Absolute Difference) for motion esti-
mation is designed based on the statistics on property of pixel data of video sequences.
This statistics demonstrates the size relationship between the sum of two sets of pixels
has a determined connection with the distribution of the size relationship between indi-
vidual pixels from the two sets. Taking the advantage of this observation, only a small
proportion of pixels is necessary to be involved in the SAD calculation. Simulations show
that the amount of computations required in the full search algorithm is reduced by about
58% on average and up to 70% in the best case.

Secondly, from the scope of parallelization an enhanced TZ search for HEVC is pro-
posed using novel schemes of multiple MVPs (motion vector predictor) and shared MVP.
Specifically, resorting to multiple MVPs the initial search process is performed in parallel
at multiple search centers, and the ME processing engine for PUs within one CU are par-
allelized based on the MVP sharing scheme on CU (coding unit) level. Moreover, the SAD
module for ME engine is also parallelly implemented for PU size of 32×32. Experiments
indicate it achieves an appreciable improvement on the throughput and coding efficiency

i

of the HEVC video encoder.

In addition, the other part of this thesis is contributed to the VLSI architecture de-
sign for finding the first W maximum/minimum values targeting towards high speed and
low hardware cost. The architecture based on the novel bit-wise AND scheme has only
half of the area of the best reference solution and its critical path delay is comparable
with other implementations. While the FPCG (full parallel comparison grid) architec-
ture, which utilizes the optimized comparator-based structure, achieves 3.6 times faster
on average on the speed and even 5.2 times faster at best comparing with the reference
architectures. Finally the architecture using the partial sorting strategy reaches a good
balance on the timing performance and area, which has a slightly lower or comparable
speed with FPCG architecture and a acceptable hardware cost.

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Prof. Guido Masera and
Prof. Maurizio Martina. Attributed to their professional guidance, kindly encouragement
and great patience I can finally accomplish the thesis work.

I am deeply grateful to my fiancee for her careful attendance and strong support all
the way.

I also appreciate the help and encouragement from many of my friends, especially Zhang
Qiutao, Bai Ou and Du Boyang.

I am sincerely grateful to my parents and elder sisters for their selfless love and sup-
port.

Finally I sincerely thank all those who have ever helped me these years, without your
support, I would never reach where I am now.

iii

Contents

Summary i

Acknowledgements iii

1 Introduction 1
1.1 General Video Coding System . 1

1.1.1 Basics of Digital Video Coding . 2
1.1.2 Hybrid Video Coding . 4

1.2 Overview of Current Video Coding Standard: HEVC 6
1.2.1 Partitioning . 7
1.2.2 Intra-frame Prediction . 8
1.2.3 Inter-frame Prediction . 8
1.2.4 Transform and Quantization . 10
1.2.5 Entropy Coding . 10

1.3 Motion Estimation Algorithms . 10
1.3.1 Three Step Search . 11
1.3.2 Diamond Search . 11

1.4 Major Contributions . 12
1.5 Organization of the Dissertation . 13

2 A New SAD Computing Algorithm for Full Search Motion Estimation 14
2.1 ME Distortion Measure Criterion . 14
2.2 The New SAD Computing Algorithm . 16

2.2.1 A New Strategy to Calculate the SAD 16
2.2.2 The New SAD architecture to accelerate the FS ME algorithm . . . 18
2.2.3 Rate-Distortion Performance Evaluation with HM Test Model . . . 25

2.3 Hardware Implementation . 28
2.4 Summary . 31

iv

3 An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Esti-
mation of HEVC 32
3.1 Introduction of TZ Search Algorithm . 32
3.2 An Enhanced TZ Search using Parallelized Strategy 39

3.2.1 Multiple Initial Search Centers . 39
3.2.2 Parallel ME Engines using Shared AMVP 44
3.2.3 Hardware Implementation . 44
3.2.4 Experimental Results . 48

3.3 Summary . 48

4 High Speed VLSI architecture for finding the firstW maximum/minimum
values 50
4.1 Introduction . 50
4.2 A Radix-sort-based VLSI Architecture with Low Cost 52

4.2.1 Problem formulation and the BWA Algorithm 52
4.2.2 Completed BWA Architecture . 54

4.3 Comparator-based VLSI Architectures with High Speed 63
4.3.1 The Architecture of Partial Sorting (PS) 64
4.3.2 The Architecture using Fully Parallellized Comparision Grid (FPCG) 67

4.4 Experimental Results and Comparisons . 76

5 Conclusion 80
5.1 Contributions . 80
5.2 Future Work . 81

Bibliography 82

v

List of Figures

1.1 Block diagram of a general video coding system. 2
1.2 Three typical YCrCb sampling patterns. 3
1.3 Block diagram of general hybrid video coding system. 5
1.4 Block diagram of HEVC coding system [1]. 6
1.5 HEVC quad-tree partitioning structure including CU, PU and TU (solid

line for CU, dashed line for TU). 7
1.6 Intra prediction modes for 4×4 block size in H.264 [2]. 8
1.7 Intra prediction modes in HEVC standard [1]. 9
1.8 An example for block merging in HEVC [3]. 9
1.9 An example of Three Step Search. 11
1.10 An example of Diamond Search. 12

2.1 An example for block matching ME. 15
2.2 6 video sequences for test on statistics of “minority”. 18
2.3 The percentage of pixel per MB that can be accounted as “minority” to

the SAD calculation in six video sequences frame by frame [4]. 19
2.4 Block diagram of the new SAD algorithm. 19
2.5 Successive SAD calculation. 20
2.6 An example for the sub-blocks. 22
2.7 Block diagram of coarse search. 24
2.8 HD video sequences for test used in the simulation. 25
2.9 Rate-Distortion curves for all test sequences. 29
2.10 Hardware architecture of proposed SAD algorithm. 30

3.1 The flowchart diagram of TZ Search. 33
3.2 The 7-round Diamond Search in the TZ Search algorithm. 34
3.3 2 Missing Points Search. 36
3.4 Search patterns of Raster Search with a interval of 5 pixels. 37
3.5 An example for Raster Refinement Search. 38

vi

3.6 (a) AMVP MV candidates construction list. (b) The working mechanism
of AMVP. 40

3.7 The derivation of MVP List. 41
3.8 The flowchart of the enhanced TZ Search. 42
3.9 (a) The default sequential processing order of PUs inside one CU. (b) Mech-

anism of sharing MVP between PUs of one CU. 43
3.10 The architecture of the enhanced TZ Search. 46
3.11 The architecture of parallel SAD calculation tree for PU32×32. 47

4.1 Block diagram of BWA architecture. 51
4.2 An example to exhibit working principle of BWA algorithm. 53
4.3 A special case #1 for showing the failure of the initial BWA principle. . . . 54
4.4 A special case #2 for showing the failure of the initial BWA principle. . . . 55
4.5 A special case #3 for showing the failure of the initial BWA principle. . . . 55
4.6 A special case #4 for showing the failure of the initial BWA principle. . . . 56
4.7 BWA architecture: modified H matrix. 57
4.8 The working principle of Full-zero Detect and Handle Unit for special case

#1 in Figure 4.3. 59
4.9 The working principle of Full-zero Detect and Handle Unit for special case

#4 in Figure 4.6. 60
4.10 An example for the full BWA architecture. 61
4.11 BWA architecture: output generation circuit in the case q = 0. 62
4.12 BWA architecture: cascade of W stages. 63
4.13 An example: Structure for finding the first 3 maximum values from 8 inputs 64
4.14 Structure of Partial-sorting for finding W maximum values from M inputs 65
4.15 Tree structure for finding the first W maximum values. 68
4.16 Graphical representation of the number of comparators required to find the

first W maximum values in y′ and y′′ . 69
4.17 Architecture of a comparing stage at l = 1 71
4.18 Details of the architecture of a comparing stage at l = 1: one-hot signals

and mux-like structure . 74
4.19 Tree representation of the possible y sequences and fn values for W = 5. . 75
4.20 Circuit derived from the tree representation in Figure 4.19. 76
4.21 M/W SN general structure. 77

vii

List of Tables

2.1 Simulation results using different QP parameters for test sequence of Four
People. 26

2.2 Simulation results using different QP parameters for test sequence of Bas-
ketball Drive. 26

2.3 Simulation results using different QP parameters for test sequence of Park
Scene. 27

2.4 Simulation results using different QP parameters for test sequence of Traffic. 27
2.5 Simulation results using different QP parameters for test sequence of Ready

Steady Go. 28

3.1 Design Specifications of an HEVC encoder considered in this work. 44
3.2 Design Specifications of an HEVC encoder considered in this work. 45
3.3 Simulation result using difference test sequences with QP=32. 48

4.1 Post place and route results comparing area (A) [µm2], critical path delay
(C) [ns] and area-delay-product (P=A·C) [mm2·ns] for different architectures. 79

viii

Chapter 1

Introduction

As smart phone, tablet and HDTV has been an inseparable part of our life, digital video
plays a more and more important role in the modern society. With the growing pop-
ularity of high resolution and high quality videos, digital video compression techniques
has a increasing significance in the telecommunication and multimedia system in which
bandwidth is still a valuable resource.

Digital video signal is represented as a sequence of real-world or virtual visual scenes
[5, 6]. Each frame is composed of a two-dimensional grid of pixels. The product of the
number of columns and rows of pixels in the grid is known as resolution of the frame or
video. For instance, a frame with the resolution of standard definition (SD) has 720×480
pixels. Whereas its resolution can be various as small as 176×144 (QCIF), or as large
as 1920×1080 (FHD) [7] or even 4K and 8K UHD. A pixel generally consists of three
fundamental components represented in RGB or YUV. Each component normally takes
8 or 12 digital bits. It can be observed that the size and data rate of a raw video signal is
tremendous. Taking a FHD video (typically with a frame rate of 30 fps) as an example, its
data rate is 30×1920×1080×3×8 = 1.49 Gbit per second. Apparently it has already far
surpassed the capacity of today’s telecommunication infrastructure. Moreover, situation
will be even more critical if targeting for the higher resolution videos like UHD.

1.1 General Video Coding System

Since video sequences are sampled spatially and temporally with a high frame rate (e.g.
30 fps). There exists an immense amount of temporal and spatial redundant information
since both the consecutive frames and the blocks inside one frame are highly correlated.
Digital video coding, as the process of compression and decompression of video signal,
generally is to exploit and eliminate these redundancies from the video sequences in order
to alleviate the requirement on bandwidth for transmission and space for storage [8].

1

1 – Introduction

1.1.1 Basics of Digital Video Coding

Overview

Generally, a raw video is firstly captured by a camera or video recording device in digital
or analogue format [9]. Figure.1.1 illustrates the block diagram of a typical digital video
coding system. The pre-processing unit is to pre-process the raw video signal, in which
if the format of raw videos from CCD camera is analogue, it will be firstly digitized into
RGB images and then the digital signal in RGB presentation is converted into YUV rep-
resentation [10]. In the next the signals will be compressed and encoded by the encoding
unit. This encoding process is able to compress the raw video in a high compression ratio
and maintains an good video quality through powerful smart strategies and high efficient
algorithms. On the contrary, the output video for displaying can be acquired through
decoding and post-processing modules as shown in Figure.1.1.

Pre-Processing

Coded

Bitstream

Post-Processing

Encoding

Decoding

Raw

Video

Signal

Output

Video

Figure 1.1: Block diagram of a general video coding system.

Concepts and Definitions

As aforementioned video compression seeks to eliminate redundancies from video se-
quences, there are two types of compression : lossless compression and lossy compression,
which are categorized depending on whether the encoding process brings about loss in the
information after compression. Although the lossy compression can’t fully reconstruct the
video sequences thus suffers from a degradation of video quality, it achieves a compression
ratio almost 95% higher than lossless compression. Therefore lossy compression is utilized
by most practical video encoding systems. Before diving into the details of compression
techniques, some basic concepts and definitions of video coding are introduced firstly in
the following.

Color Space- Generally speaking, each sample point of the colorful video signal
displayed by most of the digital video applications requires three numbers to accurately
represent a color. One popular color space system is the RGB color space, of which the

2

1 – Introduction

three numbers indicate the relative proportions of Red, Green and Blue. Each number is
represented with ’N’ digital bits, for instance, a number of 8-bit can hold 256 color levels
for each color element. A Combination of these three color elements in varying proportions
can produce any color. Whereas for the sake of decreasing the bandwidth requirement
for transmitting video signals, the YCrCb color space is widely utilized because normally
it can represents every pixel with less bits. YCrCb employs a luminance/chrominance
coordinate which extracts the luminance from the color information and represent luma
(Y) part using a higher resolution than chroma color parts (Cr and Cb) [11]. Since
according to human visual system (HVS) it is more sensitive to luminance than chromince
[12]. In this way YCrCb can represents a color image more efficiently. The converting
relationship between the two color spaces, RGB and YCrCb, is expressed by

Y = krR + kgG+ kbB

Cr = R− Y
Cg = G− Y
Cb = B − Y

(1.1)

where kr, kg, kb are weighting factors. It is easy to observe that Cr+Cg+Cb is a constant,
thus using only two of them is sufficient for storage or transmission and the last component
can be obtained from the other two. Furthermore, the YCrCb color space and its variants
are referred as YUV. Based on several typical weighting factors there are three common
YCrCb sampling patterns widely supported by video coding standards which are shown in
Figure.1.2. The 4:4:4 sampling indicates Y, Cr and Cb components all have full resolution

4:4:4 Sampling 4:2:2 Sampling 4:2:0 Sampling

Y, Luma Cb, Chroma blue Cr, Chroma red

Figure 1.2: Three typical YCrCb sampling patterns.

so that it retains full fidelity of the chrominance component. In the 4:2:2 sampling,
chrominance components are sub-sampled into half resolution in horizontal direction.
While 4:2:0 sampling half the samples of chrominance components in both horizontal and
vertical resolution. Since in 4:2:0 sampling each of Cr and Cb components only holds 1/4

3

1 – Introduction

of the number of samples of Y component, video in 4:2:0 YCrCb format needs half of
the storage space or transmission bandwidth relative to that of 4:4:4 YCrCb video. As a
result, 4:2:0 sampling is the most widely utilized one.

Frame Rate- As mentioned before, a video is captured by camera temporally at a
specific frequency. The frame rate represented in Hz or frames per second (fps) is referred
as the rate for capturing or playing back. Typically the Standard Definition television
supports a frame rate of 25 or 30 fps. Whereas in order to generate a video with very
smooth apparent motion, it requires 50 or 60 frames per second or even higher like 120
fps. However, high frame rate means a very high data rate. Thus choosing a reasonable
frame rate is very important when encoding a video signal for specific applications.

Video Resolutions- Typically the video resolution is expressed as the size of frame,
namely length × width, in pixels. There are some common resolutions including:

8K UHD (Ultra High Definition): it refers to a resolution of 7680×4320.

4K UHD: it refers to a resolution of 3840×2160.

FHD (Full High Definition): it refers to a resolution of 1920×1080.

HD: it normally refers to a resolution of 1280×720.

SD (Standard Definition): it refers to a resolution of 640×480.

CIF (Common International Format): it refers to a resolution of 352×288.

QCIF (Quarter CIF): it refers to a resolution of 176×144.

Color Depth- It is also called as bit depth, which is usually referred to the number
of bits used for one pixel or one color component [1]. Color depth defines how many color
levels can be expressed. Typically a 8-bit color depth enables 256 kinds of colors which is
widely utilized by monitor of consumer devices. Moreover, for some special applications
there are 24-bit color depth for true color and 30/36/48-bit color depth for deep color [13].

1.1.2 Hybrid Video Coding

Resorting to bunch of compression tools, hybrid coding system regularly consists of sev-
eral standard video compression techniques [14–19]. Figure 1.3 depicts a typical hybrid
video coding system, which is composed of the encoding part and decoding part. As
aforementioned, the main purpose of video coding is to compress the video by reducing
the redundancy of the video sequences. In general, there are two kinds of redundancy
existing in video signal: the spatial and the temporal. The spatial redundancy is exploited
through intra-frame prediction, of which the mechanism is to find a best matching block

4

1 – Introduction

Transform

Coding
Quantizing

Entropy

Coding
Inverse

Quantizing

Inverse

Trans.Coding

Output

VideoCoded

Data

Entropy

Decoding

Inverse

Quantizing

Inverse

Trans.Coding

Inverse

Quantizing

Inverse

Trans.Coding

Motion

Compensation

Motion

Estimation
Motion Data

Coding

Motion Data

Decoding

Motion

Compensation

Input

Video

Encoding Decoding

Figure 1.3: Block diagram of general hybrid video coding system.

for current one from its left and upper neighboring blocks assuming a coding mode of
raster-scan order is applied. It is because there is a high correlation between neighboring
pixels inside a frame. As a result in intra-frame prediction a block is reconstructed by
the blocks that has already been encoded and stored in the bit-stream for output. While
on the contrary inter-frame prediction is designed to deal with the temporal redundancy
existed between consecutive frames such as the frame in the past or in the future. The
temporal redundancy is normally referred to the correlation of two adjacent frames, since
they usually have similar backgrounds or a same object with a relative motion. Thus the
purpose of inter-frame prediction is to search for a best matching block for the current
one in the reference frame from the past or the future or both of them.

After the best matching candidate for the current block is found by either intra-frame
or inter-frame prediction, only the difference between the original block and the predicted
one needs to be encoded. As seen from Figure 1.3, these differences (also called residuals)
will be further processed and converted into the coefficients of transform domain by the
Transform Coding Unit. Transforming is an operation to reconstruct the residuals into
signals of frequency domain using transform algorithms such as Discrete Cosine Transform
(DCT), which will make the signals more compact. Therefore more redundant information
can be eliminated through transforming.

In the next the transforming coefficients will be further quantized by quantization
operation which is trying to reduce the range of the signal for saving the number of bits
for transmission or storage. And there is an important criterion measured by Quantization
Parameter (QP) for the step size between consecutive re-scaled values [2]. Since a large
QP can reach a high compression ratio but result in a relative low video quality because
of a rough approximation of original signal. On the contrary a small QP will realize a

5

1 – Introduction

more closely approximation of original signal, so it will achieve high video quality but
degrade the compression efficiency. Finally the quantized transform coefficients together
with the motion data are converted into compressed output bit-stream for transmission
by the Entropy Encoding Unit shown in Figure 1.3. On the other hand the decoding part
performs the inverse operations on the bit-stream to reconstruct the video for playing.

Figure 1.4: Block diagram of HEVC coding system [1].

1.2 Overview of Current Video Coding Standard: HEVC

The High Efficiency Video Coding standard is formally issued by the Joint Collaborative
Team on Video Coding (JCT-VC) founded by the international standardization organi-
zations of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture
Experts Group (MPEG) [20]. Besides addressing all the available application of the pre-
ceding video coding standard, H.264/AVC, two critical aspects: higher and higher video
resolution and more and more parallelized architectures for coding are the main concern-
ing in the design of HEVC [1]. With respect to H.264, HEVC aims to gain an 50% more
compression with no loss on the video quality. Being the same with its predecessors such
as H.264, H.263, MPEG-2 and so on, HEVC standard defines the syntax and structure for
compressing videos and generating decoded sequences, and specifies a bunch of necessary
techniques or tools for video coding. A typical block diagram of HEVC coding system

6

1 – Introduction

is depicted in Figure 1.4. In the following sections new features of HEVC standard are
introduced in details.

0

3

5

6 7

8 9

2

10

11 12

4

1

CTU
CU

PU
2Nx2N 2NxN Nx2N NxN 2NxN/2(U) 2NxN/2(D) N/2x2N(L) N/2x2N(R)

TU TU

TU size flag=0

TU size flag=1

TU size flag=0

TU size flag=1

Symmetric type Asymmetric type

0 1 2 3

4 5

6 7 8

9 10 11 12

CTU

Figure 1.5: HEVC quad-tree partitioning structure including CU, PU and TU (solid line
for CU, dashed line for TU).

1.2.1 Partitioning

In the former video coding standard H.264 variable sizes of Macro-Block (MB) from
4×4 to as large as 16×16 are supported [21]. Whereas larger MB size is utilized in
HEVC standard, which extends the maximum traditional MB size of 16×16 in H.264
to 64×64 for facilitating the compression of high definition videos. Additionally more
flexible partitioning of video frames is supported for improving the coding efficiency, where
available block size varies from 4×4 up to 64×64 including symmetric partitioning such as
2N × 2N , 2N ×N , N × 2N and N ×N , and also asymmetric motion partitioning (AMP)
for instance 2N ×N/4(U), 2N ×N/4(D), N/4× 2N(L) and N/4× 2N(R). In particular
N × N is only allowed for minimum coding unit (CU) and the AMP is not applied to
CU whose size is smaller than 16× 16. Figure 1.5 illustrates the partitionings and quad-
tree structure utilized in the HEVC standard, in which the analogous structure, called
coding tree unit (CTU), is spitted into CUs using a quad-tree partitioning structure, and

7

1 – Introduction

a CU can be further sub-divided into prediction units (PU) for inter-frame or intra-frame
prediction and its transformation is performed using one or more transform units (TU).

Figure 1.6: Intra prediction modes for 4×4 block size in H.264 [2].

1.2.2 Intra-frame Prediction

According to the syntax of HEVC standard, the choice of intra-frame or inter-frame
prediction of a PU is made at the CU level. When the intra mode is determined for
the CU, as discussed in Section 1.1.2, intra-frame prediction is to code PUs of the CU
using its upper and left neighboring PUs which have already been encoded. In H.264
standard, 9 prediction modes are available for performing the prediction of 8×8 and 4×4
block size, that is shown in Figure 1.6 for 4 × 4 block size. And for block size 16 × 16
there are only 4 prediction modes available: vertical, horizontal, DC and plane. Whereas
in HEVC standard for the sake of improving prediction accuracy, the total number of
available prediction modes is increased to 35, 33 angular modes as well as the DC and
planar modes, which is depicted in Figure 1.7. Specifically the number of most probable
intra prediction modes for every PU is set to 3 which is determined by the modes of two
neighboring PUs: the one on the left and the one on the upper.

1.2.3 Inter-frame Prediction

Since only the correlation between neighboring blocks inside a single frame is exploited
by intra-frame prediction, it can not reach a high compression ratio. Most of pictures
in the video sequence is encoded using inter-frame prediction because it reduces much
more redundancy by employing the temporal correlation between blocks from different
frames. With respect to H.264 standard, in HEVC the advanced motion vector prediction
(AMVP) technique utilizing both spatial and temporal motion vectors has improved the
accuracy of motion vector prediction. Moreover, with the replacement of spatial direct
mode in H.264, a new technique of block merging mode is applied in the inter-frame

8

1 – Introduction

Figure 1.7: Intra prediction modes in HEVC standard [1].

prediction of HEVC, which further enhance the bit-rate reduction by joining the blocks
with equal motion parameters and sharing the motion data. An example for block merging
is presented in Figure 1.8, in which the shared motion information is held by the seed
block (S) and the other merged blocks (M) copy it from S when required. As for the
fractional inter-frame prediction, in order to realize high precision interpolation a 8-tap
and 7-tap interpolation filter are utilized for the half-pixel positions and quarter-pixel
positions respectively [22].

Figure 1.8: An example for block merging in HEVC [3].

9

1 – Introduction

1.2.4 Transform and Quantization

After the motion estimation, all the prediction error residuals are transformed into a set
of coefficients for efficient transmission and storage. In HEVC standard, as indicated in
Figure 1.5, TU size of 4×4, 8×8, 16×16 and 32×32 are supported. The 2-D transforms
based on discrete cosine transform (DCT) are designed for them and special efforts are
particularly spent on selecting the value of the transfrom matrix for retaining the property
of easy-to-implementation [1]. Furthermore when conducting the transform for block
size of 4×4 in intra-frame prediction mode, an alternative integer transform grounded
on discrete sine transform (DST) is available for use. As for the quantization, a same
quantizing mechanism with H.264 is applied with a QP value varying from 0 to 51.

1.2.5 Entropy Coding

In HEVC standard a bit-stream is produced using motion parameters, prediction modes,
quadtree partitioning information, quantized transform coefficients and some other control
data through entropy coding. And only one entropy coding method, Context-Adaptive
Binary Arithmetic Coding (CABAC), is specified in the standard. Although there is no
change made on the core algorithm of CABAC, it is optimized on the aspects of context
modeling, adaptive coefficient scanning, coefficient coding, sign data hiding and so on to
improve its throughput.

1.3 Motion Estimation Algorithms

Motion Estimation (ME) as one of the most significant part of video coding contributes a
great proportion of the compression and also occupies a large part of the computational
complexity of the encoder [23–26]. There are a lot of algorithms proposed to conduct the
ME operation [24,27–46]. Full Search is a ME strategy with a highest estimation accuracy
which exhaustively compares all available candidate blocks in the search area with the
current one to find the best matching block, thus it is at a high computational cost. With
respect to Full Search, many fast search algorithms for ME are developed by reducing
the number of search points to achieve an improvement on complexity degradation and
throughput but at a cost of video quality loss. In the following, details of some well
known fast search algorithms such as Three Step Search (TSS) [44] and Diamond Search
(DS) [45,46] are introduced.

10

1 – Introduction

1.3.1 Three Step Search

The TSS starts the search at the motion vector predictor (MVP), namely search center,
assuming its coordinate is (MVPx, MVPy). Thus with a step size of d, the coordinates of
the 9 search positions for each step of TSS are (MVPx, MVPy), (MVPx− d, MVPy− d),
(MVPx, MVPy−d), (MVPx+d, MVPy−d), (MVPx+d, MVPy), (MVPx+d, MVPy+d),
(MVPx, MVPy+d), (MVPx−d, MVPy+d) and (MVPx−d, MVPy). The best matching
position of current step will be the search center of next step and the step size d is updated
with a decrement. This algorithm is terminated after exactly 3 steps with the position of
minimum distortion in the third step as the final best match. An example with a initial
step size of 3 and a decrement of 1 in each step is shown in Figure 1.9, where gray circles
represent best match position in each step and the one in third step marks the final best
match.

1

2

1 1

1

1 1

11

2

2

2 2 2

2

3

33

3

3 3 3

1

2

3

Figure 1.9: An example of Three Step Search.

1.3.2 Diamond Search

Although there are also 9 search positions initially in DS algorithm, these positions are
placed according the shape of a diamond at the center of MVP. It is not as same as a
square pattern in TSS algorithm. Figure 1.10 exhibits an instance of DS algorithm. In
every round of search, if the point with minimum distortion is on the vertex or face of the
diamond pattern, DS will continue to do the next search round at the new center. From
Figure 1.10 we can see except for the first round, 3 to 5 new positions will be evaluated in
each following round. The termination criterion of DS algorithm is that it will not stop

11

1 – Introduction

searching until the best matching position is at the center of diamond pattern.

1

2

1

1

1

1

1

1

1

2

2

2

3

3

3

44

4 5

5

5

5

1 2

3 4

Figure 1.10: An example of Diamond Search.

TSS and DS algorithms or their enhanced variants have been widely used. In the
HEVC reference software, the Test Zone (TZ) search is adopted as the default fast search
algorithm, which is also based on the DS search mechanism.

1.4 Major Contributions

In this work, research efforts are dedicated to the computational complexity reduction
and improvement of timing performance of motion estimation algorithms for HEVC and
the implementation and optimization of their VLSI architectures.

Firstly, relative to the conventional computing method of SAD (Sum of Absolute
Difference) a new strategy to calculate the SAD is designed grounded on the statistics on
property of pixel data of video sequences. With this strategy the amount of computations
required in the full search algorithm is greatly reduced, thus the total encoding time is
saved by a large scale. Moreover, in order to strengthen the performance of TZ search
for HEVC, a novel scheme of parallel initial search is applied utilizing multiple motion
vector predictors. Besides, with the mechanism of sharing MVP on the CU level the ME
engines for PUs inside one CU are parallelized. Applying with these enhancement, the
proposed TZ search algorithm achieves an appreciable improvement on the throughput
and coding efficiency of the HEVC video encoder. Finally VLSI architectures based on
the schemes of BWA (Bit-Wise AND) and parallel comparison for finding the first W

12

1 – Introduction

maximum/minimum values are developed to degrade the hardware cost and improve the
timing performance.

1.5 Organization of the Dissertation

Chapter 2 gives an overview of distortion measure criterion in ME and introduces the
new SAD computing strategy for full search algorithm.

Chapter 3 firstly places an introduction on the original TZ search algorithm from
HEVC reference software, and in the next presents several proposed schemes for enhancing
the TZ search and its detailed hardware implementation.

Chapter 4 presents two kinds of VLSI architectures for finding the first W maxi-
mum/minimum values based on BWA (Bit-Wise AND) and parallel comparison strate-
gies respectively. The performance of these architectures and comparisons with reference
architectures are also introduced.

Chapter 5 addresses a summary for this research work. The ideas and directions for
future work are also discussed.

13

Chapter 2

A New SAD Computing Algorithm
for Full Search Motion Estimation

Motion Estimation (ME) is one of the most critical module in video encoder. It occupies
almost 50%-70% of computational complexity of codecs [23–26], which will be a bottleneck
for further improving the performance of encoders in terms of coding speed, bit-rate and
video quality when targeting for full HD or ultra HD videos. Therefore improving the
efficiency and reducing the computational load of ME component without degrading video
quality is of great significance. In this chapter, based on the statistics on property of pixel
data of video sequences, a new strategy to calculate the SAD (Sum of Absolute Difference)
for ME is explored. Before introducing the details of this strategy, an discussion on the
ME distortion measure criterion is given at first.

2.1 ME Distortion Measure Criterion

As mentioned in section 1.3, the main task of ME is to find the best matching block
within the search window in the reference frame for the current block and generate the
best motion vector. Figure.2.1 shows an example for block matching ME. In order to find
the best matching block (highlighted by green box), it is necessary to search within the
whole search window (highlighted by blue box) for the most similar one. Thus a matching
criterion or distortion computing method is required to measure the similarity between
a possible candidate block and the current block. However, the perceptual similarity
or distortion in visual content is very difficult to quantify, since human visual system
is complex and hard to understood [47]. In practice, for the digital video signal there
are many distortion measure models [48, 49]. Amongst, Mean Squared Error (MSE) and
Sum of Absolute Difference (SAD) are in the most common use. We assume f(i, j, t)
represents the intensity of a pixel at the coordinate (i, j) in the frame t and accordingly

14

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

Figure 2.1: An example for block matching ME.

f(i + MVx, j + MVy, t − 1) is the intensity of a pixel of a candidate block in the t − 1
frame as a reference with a motion vector (MVx,MVy), furthermore, the size of a target
MB is N ×N pixels, and search range is of ±W in each direction, so the search window
is of size (2W +N)× (2W +N). Supposing current block is at the location of (u, v), then
MSE distortion measure model [50] is defined as

MSE(MVx,MVy) = 1
N ×N

u+N−1∑
i=u

v+N−1∑
j=v

[f(i, j, t)− f(i+MVx, j +MVy, t− 1)]2. (2.1)

From Equation 2.1 it is clear that MSE calculates the square of the difference between
every two corresponding pixels of current and candidate block, then sums them up and
computes its average as the final value. As a result, this value is used to assess the
similarity, or the matching degree, of a candidate block. Thus in order to obtain the
best matching block, the MSE model is applied for every candidate block with a different
motion vector (MVx,MVy) within the search window defined by the search range in the
reference frame. Finally a candidate block with the minimum MSE will be denoted as
the best matching block which is given by

MSEmin = min{MSE(MVx,MVy)}, (−W,−W) ≤ (MVx,MVy) ≤ (+W,+W). (2.2)

The MSE can be interpreted as the Euclidian distance [51] between the candidate block
and target block which is considered as a good block similarity measure model, because
it is very close to the perceived similarity by the human visual system. Although MSE

15

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

can achieve a precise distortion assessment, it is at the expense of high computational
complexity. From Equation 2.1 for one N×N candidate block, it spends N2 subtractions,
N2 squaring operations (or multiplication), and N2-1 additions on calculating the MSE
result. Whereas considering the HEVC standard is targeting for FHD or UHD videos
and its search range is enlarged to ±64, the MSE will result in tremendous computations
which is extremely not practical.

On the meantime, there is a similar block distortion measure model, Sum of Absolute
Difference (SAD) [52], which calculates the absolute difference between every two pixels
of current block and candidate block instead of the square difference in MSE. The SAD
at location (u, v) with a motion vector f(i+MVx, j +MVy, t− 1) is denoted as

SAD(MVx,MVy) =
u+N−1∑
i=u

v+N−1∑
j=v

|f(i, j, t)− f(i+MVx, j +MVy, t− 1)|, (2.3)

and similarly the best matching block is with the minimum SAD given by

SADmin = min{SAD(MVx,MVy)}, (−W,−W) ≤ (MVx,MVy) ≤ (+W,+W). (2.4)

From aforementioned equations the SAD distortion measure model needs N2 subtractions
with absolute operation and N2-1 additions for every candidate block. Compared to
MSE, with the absence of multiplication operations to get the distortion results, it is
more feasible for the hardware implementation despite of less accuracy.

2.2 The New SAD Computing Algorithm

2.2.1 A New Strategy to Calculate the SAD

As discussed in the beginning of this chapter, in the video coding system the ME module
is one of the most critical part which contributes almost 50%-70% the computational
complexity of the video encoder. Therefore it is highly meaningful to design more efficient
algorithm and architecture to reduce the amount of computations of ME. Although the
SAD criterion is better than the MSE on the complexity, it still requires a huge amount of
computations since it involves every pixel of the target block and perform the subtracting,
absoluting and adding operations. Especially in the full search algorithm for the high
definition videos, the situation will be even worse. Based on the algorithm presented
in [4], a new SAD computing algorithm is proposed to improve the efficiency of the SAD
architecture based on the statistics on property of pixel data of video sequences.

16

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

Let Ψ and Φ be the two sets of N natural numbers denoted as:

Ψ = {ψ0, ψ1, ψ2, ..., ψi, ..., ψN−2, ψN−1} (2.5)

and
Φ = {ϕ0, ϕ1, ϕ2, ..., ϕi, ..., ϕN−2, ϕN−1}. (2.6)

If we sum up all the elements of Ψ and Φ respectively using

Ψsum =
N−1∑
i=0

ψi (2.7)

and
Φsum =

N−1∑
i=0

ϕi. (2.8)

Since targeting for the data processing for video signals, we assume that 0 ≤ ψi, ϕi ≤ 255,
∀ψi ∈ Ψ and ∀ϕi ∈ Φ. Based on the mathematical statistics, it is true that

N >M if Ψsum > Φsum (2.9)

and vice versa, where N denotes the number of elements that ψi > ϕi(i∈(0, N-1)) and
similarly M denotes the number of elements that ϕi > ψi(i∈(0, N-1)). Thereby according
to Equation 2.9, if the sum of set Ψ is larger than that of Φ, based on the one-to-one
correspondence the number of elements that ψi is smaller than ϕi is much less than the
opposite case. In that case in order to calculate the SAD between Ψ and Φ, the sum
difference is firstly obtained by

Diffsum =

 Ψsum − Φsum if Ψsum > Φsum

Φsum −Ψsum otherwise.
(2.10)

Then the SAD is acquired through

SAD =

Diffsum + ∑
ϕi<ψi

2(ψi − ϕi) if Ψsum > Φsum

Diffsum + ∑
ϕi>ψi

2(ψi − ϕi) if Ψsum < Φsum

N−1∑
i=0
|ψi − ϕi| if Ψsum = Φsum

(2.11)

From Equation 2.11, it is clear that based on the size relationship of the difference of sum,
only the elements that have a opposite size relationship between two sets are involved to
calculate the SAD. Moreover, this part of elements is the minority of the whole two sets.

17

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

For the sake of having a more quantized understanding of the “minority”, statistics on
percentage of pixels per block in video signals accounted as minority has been collected [4].
The test is performed on six video sequences (Figure 2.2) frame by frame to observe the
percentage of pixels per MB (16×16 applied) that can be accounted as “minority” to
the SAD calculation. The experimental results shown in Figure 2.3 indicate that the
“minority” is referred to 10%∼32% pixels in these video sequences. It means when cal-
culating the SAD only 10%∼32% pixels are involved in Equation 2.11, hence the amount
of computation of SADs can be reduced by a large scale.

(a) akiyo (b) flower (c) cricket

(d) mobile (e) suzie (f) foreman

Figure 2.2: 6 video sequences for test on statistics of “minority”.

2.2.2 The New SAD architecture to accelerate the FS ME al-
gorithm

Section 1.3 has given an introduction of Full Search algorithm for details. It is a ME search
algorithm which can guarantee the best video quality and lowest bitrate but suffer from
high complexity and poor encoding speed. Many fast ME search algorithms has been
proposed in the literature [24, 27–43], for instance three-step search, diamond search,
hexagonal patterns Search and so on (introduced in Section 1.3). They speed up the ME
search process through reducing the number of search points and win a reduction on the
encoder complexity and an improvement on the throughput at a cost of video quality

18

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

Figure 2.3: The percentage of pixel per MB that can be accounted as “minority” to the
SAD calculation in six video sequences frame by frame [4].

loss and bitrate increase. In this section a new SAD architecture to accelerate the FS
algorithm is proposed based on the strategy described in Section 2.2.1 by removing the
computing redundancies in the conventional SAD architecture. The block diagram of the
new SAD algorithm for ME is illustrated in Figure 2.4.

Figure 2.4: Block diagram of the new SAD algorithm.

19

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

Fast Successive Sum Computation

As for the FS algorithm, it is necessary to search every candidate block within the search
window one by one. In the new SAD algorithm the sum of the block needs to be known
first. Since between two consecutive candidate block most of the pixels are overlapped,
performing sum operation separately for each blocks must bring about high redundancy
of additions. Thus a fast successive sum computational strategy is explored to alleviate
computational load, which is exhibited in Figure 2.5. One thing has to be pointed out

Figure 2.5: Successive SAD calculation.

that, according to Section 1.2 HEVC standard support flexible partitions from 4×4 up to
64×64 and also including the symmetrical block size such as 8×4, 16×8, 32×16 and 64×32
and their transformed block sizes. Therefore for a MB size N ×M with a search range of
±W , the search window’s dimension is (2W + N)×(2W + M). In order to find the best
matching block, the total number of candidate block is (2W + 1)2. As shown in Figure
2.5, when fast successive sum computation starts the first (at (0, 0) position) candidate
block’s sum is calculated first with a cost of (N×M-1) additions. In the following for the
candidate blocks in the first row, the sum of the latter block can be obtained by using the
sum of the former block plus the pixels of the last column of current block (highlighted by

20

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

the yellow strip) and minus the pixels of the first column of the former block(highlighted
by the green strip) as shown in Figure 2.5. For instance let Sum(0,i) and Sum(0,i+1) denote
the sum of the (0, i) and (0, i+ 1) block respectively, Sum(0,i+1) is calculated using

Sum(0,i+1) = Sum(0,i) +
N−1∑
s=0

SW(s, i+ M)−
N−1∑
s=0

SW(s, i), (2.12)

where SW(s, i) is the pixel intensity at point (s, i). Correspondingly for the candidate
blocks in the first column, its sum is acquired by

Sum(j+1,0) = Sum(j,0) +
M−1∑
s=0

SW(j + N, s)−
M−1∑
s=0

SW(j, s). (2.13)

As a result, the number of operations to compute the sum of candidate blocks in the first
row and column except the (0, 0) block is 2(N+1) and 2(M+1) additions (or subtractions)
respectively. Then as well for the rest candidate blocks, the sum is obtained based on the
sum of top, left and top-left neighboring blocks. As shown in Figure 2.5, the sum of block
(x+ 1, y + 1) is given by

Sum(x+1,y+1) = Sum(x,y+1) + Sum(x+1,y) − Sum(x,y)

+SW(x, y)− SW(x+M, y)− SW(x, y +N) + SW(x+M, y +N).
(2.14)

Apparently Equation 2.14 only spend 6 additions (or subtractions) on computing sum of
each candidate block not belonging to first row or column. Therefore the total number
of operations to calculate the sum of all candidate blocks within the search window using
fast successive sum strategy, denoted as Γfast, is

Γfast = (N ×M − 1) + 2W × [2(N + 1) + 2(M + 1)] + (2W)2 × 6. (2.15)

Meanwhile the total number of operations to calculate the sum of every candidate block
separately in the original FS algorithm turns out to be

Γorg = (2W + 1)2 × (N ×M − 1). (2.16)

Taking a real case as an example, in HEVC standard the CTU’s size is 64×64 and search
range is typical of ±64, hence

Γfast = (64× 64− 1) + 2× 64× [2× (64 + 1) + 2× (64 + 1)] + (2× 64)2 × 6
= 135679

(2.17)

21

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

and
Γorg = (2× 64 + 1)2 × (64× 64− 1) = 68144895. (2.18)

Furthermore it is easy to find that the computational savings is 68144895− 135679
68144895 ×

100% = 99.8%.

High Level SAD Calculation and Coarse Search

In the new SAD algorithm, for the purpose of further improving the search efficiency
a coarse search will be applied initially. Since most of the ME modules in the video
encoding system support symmetric block size, Equation 2.3 for a MB of size N×M has
to be rewrote as

SAD(MVx,MVy) =
u+N−1∑
i=u

v+M−1∑
i=v

[f(i, j, t)− f(i+MVx, j +MVy, t− 1)]. (2.19)

Figure 2.6: An example for the sub-blocks.

In order to perform the coarse search, both of the current MB and reference MB are
firstly divided into 4 sub-blocks respectively thus each of (N/2) × (M/2), denoted as
fk(i, j, t) and fk(i + MVx, j + MVy, t − 1) (k ∈ [0,3]), which is illustrated in Figure 2.6.
Then as indicated in Figure 2.4 the sum of each sub-block of the current MB and all the
reference MB inside the search window is obtained through

Sum(i, j, t)k =
N/2−1∑
i=0

M/2−1∑
j=0

f(i, j, t)k (2.20)

22

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

and

Sum(i+MVx, j +MVy, t− 1)k =
N/2−1∑
i=0

M/2−1∑
j=0

f(i+MVx, j +MVy, t− 1)k (2.21)

respectively, where Sum(i + MVx, j + MVy, t − 1)k’s computation resorts to the fast
successive sum module. In the next the high level absolute difference between the two
k-th current and reference sub-blocks, denoted as CSAD(i + MVx, j + MVy)k (Coarse
Sum of Absolute Difference), can be calculated by

CSAD(i+MVx, j +MVy)k = |Sum(i, j, t)k − Sum(i+MVx, j +MVy, t− 1)k|. (2.22)

Consequently, the coarse sum of absolute difference between the current block and refer-
ence block is obtained using

CSAD(i+MVx, j +MVy) =
3∑

k=0
CSAD(i+MVx, j +MVy)k. (2.23)

where (MVx,MVy) is a displacement within the search window, thus (−W,−W) ≤
(MVx,MVy) ≤ (+W,+W).

Let’s assign the SAD result at the start point, namely AMVP, to SADmin as its
initial value, the coarse search is conducted in the way that if CSAD(i + MVx, j +
MVy) < SADmin the current motion vector (MVx,MVy) is added to the MV set, Ω,
and the SADmin is updated to the newest minimum value, or current displacement is
discarded. After coarse search is finished, the MVs stored in the Ω will be used in the
final best matching block search. The block diagram of coarse search is shown in Figure
2.7. This process helps to exclude a number of impossible candidates which can alleviate
the workload of refining search in the next stage and save the computational cost.

Coarse SAD Refinement

When finishing coarse search, it is ready to carry out the refinement of the coarse
SAD using the positions with MV∈ Ω. Grounded on the introduction in Section 2.2.1,
the refinement can be fulfilled basing on the size relationship between Sum(i, j, t)k and
Sum(i+MVx, j+MVy, t− 1)k and the “minority” pixels which have a opposite size rela-
tionship to their block size relationship. So the SAD between the two k-th corresponding
current and reference sub-blocks, being SADk(i+MVx, j +MVy) can be expressed as:

23

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

Figure 2.7: Block diagram of coarse search.

If Sum(i, j, t)k > Sum(i+MVx, j +MVy, t− 1)k :

SAD(i+MVx, j +MVy)k = CSAD(i+MVx, j +MVy)k

+
∑
Λ

2× [f(i+MVx, j +MVy, t− 1)− f(i, j, t)]
(2.24)

where Λ refers to a set containing all pixels that f(i, j, t) < f(i + MVx, j + MVy, t − 1)
within the two k-th sub-blocks.

If Sum(i, j, t)k < Sum(i+MVx, j +MVy, t− 1)k :

SAD(i+MVx, j +MVy)k = CSAD(i+MVx, j +MVy)k

+
∑
Λ′

2× [f(i, j, t)− f(i+MVx, j +MVy, t− 1)]
(2.25)

where Λ′ refers to a set containing all pixels that f(i, j, t) > f(i + MVx, j + MVy, t − 1)
within the two k-th sub-blocks.

If Sum(i, j, t)k = Sum(i+MVx, j +MVy, t− 1)k :

SAD(i+MVx, j+MVy)k =
u+N/2−1∑

i=u

v+M/2−1∑
i=v

|f(i, j, t)−f(i+MVx, j+MVy, t−1)|. (2.26)

And finally the distortion between the current and reference block, denoted as SAD(i+

24

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

MVx, j +MVy), is obtained by

SAD(i+MVx, j +MVy) =
3∑

k=0
SAD(i+MVx, j +MVy)k. (2.27)

From Equation 2.24 and 2.25, it can observed that the SAD refinement only involves
the minority pixels (discussed in Section 2.2.1) which is just a small proportion of the
total amount of pixels in a MB. Therefore, it can be expected that a large scale of the
computing load in ME process will be alleviated.

(a) Four People, 1280x720, 60fps,
Class E

(b) Basketball Drive, 1920x1080,
50fps, Class B

(c) Park Scene, 1920x1080, 24fps,
Class B

(d) Traffic, 2560x1600, 30fps, Class A (e) Ready steady go, 3840x2160, 120fps, 4K Test
Sequence

Figure 2.8: HD video sequences for test used in the simulation.

2.2.3 Rate-Distortion Performance Evaluation with HM Test
Model

The proposed new SAD computing algorithm for Full Search ME algorithm are im-
plemented, verified and tested in HEVC Test Model (HM16.2). The simulations are
performed under JCT-VC common conditions (Low Delay using P pictures with uni-
prediction) on the platform of Ubuntu OS with Intel Core i5 2.67GHz CPU and 8 Gigabyte
main memory. In order to evaluate its performance, several high definition standard video
sequences for test from different classes are encoded using a prediction structure of Low
Delay P picture (LDP) defined by Common Test Conditions (CTC). The LDP specifies

25

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

Four People 1280×720 @60Hz

QP Algorithm BitRate YUV-PSNR Encoding Time
kbps M(%) dB M(%) seconds M(%)

37 Full search 862.7040 − 36.4348 − 4454.33 −
Proposed 864.5760 0.22% 36.4293 -0.02% 1509.19 -66.12%

32 Full search 1454.9280 − 39.1425 − 4422.22 −
Proposed 1458.6720 0.26% 39.1439 0.00% 1342.92 -69.63%

27 Full search 2463.4080 − 41.5813 − 4471.51 −
Proposed 2468.9760 0.23% 41.5761 -0.01% 1221.93 -72.67%

22 Full search 4793.1360 − 43.5971 − 4478.89 −
Proposed 4795.6800 0.05% 43.5941 -0.01% 1172.37 -73.82%

Average Proposed − 0.19% − -0.01% − -70.56%

Table 2.1: Simulation results using different QP parameters for test sequence of Four
People.

Basketball Drive 1920×1080@50Hz

QP Algorithm BitRate YUV-PSNR Encoding Time
kbps M(%) dB M(%) seconds M(%)

37 Full search 1759.0400 − 36.1091 − 10061.71 −
Proposed 1789.5200 1.73% 36.0666 -0.12% 5623.51 -44.11%

32 Full search 3248.8400 − 37.9569 − 10015.84 −
Proposed 3297.2000 1.49% 37.9238 -0.09% 5106.57 -49.02%

27 Full search 6524.1200 − 39.5933 − 10145.28 −
Proposed 6606.0800 1.26% 39.5816 -0.03% 4627.32 -54.39%

22 Full search 17836.1200 − 41.0429 − 10249.15 −
Proposed 17953.4400 0.66% 41.0363 -0.02% 4401.93 -57.05%

Average Proposed − 1.28% − -0.06% − -51.14%

Table 2.2: Simulation results using different QP parameters for test sequence of Basketball
Drive.

that video frames are configured to one I picture followed by 8 P pictures and reordering
of pictures is not allowed and only past pictures are used for prediction [22,53–55]. Figure
2.8 lists all video sequences used in the test: (1) Four People(1280x720@60Hz, Class E),
(2) Basketball Drive (1920x1080@50Hz, Class B), (3) Park Scene (1920x1080@24Hz, Class
B), (4) Traffic (2560x1600@30Hz, Class A) and (5) Ready steady go (3840x2160@120Hz,
4K Test Sequence). The simulation run with 10 frames of each of the test sequences
using 4 different Quantized Parameters (QP, 22, 27, 32 and 37)and a search range of
±64. In the test, data of BitRate, YUV-PSNR [52] and total encoding time are collected
for performance comparison. The results , presented in Table 2.1-2.5, 2.2 clearly show

26

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

Park Scene 1920×1080@24Hz

QP Algorithm BitRate YUV-PSNR Encoding Time
kbps M(%) dB M(%) seconds M(%)

37 Full search 1160.9664 − 33.4954 − 10053.54 −
Proposed 1164.2112 0.28% 33.4719 -0.07% 6185.51 -38.47%

32 Full search 2500.8768 − 35.7674 − 10001.12 −
Proposed 2507.0208 0.25% 35.7466 -0.06% 5674.58 -43.26%

27 Full search 5358.2592 − 38.1899 − 10138.20 −
Proposed 5383.8528 0.48% 38.1773 -0.03% 5244.51 -48.27%

22 Full search 12178.6368 − 40.6841 − 10268.81 −
Proposed 12237.6768 0.48% 40.6765 -0.02% 5062.84 -50.70%

Average Proposed − 0.37% − -0.04% − -45.18%

Table 2.3: Simulation results using different QP parameters for test sequence of Park
Scene.

Traffic 2560×1600 @30Hz

QP Algorithm BitRate YUV-PSNR Encoding Time
kbps M(%) dB M(%) seconds M(%)

37 Full search 2679.7680 − 34.5202 − 20124.47 −
Proposed 2695.4880 0.59% 34.5096 -0.03% 7866.48 -60.91%

32 Full search 5021.1360 − 36.9135 − 20009.43 −
Proposed 5054.4960 0.66% 36.8998 -0.04% 6907.14 -65.48%

27 Full search 10146.9600 − 39.2883 − 20249.14 −
Proposed 10203.9600 0.56% 39.2756 -0.03% 6273.78 -69.02%

22 Full search 23945.0400 − 41.8368 − 20433.65 −
Proposed 24091.3440 0.61% 41.8290 -0.02% 5964.33 -70.81%

Average Proposed − 0.61% − -0.03% − -66.55%

Table 2.4: Simulation results using different QP parameters for test sequence of Traffic.

that compared to the ME with original FS algorithm, the proposed one can accomplish
a reduction on the total encoding time on average by at least 45.18% or 70.56% in the
best case, with only a minor increase on bit-rate and a negligible PSNR loss. Further-
more there is a more clear illustration on the Rate-Distortion performance comparison
exhibited in Figure 2.9, where the curves of PSNR v.s. bit-rate for all test sequences are
almost totally coincided. It means the proposed new SAD algorithm achieves a significant
reduction on computational load but with a negligible performance loss.

27

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

Ready Steady Go 3840×2160 @120Hz

QP Algorithm BitRate YUV-PSNR Encoding Time
kbps M(%) dB M(%) seconds M(%)

37 Full search 12231.7440 − 36.6316 − 41151.41 −
Proposed 12291.0720 0.49% 36.6056 -0.07% 19285.25 -53.14%

32 Full search 22159.2960 − 38.6549 − 40398.51 −
Proposed 22270.5600 0.50% 38.6410 -0.04% 17737.61 -56.09%

27 Full search 43401.3120 − 40.3937 − 40853.98 −
Proposed 43619.5200 0.50% 40.3836 -0.03% 16576.12 -59.43%

22 Full search 114894.3360 − 41.9054 − 41265.31 −
Proposed 115226.7840 0.29% 41.8967 -0.02% 16357.89 -60.36%

Average Proposed − 0.44% − -0.04% − -57.25%

Table 2.5: Simulation results using different QP parameters for test sequence of Ready
Steady Go.

2.3 Hardware Implementation

As discussed in the last section, the new SAD algorithm consists of two parts: high-level
SAD coarse search and coarse SAD refinement and final search. The high-level SAD
computation utilizes the fast successive sum strategy. And the sum results of the sub-
blocks obtained in the high-level SAD stage can be reused for the size relationship between
sub-blocks in the SAD refinement. The hardware implementation of whole ME module
is depicted in Figure 2.10.

ME Engine Control Unit

The ME Engine control is mainly responsible for the control signals generation for all
the other function units. Initially after the power-on reset signal switches on the encod-
ing system, it firstly transmits a enable signal and a corresponding address to Memory
Read&Write Unit to load the first frame of pixels for reference and the first LCU (64×64)
for encoding. In the next it needs to arrange the coding loop order for all the CUs of
current CTU which is normally from CU64×64, CU64×32, CU32×64... till to CU16×8,
CU8×8. Then after the AMVP unit determines the search start point, the important
task of ME Engine control is to configure the search window and guarantee its border
lies inside the reference frame according to the AMVP’s coordinate and search range, and
then load the pixels of search window for current CU from memory bank to the on-chip
buffer. In the end, when the motion estimation of current CTU is finished it will guide
the MV Read&Write Control Unit to store the final optimal MVs.

28

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

(a) (b)

(c) (d)

(e)

Figure 2.9: Rate-Distortion curves for all test sequences.

29

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

Figure 2.10: Hardware architecture of proposed SAD algorithm.

Finite State Machine

For the sake of managing all the functional units to work in orderly and efficiently, the Fi-
nite State Machine is to control the state switching of the whole system between memory
reading and writing, matching block searching, CU encoding looping and CU mode deci-
sion. The ME Engine Control Unit arranges different enable signals for different function
unit according to the current state.

AMVP

When the encoding process for a new CU starts, the AMVP unit will check and read the
available spatial and temporal motion vector predictors from MV memory and determine
the best MV as the start search point. While the search window is decided using the
AMVP by the ME Engine Control unit.

Memory Read Write Control

Here in the proposed architecture, either the current and reference frame memory or MV
memory for current and reference frame are implemented in a ping-pong mode to save

30

2 – A New SAD Computing Algorithm for Full Search Motion Estimation

the off-chip memory size and improve the memory reading and writing efficiency. Hence
there are two separate memory banks, denoting as Bank#0 and Bank#1. When encoding
the current frame if Bank#0 stores pixels for the past reference frame and Bank#1 holds
the data from current frame, then when encoding the next frame the pixels stored in the
Bank#1 will be used as the reference and meantime pixels of the new frame to be encoded
will be loaded into Bank#0, and so on and so forth. Meanwhile as for the MV memory
for current and reference frame the same mode is also applied. The functionality of the
this working mechanism is fulfilled by the Memory Read Write Control unit.

SAD Module

As discussed in this chapter, the SAD module is the key unit in the top level architecture
of ME structure. After the search window for current PU is finished loading, the MB
Sum unit and Successive Sum unit will perform summing operation for the sub-blocks of
current MB and all the candidate blocks respectively, meantime the coarse SAD between
sub-blocks of current MB and reference MB is also generated. Based on these coarse SADs,
impossible candidates are excluded by the coarse search process and motion vectors of
valid candidates are pushed into in the MV buffers for the refining search. With the
sum results of sub-blocks, a comparator generates a select signal for the multiplexer
which together with two subtractors are responsible for the coarse SAD refinement by
adding up the high level SAD and difference between corresponding pixels produced from
Multiplexer. At last the Refine Search module will generate the best MV for the current
PU from candidates stored in MV buffer based on the refined SADs.

2.4 Summary

A new SAD computing architecture is developed to alleviate the computational load of full
search ME algorithm. Simulating in the HM test model using several standard FHD or
UHD test sequences, the proposed architecture can reduce up to 70% of the computations
with respect to the original FS algorithm with an imperceptible bit-rate increase and
PSNR loss. This architecture is applicable to the video encoding system which pursuits
highest video quality.

31

Chapter 3

An Enhanced TZ (Test Zone) Search
Algorithm for Fast Motion
Estimation of HEVC

Generally speaking, in the block based video coding system there are two categories
of ME algorithms: Full Search and Fast Search [56–58]. The former one searches all
the possible candidates within the pre-determined search window, which can guarantee a
highest output video quality and a smallest amount of bit-rate. But its complexity usually
is very high and the scale of computations is huge. On the other hand, the fast search
algorithms, such as Three-Step Search, Diamond Search and so on (discussed in Section
1.3), reduce the complexity and computations by partially searching of candidates in the
search window. Consequently, its throughput is incremented but with a cost of video
quality loss and bit-rate increase. Along with the prevalence of high definition videos,
full search algorithm is rarely utilized in encoding applications because of extremely high
complexity. Whereas fast search algorithms are widely used. Since currently some of
the best fast search algorithms can reach a comparable good video quality as full search
only with a slight bit-rate increase, and still maintain a low complexity. And TZ Search
algorithm is one of them.

3.1 Introduction of TZ Search Algorithm

TZ Search is a novel widely-used fast search algorithm, which is adopted by the reference
software of the newest video coding standard HEVC because of its good performance
[40, 59–64]. It is indeed a hybrid search algorithm which combines the diamond/square
search and raster search. The whole procedure of TZ Search consists of several steps and
its flowchart is shown in Figure 3.1. From the flowchart, we can see TZ Search firstly set

32

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

Start

Set the AMVP

as start point

Test if zero MV is

better than AMVP

Perform First Search

(Diomond Search)

BestDistance = 0

BestDistance = 1

BestDistance > 5

Raster Search

BestDistance = 0

BestDistance = 1

Star Refinement

(7-round

Diomond Search)

2 Missing Points

Search

Store Best MV

End

Yes

No

Yes

No

No

Yes

No Yes

Yes

No

Figure 3.1: The flowchart diagram of TZ Search.

the start point as AMVP and check whether the zero motion vector is superior than the
AMVP to be a even better start point. Then with the best start point and search range,
the search process is ready to launch.

33

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

Center

1st round

2nd round

3rd round

4th round

5th round

6th round

7th round

Figure 3.2: The 7-round Diamond Search in the TZ Search algorithm.

First Search

The initial search process of TZ Search is to perform a First Search. In the HEVC reference
software there are two similar choices of search algorithm provided for First Search: Square
Search and Diamond Search, but the latter one is set as default. Figure 3.2 illustrates the
search patterns and strategy of 7-round Diamond Search, where the red star in the center
symbolizes the start point, namely the search center, and the other colorful dots mark the
candidate positions with different color suggesting its corresponding search round. One
characteristic of Diamond Search algorithm is that the number of rounds of search is not

34

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

limited which is normally determined by the search range or the size of search window.
Let the number of rounds and search range be N and ±SR respectively, the relationship
between them is given by

N = blog2(SR)c+ 1. (3.1)

And the distance between candidate and the search center for each round, denoted as D,
is incremented exponentially and determined by

D = 2r−1 r ∈ [1, N]. (3.2)

For instance, typically the default search range used in HEVC test model is ±64, thus
N=7. It is indicated in Figure 3.2 that the 1st round of Diamond Search has 4 search
patterns around the start point with a distance equal to 1, whose positions are the top,
bottom, right and left. From 2nd to 4th round, in addition to the 1st round the number
of search patterns for each round is increased to 8 with 4 half-positions (half topleft, half
topright, half bottomleft, half bottomright), and the distance of each round is 2, 4 and
8 respectively. Similarly from 5th to 7th round, 8 more quarter positions are further
introduced for each round in addition to the positions used in 2nd to 4th round, and the
distance of each round is 16, 32 and 64 separately. Consequently, it is easy to figure out
that the total number of search patterns in the First Search is 76 for a search window
with full search range. When the search for all available patterns is finished, there are
three possible branches based on the searching result of First Search which are listed in
the following.

(1) Termination: If the best matching block is with a distance of 0, which means the
MV predictor is accurate enough that no candidates block has a better matching
than the start points, the whole TZ Search process is immediately terminated with
the start point as the final best MV;

(2) 2 Missing Points Search: If the distance of the best matching block is equal to
1, the next step of First Search is to carry out a 2 Missing Points search, which acts
as a final refinement on its neighbor positions before the completion of TZ Search;

(3) Raster Search: In case that the best matching block obtained from the First
Search is more than 5 pixels away from the start point, a Raster Search within the
whole search window is required to operate. Since a best distance of more than 5
signifies that the accuracy of MV prediction is not good, taking global search as a
remedy is necessary for finding the best matching block;

(4) Refinement Search: Other than all the aforementioned cases, if the distance falls
into the scope of 2 to 5 pixels, instead of the refinement on its neighbors, a refinement

35

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

Figure 3.3: 2 Missing Points Search.

search with full search range centering at the position of the best matching block
from First Search will be performed. Specially, there is an early stop criterion
for the First Search. As the search order is from 1st round to 7th round with a
corresponding distance, if in the r-th round (r ∈ [1, 3]) a temporary best matching
block MBx is found and in next 3 rounds, from (r+ 1)-th to (r+ 3)-th round, there
is no better candidate existing, then the Refinement Search can be terminated with
MBx as its best matching block for the next stage.

2 Missing Points Search

2 Missing Point search is required only when the distance of immediate best matching is
one pixels away from the search center. A distance equal to 1 implies that there are 8
possible qualified positions, depicted in the central window of Figure 3.3, of which 4 are

36

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

from the first round (marked by purple dots) and the other 4 from the 2nd round (marked
by blue dots). The search patterns and strategy of 2 Missing Point search are illustrated
by the 8 periphery windows for 8 cases separately, in which the red dot indicates it is
the best matching position in that case and the two black stars point out the 2 Missing
Points Search patters. Then after accomplishing 2 Missing Points Search the final best
matching block’s displacement will be stored and meantime TZ Search is finished.

Raster Search

When the distance between the start point and the best matching block from First Search
is more than 5 pixels, TZ Search will enter into the Raster Search stage. The strategy of
Raster Search is very simple that it is to perform a full search within the search window
with interval of σ pixels in both horizontal and vertical direction, where σ = 5 in the
HEVC reference software. The search patterns of Raster Search is exhibited in Figure
3.4. After the accomplishment of scanning all the search patterns, if the optimal block

5 pixels

5 pixels

(-64,-64) (-64,64)

(64,-64) (64,64)

Figure 3.4: Search patterns of Raster Search with a interval of 5 pixels.

generated by Raster Search coincides with the best matching block from First Search, its
displacement is regarded as the global best MV and the TZ Search can be stopped at
once; or the TZ Search is continued with a refinement search of full search range.

37

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

Refinement Search

A Refinement Search is launched under two possible circumstances: (1) the best distance
is between 2 to 5 pixels after the First Search; (2) the Raster Search finds an optimal
matching block which is different from the result of First Search. In the TZ Search
implemented in HEVC reference software, there are two options for the refinement search,
one is the Star Refinement and the other is Raster Refinement. The process of Star
Refinement search is indeed to fulfill a new 7-round Diamond Search (shown in Figure
3.2) with full search range taking the best matching block from last stage as the center.
But it is a looped search work as illustrated in Figure 3.1. Since Star Refinement stops only
when the resulting best distance is equal to zero or one, or it will continue to conduct a 7-
round Diamond Search centered at the new optimal position found in the last refinement.
Once the best distance is one, 2 Missing Points Search is additionally executed before
stopping the TZ Search. As for the Raster Refinement, unlike Star Refinement, instead of

Figure 3.5: An example for Raster Refinement Search.

applying 7-round Diamond Search every time it utilizes a single-round Diamond Search

38

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

with a distance being half of the best distance of last stage. It will repeat this process and
not stop until either the best distance of a certain search round equals to zero or the best
distance shrinks to reach one or zero after several search rounds. An example of Raster
Refinement is given in the Figure 3.5. Normally comparing to Raster Refinement, Star
Refinement will search more positions because of the 7-round Diamond Search scheme,
but it will definitely generate more accurate MVs and thus achieve higher video quality.
As well in the HM test model, Star Refinement is set to be the default refinement scheme.

3.2 An Enhanced TZ Search using Parallelized Strat-
egy

Although TZ search as the default fast search algorithm of HEVC reference software is a
efficient algorithm with high video coding performance and reasonable complexity, there is
still much redundancy existed, such as the Raster Search. Moreover, since one of the two
paramount issues concerned in HEVC standard is the increased use of parallel processing
architectures [1]. In this section from the aspect of parallelization two novel schemes are
proposed to further enhance the TZ Search algorithm.

3.2.1 Multiple Initial Search Centers

As known to us, in the Raster Search it performs a full search within the whole search
window with a raster of 5 pixels which is unquestionably rather time-consuming. More
precisely the typical search range in HEVC standard is ±64, it can be easily obtained that
the total number of candidates for the Raster Search is b(2×64+1)/5c×b(2×64+1)/5c =
625. Whereas a 7-round Diamond Search, considering all possible search patterns are
available within the search window, will take overall 4 + 3× 8 + 3× 16 = 76 patterns into
account. Thus in order to further improve the timing performance of TZ Search, Raster
Search has to be replaced.

As discussed in Section 3.1, Raster Search plays a remedy role in the TZ Search when
the best matching block resulting from First Search is not accurate enough. However the
accuracy of First Search relies on the quality of optimal MV predictor, namely AMVP
(Advanced Motion Vector Prediction) [65–72]. Hence firstly let’s have a analysis on the
AMVP generating mechanism, which is presented in Figure 3.6(b). Figure 3.6(a) shows
that the candidate MV list consists of spatial candidates and temporal candidates. The
former one are taken from MVs of the top and left neighbors of current block. While the
latter one are derived from the MVs of the collocated block and its bottom-right neighbor
block in the reference frame. All of these candidate MVs are directly responsible for the

39

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

T0

T1

T2

L1

L0

C0

Check
 O

rder

C
h
e
c
k
 O

rd
e
r

Check Order
Col

ted PU

Cur

PU

Spatial Temporal

(a)

(b)

Figure 3.6: (a) AMVP MV candidates construction list. (b) The working mechanism of
AMVP.

prediction accuracy of the final MVP because it is chosen from them. Taking every aspects
into account, it is doubtlessly true that a MV from any position of the list is possible to
be the final MVP and it is determined using the criterion of lowest distortion. However, a
lowest distortion on a single position may not guarantee that the its prediction accuracy

40

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

is better than the other candidates under some circumstances. In other words, a MV
candidate from the list with worse distortion may do a better prediction.

Figure 3.7: The derivation of MVP List.

Based on these observations, a strategy proposed to enhance TZ Search is taking
multiple MV candidates from the list to form multiple initial search centers or start
points instead of a single start point in the original TZ Search algorithm. Moreover,
through some test it is found that the initial searching at multiple centers has already
covered enough search patterns within the search window. Hence the Raster Search can be
removed from TZ Search and it will not result in much performance degradation but can
reduce the total number search points to a certain extent. The advantage of the proposed
strategy is that on one hand multiple initial search centers can improve the prediction
accuracy and the discarding of Raster Search can alleviate the encoder complexity. On
the other hand in the point view of hardware implementation, the scheme of multiple
search centers is feasible for the parallelization which can further improve the throughput
of the encoder. Figure 3.7 shows the process of derivation of the MVP List, which is

41

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

generally composed of one spatial left MV, one spatial top MV, one Temporal MV, the
median MV of all available spatial MVs and zero MV. Obviously it covers every category
of motion vector for prediction. But in some cases if the spatial top MV is not available
it will take the second available spatial left MV as a replacement and vice versa as shown
in Figure 3.7. Using this new strategy, an enhanced TZ Search algorithm is produced and

Figure 3.8: The flowchart of the enhanced TZ Search.

its working flowchart is presented in Figure 3.8. With the search window settled using
the Median MV, the parallel First Search centered at the five MVPs separately will be

42

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

performed simultaneously. Except the absence of Raster Search the following procedures
are remained the same with the original TZ Search which has already been discussed in
Section 3.1.

(a)

(b)

Figure 3.9: (a) The default sequential processing order of PUs inside one CU. (b) Mech-
anism of sharing MVP between PUs of one CU.

43

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

3.2.2 Parallel ME Engines using Shared AMVP

As known to all, the main purpose of HEVC Test Model is designed for software im-
plementation for testing novel video coding tools [1], and not specifically for hardware
implementation. The TZ Search algorithm is still conducting the motion estimation for
PUs from 64×64 to 8×8 sequentially, which is illustrated in Figure 3.9(a). Thus every
time for a single PU, ME module needs to determine the AMVP, load the search window
and then perform the best matching block searching. For the sake of improving the coding
efficiency, a strategy utilizing shared AMVP on CU-level is exploited to parallelize the PU
processing inside a CU. Although there is some similar work presented in literature [73],
here the main contribution is on the hardware implementation. The sharing scheme is
depicted in Figure 3.9(b), in which inside one CU of size 2N×2N the MVPs of PU 2N×2N,
PU 2N×N and PU N×2N are all shared from PU 2N×2N. Owning to the MVP sharing
scheme on CU level, the PU processing in one CU can be performed in parallel which
will improve the throughput of ME module and also the timing performance. On the
meantime the search window is also shared by all PUs, thus the memory time for loading
frame pixels from off-chip memory to on-chip buffer will be saved to a large degree. Table
3.1 shows a comparison on ME processing rounds between HEVC reference software and
proposed architecture, in which the total number of ME processing rounds of proposed TZ
Search algorithm is reduced by 80% compared with the the original one in HM reference
software. It is clearly that resorting to the MVP sharing mechanism, the parallelized ME
engines for all PUs in one CU requires only one round of ME processing for every CU.

CU and PU in a 64×64 MB ME Processing Rounds
Size of CU Num. of CU Num. of PU per CU HM16.2 Proposed Savings(M)
64×64 1 5: 1 PU64×64,2 PU32×64,2 PU64×32 5 1 80%
32×32 4 5: 1 PU32×32,2 PU16×32,2 PU32×16 20 4 80%
16×16 16 5: 1 PU16×16,2 PU16×8,2 PU8×16 80 16 80%
8×8 64 5: 1 PU8×8,2 PU4×8,2 PU×4 320 64 80%

Total 425 85 80%

Table 3.1: Design Specifications of an HEVC encoder considered in this work.

3.2.3 Hardware Implementation

Since the optimization schemes discussed in Section 3.2.1 and 3.2.2 are explored from
the aspect of enhancing architecture’s parallel processing capability, the key point is the
hardware fulfillment. The design specifications for HEVC encoder considered in this work
is presented in Table 3.2. The architectural diagram is demonstrated in Figure 3.10.

44

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

HEVC Test Model HM16.2
Applied Prediction Structure Low Delay P picture (bitdepth of 8)

Number of the Reference Frame 1 past frame
Search Range ±64 in horizontal and vertical direction

Maximum Supported Resolution 4096×2048 (4K videos)
Largest Coding Unit (LCU) 64×64
Supported CTU Partitioning 64×64,64×32,32×64,32×32,32×16,16×32,16×16,16×8,8×16,8×8

Target Frame Rate @4096×2048 30 fps
Target Operating Frequency 200 MHz

Process Technology for Synthesis 65-nm CMOS standard-cell technology

Table 3.2: Design Specifications of an HEVC encoder considered in this work.

We can see the ME Engine Control unit together with the Finite State Machine is re-
sponsible for the global administration of memory management, enable signals generating
for the execution of functional unit, process switching between CTUs in a frame and CUs
in a CTU, and final CU mode decision. These units are the same with those described
detailedly in Section 2.3. Whereas the AMVP unit will generate a list of multiple MV
predictors instead of a single one MVP in traditional one. In the following details on the
parallel ME search engines are illustrated.

Parallel ME Search Engine

According to HEVC standard, for every CU of size 2N×2N in a 64×64 CTU (asymmetrical
partitioning not considered), there are three kinds of PU: 2N×2N, 2N×N and N×2N.
Moreover, there is dependency on MV between adjacent PUs which puts a limitation
on the parallel processing of PUs. However with the mechanism of sharing MVP for
all PUs of one CU, the parallelized architecture to find best matching block for all PUs
turns out to be realizable. In Figure 3.10, three parallel architectures of ME Engine are
implemented for PU 2N×2N, PU 2N×N and PU N×2N. In each of the ME engine, a First
Search utilizeing parallel 7-round Diamond Search is conducted firstly, and the degree of
parallelism is set to be 5 in accordance with the search strategy of multiple initial searching
centers. In each of the 7-round Diamond Search, initially according to the principle of
Diamond Search all available candidate’s positions will be collected and stored in an
array. Then the distortions between current block and all candidate block are computed
sequentially using the parallel SAD calculating tree, and meantime the comparison on
distortion results is performed to locate the best matching block for the current searching
process. The First Search comes to the end with choosing the best MV from the 5 best
candidates obtained by the 5 parallel architectures. In the next based on the result of First
Search, a choice on termination of search process, 2-Missing-Point Search or Refinement

45

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

Figure 3.10: The architecture of the enhanced TZ Search.

Search will be made by a multiplexer if the distance of the best MV is 0, 1 or more than
1 respectively. At last when the final MV generated from the multiplexers is transmitted
to the CU Model Decision unit, the ME processing for current CU is finished. It can be
observed from the proposed architecture that the parallel processing of all PUs in one CU
together with the parallelized initial searching on multiple centers will definitely improve
the efficiency of the encoder appreciably.

Parallel SAD Calculating Tree

As specified in Table 3.2, the goal of the design presented in this work is to make the
encoder be able to process a video in definition of 4096×2048 with a frame rate of 30fps
at the target operating frequency of 200MHz. As a consequence the maximum number
of clock cycles available for processing each 64×64 LCU turns out to be (1/30)/[(4096×
2048)/(64 × 64)] × 2 × 108 ≈ 3255. In order to fulfill these specification, in addition to

46

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

Figure 3.11: The architecture of parallel SAD calculation tree for PU32×32.

the mechanisms of parallel processing of PUs and parallel initial search, the architecture
for generating SAD results is also required to be parallelized to obtain this throughput.
The implementing details of parallel SAD calculating tree is demonstrated in Figure 3.11.
Considering the trade-off between the efficiency and hardware cost, this architecture is
capable of parallel computing the SAD between two 32×32 PUs in one clock cycle, in
which overall 1024 AD (Absolute Difference) units and 1023 2-to-1 adders are utilized.
For larger PU size it needs to take more than one clock cycle to get the SAD result, for
instance, for PU sizes 64×64 and 64×32 (or 32×64) 4 and 2 clock cycles are expected
separately. But for smaller PU size it is able to deal with multiple PUs simultaneously in

47

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

a single clock cycle. Specifically it can produce 2, 4, 8, and 16 SAD results in parallel for
PUs with a size of 32×16 (16×32), 16×16, 16×8 (or 8×16) and 8×8 respectively.

Video Sequences Algorithm BitRate YUV-PSNR Encoding Time
kbps M(%) dB M(%) seconds M(%)

Four People(720p) TZ original 456.3360 − 38.8775 − 1498.37 −
Proposed 459.1680 0.62% 38.8727 -0.01% 1474.67 -1.58%

Basketball Drive(1080p) TZ original 3312.6600 − 36.7607 − 5142.86 −
Proposed 3339.9920 0.83% 36.7540 -0.02% 4535.12 -11.82%

Park Scene(1080p) TZ original 1600.6387 − 35.1279 − 4244.28 −
Proposed 1607.9002 0.45% 35.1168 -0.03% 4097.98 -3.45%

Traffic(1600p) TZ original 2219.4312 − 36.7072 − 7641.07 −
Proposed 2245.3896 1.17% 36.6983 -0.02% 7493.39 -1.93%

Read Steady Go(2160p) TZ original 11985.3600 − 39.1989 − 16055.88 −
Proposed 12051.3600 0.55% 39.1952 -0.01% 15268.12 -4.91%

Average Proposed − 0.55% − -0.01% − -4.74%

Table 3.3: Simulation result using difference test sequences with QP=32.

3.2.4 Experimental Results

The proposed enhanced TZ Search algorithm is firstly implemented in the HEVC reference
software. The experiment conditions is the same with what is specified in Section 2.2.3.
The simulation results using 5 different high definition test sequences and a QP value of
32 is listed in Table 3.3. Compared to the original TZ Search, the proposed one improves
the total encoding time by 4.74% with less than 0.6% bit-rate increase and 0.01% PSNR
degradation. One thing needs to be clarified that the proposed algorithm implemented
in HM test model is not applied with any parallel processing schemes but only with the
utilization of multiple initial search centers and removal of the Raster Search process.
Thus hardware architecture implemented with proposed strategies and parallelization
mechanisms will definitely gain a much better performance improvement.

3.3 Summary

In this chapter, an enhanced TZ Search algorithm is explored with new strategy of multiple
initial search centers and shared MVP on CU-level. Moreover because of the better
prediction of multiple-MVP the Raster Search scheme is disabled for reducing the number
of search positions. The results of simulation with HM test model demonstrates it achieves
a reduction of about 5% on the whole encoding time with negligible bit-rate increment
and video quality degradation. Additionally the hardware implementation of the proposed
architecture employs several parallelization mechanisms including parallel ME engine for

48

3 – An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC

PUs within a CU based on the shared MVP strategy, parallel initial searching centered
at multiple MVPs, and the parallelized SAD calculating tree for PU size 32×32. Thus
with these parallelized components the proposed architecture is expected to obtain an
appreciable improvement on throughput and encoding efficiency.

49

Chapter 4

High Speed VLSI architecture for
finding the first W
maximum/minimum values

4.1 Introduction

Nowadays along with the increasing demands of high data-rate, high integration and small
physical size communication systems, design of efficient digital architectures being able
to accelerate key components of the system is of high significance. This work addresses
the design exploration of a digital architecture dedicated to a specific task: finding N
maximum/minimum values out of M inputs with high speed and low complexity.

Sorting is a well-established problem in computer science [74] and is a key operation in
several applications. Besides, hardware implementation of sorting networks has been ad-
dressed as well in the past [74]. On the other hand, VLSI architectures for partial sorting,
which can also be derived from selection networks (SN) [75], are part of different algo-
rithms in the communication field. Partial sorting is employed, for example, in [76, 77]
and [78, 79] for the decoding of turbo and binary Low-Density-Parity-Check (LDPC)
codes, in [80] for maximum-likelihood decoding of arithmetic codes and in [81–83] forK-
best MIMO detectors, non-binary LDPC decoders and turbo product codes respectively.
Circuits for finding the first two minimum values, are used in binary LDPC decoder ar-
chitectures [84–86] to implement min-sum approximations [79,87] and recently they have
also been proposed for the case of non-binary LDPC decoders [88]. However, very few
works, e.g. [89,90], investigate the general problem of implementing parallel architectures
for finding the first two maximum/minimum values with a systematic approach. Sim-
ilarly, architectures for finding the first W > 2 maximum/minimum values in a set of
M elements, with W ≤ M/2, are designed in VLSI implementations of i) K-best MIMO

50

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

detectors [91, 92], ii) non-binary LDPC decoders [93, 94], iii) turbo product codes [95].
Unfortunately, to the best of our knowledge, no papers in the open literature present a
general analysis for the case W > 2. In this chapter two kinds of VLSI architectures
for for finding the first W maximum/minimum values is exploited towards improving the
speed and minimizing the hardware cost.

Figure 4.1: Block diagram of BWA architecture.

51

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

4.2 A Radix-sort-based VLSI Architecture with Low
Cost1

Stemming from the work described in [75] for sorting networks, in [74] a comparator-
based SN is proposed. However, as argued in [74], other approaches, such as the one
referred to as radix sorting, can be used as well. Compared to the conventional sorting
architectures, which are mainly based on comparators, radix sorting algorithms rely on
the bit-wise analysis of the data to be sorted and can be extended to selection and partial
sorting problems. Thus in this kind of architectures comparison between values is totally
discarded, but instead only with some simple logic operations. This work proposes a
parallel VLSI architecture relying on the radix sorting approach for finding the firstW > 2
maximum/minimum values in a set of M values. Namely, the proposed solution, referred
to as Bit-Wise-And (BWA) architecture, works by analyzing the M candidates from the
Most-Significant-Bit (MSB) to the Least-Significant-Bit (LSB). The block diagram of the
BWA architecture is depicted in Figure 4.1. In the following sections, details of the
architecture are introduced.

4.2.1 Problem formulation and the BWA Algorithm

According to [90], we can state the problem of finding the first W maximum/minimum
values as follows. Given a set X (M) = {x0, . . . , xM−1}made ofM elements, we want to find
the first W maximum/minimum values, namely y(M) = {y(M)

0 , y
(M)
1 , . . . , y(M)

q , . . . , y
(M)
W−1}

where y(M)
0 = max(X (M)), y(M)

1 = max(X (M)\{y(M)
0 }), . . . , y(M)

q = max(X (M)\⋃q−1
k=0{y

(M)
k }),

. . . , y(M)
W−1 = max(X (M) \ ⋃W−2

k=0 {y
(M)
k }) (similarly substituting max with min). For the

sake of simplicity in the following we will discuss only the max case.
Radix sorting relies on the analysis of X (M) values bit by bit from the MSB to the

LSB. In the following, for the sake of simplicity, we will assume that the values in X (M)

are non-negative. It is worth noting, that 2’s complement values can be straightfor-
wardly used as well. Indeed, any set of N -bit 2’s complement values can be converted
in non-negative values, preserving the order relation, by flipping the MSB. Thus, let
xa = {xa,N−1xa,N−2 . . . xa,1xa,0} and xb = {xb,N−1xb,N−2 . . . xb,1xb,0} be two N -bit non-
negative binary values, where xa,j and xb,j represent the j-th bit of xa and xb respectively.

1Content of this section is partly from the paper: Guoing XIAO, Maurizio MARTINA, Guido
MASERA, Gianluca PICCININI, “A parallel radix-sort-based VLSI architecture for finding the first
W maximum/minimum values”, IEEE Transactions on Circuits and Systems II, vol. 61, issue 11, pp.890-
894, Aug 2014, DOI:10.1109/TCSII.2014.2350333

52

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

Assuming the first (N − j − 1)-th MSBs of xa and xb have the same value, we can eas-
ily obtain the relationship between xa and xb based on bit-wise analysis: xa > xb if
xa,j = ‘1’ and xb,j = ‘0’, and viceversa. The proposed BWA relies on performing recur-

Figure 4.2: An example to exhibit working principle of BWA algorithm.

sively the logic-and operation between adjacent bits of each xi value from the MSB to the
LSB. Let hi = {hi,N−2 . . . hi,0} be the array of bit-wise logic-and operations on xi, where
hi,N−2 = xi,N−1 ∧ xi,N−2 and

hi,j = hi,j+1 ∧ xi,j, (4.1)

for j = N − 3, . . . , 0 with ∧ representing the logic-and operation. If the MSB of all the xi
values is ‘1’ and all the xi are monotonic sequences of bits, that is only a transition from
‘1’ to ‘0’ is allowed as in the four xi values of Example 1,then, analyzing the content of hi
for i = 0, . . .M − 1 from the LSB to the MSB allows to find the first W maximum values.

Example 1
x0 = {1 1 1 1}
x1 = {1 1 0 0}
x2 = {1 0 0 0}
x3 = {1 1 1 0}

H =

1 1 0 1
1 0 0 1
1 0 0 0

More specifically, let’s take the set X (M) with M = 8 and each of 8-bit. Figure 4.2 shows
the general working principle of BWA algorithm, in which the H matrix generated by

53

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

logic-and operation performed from the MSB-row to the LSB-row contains a row with a
single ‘1’ in Step 4 which indicates x4 as the maximum.

As an example, hi,0 = ‘1’ if and only if xi,j = ‘1’ for every j = 0, . . . , N − 1, namely
xi = 2N − 1. Let H be the (N − 1)×M matrix whose columns are hi. If X (M) contains
only distinct elements: i) moving from the MSB-row to the LSB-row all rows of H are
different up to a certain j, then for j′ < j all the rows are zero (j = 0 in Example 1),
ii) when moving from the LSB-row to the MSB-row, after the first non-zero row, one
additional ‘1’ appears along a column. As a consequence, moving from the LSB-row to
the MSB-row of H, the columns of the first W non-zero rows are the positions of the
first W maximum values. Since in general xi is not a monotonic sequence and repeated
elements can exist in X (M), modifications to effectively employ the BWA technique are
required.

Figure 4.3: A special case #1 for showing the failure of the initial BWA principle.

4.2.2 Completed BWA Architecture

Logic-AND unit

As highlighted in Section 4.2.1, the initial BWA principle can be employed on data that
are monotonic sequences of bits whose MSB is ‘1’. If the data in X (M) do not meet this
requirement, the architecture does not work correctly. As an example, the case xi,j = ‘0’
for a certain j and for every i = 0, . . . ,M − 1 causes hi,j′ = ‘0’ for every j′ ≤ j. In this
case, the architecture can not distinguish among different xi. A similar problem arises

54

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

Figure 4.4: A special case #2 for showing the failure of the initial BWA principle.

if two or more xi values are non-monotonic sequences of bits. In order to have a clear
understanding of this situation, four different particular real cases given in Figure 4.3-4.6
illustrate under what kind of circumstances the initial BWA principle will fails to locate
the maximum target. These cases in the figures refer to: (1) MSBs of all inputs equal
to ‘0’, (2) the bits on the same position of all inputs equal to ‘0’, (3) results of logic-and
operation between the first two MSBs equal to ‘0’ and (4) a certain row of the logic-and

Figure 4.5: A special case #3 for showing the failure of the initial BWA principle.

55

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

Figure 4.6: A special case #4 for showing the failure of the initial BWA principle.

results together with the next row of bits of inputs generates full-zero row, respectively.

Full-zero Detect and Handle Unit

In order to avoid the aforementioned situation, we add some gates to handle these cases,
referred to as zero-row conditions. To this purpose we modify (4.1) as hi,j = ĥi,j+1 ∧ xi,j
where

ĥi,j =

 zN−1 ∨ xi,N−1 if j = N − 1
(zj ∧ ĥi,j+1) ∨ hi,j if 0 ≤ j < N − 1

, (4.2)

∨ is the logic-or operation and

zj =

 not
(∨M−1

i=0 xi,N−1
)

if j = N − 1
not

(∨M−1
i=0 hi,j

)
if 0 ≤ j < N − 1

(4.3)

detects a zero-row condition. Follows an example.

Example 2

x0 = {0 1 1 1}
x1 = {0 1 0 1}
x2 = {0 0 0 0}
x3 = {0 1 1 0}

z3 = 1
z2 = 0
z1 = 0
z0 = 0

Ĥ =

1 1 1 1
1 1 0 1
1 0 0 1
1 0 0 0

56

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

xi,0 xM−1,0

modified H matrix slice

ĥM−1,0

xM−1,N−2
zN−1

x0,N−1 xi,N−1 xM−1,N−1

ĥ0,N−1 ĥi,N−1 ĥM−1,N−1

xi,N−2x0,N−2

modified H matrix slice

ĥ0,j+1

ĥ0,0

x0,j

ĥM−1,j+1

xi,j xM−1,j

modified H matrix slice

ĥ0,1 ĥM−1,1

x0,0

zj

x0,j xi,j

h0,j

ĥi,j+1 ĥM−1,j+1

ĥ0,j ĥM−1,jĥi,j

ĥ0,j+1

hi,j hM−1,j

xM−1,j

ĥ0,N−2 ĥM−1,N−1

ĥ0,j ĥM−1,j

ĥi,N−2

ĥi,j

ĥi,0

ĥi,j+1

ĥi,1

Figure 4.7: BWA architecture: modified H matrix.

57

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

Example 2 shows a simple case, where the modified H matrix (Ĥ), that is an N ×M

matrix, is given. Indeed, as explained in the next paragraphs, the maximum values are
selected checking ĥi,0 values.Handling zero-rows leads to the slice-architecture depicted
in light gray in Figure 4.7, where each slice corresponds to one row of Ĥ. The bottom
part of Figure 4.7 shows the circuit to implement (4.2) and (4.3), where ĥi,j acts as hi,j,
but, if a zero-row condition occurs, then ĥi,j = ĥi,j+1. As it can be observed in the
modified H matrix, the proposed structure ensures ĥi,0 = ‘1’ for at least one value of
i = 0, . . .M − 1. Thus, the selection of the maximum values in the proposed architecture
is performed checking ĥi,0 values. Let I be the set of indices i = 0, . . . ,M − 1 such that
ĥi,0 = ‘1’. If I = {k}, i.e. it contains only one element, then y0 = xk. Otherwise, X (M)

contains more instances of the maximum value. If I contains W elements, then the first
W maximum values are the elements {xi : i ∈ I} ⊂ X (M). If I contains less than W

elements a new search is required. As Figure 4.3-4.6 exhibits the four failure cases of
initial BWA architecture, now with the Full-zero handling circuit we will present how the
BWA architecture manage to locate the maximum value successfully for these cases. The
case with MSBs of all input equal to ‘0’ is handled in Figure 4.8, in which a N-to-1 NOR
gate takes the zero-row of MSB as input and produces a logic-one result. In the next
the generated logic-one will prevent the signal of zero-row from flowing forward resorting
to the OR gate so that the following logic-and gates can operate to obtain the correct
result. Similarly, in Figure 4.9 it shows in one certain stage of the logic-and operation
when its result is full-zero the big N-to-1 NOR gate will generate a logic-one signal for the
following logic-and gate array and logic-or gate array to maintain the last valid logic-and
result for the next logic-and operation and avoid the appearance of full-zero result. The
other two cases shown in 4.4 and 4.5 can also be manipulated by the same mechanism.
Meantime for the sake of having a more clear knowledge of the whole BWA architecture,
a full image of the architecture with a real case to find the maximum value from a set
{x0, x1, x2, x3} is illustrated in Figure 4.10.

Output Generation Unit

To simplify the selection we use a circuit referred to as output generation circuit that,
based on ĥi,0 values, is able to find the maximum among M elements and to produce a
new set of M elements X ′ = x′0, . . . , x

′
M−1 where the maximum value is replaced by zero.

Thus, the complete architecture, shown in Figure 4.12, is made of W stages, where
each stage contains one instance of the circuit to produce the modified H (light gray part)
and one instance of the output generation circuit (dark gray part). As a consequence, the
q-th stage finds y(M)

q , that corresponds to the maximum value of the q-th input set. This
operation is accomplished by the means of the output generation circuit shown in dark

58

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

Figure 4.8: The working principle of Full-zero Detect and Handle Unit for special case
#1 in Figure 4.3.

gray in Figure 4.11 for the case q = 0. The output generation circuit relies on M − 1
blocks referred to as g slice, M × N selection blocks and N combiners each made of an
M -input logic-or, where M selection signals gi = not(τi−1)∧ ĥi,0 for i = 1, . . . ,M − 1 and
g0 = ĥ0,0 are used in the selection blocks to forward xi to the next slice or to replace it by
zero. Each gi signal is implemented as a slice (see the top left part of Figure 4.11), where
the τi−1 term is obtained as

τi−1 =
i−1∨
u=0

ĥu,0, (4.4)

that is: when ĥu,0 = ‘1’, then the remaining τl with l = u + 1, . . . ,M − 1 are ‘1’ and so

59

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

Figure 4.9: The working principle of Full-zero Detect and Handle Unit for special case
#4 in Figure 4.6.

in the current stage only xu is selected. More precisely, with reference to Figure4.11, gi
is exploited in the selection blocks to compute ζq,i, one of the M candidates, where only

60

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

Figure 4.10: An example for the full BWA architecture.

61

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

0 1

0

sel. sel. sel.sel. sel.

ζ0,0,0

xix2

y
(M)
0

gi

xi,j

x′i,j ζ0,i,j

ĥi,0ĥ2,0 ĥM−1,0

τi−1

ĥi,0

ĥi−1,0τi−2

gi
xM−1

ĥ1,0 ĥM−2,0

ζ0,M−1,N−1
x′0 x′1 x′2 x′i x′M−1

ĥ0,0

gi gM−1

ĥi−1,0

τ1 τi−1

g0 g1 g2

x0 x1

τi−2 τM−3

g
sl
ic
e

g
sl
ic
e

g
sl
ic
e

Figure 4.11: BWA architecture: output generation circuit in the case q = 0.

one ζq,i /= 0. Each bit of ζq,i is computed as ζq,i,j = gi ∧ χq,i,j where

χq,i =

 xi if xi /∈
⋃q−1
k=0{y

(M)
k }

0 otherwise
, (4.5)

and the terms y(M)
q,j and χq,i,j represent the j-th bit of y(M)

q and χq,i respectively (see the
sel. block in the left part of Figure 4.11). As an example, for q = 0 and q = 1 we have
χ0,i = xi and χ1,i = x′i respectively. Finally, the q-th maximum is obtained:

y(M)
q =

M−1∨
i=0

ζq,i, (4.6)

corresponding to the N combiners each made of an M -input logic-or in the bottom part
of Figure 4.11.Pipelining the proposed architecture improves the throughput, but leads
to an area overhead. As an example, adding one pipeline register between each of the W
stages in Figure 4.12, (i.e. W − 1 pipeline registers), implies adding W − 1− q registers
to each y(M)

q , to increase the throughput by about W times.

62

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

χ0,iχ0,0

χq,0 χq,i

χW−1,0 χW−1,i

χ1,0 χ1,i

χq+1,i

x0 xi xM−1

y
(M)
0

y
(M)
q

y
(M)
W−1 output generation circuit

modified H matrix circuit

χq+1,0

χ0,M−1

χq,M−1

χ1,M−1

χq+1,M−1

χW−1,M−1

Figure 4.12: BWA architecture: cascade of W stages.

4.3 Comparator-based VLSI Architectures with High
Speed2

In last section a BWA architecture based on Radix-Sort with very low hardware cost
is introduced, here we are about to present two other architectures based on compara-
tors of high parallelization for finding the first W maximum/minimum values from M

inputs, which achieves a quite good timing performance. Being Similar with that in
Section 4.2.1, we redefine the problem of finding the first W maximum/minimum val-
ues as follows for the sake of convenience. Given a set X (M) = {x0, . . . , xM−1} made
of M elements we want to find the first W maximum/minimum values, namely y(M) =

2Content of this section is partly from the paper: Guoing XIAO, Waqar AHMAD, Syed Azhar Ali
ZAIDI, Massimo RUOROCH, CAUSAPRUNO, "High Speed VLSI Architecture for Finding the First W
Maximum/minimum Values", International Conference on Electronics Application, Rome, May 2014

63

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

{y(M)
0 , y

(M)
1 , . . . , y(M)

z , . . . , y
(M)
W−1} where y(M)

0 = max(X (M)), y(M)
1 = max(X (M) \ {y(M)

0 }),
. . . , y(M)

z = max(X (M) \ ⋃z−1
k=0{y

(M)
k }), . . . , y(M)

W−1 = max(X (M) \ ⋃W−2
k=0 {y

(M)
k }) (similarly

substituting max with min). For the sake of simplicity in the following we will discuss
only the max case as the min equivalent solution can be straightforwardly derived.

Figure 4.13: An example: Structure for finding the first 3 maximum values from 8 inputs

4.3.1 The Architecture of Partial Sorting (PS)

Algorithm of Partial Sorting

Tree-like architecture using comparators is the most intuitive way to obtain maximum or
minimum values, which is utilized in [89] together with some control logics for finding the
first two minimums. While in [95] an optimized sorting network derived from tree-like
structure for extracting the first 3 minima from 32 inputs is presented. In this work we
extend this kind of architecture to a general case of w > 2 as detailed in the following.

As known to all, it is easy to get the maximum value using the tree-like structure
after several comparing stage, but for the other maxima some extra work needs to be
done. More specifically, we take the case of M = 8 and W = 3, where the input set is
X (8) = {x0, x1, . . . , x7} and the output is y(8) = {y(8)

0 , y
(8)
1 , y

(8)
2 }. As depicted in Figure

4.13, there are three comparing stages, CS0, CS1 and CS2, which are followed by two
stages of merging operation, MS0 and MS1. The first block of CS1 (labeled as CS01)
which takes the 4 relative minimum values as input may contains one of the first three
maximum values, while the second block, CS11, possibly includes all the 3 target values.
The similar analysis can also be applied in the third comparing stage, in which CS21,
CS22 and CS23 probably own 1, 1 and 2 of the three maximum values respectively, but
CS20 definitely contains no maximum candidate which can be removed indeed. After all

64

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

MAX

MIN

MAX

MIN

MAX

MAX

MIN

MB

MB

MB

MAXs

(k-2)-th(k-3)-th

MB

MB

MB

MB

MB

MB

Comparing Stage Merging Stage

CB MAXs

MINs

MINs

MAXs

Comp

Comparing Block: Merging Block:

Inputs

Figure 4.14: Structure of Partial-sorting for finding W maximum values from M inputs

the possible maximum candidates are obtained by the comparing network, the following
merging operations will find the target values from them. We can see from the figure
that one comparator is used in MS01 which may hold 3 maximum candidates to sort the
inputs from CS22 and CS23 into a descending order, meantime MS00 needs to do nothing
since it has only one input. Then the MS10 takes the outputs from MS00 and MS01
and performs a similar operation to find the first 3 maximum values finally. Since in the
comparing stage some of the branches of the network could be cut off like CS20 in the
previous example we name this algorithm as Partial Sorting.

65

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

Architecture implementation

In general, the general PS architecture for finding the first W maximum values from
M inputs is more complicated than that depicted in Figure 4.13, which consists of two
sequential stages: Comparing stage and Merging stage shown in Figure 4.14. In the
first step of Comparing stage, M inputs are divided into two groups after performing a
comparison between every two adjacent values, where the larger value goes into the upper
group, called MINs-group, while the smaller one stays in the lower group (MAXs-group).
As a result we can easily figure out that there are at most W/2 maximum values among
the firstW maximum values which may be contained in the MINs-group of the first round,
and similarly the MAXs-group possibly includes all the W target values. Considering the
case that M and W would be odd numbers, the m0, w0, m1 and w1 are

m0 = m1 = M

2 if M is even

m0 = [M2] + 1, m1 = [M2] if M is odd

w0 = W,w1 = [W2]

. (4.7)

where W ≤M/2 is initially defined and the operator [•] is to take the integer part of the
operating value. As shown in Figure 4.14, in the zoomed structure of Comparing Block
we represent the last input (top-down) with a dash line to indicate that when the number
of inputs is odd, the alone input not involved in comparison of current round is arranged
into the MAXs-group directly. In a similar way, the same operation is applied on the
values of their MINs-groups and MAXs-groups respectively in the next round, in which
the corresponding parameters are obtained through

m00 = m01 = m0

2 if m0 is even

m00 = [m0

2] + 1, m01 = [m0

2] if m0 is odd

w00 = w0, w01 = [w0

2] ifw0 ≤ m00

w00 = m00, w01 = [w0

2] ifw0 > m00

. (4.8)

m10 = m11 = m1

2 if m1 is even

m10 = [m1

2] + 1, m11 = [m1

2] if m1 is odd

w10 = w1, w01 = [w1

2] ifw1 ≤ m10

w10 = m10, w01 = [w1

2] ifw1 > m10

. (4.9)

This procedure is repeated iteratively until to the k-th round, where k = [log2(M −

66

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

1)] + 1. Generally the parameters, the size of sub-groups (including MINs- and MAXs-)
and the number of possible maximum value contained in each sub-group, can be derived
from their own parents’ group in similar way with 4.8 and 4.9, for example in the k-th
round w0...00 and w0...01 can be derived from w0...0 like above. Specially in upper part of
Figure 4.14, the dash boxes and the dash arrows within comparing stage mean that they
would not be needed when the number of possible maximum value reaches one, since in
that case no maximum value will fall into its sub-branch of MINs-group and it will be cut
off.

After the Comparing stage generates all possible coarse candidates, the Merging Stage
will merge them in an inverse way to Comparing Stage and finally produce the first
W maximum values. The Merging Block’s main task is to sort and merge the results
generated by the two previous groups of Comparing Stage in a decreasing order. The
details of the Merging Block (MB) is depicted in the bottom-right part of Figure 4.14.

It is obvious that only one kind of component, namely comparator, is applied in
the whole architecture of Partial sorting and no control logic is utilized. The hard-
ware complexity and the latency of the structure can be derived by O(M log2(M)) and
O(W log2(M)) respectively. As in this algorithm the comparing and merging network is
derived in a dichotomously and heuristically way. Although it is not feasible to give a
determined expression for a general case on the hardware cost and delay, the experimen-
tal results show that it achieves an excellent timing performance at an acceptable cost of
hardware.

4.3.2 The Architecture using Fully Parallellized Comparision
Grid (FPCG)

Algorithm Description

The work in [89, 90] has presented novel comparator-based architectures for finding the
first W = 2 maximum/minimum values, which rely on N levels of comparing stages with
each level l of Ol comparing modules. These structures can be extended to W > 2 as
illustrated in Figure 4.15 and detailed in the following. The i-th comparing stage of
level l = 1 compares K1,i elements taken from X (M) and produces W results, leading to
K1,i ≥ W . In the following we will refer to Kl,i as the radix of the comparing stage, where

M =
N∏
l=1

K̇l K̇l = 1
Ol

Ol−1∑
i=0

Kl,i. (4.10)

Let X (K1,i) ⊆ X (M) be the set of elements compared by the i-th stage of level l = 1, with⋃O1−1
i=0 X (K1,i) = X (M), X (K1,i) ⋂X (K1,j) = ∅ and i, j = 0, . . . , O1 − 1, i /= j. Similarly, we

67

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

K1,0

y(KN−1,ON−1
−1)

y(K1,0) y(K1,O1
−1)

K1,Ol−1

l = 1

l = 2

l = N

comparing stage O1 − 1

xM−K1,Ol−1

comparing stage O2 − 1

comparing stage 0

comparing stage 0

xK1,0−1

comparing stage 0

x0 xM−1

y(M)

y(KN,0)

y(KN−1,0)

Figure 4.15: Tree structure for finding the first W maximum values.

define y(K1,i)
0 = max(X (K1,i)) and y(K1,i)

z = max(X (K1,i)\⋃z−1
k=0{y

(M)
k }) with z = 1, . . . ,W−1

as the output of the i-th stage of level l = 1. The number of comparators required by a
comparing stage depends on its radix and the total number of comparators at l = 1 is

Cl=1 =
O1−1∑
i=0

 K1,i

2

 =
O1−1∑
i=0

K1,i · (K1,i − 1)
2 . (4.11)

If all the comparing stages have the same radix, (4.11) simplifies to M · (K1−1)/2, where
K1 is the radix at l = 1.

A similar approach can be followed for l > 1. In this case, the i-th comparing stage
receives from the previous level Kl,i arrays, where the j-th array from level l− 1 contains
W sorted values, namely y(Kl−1,j) = y

(Kl−1,j)
0 , . . . , y

(Kl−1,j)
W−1 . It is worth noting that Kl,i ≥ 2

for l > 1 and the only constraint is (4.10). The number of comparators required by
each comparing stage is αW · βKl,i

, where αW is the number of comparators to compute
the first W maximum values from two arrays made of W sorted values and βKl,i

is the
number of couples of arrays (without repetition) we can compose from Kl,i arrays. Thus,
βKl,i

= Kl,i · (Kl,i − 1)/2 whereas αW can be obtained as follows. Let y′ = y′0, . . . , y
′
W−1

and y′′ = y′′0 , . . . , y
′′
W−1 be two sorted arrays of W elements. Then, we observe that y0 =

max(y′,y′′) = max(y′0, y′′0) requires one comparator (α1 = 1). Finding y1 = max({y′,y′′}r

68

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

y′0 y′1 y′2 y′W−1

y′′0

y′′1

y′′2

y′′W−1

Figure 4.16: Graphical representation of the number of comparators required to find the
first W maximum values in y′ and y′′

{y0}) implies to compare y′0 with y′′0 , y′0 with y′′1 and y′′0 with y′1 (α2 = 3). The first
comparison has already been performed to find y0 and so two further comparators are
required to obtain

y1 =

y′′0 if y′0 ≥ y′′0 and y′′0 ≥ y′1
y′1 if y′0 ≥ y′′0 and y′′0 < y′1
y′0 if y′0 < y′′0 and y′0 ≥ y′′1
y′′1 otherwise

. (4.12)

This analysis can be extended to yz = max({y′,y′′} \ ⋃z−1
k=0{yk}) by using a graphical

representation of the problem. As shown in Figure 4.16 we build a grid where the elements
of y′ and y′′ are the vertical and horizontal labels respectively. Then, we can infer that
αz = αz−1 + z, namely the number of comparators to find the first z maximum values,
are the dots contained in the triangle delimited by the diagonal of the z× z square on the
grid. Thus, αW = ∑W

k=1 k = W · (W + 1)/2 and the total number of comparators is

C = Cl=1 + Cl>1 =
N∑
l=1

Ol−1∑
i=0

γl ·
Kl,i · (Kl,i − 1)

2 (4.13)

69

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

where

γl =

1 if l = 1
W · (W + 1)

2 otherwise
. (4.14)

If all the comparing stages within a level have the same radix (Kl,i = Kl), then (4.13) can
be rewritten as

C = M · (K1 − 1)
2 + W · (W + 1) ·M

4 ·
N∑
l=2

Kl − 1∏l−1
r=1Kr

. (4.15)

Moreover, if all the levels have the same radix (Kl = K), then (4.15) simplifies to

C = M · (K − 1)
2 + W · (W + 1)

2 · M −K2 . (4.16)

In the following an architecture with Kl,i = Kl = K will be referred to as constant-radix
architecture. As shown, in [90], finding the optimal set of radix to minimize the number
of comparators in (4.13) and (4.15) is a Diophantine problem with integer coefficients
that not always admits solutions in N. On the other hand, an interesting result can be
obtained from (4.16) by computing the partial derivative of C with respect to K:

ξ = ∂C

∂K
= M − 2W − 2W 2

4 . (4.17)

Indeed, ξ is a parabolic function of W . Thus, given M and W we can understand if the
slope of C is positive or negative:

ξ > 0 if W < W ∗

ξ < 0 if W > W ∗ W ∗ = 1
2
(
1 +
√

1 + 8M
)

(4.18)

Thus, if the slope is positive (4.16) is minimized by K = W . On the contrary, if the slope
is negative (4.16) is minimized by K = M (maximum radix architecture with a one-level
tree). However, since the second term in (4.15) grows as W 2, the solution obtained with
K = W is rather large: CK=W = M ·(W −1)/2+W ·(W +1) ·(M−W)/4. Thus, we relax
the constant-radix constraint to K1 = Ǩ and Kl>1 = K̊. In this case (4.15) becomes

C = M · (Ǩ − 1)
2 + W · (W + 1) · K̊

4 ·
(
M

Ǩ
− 1

)
. (4.19)

70

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

Then, computing the partial derivative of C with respect to Ǩ and K̊ we obtain

ξ1 = ∂C

∂Ǩ
= M

2 −
W · (W + 1) ·M · K̊

4(Ǩ)2
(4.20)

ξ2 = ∂C

∂K̊
= W · (W + 1)

4

(
M

Ǩ
− 1

)
. (4.21)

Since ξ2 is always positive, (4.19) is minimized by K̊ = 2. Moreover, with K̊ = 2 we obtain
that ξ1 ≈ 0 for Ǩ ≈ W and so CK1=W,Kl>1=2 = M · (W − 1)/2 + (W + 1) · (M −W)/2.
Since W > 2 we obtain that CK1=W,Kl>1=2 < CK=W .

mux−like structure

array of comparators

mux−like structure mux−like structure

<

x(i)
qx(i)

p

s(i)p,q t(i,1)p,q

M(i,1)
pN(i)

p

y
(K1,i)
0 y

(K1,i)
1

t(i,W−1)
p,q

y
(K1,i)
W−1

M(i,W−1)
p

< < <

<

<

Figure 4.17: Architecture of a comparing stage at l = 1

Architecture implementation

As highlighted in Section 4.3.2, for eachM andW values, mainly two architectures worth
investigation: i)K = M and ii)K1 = W , Kl>1 = 2. Moreover, the number of comparators
required by comparing stages at l = 1 differs from the one at l > 1. This difference reflects
in different architectures in the two cases. Thus, for the sake of clarity, in the following
the two architectures are detailed separately.

71

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

(1) l = 1 comparing stages: Both K1 = W and K = M architectures require
at least one level of comparing stages. Thus, at l = 1 a radix-K1,i comparing stage
computes the first W maximum values among its K1,i inputs by the means of K1,i ·
(K1,i − 1)/2 comparators working concurrently. Let x(i)

p , x
(i)
q ∈ XK1,i be two inputs of

the i-th comparing stage. Let s(i)
p,q be the result of the comparison between x(i)

p and x(i)
q ,

namely s(i)
p,q is the sign of x(i)

p − x(i)
q :

s(i)
p,q =

0 if x(i)

p > x(i)
q

1 if x(i)
p < x(i)

q

− if x(i)
p = x(i)

q

(4.22)

where − represents a don’t-care. If x(i)
n is the first maximum, then s(i)

q,n = 1 for every q
such that 0 ≤ q ≤ K1,i − 1 and q /= n. Let N(i) be the array whose p-th element is

N(i)
p =

K1,i−1∧
q=0,q /=p

s(i)
q,p (4.23)

where ∧ represents the logic-and operation. As it can be observed, N(i) is the one-hot
representation of n and can be used as the selection signal of a mux-like structure. The
mux-like structure is the same one proposed in [90], namely for each x(i)

u ∈ X (K1,i) with
0 ≤ u ≤ K1,i− 1 let x(i)

u,v be the v-th bit of x(i)
u and d the number of bits to represent x(i)

u .
Then, y(K1,i)

0,v , the v-th bit of y(K1,i)
0 is

y
(K1,i)
0,v =

K1,i−1∨
u=0

x(i)
u,v ∧N(i)

u (4.24)

where ∨ is the logic-or operation.

The approach suggested in [90] to find y(K1,i)
1 by the means of a masking circuit can

be extended in this work to find y(K1,i)
n with n = 1, . . . ,W −1 (see Figure4.17). As argued

in [90] the following formulation should ease understanding the underlying idea, even if,
from a formal point of view, it has some redundancy. Let t̂(i)p,q = s(i)

p,q ∧N
(i)
q where (·) is the

logic-not operation and t̂(i)p,q = 1 if x(i)
q > x(i)

p and x(i)
q /= y

K1,i

0 . Then, let M(i) be the array
whose p-th element is

M(i)
p =

K1,i−1∧
q=0,q /=p

t(i)q,p (4.25)

where t(i)q,p = t̂(i)q,p ∨ N(i)
q . If xm is the second maximum value, then M(i) is the one-hot

representation of m and it can be used as the selection signal of a mux-like structure to

72

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

obtain y(K1,i)
1 :

y
(K1,i)
1,v =

K1,i−1∨
u=0

x(i)
u,v ∧M(i)

u (4.26)

as shown in Figs. 4.17 and 4.18. Thus, y(K1,i)
z can be obtained as

y(K1,i)
z,v =

K1,i−1∨
u=0

x(i)
u,v ∧M(i,z)

u (4.27)

where

M(i,z)
u =

K1,i−1∧
q=0,q /=u

t(i,z)q,u (4.28)

and
t(i,z)q,u =

(
t(i,z−1)
q,u ∧M

(i,z−1)
u

)
∨M(i,z−1)

q (4.29)

with t(i,0)
q,u = s(i)

q,u and M(i,0)
q = N(i)

q .

(2) l > 1 comparing stages: As discussed in Section 4.3.2 for comparing stages
at l > 1 the case Kl>1 = 2 worths investigation. Thus, this section concentrates on
comparing stages receiving two sorted arrays each of which contains W elements. Since
all the comparing stages have the same structure, in the following we will refer to the
two sorted arrays input to the i-th comparing stage at l > 1 as y′ and y′′ for the sake
of simplicity. Then, given that y = {y0, y1, . . . , yW−1} is the array containing the first
W maximum values taken from y′, y′′ and Yn = {y′n, y′′n} we have that yn ∈ Y|n0 , where
Y|n0 = ⋃n

r=0 Yr. As a consequence, the architecture to find yn relies on multiplexers that,
based on the output of the comparators, select the correct result. The logic circuit that
combines the output of the comparators to generate the signals to drive the multiplexers
can be derived as described in the following. The possible values of y can be represented
as a tree and, if yn−1 is known, then yn belongs to a subset of Y|n0 . As an example
y1 ∈ Y1

0 = {y′0, y′′0 , y′1, y′′1}, but if y0 = y′′0 then y1 ∈ {y′0, y′′1}. Thus, if fn represents the
choice made at level n in the tree to choose yn (being known yn−1) then the multiplexers
that select yn are driven by a combination of f0, f1, . . . , fn−1. Due to the simmetry of
the problem, we can simplify the tree representation introducing yan, where

a =

 0 if yan = y′n
1 if yan = y′′n

. (4.30)

Thus, if yn−1 = yai with 0 ≤ i ≤ n− 1, then yn ∈ {yai+1, y
a
j} ⊆ Yn0 with j ≤ i. It is worth

noting that once yn−1 is known, then yn belongs to a subset of Yn0 that contains only two
elements. As a consequence, if the sequence f0, . . . , fn−1 is known, then fn is a binary

73

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

mux−like structure

y
K1,i

z,d−1

x
(i)
p,0

y
K1,i
z

y
K1,i

z,0

t
(i,z)
K1,i−2,K1,i−1

x
(i)
K1,i,0

x
(i)
K1,i,d−1

x
(i)
K1,i−1

x
(i)
0

t
(i,z)
1,0t

(i,z)
K1,i−1,0

M
(i,z)
0

t
(i,z)
0,K1,i−1

M
(i,z)
K1,i−1

x
(i)
0,d−1

x
(i)
0,0

M(i,z)
p

t(i,z)q,p

Figure 4.18: Details of the architecture of a comparing stage at l = 1: one-hot signals
and mux-like structure

value that can be represented on a tree as well. Let us define f i,jn as the value taken by
fn when comparing yai and yaj , namely if i < j then f i,jn = sgn(yai − yaj) where sgn(·) is the
sign function. On the other hand, if i = j then we assume

f i,in =

 a if yai ≥ yai
a otherwise

. (4.31)

Thus, in a tree representation the possible y sequences are the paths from the root to
the leaves whereas nodes represent f i,jn , Figure 4.19 shows the tree obtained for W = 5.
The logic circuit to select yn is derived exploring the tree. Depending on the exploration
strategy the multiplexer sequence to select yn changes and the selection circuit changes
accordingly. In Figure 4.20 a possible circuit for W = 5 is shown. As it can be observed,

74

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

ya4

y1

y2

y3

y4

f0

f1

f2

f3

f4

ya0

ya0

ya1

ya2

ya3

ya0

ya0

ya0

ya1

ya1ya2

a

0 1

10aa

1 0 1 0 1

1 1010a0 a

ya1

ya1 ya2

ya1 ya2 ya3

ya1 ya2 ya3

y0

Figure 4.19: Tree representation of the possible y sequences and fn values for W = 5.

the selection circuit for y0 and y1 is the same one proposed in [89] forW = 2. Besides, the
right-most path of the tree in Figure 4.19 is characterized by fn = 1 for n = 1, . . . ,W −1.
As a consequence, yn ∈ {ya0 , yan} is selected by ∧n−1

i=1 fi, so y2 ∈ {ya0 , ya2}, y3 ∈ {ya0 , ya3}
and y4 ∈ {ya0 , ya4} are selected by σ0,2

2 = f1, σ0,3
3 = f2 ∧ f1 = f2 ∧ σ0,2

2 and σ0,4
4 =

f3 ∧ f2 ∧ f1 = f3 ∧ σ0,3
3 respectively. Thus, σ0,n

n = fn−1 ∧ σ0,n−1
n−1 with σ0,2

2 = f1 . Moreover,
the left-most path of the tree in Figure 4.19 shows that σ1,2

3 = f1 ∧ a = f1 ∧ f0 and
σ1,3

4 = f3 ∧ f1 ∧ f0 = f3 ∧ σ1,2
3 select y3 ∈ {ya1 , ya2} and y4 ∈ {ya1 , ya3}. Furthermore, Figure

4.19 shows that y4 ∈ {ya2 , ya2} is reached by three possible paths i) f3∧a∧f1, ii) f3∧a∧f1,
iii) f3 ∧ f2 ∧ f1, that correspond to σ2,2

4 = f3 ∧ (f2 ∨ f1).

75

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

σ
0,3
3

= f2 ∧ f1

σ
2,2
4

= f3 ∧ (f2 ∨ f1)

<

y′
0 y′′

3

0 1

<

y′′
0 y′

3

0 1

1 0

<

y′
1 y′′

2

0 1

<

y′′
1 y′

2

0 1

1 0
f0

1 0

1 0 1 0

<

y′′
0 y′

4

0 1

<

y′
1 y′′

3

0 1

<

y′′
1

0 1

<

y′
0 y′′

4

0 1

<

y′
2 y′′

2

0 1

y′
3

1 0 1 01 0 1 0
f0

0 1 0 1

1 0
σ
0,4
4

= f3 ∧ σ
0,3
3 1 0

y4 f4

<

y′
0 y′′

1

0 1

<

y′′
0 y′

1

0 1

1 0 1 0

<

y′
0 y′′

2

0 1

1 0

<

y′
1 y′′

1

0 1

1 0

f1y1

01 01

y2 f2

f
1,1
2

f
0,2
2

<

y′
0 y′′

0

0 1

y0

f0

<

y′′
0 y′

2

0 1

σ
1,2
3

= f1 ∧ f0

σ
1,3
4

= f3 ∧ σ
1,2
3

1 0

y3 f3

Figure 4.20: Circuit derived from the tree representation in Figure 4.19.

4.4 Experimental Results and Comparisons

Experimental results obtained in the context of i) K-best MIMO detectors, ii) Non-binary
LDPC decoder architectures and iii) Turbo product code architectures are shown and
compared with solutions presented in the literature. Since several works do not give
complete synthesis results, we re-implement the solutions presented in [91, 93, 95, 96] as

76

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

stand-alone units. Moreover, we include the Partial Bitonic (PB) architecture proposed
in [97]. Finally, the SN derived from [75] and proposed in [74] is summarized in the
following paragraphs and included in the comparison as well.

SN review

The SN described in [74] is a special case of sorting network that moves the W largest
values out ofM = 2W inputs to the firstW output lines (2W/W SN). It relies on twoW -
element sorters and a 2W -element pruned-merger, depicted as two solid-line boxes and one
dashed-line box respectively in Figure 4.21 (a). In this work the sorters are implemented as
even-odd Butcher sorting networks [74] and the pruned-merger is made ofW comparators
to select theW largest values. As argued by [74] this network can be extended to the case
M = n ·W by using n− 1 instances of the 2W/W SN. Unfortunately, the W maximum
values obtained with this solution are not sorted. Thus, for a fair comparison with the
proposed BWA architecture the SN is connected to a further W -element sorter. The
general block scheme of the SN is shown in Figure 4.21 (b).

sorter

SN

SN

SN

SN

SN

SN

(b)

(a)

sorter

sorter

W

W

y0
yW−1

x0

x2W−1

x2W

xM−1

xM−2W

x4W−1

2W/W

2W/W

2W/W

2W/W

2W/W

2W/W

W

Figure 4.21: M/W SN general structure.

K-best MIMO detectors

In the K-best MIMO detectors detailed in [91, 96, 98–100], we observe that for 16-QAM
and 64-QAM modulations (Q = 16 and Q = 64) at least 5-best and 10-best nodes (W = 5
and W = 10) are required respectively. Moreover, according to [91, 96, 99, 100] a typical
value for the data width is sixteen bits, N = 16. So, for real-value detectors we have
M = W ·

√
Q, namely M = 20 and M = 80 for 16-QAM and 64-QAM respectively.

77

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

Both the architectures proposed in [91] and [96] deal with a 4×4 64-QAM K-best MIMO
detector. In particular, [91] relies on the bubble-sort approach whereas in [96] tree-sort is
applied.

Non-binary LDPC decoder architectures

The non-binary LDPC decoder architectures proposed in [93,94] deal with codes in GF(32)
and GF(64), that is M = 32 and M = 64 respectively. Moreover, they operate on a
reduced number of messages, at least sixteen, that is W = 16 and we fix the data width
to five bits (N = 5) as in [94].

The bubble check sorter proposed in [93] relies on a simplified extended min-sum
(EMS) algorithm for check node processing that reduces the EMS original complexity from
the order of W 2 to the order of W

√
W . In [101] it is implemented in several sequential

rounds. On the other hand, in this current work, following the original description in [93]
we implemented it as parallel architecture relying of a matrix structure. It is worth
pointing out that, since the data in each row of the matrix described in [93] are supposed
to be in order, our re-implementation of the bubble-check architecture has been equipped
with a pre-sorting circuit. In [94], a reduced complexity sorter for the check node unit
of a non-binary LDPC decoder is proposed. However, such an architecture relies on dc

rounds, where the M inputs are sliced and analyzed sequentially round by round. Since
in this current work we deal with parallel sorting only, the architecture proposed in [94]
is not considered in the comparison.

Turbo product code architectures

In the Chase-Pyndiah algorithm [83] a selection of the least reliable bits is necessary. As
an example, in [95] a parallel implementation of turbo product codes that requires parallel
partial sorting is addressed. Thus, in this section results for M = 32,64 and W = 3,4 are
presented. The data width is five bits, N = 5, as in [95].

Comparisons

The BWA, FPCG and PS architectures, as well as the reference architectures in [74,91,93,
95–97] are all described in VHDL, simulated with ModelSim, synthesized using Synopsys
Design Compiler, then placed and routed using Cadence SoC Encounter on a TSMC 90
nm CMOS standard-cell technology (where the area of a two-input NAND gate is 2.82
µm2). Thanks to its scalability the BWA architecture can be easily adapted to the whole
range of M , W and N values of the three considered applications. In Table 4.1 area (A)
and critical path delay (C) for each architecture are compared. As it can be observed, the

78

4 – High Speed VLSI architecture for finding the first W maximum/minimum values

Table 4.1: Post place and route results comparing area (A) [µm2], critical path delay (C) [ns] and
area-delay-product (P=A·C) [mm2 · ns] for different architectures.

K-best MIMO detectors Non-binary LDPC decoder Turbo product code
M , W , N M , W , N M , W , N M , W , N M , W , N M , W , N
20, 5, 16 80, 10, 16 32, 16, 5 64, 16, 5 32, 3, 5 64, 4, 5
A C A C A C A C A C A C

P P P P P P

SN [74] 34043 10.6 254977 42.78 28932 23.36 65988 39.27 14597 6.24 33213 10.61
0.36 10.91 0.68 2.59 0.09 0.35

PB [97] 43286 10.8 305753 38.06 22068 7.31 55267 10.54 19507 6.35 52778 10.20
0.47 11.64 0.16 0.58 0.12 0.54

[91] 33484(a) 19.68(a) 93171 40.98 - - - - - - - -
0.66(a) 3.82 - - - -

[96] 62221(a) 15.13(a) 406108 45.35 - - - - - - - -
0.94(a) 18.42 - - - -

[93] - - - - 29735(b) 37.96(b) 47157(b) 40.86(b) - - - -
- - 1.13(b) 1.93(b) - -

BWA 9345 16.92 29880 47.51 6153 36.29 9793 40.59 4562 6.72 8510 10.28
0.16 1.42 0.22 0.40 0.03 0.09

FPCG 67913 2.89 1532464 10.35 234952 7.50 943145 12.27 45815 2.21 349082 3.60
0.20 15.86 1.76 11.57 0.10 1.26

PS 28015 4.03 193024 11.32 44690 6.40 84655 9.45 8105 2.41 24892 3.64
0.11 2.19 0.29 0.80 0.02 0.09

(a) Obtained by extending the architecture to the test case.
(b) Obtained by adding a pre-sorting circuit.

proposed BWA architecture features the lowest complexity among the solutions compared
in Table 4.1. The area of the BWA architecture is indeed less than half the area of the
reference solutions and in the worst case it is about half the complexity of PS architecture.
Besides, the critical path delay of the BWA architecture is almost comparable with that
of other implementations. Moreover, if we compute the area-delay-product (P=A·C), the
proposed BWA architecture is comparable with the PS architecture and is better than
most of the other compared solutions. Further experiments adding pipelining have shown
proportional throughput increase and an area overhead of BWA architectures always less
than 35%. As for FPCG architecture, compared to the best reference architecture it has an
overwhelming advantage on the speed which achieves 3.6 times faster on average and even
5.2 times faster at best, but its hardware cost is rather large. Finally the PS architecture
extended from the work in [95] achieves a good balance on the timing performance and
area, which has a comparable speed with FPCG architecture and a acceptable hardware
cost.

79

Chapter 5

Conclusion

Currently full HD video prevails widely and ultra HD content is of growing popular-
ity. Furthermore, according to visual networking index [102], by 2020, video content is
expected to cause more than 75% of the global mobile data traffic. Whereas network
bandwidth is still a valuable commodity. Consequently the efficiency of video coding has
a significant impact on the transmission and storage costs. Thus developing video codecs
of high performance and efficiency along with the newest video coding standard, HEVC,
is of great meaning. In this thesis work, the main concerning is on the computational
complexity reduction and improvement of timing performance of motion estimation algo-
rithms for HEVC and the implementation and optimization of their VLSI architectures.

5.1 Contributions

1. A new SAD computing architecture is developed to alleviate the computational load
of full search for ME algorithm. The results of simulation shows that the proposed
architecture can reduce up to 70% of the computations with respect to the original
FS algorithm with an imperceptible bit-rate increase and PSNR loss.

2. An enhanced TZ Search algorithm is explored with new strategy of multiple initial
search centers and shared MVP on CU-level. It achieves a reduction of about 5% on
the whole encoding time with negligible bit-rate increment and video quality degra-
dation. Additionally the hardware implementation of the proposed architecture
employs several parallelization mechanisms including parallel ME engines for PUs
within a CU based on the shared MVP strategy, parallel initial searching centered
at multiple MVPs, and the parallelized SAD calculating tree for PU size 32×32.
Hence, with these parallelized components the proposed architecture is expected to
obtain an appreciable improvement on throughput and encoding efficiency.

80

5 – Conclusion

3. Three VLSI architectures are explored for finding the first W maximum/minimum
values: the BWA architecture is based on the novel bit-wise AND scheme; the PS
and FPCG architectures utilize the optimized comparator-based structure. Exper-
imental results exhibit that, the BWA architecture has a very low hardware cost
which is half of the area of the reference solutions in the worst case and its critical
path delay is almost comparable with other implementations. As for FPCG archi-
tecture, compared to the reference architectures, it has an overwhelming advantage
on the speed which achieves 3.6 times faster on average and even 5.2 times faster
at best, but its hardware cost is rather large. Finally the PS architecture achieves
a good balance on the timing performance and area, which has a slightly lower or
comparable speed with FPCG architecture and a acceptable hardware cost.

5.2 Future Work

The enhanced TZ search algorithm has been simulated in the HEVC test model and hard-
ware implementation is almost finished. In the following the verification, synthesis and
physical design will be carried out to evaluate its hardware performance. Moreover the
proposed new SAD computing structure can be combined in the enhanced TZ search ar-
chitecture, with some optimization it is expected to further improve the coding efficiency.
Since in the new SAD calculating strategy the sum of block of pixels is required, it can be
applied in the embedded compression (EC) algorithm [103] for reducing memory band-
width. Thus it will save the computations for summing of pixels which is also necessary
in EC algorithm.

81

Bibliography

[1] G. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high efficiency
video coding (hevc) standard,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 22, no. 12, pp. 1649–1668, Dec 2012.

[2] I. E. Richardson, The H.264 Advanced Video Compression Standard, 2nd Edition.
Wiley, 2010, ISBN: 9780470516928.

[3] P. Helle, S. Oudin, B. Bross, D. Marpe, M. O. Bici, K. Ugur, J. Jung, G. Clare,
and T. Wiegand, “Block merging for quadtree-based partitioning in hevc,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp.
1720–1731, Dec 2012.

[4] A. V. Paramkusam and V. S. K. Reddy, “The efficient optimal and suboptimal
motion estimation algorithms,” Signal, Image and Video Processing, vol. 9, no. 6,
pp. 1265–1270, Sep 2015.

[5] A. M. Tekalp, Digital Video Processing. Prentice Hall, 1995, ISBN: 0131900757.
[6] A. C. Bovik, Handbook of Image and Video Processing. Academic Press, 2000,

ISBN: 0121197905.
[7] EBU, “High definition (hd) image formats for television production,” EBU TECH

3299, pp. 1–10, 2010.
[8] S. Westland, “Models of the visual system and their application to image-quality

assessment,” in 10th Congress of the International Colour Association, Mar 2005,
pp. 8–13.

[9] R. Hoffman, Data compression in digital Systems. Chapman Hall, 1997.
[10] Y. Wang, J. Ostermann, and Y. Zhang, Video Processing and Communications.

Prentice Hall, 2002, ISBN: 0130175471.
[11] A. Rosenfeld, Picture Processing by Computer. Academic Press, 1969.
[12] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards -

Algoritms and Architectures. Kluwer Academic Publishers, 1997.
[13] C. A. Poynton, Digital Video and HDTV. Morgan Kaufmann, 2003, ISBN:

1558607927.

82

Bibliography

[14] ITU-T, “Video codec for audiovisual services at p×64 kbits/s,” in ITU-T Recom-
mendation H.261, Version 2, 1993.

[15] ITU-T and ISO/IEC-JTC1, “Generic coding of moving pictures and associated
audio information part 2: Video,” in ITU-T recommendation H.262 and ISO/IEC
13818-2 (MPEG-2), 1994.

[16] ITU-T, “Video coding for low bit rate communications,” in ITU-T Recommendation
H.263, Version 2, 1998.

[17] ISO/IEC, “Coding of audiovisual objects part 2: Visual,” in ISO/IEC 14496-2
(MPEG-4), 1999.

[18] ITU, “Advanced video coding for generic audiovisual services,” in ITU-T recom-
mendation H.264, Nov 2007.

[19] ——, “High efficiency video coding,” in ITU-T recommendation H.265, Nov 2007.
[20] B. Bross, W. J. Han, G. J. Sullivan, J. R. Ohm, and T. Wiegand, “High efficiency

video coding (hevc) text specification draft 9,” in document JCTVC-K1003, ITU-
T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC), Oct 2012.

[21] JVT-G050, “Draft itu-t recommendation and final draft international standard of
joint video specification,” in ITU-T Rec. H.264/ISO/IEC 14-thinsp, 496-10 AVC,
2003.

[22] V. Sze, M. Budagavi, and G. J. Sullivan, High Efficiency Video Coding (HEVC):
Algorithms and Architectures. Springer, 2014, ISBN: 9783319068947.

[23] J. L. Lin, Y. W. Chen, Y. P. Tsai, Y. W. Huang, and S. Lei, “Motion vector coding
techniques for hevc,” in IEEE 13th International Workshop on Multimedia Signal
Processing (MMSP), Oct 2011, pp. 1–6.

[24] N. Purnachand, L. Alves, and A. Navarro, “Fast motion estimation algorithm for
hevc,” in IEEE International Conference on Consumer Electronics, Sep 2012, pp.
34–37.

[25] M. E. Sinangil, A. P. Chandrakasan, V. Sze, and M. Zhou, “Hardware-aware motion
estimation search algorithm development for high-efficiency video coding (hevc)
standard,” in 19th IEEE International Conference on Image Processing, Oct 2012,
pp. 1529–1532.

[26] ——, “Memory cost vs. coding efficiency trade-offs for hevc motion estimation en-
gine,” in 19th IEEE International Conference on Image Processing, Oct 2012, pp.
1533–1536.

[27] Z. Chen, P. Zhou, and Y. He, “Fast motion estimation for jvt,” in Joint Video Team
(JVT) of ISO/IEC MPEG ITU-T VCEG document JVTG016, Mar 2013.

[28] X. Yi, J. Zhang, N. Ling, and W. Shang, “Improved and simplified fast motion
estimation for jm,” in Doc. JVT-P021, 16th JVT meeting, Jul 2005.

83

Bibliography

[29] A. Tourapis, “Enhanced predictive zonal search for single and multiple frame motion
estimation,” in Proceedings of the Visual Communication Image Processing, Jan
2002, pp. 1069–1079.

[30] X. Xu and Y. He, “Comments on motion estimation algorithms in current jm soft-
ware,” in Joint Video Team (JVT) of ISO/IEC MPEG ITU-T VCEG document
JVT-Q089, 17th JVT meeting, Oct 2005.

[31] Y. Ko, H. Kang, and S. Lee, “Adaptive search range motion estimation using neigh-
boring motion vector differences,” IEEE Transactions on Consumer Electronics,
vol. 57, no. 2, pp. 726–730, May 2011.

[32] W. Dai, O. Au, S. Li, L. Sun, and R. Zou, “Adaptive search range algorithm based
on cauchy distribution,” in IEEE Visual Communications and Image Processing,
Nov 2012, pp. 1–5.

[33] X. Lu and C. Xiao, “A new strategy to predict the search range in h.264/avc,” in
IEEE International Conference on Multimedia and Expo, Jun 2009, pp. 21–24.

[34] Z. Chen, Q. Liu, T. Ikenaga, and S. Goto, “A motion vector difference based on
self-incremental adaptive search range algorithm for variable block size motion es-
timation,” in 15th IEEE International Conference on Image Processing, Oct 2008,
pp. 1988–1991.

[35] Z. Shi, W. Fernando, and A. Kondoz, “Adaptive direction search algorithms based
on motion correlation for block motion estimation,” IEEE Transactions on Con-
sumer Electronics, vol. 57, no. 3, pp. 1354–1361, May 2011.

[36] A. K. Z. Shi, W.A.C. Fernando, “An efficient fast motion estimation in h.264/avc
by exploiting motion correlation character,” in IEEE International Conference on
Computer Science and Automation Engineering (CSAE), May 2012, pp. 298–302.

[37] C. M. Kuo, Y. H. Kuan, C. H. Hsieh, and Y. H. Lee, “A novel predictionbased
directional asymmetric search algorithm for fast blockmatching motion estimation,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 6,
pp. 893–899, Jun 2009.

[38] X. Bao, D. Zhou, P. Liu, and S. Goto, “An advanced hierarchical motion estimation
scheme with lossless frame recompression and earlylevel termination for beyond
high-definition video coding,” IEEE Transactions on Multimedia, vol. 14, no. 2, pp.
237–249, Apr 2012.

[39] M. Sarwer and Q. Wu, “Adaptive variable block-size early motion estimation ter-
mination algorithm for h.264/avc video coding standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 19, no. 8, pp. 1196–1201, Jun 2009.

[40] N. Purnachand, L. Alves, and A. Navarro, “Improvements to tz search motion
estimation algorithm for multiview video coding,” in IEEE International Workshop

84

Bibliography

on Systems Signals and Image Processing, Apr 2012, pp. 388–391.
[41] C. M. Kuo, Y. H. Kuan, C. H. Hsieh, and Y. H. Lee, “A new search algorithm based

on multi-octagon-grid,” in the 2nd International Congress on Image and Signal
Processing, Oct 2009, pp. 1–5.

[42] K. H. Ng, L. M. Po, K. M. Wong, C. W. Ting, and K. W. Cheung, “A search
patterns switching algorithm for block motion estimation,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 19, no. 5, pp. 753–759, May 2009.

[43] A. Tourapis, O. Au, and M. Liou, “Predictive motion vector field adaptive search
technique (pmvfast): Enhancing block based motion estimation,” in SPIE Confer-
ence on Visual Communication and Image Processing, Jan 2001, pp. 883–892.

[44] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion compensated
interframe coding for video conferencing,” in National Telecommunication Confer-
ence, 1981, pp. C9.6.1–C9.6.5.

[45] S. Zhu and K. Ma, “A new diamond search algorithm for fast block matching motion
estimation,” in International conference on information, communications and signal
processing, Sep 197, pp. 292–296.

[46] J. Tham, S. Ranganath, M. Ranganath, and A. Kassim, “A novel unrestricted
center-biased diamond search algorithm for block motion estimation,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 8, no. 4, pp. 369–377,
1998.

[47] L. Torres and M. Kunt, Video Coding: The Second Generation Approach. Springer,
1996, ISBN: 9780792396802.

[48] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compres-
sion,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74–90, Nov 1998.

[49] S. Metkar and S. Talbar, Motion Estimation Techniques for Digital Video Coding.
Springer, 2013, ISBN: 9788132210962.

[50] D. Wackerly, W. Mendenhall, and R. L.Scheaffer, Mathematical Statistics with Ap-
plications. Thomson Higher Education, 2008, ISBN: 0495385085.

[51] E. Deza and M. M. Deza, Encyclopedia of Distances. Springer, 2009, ISBN:
9783662443415.

[52] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Comparison
of the coding efficiency of video coding standards including high efficiency video
coding (hevc),” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 22, no. 12, pp. 1669–1684, Dec 2012.

[53] K. McCann, B. Bross, W. J. Han, I. K. K. K. Sugimoto, and G. J. Sullivan, “High
efficiency video coding (hevc) test model 13 (hm 13) encoder description,” in Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-O1002, Oct

85

Bibliography

2013.
[54] P. Hanhart, M. Rerabek, F. D. Simone, and T. Ebrahimi, “Subjective quality eval-

uation of the upcoming hevc video compression standard,” in Proc. SPIE. 8499,
Applications of Digital Image Processing XXXV, Oct 2012, p. 84990V.

[55] F. Bossen, “Common test conditions and software reference configurations,” in Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-L1110, Jan
2014.

[56] T. Wiegand and H. Schwarz, Source Coding: Part I of Fundamentals of Source and
Video Coding. now publishers, 2011, ISBN: 9781601984081.

[57] K. Sayood, Introduction to Data Compression. Elsevier, 2005, ISBN:
9780126208627.

[58] ——, Digital Image Processing. Prentice Hall, 2008, ISBN: 9780131687288.
[59] J. H. Jeong, N. Parmar, and M. H. Sunwoo, “Enhanced test zone search algorithm

with rotating pentagon search,” in International SoC Design Conference (ISOCC),
Nov 2015, pp. 275–276.

[60] N. Parmar and M. H. Sunwoo, “Enhanced test zone search motion estimation algo-
rithm for hevc,” in International SoC Design Conference (ISOCC), Nov 2014, pp.
260–261.

[61] X. Li, R. Wang, X. Cui, and W. Wang, “Context-adaptive fast motion estimation
of hevc,” in IEEE International Symposium on Circuits and Systems (ISCAS), May
2015, pp. 2784–2787.

[62] D. T. Nghia, T. S. Kim, H. J. Lee, and S. I. Chae, “A modified tz search algorithm
for parallel integer motion estimation in high efficiency video coding,” in 19th In-
ternational Conference on Systems, Signals and Image Processing (IWSSIP), Nov
2015, pp. 97–98.

[63] N. Purnachand, L. N. Alves, and A. Navarro, “Complexity reduction methods for
fast motion estimation in hevc,” Signal Processing: Image Communication, vol. 39,
no. Part A, pp. 280–292, Nov 2015.

[64] A. Behnaz, S. Reza, and T. Manuchehr, “Optimized predictive zonal search (opzs)
for block-based motion estimation,” Signal Processing: Image Communication, vol.
39 Part A, pp. 293–304, Nov 2015.

[65] ITU-T and ISO/IEC-JTC-1, “Advanced video coding for generic audiovisual ser-
vice,” in ITU-T and ISO/IEC JTC 1 Recommendation H.264 and ISO/IEC 14
496-10(MPEG-4) AVC, 2003.

[66] K. McCann, “Samsung’s response to the call for proposals on video compression
technology,” in JCTVC A124, 1th JCT-VC Meeting, Apr 2010, pp. 15–23.

86

Bibliography

[67] A. Fujibayashi, “Simplified motion vector prediction,” in JCT-VC D231, 4th Meet-
ing, Jan 2011, pp. 20–28.

[68] B. Bross, “Mv coding and skip/merge operations,” in JCT-VC E481, 5th Meeting,
Mar 2011, pp. 16–23.

[69] T. Sugio, “Parsing robustness for merge/amvp,” in JCT-VC F470, 6th Meeting, Jul
2011, pp. 14–22.

[70] B. Bross, “High efficiency video coding (hevc) text specification draft 6,” in JCTVC-
H1003, 8th JCT-VC Meeting, Feb 2012, pp. 1–10.

[71] L. Zhao, X. Guo, S. Lei, S. Ma, D. Zhao, and W. Gao, “Non-ce9: Simplification of
amvp,” in JCTVC-H0316, 8th JCT-VC Meeting, Feb 2012, pp. 1–10.

[72] F. Bossen, “Common test conditions and software reference configurations,” in
JCTVC-H1100, 8th JCT-VC Meeting, Feb 2012, pp. 1–10.

[73] Q. Yu, L. Zhao, and S. Ma, “Parallel amvp candidate list construction for hevc,” in
Visual Communications and Image Processing (VCIP), Nov 2012, pp. 1–6.

[74] D. E. Knuth, The Art of Computer Programming. Addison-Wesley, 1998, vol. 3 -
Sorting and Searching.

[75] V. E. Alekseyev, “Sorting algorithms with minimum memory,” Kibernetica, 5, pp.
99–103, 1969.

[76] S. Papaharalabos, P. T. Mathiopoulos, G. Masera, and M. Martina, “Novel non-
recursive max* operator with reduced implementation complexity for turbo decod-
ing,” IET Communications, vol. 6, no. 7, pp. 702–707, Jul 2012.

[77] M. Martina, S. Papaharalabos, P. T. Mathiopoulos, and G. Masera, “Simplified
Log-MAP algorithm for very low-complexity turbo decoder hardware architectures,”
IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 3, pp. 531–
537, Mar 2014.

[78] F. Guilloud, E. Boutillon, and J. L. Danger, “λ-min decoding algorithm of regu-
lar and irregular LDPC codes,” in International Symposium on Turbo Codes and
Related Topics, 2003, pp. 451–454.

[79] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X. Y. Hu, “Reduced-
complexity decoding of LDPC codes,” IEEE Transactions on Communications,
vol. 53, no. 8, pp. 1288–1299, Aug 2005.

[80] S. Zezza, S. Nooshabadi, and G. Masera, “A 2.63 Mbit/s VLSI implementation of
SISO arithmetic decoders for high performance joint source channel codes,” IEEE
Transactions on Circuits and Systems I, vol. 60, no. 4, pp. 951–964, Apr 2013.

[81] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best sphere de-
coding for MIMO detection,” IEEE Journal on Selected Areas in Communications,
vol. 24, no. 3, pp. 491–503, Mar 2006.

87

Bibliography

[82] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes
over GF(q),” IEEE Transactions On Communications, vol. 55, no. 4, pp. 633–643,
Apr 2007.

[83] R. M. Pyndiah, “Near-optimum decoding of product codes: block turbo codes,”
IEEE Transactions On Communications, vol. 46, no. 8, pp. 1003–1010, Aug 1998.

[84] K. Gunnam, G. Choi, and M. Yeary, “A parallel VLSI architecture for layered de-
coding for array LDPC codes,” in IEEE International Conference on VLSI Design,
2007, pp. 738–743.

[85] D. Oh and K. K. Parhi, “Min-sum decoder architectures with reduced word length
for LDPC codes,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 1, pp.
105–115, Jan 2010.

[86] C. Condo, M. Martina, and G. Masera, “VLSI implementation of a multi-mode
turbo/LDPC decoder architecture,” IEEE Transactions on Circuits and Systems I,
vol. 60, no. 6, pp. 1441–1454, Jun 2013.

[87] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding
of low-density parity check codes based on belief propagation,” IEEE Transactions
on Communications, vol. 47, no. 5, pp. 673–680, May 1999.

[88] E. Li, D. Declercq, and K. Gunnam, “Trellis-based extended min-sum algorithm
for non-binary LDPC codes and its hardware structure,” IEEE Transactions on
Communications, vol. 61, no. 7, pp. 2600–2611, Jul 2013.

[89] C. L. Wey, M. D. Shieh, and S. Y. Lin, “Algorithms of finding the first two minimum
values and their hardware implementation,” IEEE Transactions on Circuits and
Systems I, vol. 55, no. 11, pp. 3430–3437, Dec 2008.

[90] L. G. Amarù, M. Martina, and G. Masera, “High speed architectures for finding the
first two maximum/minimum values,” IEEE Transactions on VLSI systems, vol. 20,
no. 12, pp. 2342–2346, Dec 2012.

[91] M. Shabany and P. G. Gulak, “A 675 mbps, 4x4 64-QAM K-Best MIMO detector in
0.13 um CMOS,” IEEE Transactions on VLSI systems, vol. 20, no. 1, pp. 135–147,
Jan 2012.

[92] B. Wu and G. Masera, “Efficient VLSI implementation of soft-input soft-output
fixed-complexity sphere decoder,” IET Communications, vol. 6, no. 9, pp. 1111–
1118, Sep 2012.

[93] E. Boutillon and L. Conde-Canencia, “Bubble check: a simplified algorithm for ele-
mentary check node processing in extended min-sum non-binary LDPC decoders,”
IET Electronics Letters, vol. 46, no. 9, pp. 633–634, Apr 2010.

[94] X. Zhang and F. Cai, “Reduced-complexity decoder architecture for non-binary
LDPC codes,” IEEE Transactions on VLSI systems, vol. 19, no. 7, pp. 1229–1238,

88

Bibliography

Jul 2011.
[95] C. Leroux, C. Jego, P. Adder, M. Jezequel, and D. Gupta, “A highly parallel turbo

product code decoder without interleaving resource,” in IEEE Workshop on Signal
Processing Systems, 2008, pp. 1–6.

[96] P. Tsai, W. Chen, X. Lin, and M. Huang, “A 4*4 64-qam reduced-complexity k-best
mimo detector up to 1.5gbps,” in IEEE International Symposium on Circuits and
Systems, 2010, pp. 3953–3956.

[97] K. Gunnam, G. Choi, W. Wang, and M. Yeary, “Parallel VLSI architecture for
layered decoding,” Texas A&M University, Tech. Rep., May 2007, available online
at http://dropzone.tamu.edu/TechReports.

[98] Y. Sun and J. R. Cavallaro, “Low-complexity and high-performance soft MIMO de-
tecion based on distributed M-algorithm through trellis-diagram,” in IEEE Interna-
tional Conference on Acoustics, Speach and Signal Processing, 2010, pp. 3398–3401.

[99] D. Patel, V. Smolyakov, M. Shabany, and P. G. Gulak, “VLSI implementation
of a WiMAX/LTE compliant low-complexity high-throughput soft-output K-Best
MIMO detector,” in IEEE International Symposium on Circuits and Systems, 2010,
pp. 593–596.

[100] T. Kim and I. Park, “Small-area and low-energy K-Best MIMO detector using
relaxed tree expansion and early forwarding,” IEEE Transactions on Circuits and
Systems I, vol. 57, no. 10, pp. 2753–2761, Oct 2010.

[101] E. Boutillon, L. Conde-Canencia, and A. Al-Ghouwayel, “Design of a GF(64)-LDPC
decoder based on the EMS algorithm,” IEEE Transactions on Circuits and Systems
I, vol. 60, no. 10, pp. 2644–2656, Oct 2013.

[102] “Infographic: Cisco visual networking index global mobile data traf-
fic forecast update (2015-2020),” Tech. Rep., Feb 2016, available On-
line: http://www.cisco.com/c/dam/en/us/solutions/service-provider/vni-service-
adoption-forecast/index.html.

[103] J. Kim and C. M. Kyung, “A lossless embedded compression using significant bit
truncation for hd video coding,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 20, no. 6, pp. 848–860, Jun 2010.

89

	Summary
	Acknowledgements
	Introduction
	General Video Coding System
	Basics of Digital Video Coding
	Hybrid Video Coding

	Overview of Current Video Coding Standard: HEVC
	Partitioning
	Intra-frame Prediction
	Inter-frame Prediction
	Transform and Quantization
	Entropy Coding

	Motion Estimation Algorithms
	Three Step Search
	Diamond Search

	Major Contributions
	Organization of the Dissertation

	A New SAD Computing Algorithm for Full Search Motion Estimation
	ME Distortion Measure Criterion
	The New SAD Computing Algorithm
	A New Strategy to Calculate the SAD
	The New SAD architecture to accelerate the FS ME algorithm
	Rate-Distortion Performance Evaluation with HM Test Model

	Hardware Implementation
	Summary

	An Enhanced TZ (Test Zone) Search Algorithm for Fast Motion Estimation of HEVC
	Introduction of TZ Search Algorithm
	An Enhanced TZ Search using Parallelized Strategy
	Multiple Initial Search Centers
	Parallel ME Engines using Shared AMVP
	Hardware Implementation
	Experimental Results

	Summary

	High Speed VLSI architecture for finding the first W maximum/minimum values
	Introduction
	A Radix-sort-based VLSI Architecture with Low Cost
	Problem formulation and the BWA Algorithm
	Completed BWA Architecture

	Comparator-based VLSI Architectures with High Speed
	The Architecture of Partial Sorting (PS)
	The Architecture using Fully Parallellized Comparision Grid (FPCG)

	Experimental Results and Comparisons

	Conclusion
	Contributions
	Future Work

	Bibliography

