
POLITECNICO DI TORINO
SCUOLA DI DOTTORATO

Dottorato in INGEGNERIA INFORMATICA E DEI SISTEMI – XXVIII ciclo

Tesi di Dottorato

Fault Tolerant Electronic System Design

Boyang Du

Tutore Coordinatore del corso di dottorato
Prof. Luca Sterpone Prof. Matteo Sonza Reorda

Maggio 2016

Summary

Due to technology scaling, which means reduced transistor size, higher density, lower volt-
age and more aggressive clock frequency, VLSI devices may become more sensitive against
soft errors. Especially for those devices used in safety- and mission-critical applications,
dependability and reliability are becoming increasingly important constraints during the
development of system on/around them. Other phenomena (e.g., aging and wear-out ef-
fects) also have negative impacts on reliability of modern circuits. Recent researches show
that even at sea level, radiation particles can still induce soft errors in electronic systems.

Online error detection and Board-level functional test in
processor-based system

On one hand, processor-based system are commonly used in a wide variety of applications,
including safety-critical and high availability missions, e.g., in the automotive, biomedical
and aerospace domains. In these fields, an error may produce catastrophic consequences.
Thus, dependability is a primary target that must be achieved taking into account tight
constraints in terms of cost, performance, power and time to market. Several solutions
exist, acting either on hardware or software: however, they all have to face the high efforts
required for designing, manufacturing, testing and qualifying processor-based systems.
While standards and regulations (e.g., ISO-26262, DO-254, IEC-61508) clearly specify the
targets to be achieved and the methods to prove their achievement. In this scenario, tech-
niques working at system level (i.e., without changing the technology and the processor)
are particularly attracting, especially if they can effectively meet dependability needs more
efficiently without changes in the existing hardware and software.

Approaches to detect soft errors in processor-based systems are traditionally divided
in techniques that deal with faults affecting the data and faults affecting the execution
flow of the software application. For the faults affecting the data, to detect and eventually
correct such errors in the data, i.e. Data Error, either detection and correction strategies
can be applied to the data memory itself, such as the Error Correction Coding (ECC), or
the software or hardware (or both) needs to be modified so that certain redundancy could
be applied, for example, variable duplication plus the instructions for checking data in
the software. While for the faults affecting the execution flow, although part of them are
overlapped with the faults affecting the data, for example, the faults corrupting variable
used in branch instruction, the rest them are difficult to handle, such as the faults affecting

ii

the registers used in the pipeline of the processor. For mitigating soft errors affecting the
execution flow, i.e. Control Flow Error (CFE), traditional Triple Modular Redundancy
(TMR) could be an effective solution when it is applied at gate level of the processor, in
case the netlist of the target processor is available, which is usually not the case when
Commercial Off The Shelf (COTS) component is used, let alone the cost it introduces for
verification of compliance to the standards and regulations as mentioned above, since the
processor’s hardware is modified. Avoiding the huge hardware overhead caused by TMR if
applied at system level (>200%), solutions have been proposed to firstly detect the CFE
either with extra instructions inserted into software or an extra component monitoring the
processor (e.g. a watchdog processor); and then correction of CFE could be done either
simply reset the processor or replying on further software techniques such as checkpoint
rollback depending on the nature and requirement of workload for the processor. This
work mainly focuses on online test for detecting CFEs in the first part, a hybrid solution is
discussed afterwards. Since there already exists debug interface in many processors (stan-
dalone or cores), assisting designer for debugging hardware/software at different stages,
which can provide information of the software running on the processor in a non-intrusive
way (e.g., the debug interface in LEON3 processor), an external hardware module, namely
CFC module, was proposed to be attached to the processor through debug/trace interface,
to extract the information and monitor the execution of the software on the processor.

With the debug interface in the processor as LEON3, the CFC module is able to extract
executed instructions and the corresponding Program Counter (PC) value. Meanwhile the
software running on the processor can be divided into Basic Blocks (BBs), in which all
the instruction will be executed sequentially without branch or jump instructions. The
main idea behind the CFC module is to calculate the signature of each BB executed by
the processor and compare it with the signature previously stored in the table, namely
CFC Signature Table in side the CFC module.

The CFC module is greatly smaller than the processor itself in terms of area con-
sumption. With data from simulation-based fault injection campaign on both LEON3
and miniMIPS processor with several benchmark applications, the proposed CFC mod-
ule proved to be a non-intrusive, effective way for detecting CFEs without modifying the
software and processor implementation.

As the CFC module focuses only on the CFEs, a hybrid technique was proposed with
dual control flow monitoring to detect soft errors, together with a software-based technique
targeting on Data Errors.

The hybrid technique consists of an external Hardware Monitor (HM) that also at-
taches to the debug/trace interface of the processor for extracting the same information as
in CFC module. However, the HM also monitors the communication between the proces-
sor and the memory on the system bus. By extracting the processor’s reading address sent
to memory component, and the data it retrieves, the HM is able to get the input stream of
the instructions fetched by the processor; and the information from the debug/trace inter-
face provides the output stream of the instructions executed by the processor. Inside the
HM, the input and output instruction streams are carefully synchronized and compared
to detect occurrence of CFE, and a part of Data Error is also covered in this way, and
in order to achieve full coverage including the Data Errors, a software-based technique,

iii

combining "Dataflow duplication" and "inverted branches" is applied.

The fault injection campaign, emulating effects of Single Event Upset and Single Event
Transient, was carried out, and the results verified the high fault coverage the hybrid
technique can achieve, with a small hardware overhead.

To further exploit the existing debug interface in the processor for testing purpose,
Printed Circuit Board Assembly (PCBA) Power-On Self-Test (POST) was investigated for
finding feasible solution to increase processor’s observability. POST plays an important
role in many systems, since it may detect faults arising during the life time of the product,
thus increasing its dependability. POST may use different solutions, which should match
the constraints of the environment the system is deployed in.

Functional test represents a commonly adopted solution for POST. More in general,
functional test is adopted in many scenarios, at the device, board and system levels.
In some of them it complements other test steps, performed resorting to Design For
Testability (DFT). The importance of this kind of defects is significantly increasing in the
last years, especially since they are considered one of the major contributors for Non Failure
Found (NFF), thus raising the interest for any solution able to improve the achievable
defect coverage.

A Monitoring IP was proposed which can be mapped to a FPGA device on board,
which is able to be configured to connect to the debug interface of the target processor
on board (test for other devices on board is out scope of this work, and can resort other
specific methods). For concept evaluation, the CoreSight Trace Infrastructure available in
processors from ARM was used, which is able to provide various information related to
execution of the software, such as target address of a branch instruction and information
of an exception. A Monitoring IP was developed on Zynq device from Xilinx, which equips
a single chip integrated an ARM Coretex-A9 dual core processor and FPGA device. By
a demo project implement on Zynq device with the Monitoring IP validated that it is
feasible for such an external module resides in the FPGA, monitoring the processor while
a test program is being executed, to increase the observability of the processor for POST.

Since lacking of detailed information about the structure of the ARM processor clearly
prevents us from computing the increase in defect coverage that can be achieved using our
solution, fault simulation experiments were executed on a MIPS-like processor for which
the model is available. The same information produced by the ARM debug interface is
extracted from this processor during the execution of the test, and the achieved fault cov-
erage is computed. Results show the effectiveness of the proposed solution. Interestingly,
they demonstrate that the stuck-at fault coverage that can be achieved is comparable with
the one reachable using a corresponding test program in a scenario where all the processor
outputs can be continuously monitored.

iv

Single Event Effects analysis and mitigation on Field
Programmable Gate Array

On the other hand, Field Programmable Gate Array (FPGA) devices are becoming more
and more attractive, also in safety- and mission-critical applications due to the high per-
formance, low power consumption and the flexibility for reconfiguration they provide. Two
types of FPGAs are commonly used, based on their configuration memory cell technology,
i.e., SRAM-based and Flash-based FPGA. Besides the hardware resources for I/O, clock
managing and on-chip memory etc., FPGA device can be modeled as an matrix of Logic
Block and Switch Box connected by interconnection segments of various lengths. The
Logic Block contains configuration logic resources such as Look Up Table (LUT), Multi-
plexes and Flip-Flops for implementing different user logic functions. While the Switch
Box (or Switch Matrix) contains programmable interconnection segments user can config-
ure as active or inactive to form different interconnection networks among Logic Blocks
and other hardware resources for routing of the implemented design. And the configura-
tion memory of FPGA device holds the configuration data of all the resources to be used in
the design, including the Logic Blocks and Switch Boxes. When the FPGA device is used
in harsh environment, such as in space and avionic applications, fault tolerant strategies
must be applied as highly charged particles could induce Single Event Effects (SEEs) in
configuration memory and/or user logic leading to system misbehavior.

For SRAM-based FPGA, since SRAM cells are highly susceptible to radiation induced
effects and one bit corruption inside the configuration memory may leads to drastic change
in the logic mapped on the FPGA, certain fault tolerant strategy needs to be applied when
SRAM-based FPGA is used especially in safety- and mission-critical applications. Tradi-
tional techniques include Triple Modular Redundancy (TMR) and configuration memory
scrubbing.

The TMR technique can be carried out at different levels, for example, at gate level,
logic path level, entity level and even system level. However as the name suggested, TMR
introduces large resource overhead, including area and power consumption. So to trade
off the reliability and overhead, different variations were proposed, for example, TMR on
selective gates, TMR with approximate logic etc.

In this part of the work, the Verification and Error Rate Integrated (VERI-Place)
tool was used for error rate prediction and mitigation on SRAM-based FPGA. The VERI-
Place tool takes files from standard commercial flow (from Xilinx) as inputs, and generates
report including information regarding the sensitive part of the target design and error rate
when Single Event Upset (SEU) accumulated in the configuration memory. Furthermore,
the tool acts on the Place & Route step of the design, without introduce extra hardware
overhead into the design, to improve the reliability of the circuit to be mapped on the
FPGA.

The accuracy of the error rate prediction and effectiveness of the SEU mitigation made
by the VERI-Place has been verified in simulation analysis and two radiation experiments
with two benchmark circuits, including an ARM-based SoC, in two different facilities with
different radiation profiles. The design version generated by the VERI-Place tool based
on the version with Xilinx TMR (XTMR) applied is able to achieve an improvement of

v

reliability by two orders in terms of Silent Data Corrupt (SDC) cross-section.
For Flash-based FPGA, even though their configuration memory made of non-volatile

flash cells that are almost immune to SEU, the floating-gate-based switches and the Flip-
flops in the configurable logic can still suffer from SEEs induced by radiation particles.

Regarding Flash-based FPGAs, two distinct effects may be identified. The former
occurs inside of the floating gate switch: the pass transistor and floating gate transistors
usually constitute the floating gate switch. The second occurs when a high charged particle
hits a sensitive node of a logic cell belonging to the FPGA’s configuration tile. The gener-
ated pulse may propagate through the logic depending on the FPGA tile configuration. If
the tile is configured to implement a latch, the pulse may turn directly into a SEU because
of the feedback paths implemented by the tile logic configuration. Meanwhile if the tile
is configured to implement a logic gate, the transient pulse is assumed to be propagated
only if the voltage glitch generated by the particle hit on the struck node changes by more
than VDD/2. Once a SET is generated into the sensitive area of a logic gate it starts
its propagation through the logic paths until a sequential element is reached. During its
propagation the SET pulse may pass through inverting and non-inverting gates. The SET
propagation through logic gates undergo to different electrical phenomena that affect the
shape of the pulse modifying its voltage amplitude, the width and the speed along the
traversed logic path.

An analytical SET model was developed for accurately investigate the SET behavior
when it propagates through the logic paths in the design. Depending on the type of gate
and its input and output load, a SET pulse could be filtered or broadened when it traverses
through the gate. The model has been verified with the data collected in the SET analysis
experiment via electrical pulse injection carried out before.

Furthermore, a SET-Analyzer (SETA) tool was used for analyzing the SEE sensitiv-
ity of several benchmark circuits including a RISC microprocessor from OpenCores. The
SETA tool takes netlist and placement files generated from the commercial tool (Libero
SoC in case of Microsemi FPGA), generates a set of transient pulses, and with the analyti-
cal SET model, it propagates the pulses along the logic paths in the design. SEE sensitivity
information regarding the probability of SET pulses reaching a Flip-flop and eventually
sampled is reported by the SETA tool. With this information, designer can determine
which FFs are critical and sensitive, and need to be protected using techniques such as
Guard Gate (GG) insertion as proposed. The GG is a configurable circuit macro that can
be inserted at the input of a FF for filtering a user-defined length SET pulse. Depending
on the output of SETA tool, designer can selectively choose to insert GG structures to the
design.

Finally, a SET-aware place and route tool (SET-PAR) was used to generate an im-
proved version of the target design regarding SET sensitivity, by acting on the placement
and routing resources optimization for SET filtering. The SET-PAR tries to place the
gates with SET filtering effect close to each other and the gates with broadening effects
far from each other to reduce the probability of a SET reaching and sampled by the FF, i.e.
reducing the SET sensitivity of the target design, while respecting the timing constraints.

With all the models and tools mentioned above, a complete SEE analysis and mit-
igation flow for Flash-based FPGA was proposed. Since the flow takes the files from

vi

commercial tool as input and generates improved design as constraint files, it can be
easily integrated into standard commercial toolchain, and with analysis of simulation ex-
periments over several ITC99 benchmark circuits and a heavy-ion radiation experiment
carried out on Microsemi ProASIC3 Flash-based FPGA with a RISC microprocessor, the
propose flow has been proven to be accurate in the SEE sensitivity analysis and effec-
tive in SEE mitigation without introducing extra hardware overhead and performance
degradation.

vii

Acknowledgements

I would like to thank Prof. Luca Sterpone and Prof. Matteo Sonza Reorda for providing
me the opportunity to pursue my research activity in the CAD group, and for their great
support and generous help over the three pleasant years of PhD.

I also would like to thank all the people I had the chance to have collaboration with
for the thing I have learned from them and the results we achieved together along the
way, and also all my colleagues in the CAD group and all the people in the Lab3 for the
pleasant time we spend together.

Finally, I would like to thank all my friends for the companion they provide me over
the years starting from the very beginning when I came here in Italy, and all my families
for the support and love they provide me generously and constantly.

viii

Contents

Summary ii

List of Figures xi

List of Tables xiii

I Testing for SoC/SoPC by Exploiting Debugging Infrastructures 1

1 Introduction 3
1.1 Online test of Control Flow Error . 3

1.1.1 Previously proposed techniques . 4
1.1.2 Control Flow Checking module . 4

1.2 A hybrid nonintrusive error detection technique 5
1.3 Print Circuit Board Assemblies Power-On Self-Test 5

1.3.1 Functional test for POST . 5
1.3.2 Monitoring IP . 6

2 Online Test of Control Flow Error 7
2.1 Background . 7
2.2 Control Flow Checking module . 9

2.2.1 Architecture of the CFC module . 10
2.3 Experiment results with fault injection . 14

2.3.1 Experiment setup . 14
2.3.2 Fault injection results . 15

3 Hybrid Nonintrusive Error Detection Technique 21
3.1 Background . 21
3.2 Dual Control-Flow monitoring . 22

3.2.1 External hardware module . 22
3.2.2 Data hardening technique . 25

3.3 Fault injection campaign . 26

ix

4 Printed Circuit Board Assembly Power-On Self-Test 33
4.1 Background . 34

4.1.1 CoreSight Architecture from ARM 35
4.2 Monitoring IP . 36
4.3 Fault coverage analysis . 41

II Analysis and Mitigation of Single Event Effects on FPGAs 43

5 Introduction 45
5.1 Single Event Effects on FPGAs . 46

5.1.1 SEEs on SRAM-based FPGA . 47
5.1.2 SEEs on Flash-based FPGA . 48

6 Single Event Effects in SRAM-based FPGA 51
6.1 Background . 51

6.1.1 Techniques based on redundancy . 52
6.1.2 Configuration memory scrubbing via Partial Reconfiguration 54

6.2 Verification and Error Rate Integrated Tool 55
6.2.1 Sensitivity analysis with SEUs in configuration memory 56
6.2.2 SEU mitigation with re-placement 56

6.3 Experiment Analysis . 57
6.3.1 Radiation experiments with ARM-based SoC on SRAM-based FPGA 58
6.3.2 Radiation experiment with custom benchmark on SRAM-based FPGA 61
6.3.3 Experimental results and analysis . 62

7 Single Event Effects on Flash-based FPGA 67
7.1 Background . 67

7.1.1 SET pulse profile in Flash-based FPGA 68
7.1.2 Previous analysis and mitigation techniques for SEEs on Flash-based

FPGA . 69
7.2 A complete flow for analysis and mitigation of SETs for Flash-based FPGA 71

7.2.1 Analytical SET nanometer model . 72
7.2.2 FPGA logic and routing model . 74
7.2.3 SETA: Single Event Transient Analyzer 75
7.2.4 Selective Guard Gate mapper . 77
7.2.5 SET-PAR: placement and routing tools for SET mitigation 78

7.3 Experiment results and analysis . 80
7.3.1 Radiation experiment on Microsemi Flash-based FPGA 82

x

List of Figures

2.1 Architecture of a system adopting the proposed approach 10
2.2 CFC module architecture diagram . 12
2.3 Dynamic CFC module architecture diagram 13
2.4 CFC-ST update mechanism . 13

3.1 Hardware monitor observation points . 23
3.2 Internal architecture of the hardware monitor 24

4.1 CoreSight System Diagram in Zynq-7000[5] 36
4.2 Architecture of the Monitoring IP . 38
4.3 Format of the branch with exception package [5] 39
4.4 Workflow of the proposed technique . 40

5.1 FPGA general architecture . 46
5.2 Logic Block (SLICEL) diagram from Virtex-5 device of Xilinx [74] 47
5.3 A routed design mapped on ProASIC3 from Microsemi 48
5.4 Typical FPGA design flow . 48
5.5 A SEU in configuration memory corrupting interconnection 49

6.1 General TMR architecture . 52
6.2 TMR applied at gate-level with registers triplicated 53
6.3 Input and output triplication in XTMR [80] 53
6.4 XTMR minority voter implementation [80] 53
6.5 Accumulated SEU in configuration memory corrupts design with XTMR . . 54
6.6 Frames in Virtex-5 SRAM-based FPGA’s configuration memory [81] 55
6.7 Heatmaps generated by VERI-Place tool on B14 from ITC99 benchmarks

[18] . 57
6.8 Architecture of ARM SoC on Virtex-5 FPGA 58
6.9 Architecture of ARM SoC with XTMR applied on Virtex-5 FPGA 59
6.10 Physical layouts showing interconnection networks of a)Plain b)XTMR c)

XTMR-VP version of the ARM-SoC from FPGA Editor tool 60
6.11 Workflow of the host PC application . 61
6.12 Physical layouts showing interconnection network of a)Plain b)XTMR c)

XTMR-VP version of the B13x30 from FPGA Editor tool 62

xi

6.13 The error rate from radiation experiments and VERI-Place tool 64
6.14 The SDC error rate comparison over three design versions 65
6.15 Breakeven point in case of B13x30 benchmark 66

7.1 The SET propagation through an inverting gate with an input transition
0-1-0 . 69

7.2 The proposed flow for analysis and mitigation of SEEs in Flash-based FPGA 71
7.3 SET pulse shape modeling the original pulse (i.e., positive transition) gen-

erated from the GDS-I model (tn) and after the propagation through a logic
gate (tn+1) . 73

7.4 Parametric architectural FPGA model for mesh-matrix oriented place and
route algorithms (a) and the mesh matrix format in two-dimension (b) . . . 75

7.5 The main SETA algorithm steps . 76
7.6 Example circuit and results from SETA tool 77
7.7 Example of inserted GG logic with filtering capability of 900 ps 78
7.8 SET-aware Place & Route (SET-PAR) flow 79
7.9 The PDD placement algorithm . 80
7.10 SET reduction and Frequency improvements of the SET-PAR implemented

circuits w.r.t. the previously developed solution based on Microsemi com-
mercial tools . 82

7.11 RISC5x architecture . 83
7.12 ECC scheme adopted in order to protect RISC register file, implemented

using Flash-based FPGA embedded RAM modules against SEU accumulation 83
7.13 TMR at entity level (IDEC & ALU) . 84
7.14 Radiation experiment setup . 85
7.15 SEE cross-section comparison between different RISC5x versions 86
7.16 Error events classification . 87

xii

List of Tables

2.1 Benchmark applications . 16
2.2 Fault injection results . 16
2.3 Detection capabilities (Unlimited CFC-ST size) 17
2.4 Fault coverage with a smaller static CFC-ST 18
2.5 Detection capabilities with Dyn-CFC module 19

3.1 Synthesis results . 26
3.2 Fault injection results with BBS . 28
3.3 Fault injection results with Mmult . 28
3.4 Fault injection results with AES . 29
3.5 Fault injection results with Register File . 31

4.1 Resource consumption for the Monitoring IP 38
4.2 Experimental results on the MIPS-like processor 41

6.1 Design characteristics for three versions of ARM SoC 59
6.2 Design characteristics for three versions of B13x30 62
6.3 Fluence and SDC cross-section . 63

7.1 Characteristics of the implemented benchmark circuits 81
7.2 Characteristics of four RISC5x versions . 85

xiii

xiv

Part I

Testing for SoC/SoPC by
Exploiting Debugging

Infrastructures

1

Chapter 1

Introduction

Facing the effects of faults in electronic systems is an increasingly important issue, espe-
cially when they are used in safety- or mission-critical applications. Reduced transistor
size, higher density, lower voltage and more aggressive clock frequency may increase the
susceptibility to soft errors to unacceptable levels. Other phenomena (e.g., aging and wear-
out effects) also impact negatively the reliability of modern circuits. As a consequence,
the need for effective techniques providing the ability to detect the possible occurrence of
faults during the operational phase is becoming a major issue from a practical point of
view.

Processor-based systems are commonly used in a wide variety of applications, including
safety-critical and high availability missions, e.g., in the automotive, biomedical, telecom-
munication and aerospace domains. In these fields, an error may produce catastrophic
consequences. Thus, dependability is a primary target that must be achieved taking into
account tight constraints in terms of cost, performance, power and time to market. Several
solutions exist, acting either on hardware or software: however, they all have to face the
high efforts required for designing, manufacturing, testing and qualifying processor-based
systems. Standards and regulations (e.g., ISO 26262 [34], DO-254 [10], IEC 61508 [33])
clearly specify the targets to be achieved and the methods to prove their achievement. In
this scenario, techniques working at system level (i.e., without changing the technology
and the processor) are particularly attracting, especially if they can effectively meet de-
pendability needs more efficiently without changes in the existing hardware and software.
Solutions based on additional modules that monitor the processor behavior and check its
evolution looking for possible fault effects belong to this category.

1.1 Online test of Control Flow Error

Among the techniques that can be applied at system level, Control Flow Checking (CFC)
is particularly effective. Control Flow Checking consists in verifying the sequence of in-
structions executed by a processor. It must be noted that CFC alone cannot detect data
errors, i.e., errors in data registers or data memory, and must be generally complemented
by some technique focused to data error detection. However, a significant percentage of

3

1 – Introduction

errors in a processor usually manifest themselves as Control Flow Errors (CFE), and most
data errors can be effectively addressed by adding proper fault management mechanisms
to memory and relevant registers (e.g., parity check or hamming codes).

1.1.1 Previously proposed techniques

Several CFC approaches are based on signature monitoring [60]: the program is divided
into a set of blocks (named basic blocks), having only one entry-point and only one exit-
point: hence, whenever the entry-point instruction is executed, the following instructions
in the block are executed. Each basic block has an associated signature that is calculated at
compile time and stored in the system. During the operational phase, a run-time signature
is calculated and (at the end of the block execution) compared with the reference signature,
thus allowing to detect any error affecting the block execution flow.

Signature monitoring techniques usually require software and/or hardware modifica-
tions to calculate the run-time signatures and perform comparisons. Since the calculation
of signatures is computationally expensive, dedicated hardware (e.g., a watchdog proces-
sor) is sometimes used for this purpose. In some cases the approach is combined with
software modifications, which support the watchdog processor operation. The Disjoint
Signature Monitoring (DSM) approach [35, 15] solves these problems by storing reference
signatures in an auxiliary memory and using a watchdog processor to compare the refer-
ence signatures with the run time signatures. This approach does not require support from
the software program. However, a drawback of the DSM approach is that the watchdog
processor does not have access to the internal operation of the processor, which leads to
a lower error coverage, particularly with complex processors [15].

1.1.2 Control Flow Checking module

A new method was proposed for the control flow checking approach resorting to available
debug infrastructures as a means to monitor the processor behavior. Debug infrastructures
are intended to support software debugging in embedded system development, and are
very common in modern processors. Since they are useless when the operational phase
is entered, they can be easily reused for on-line monitoring in an inexpensive way [8,
29, 54, 56]. On the other hand, they can provide internal access to the processor without
disturbing it and do not require any modification either to the processor or to the software
running on it. It must be noted that in some processors the debug information is processed
and compacted by a specialized module, such as LEON3’s Debug Support Unit (DSU) or
ARM’s Embedded Trace Module (ETM). Such modules are not used in our approach,
which is based on direct access to the trace interface.

In the proposed approach, control flow checking is performed by an external hardware
module that monitors the sequence of instructions executed by the processor through the
debug interface and performs some checks to detect possible deviations. The developed
hardware module, named Control Flow Checking Module, consists of a core able to perform
some checks at the end of each basic block, using the information provided by the debug
interface. Along the work, different versions of CFC Module were proposed providing
possibility for designer to choose the trade-off between the detection capability and the

4

1.2 – A hybrid nonintrusive error detection technique

cost in terms of area consumption. The detection capability of the developed module
has been experimentally evaluated by means of fault injection on two different pipelined
processors.

1.2 A hybrid nonintrusive error detection technique
The CFC module proposed can effectively detect Control Flow Errors, however to detect
Data Errors, such solution must be accompanied by other techniques. So a new method
was proposed to use dual control-flow monitoring for nonintrusive error detection, combing
software techniques with an external hardware module that monitors the execution of a
microprocessor.

The external hardware module used in this method is similar to the CFC module in the
way that it also monitors the downstream information extracted from the trace interface of
the processor (e.g., LEON3 [27]), however, it also captures the upstream communication at
the bus between the memory and the microprocessor. If an error corrupts the instruction
flow at any stage, it is detected by comparing the downstream instruction flow with up-
stream instruction flow. On the other hand, errors in the generation of fetch addresses are
detected using a PC prediction technique. In this way, all errors in the program counter
and the instruction register at any of the pipeline stages can be detected. These include
all control-flow errors, as described in [76]. It can also detect some data errors produced
by corrupted instructions that generate wrong data or data addresses without affecting
the control flow.

To achieve full error coverage, it is necessary to protect data as well as control flow. A
combination of two software-based techniques

• total data-flow duplication, based on techniques presented in [17] and [59]

• inverted branches, based on the approach presented in [8]
were chosen for data hardening to lessen the impact of data-flow hardening in the hardware
module since hardware-based data-flow hardening requires additional connections to the
microprocessor architecture that are not easily available, and the hardware implementation
leads to area increase.

1.3 Print Circuit Board Assemblies Power-On Self-Test
Besides being used for online test of CFE, the debug infrastructure can also be exploited
during the Power-On Self-Test (POST). POST plays an important role in many systems,
since it may detect faults arising during the life time of the product, thus increasing its
dependability. POST may use different solutions, which should match the constraints of
the environment the system is deployed in.

1.3.1 Functional test for POST

Functional test [67, 65] represents a commonly adopted solution for POST. More in gen-
eral, functional test is adopted in many scenarios, at the device, board and system levels

5

1 – Introduction

[39]. In some of them it complements other test steps, performed resorting to Design
For Testability (DFT). For example, when considering Printed Circuit Board Assemblies
(PCBAs) test, it is common to see functional test as the last step, mainly targeting dy-
namic defects. The importance of this kind of defects is significantly increasing in the last
years, especially since they are considered one of the major contributors for NFF [37, 41],
thus raising the interest for any solution able to improve the achievable defect coverage.

Hence, functional test plays a key role for in-field test of PCBAs [26]. In this context,
functional test is particularly attractive due to its relatively low implementation cost (no
equipment required), low intrusiveness (no or limited changes in the PCBA design and
low impact on the application) and flexibility (since functional test is typically based on
forcing the processor to execute a suitable test program, possibly mimicking some specific
application code). A commonly adopted solution consists in launching at the power-on
the execution of a functional test targeting all the critical modules in the system, or,
alternatively, some specifically crafted test able to make observable the highest percentage
of defects [55]. Functional test is normally based on a sequence of instructions to be
executed by the in-system processor(s), aimed at exciting possible defects in the processor
itself or in any other device on the board, as well as in the interconnect. Therefore, this
kind of test is sometimes referred to as Software-Based Self-Test (SBST) including [57].

Major limitations to the effectiveness of functional test include

• The difficulty in assessing the achieved defect coverage: although many efforts have
been done to introduce high-level metrics, their correlation with real defect coverage
is still a matter of discussion and a hot research topic [36];

• The cost for creating suitable functional stimuli; a lot of work has been done to
automate this part, or at least to provide guidelines for the test engineer in charge
of developing suitable functional tests;

• The limited observability that can be obtained on the behavior of the system under
test, both as a whole and in terms of its components.

1.3.2 Monitoring IP

As in the CFC Module, a Monitoring IP mapped into FPGA device on the same board
of the target processor can be used to extract information via Debug Interface of the
processor for assisting functional test. The onboard FPGA (if exists) can be configured
as the Monitoring IP during the POST, and reconfigured to carry out normal operations
afterwards. The implemented Monitoring IP is targeted on ARM processor (to be pre-
cise, Cortex A9 on Zynq-7000 device), whose CoreSight components can generate various
information packets related to the execution of the software on the processor, which then
can be extracted from the Trace Port Interface Unit (TPIU).

However, internal characteristics of the ARM processor is not directly available that
makes impossible to execute fault injection to verify the effectiveness of proposed ap-
proach. Instead, a pseudo debug interface was added in a pipelined processor mimicking
the behaviors of the one in ARM processor.

6

Chapter 2

Online Test of Control Flow Error

This chapter discusses about the technique proposed for online test of Control Flow Error
(CFE), i.e. the CFC module1. The CFC module is used to exploit the debug/trace
interface, that already exists in many processors, to monitor the software running on the
processor for detecting CFEs.

The chapter is organized as follows: firstly, a background section is presented providing
information regarding soft errors in processor-based systems, the existing debug interface
and related approaches proposed to detect the CFEs; then the proposed technique in-
volving the CFC module is presented explaining different solutions enabling designer to
achieve trade-off between hardware overhead and test capability; finally, the data analysis
from fault injection campaigns on two target processors is presented, showing that even
with very low hardware overhead and no performance penalty, the proposed CFC module
is able to achieve very high test coverage with respect to CFEs.

2.1 Background

Approaches to detect soft errors are traditionally divided in techniques that deal with faults
affecting the data and faults affecting the control flow. In order to mitigate errors affecting
data, the common approach is duplication. Duplication can be accomplished at different
levels: computation duplication, procedure duplication and program duplication. Many
of the methods to detect soft errors affecting data require some software modification.
Because of the required duplication and additional data checks, a considerable performance
decrease is produced, as illustrated in [17] and [23].

Several approaches have been proposed to detect and mitigate soft errors affecting the
control flow. The most common approach is known as Embedded Signature Monitoring
(ESM) [60]. Variations can be applied to this technique but the basic idea consists in
pre-computing a signature for certain parts of the code and then re-computing the same

1This work was done with collaboration with our colleagues in University Carlos III of Madrid, Leganes,
Madrid and supported in part by EU FP7 STREP project BASTION; related publications can be found
as [20, 21, 22]

7

2 – Online Test of Control Flow Error

signature at run time, checking whether the two match. In these techniques, code is
divided into sections called Basic Blocks (BBs). A BB is a fragment of code that does not
contain any incoming or outgoing branch, i.e., all the instructions belonging to the BB are
always executed sequentially, once the first is reached.

In Enhanced Control flow Checking using Assertions (ECCA) [3] ESM is implemented
through assertions. In each block, two assertions are included: one at the beginning of
the block which assigns an identifier to the block and checks the correctness of the branch
previously taken and the other at the end of the block, which updates the identifier and
checks it. In this technique, short blocks increase the error detection capability as well
as decrease the latency. The main drawback of this technique is the high memory and
performance overhead it introduces.

In Control Flow checking by Software Signature (CFSS) [51], a signature is assigned
to each block. At runtime, a signature is continuously computed out of the opcodes of
the executed instructions: each time a branch takes place the signature is compared with
the expected one. Signatures are computed in different ways depending on the number of
predecessors the block has. The main limitation of this method lies in its limited detection
capability, since some errors (e.g., when the processor wrongly executes another instruction
of the same block, or when a legal but incorrect branch is taken) are not detected.

In Control flow Error Detection through Assertions (CEDA) [75], the signatures are
computed in different ways depending on the block type. For each block two signatures
are assigned (the signature at the beginning and the signature at the end of the block).
Check instructions are inserted in certain points of the code to verify the correctness of
the signature.

In Automatic Correction of Control-flow Errors (ACCE) [76], a software method allows
not only to detect, but also to correct control flow errors.

Summarizing, all the described techniques compute one or several signatures and com-
pare them with the ones previously assigned and stored. Mismatches between signatures
trigger an error signal, and the possible correction. Detection problems can arise when
incorrect branches are taken inside a block or when legal but incorrect branches are taken.
As a major limitation, most of the methods involve a significant overhead in terms of
memory and performance.

Other methods, essentially based on an additional monitor processor, like the ap-
proaches presented in [35, 15, 13] require a large overhead of hardware resources to detect
the soft errors; moreover, the detection capability is not independent from the application.
Thus, not surprisingly, in these methods the error detection capability increases with the
complexity of the additional hardware.

Another drawback of these methods is the difficulty in observing the processor behavior
from the outside. In [15] a watchdog processor connected to the cache memory is used
to detect soft errors. This watchdog processor uses a combination of techniques that are
applied when a block ends or when frequent instructions are executed. For intra-block
instructions a special signature is computed and address checking is performed. For non-
conditional branch instructions the destination address is compared with the information
about the code stored previously, while for conditional branch instructions, the watchdog
processor verifies the correctness of the taken branch. Exceptions are also taken into

8

2.2 – Control Flow Checking module

account by accessing the interrupt vector. Data errors are handled by duplicating only
critical variables. Although the error coverage is incremented, the proposed watchdog
processor is quite complex and requires a large amount of resources for its implementation.

Some major limitations of these methods are the following:

1. The presence of caches prevents the watchdog to know what the processor is exactly
doing, and may significantly decrease the detection capabilities of the approach.

2. If the processor is based on a pipeline architecture, observing the bus during the
fetch operation does not allow to understand which instructions are really executed,
due to the effects of branches.

In [8] the authors proposed a method to implement some checks (partly in hardware,
partly in software) able to detect both data and control flow errors; according to the
authors the method is able to detect all possible faults, but it requires some relevant mod-
ifications on the application software, and it assumes that the processor bus is accessible,
which is not the case when caches exist.

The usage of debug infrastructures has been proposed as a way to increase the observ-
ability of soft errors with very limited latency, as presented in [29, 54, 56]. The technique
proposed in this work follows the same approach, taking advantage of the already available
features existing in many processors (standalone or cores) and using them to detect soft
errors. In particular, the method exploits the feature offered by some debug architectures,
which allows tracing the values of both the Program Counter and the Instruction Register
during the execution of an application. In order to exploit on-the-fly these information,
an external hardware module is added, which monitors the values provided by the debug
port and processes them for detection purposes. In this way the processor is not modified
and the connection to it can be made in an easy and efficient way, while caches do not
represent any more an obstacle.

In [29] the debug infrastructure is exploited to get the value of the Program Counter
of two processors running the same application, checking for possible divergences caused
by faults. The technique explored in [56] further extends this idea, and assumes that
either time, or hardware redundancy is used, and the debug interface allows checking for
discrepancies between the two execution replicas. An extension of this idea is presented
in [54] where the authors evaluate the effectiveness and cost of different checks that can
be performed on the values stemming from the debug port.

2.2 Control Flow Checking module

The CFC module was proposed as a technique for online test of CFE in which:

• the address and machine code of each executed instruction are available through the
debug port

• these two information items processed on-the-fly by a suitable hardware module (i.e.,
CFC module) aiming at detecting possible CFEs affecting the processor.

9

2 – Online Test of Control Flow Error

The CFC module can be implemented either as an Infrastructure IP, if System-on-Chip
(SoC) is considered, or as an additional device (if board systems are considered): in the
latter case it could also be implemented on an FPGA located close to the processor. The
CFC module implements some checks aimed at detecting control-flow errors and triggers
an Error signal when it detects any error. The architecture of the resulting system is
shown in Fig. 2.1.

Figure 2.1: Architecture of a system adopting the proposed approach

The proposed method for CFE detection requires that the target processor be equipped
with a debug port interface available for the external CFC module to link with; moreover,
the method assumes the debug port provides a continuous flow of information about
instructions executed (i.e., completed) by the processor, skipping instructions which are
fetched, and then aborted (due for example to branch effects). This assumption is justified
by the fact that many of current existing processors have a trace bus (such as the ones
compliant with IEEE ISTO 5001-1999 Class 2+).

2.2.1 Architecture of the CFC module

In summary, there are two checks performed by the CFC module:

1. Check #1 : at each clock cycle, the CFC module receives the address and machine
code of the currently completed instruction (if any): it checks whether the address
is correct with respect to the previous instruction. In particular, if the previous
instruction was a branch, the CFC module decoded it and computed the target
address T : hence, the address Xi of the current instruction i should be equal either
to T (branch taken) or to Xi−1 + IS (branch not taken), being Xi−1 the address of
the previous instruction, and IS the instruction size in bytes.

10

2.2 – Control Flow Checking module

2. Check #2 : the CFC module continuously compacts the machine codes of the exe-
cuted instructions: each time a branch instruction is executed, a BB ends, and the
module compares the computed signature for the block with the expected one. The
signature is computed by compressing into a single value the machine codes of the
instructions belonging to the BB.

The CFC module supports the executions of both Check #1 and Check #2. The
implementation of a hardware module supporting Check #1 requires some proper logic,
able to remember some proper information about the previous instruction, as well as to
perform the proper comparison between the new and expected values of the PC.

However, to support the Check #2, a table inside the CFC module is implemented
to store the pre-computed signatures of BBs, i.e. the CFC Signature Table or CFC-ST.
In the operational time, each time a BB starts, the CFC module records internally the
address of its first instruction (Starting Address or SA); when the BB ends, the module
retrieves the expecting signature of the BB from CFC-ST using the least significant bits
of SA as an index, and compares it to the signature computed on-the-fly by the Signature
Monitor component. If a mismatch is found between the two signatures, an Error signal
is triggered.

Along the work, different versions of CFC module were proposed focusing on how
the signatures of the BBs in the software running on the processor should be stored and
managed to enable the trade-off between the detection capability of the CFC module and
resource consumption overhead.

The CFC module with static CFC-ST

On the assumption that the software running on the processor or at least the critical part
of the software is small, in terms of number of BBs, so that all the signatures can be stored
directly in the CFC-ST, the architecture of the CFC module is quite simple as illustrated
in Fig. 2.2.

The CFC module consists of the following blocks:

• Instruction Decoder (ID) block detects when a new instruction is being executed and
checks whether that instruction is a branch instruction or not, in order to identify
the beginning and end of a BB execution,

• Signature Monitor computes the signature of the executed machine code values by
means a MISR (Multiple Input Shift Register),

• CFC-ST stores the off-line signatures corresponding to each BB and its SA,

• Control Block is in charge of managing the CFC module behavior, enabling and
clearing the signature monitor for each BB, reading the off-line signature and trig-
gering the Error signal when the on-line signature differs from the expecting one in
CFC-ST. It is also in charge of implementing the Check #1.

On the other hand, in case of the CFC-ST is not large enough to hold all the signatures
of BBs in the software, then certain mechanism needs to be applied to choose which

11

2 – Online Test of Control Flow Error

Figure 2.2: CFC module architecture diagram

signatures should be stored in the CFC-ST. Three techniques were proposed for ranking
the BBs:

1. Technique #1 : BBs are ranked according to their size (in terms of instructions).
The information about the NCF C−ST top ranked BBs is then stored in the CFC-ST.
The rationale behind this technique is that that chance for a fault to affect a BB is
proportional to its size.

2. Technique #2 : Some execution runs are performed, applying to the application
program inputs some values, which are representative of its "typical" behavior. BBs
are ranked according to the number of times they are executed. The information
about the top ranked BBs is then stored in the CFC-ST.

3. Technique #3 : Some execution runs are performed, applying to the application
program inputs some values, which are representative of its "typical" behavior. BBs
are ranked according to the number of times they are executed, times the number of
instructions composing each of them. This ranking combines the previous two. The
information about the top ranked BBs is then stored in the CFC-ST.

The effectiveness of each technique is evaluated with fault injection simulation, and re-
ported in the experimental results section.

Dynamic CFC module

To further improve the detection capability of the CFC module in the circumstance that
the CFC-ST is size-limited with respect to size of the software,the Dynamic CFC (Dyn-
CFC) module was proposed, in which the CFC-ST is updated on-the-fly. The CFC-ST’s
architecture is also modified to support the update of signatures as shown in Fig. 2.3.

12

2.2 – Control Flow Checking module

Figure 2.3: Dynamic CFC module architecture diagram

Different with the static version, the Dyn-CFC module does not require the signatures
of the BBs in software to be pre-computed and stored into the CFC-ST. When the system
is running, the Dyn-CFC performs the Check #2 described previously in a different way
as shown in Fig. 2.4.

Figure 2.4: CFC-ST update mechanism

The CFC-ST is empty when the application starts, During the application execution,
when the Dyn-CFC module detects the end of a BB, it searches for the corresponding BB
signature in the CFC-ST:

1. if such signature is found, a comparison is carried out to possibly detect the occur-
rence of a CFE;

2. otherwise (this is called a miss event), no check is performed on the BB, and the
Dyn-CFC module stores the BB signature just computed at runtime into CFC-ST
for future references.

13

2 – Online Test of Control Flow Error

In this way, the Dyn-CFC module is able to detect a CFE affecting a BB, provided
that the BB is executed at least twice before the corresponding signature is removed
(overwritten) from the CFC-ST. Due to the principle of locality [32] and to the existence
of cache-aware compiler optimization techniques [40], the Dyn-CFC module is able to
achieve a high capability even if the CFC-ST size is significantly smaller than the number
of BBs in the application.

To cope with the modified Check #2 implemented in Dyn-CFC module, taking in-
spiration from the architecture of cache memory, the CFC-ST is organized into sets.
Each set in CFC-SET can store 2, 4 or as the designer’s choice BBs’ signatures. With
a BB’s SA as SAi, it can only be stored into the set whose index equals to (SAi >>
log2(NCF C−ST−SET))/NCF C−ST where NCF C−ST is the number of sets in CFC-ST and
NCF C−ST−SET is the size of set in the CFC-ST.

When a miss event happens, the Control logic in Dyn-CFC will insert the signature
of just finished BB into CFC-ST. Two situations could happen: 1) if the set still have
empty slot, then the SA and signature of the BB is directly store into the empty slot; 2)
otherwise, the Control logic has to choose which entry in the set should be overwritten.
And replace policy applied in the Dyn-CFC module will affect the detect capability since
it can only detect the CFE in a BB when its signature is still in the CFC-ST before it is
overwritten. Again, similar to the replace policy used in cache memory, the Least Recently
Used (LRU) was adopted for updating the entries in CFC-ST to take advantage of the
principle of locality.

To verify the effectiveness of the CFC module, simulation based fault injection cam-
paign was carried out on two pipeline processors, reported in following section.

2.3 Experiment results with fault injection

Two processors were used during the fault injection experiments, and fault model pro-
posed in [76] was used as shown below. Several applications were selected as benchmark
applications on both processors.

1. Fault Model #1 : a randomly chosen branch instruction is changed into a NOP
instruction.

2. Fault Model #2 : a randomly chosen bit in the PC value is flipped at a random time.

3. Fault Model #3 : a randomly chosen bit in the operand of a branch instruction is
flipped at a random time.

2.3.1 Experiment setup

The first processor used is the miniMIPS [30] from openCores, adding a debug port which
provides the address and machine code of the executed instruction. The miniMIPS’ archi-
tecture is based on 32-bit registers and addresses, and includes 5-stages pipeline, account-
ing for about 45k equivalent gates when synthesized (with multiplier) with the FreePDK45
Generic OpenCell Library from NanGate [47].

14

2.3 – Experiment results with fault injection

The second processor used is the LEON3 [27] processor which implements the full
SPARC V8 standard and is widely used in space applications. The LEON3 core has the
following main features: 7-stage pipeline with Harvard architecture, separate instruction
and data caches, hardware multiplier and divider, on-chip debug support and multiproces-
sor extensions. The register file is divided in a configurable number of register windows,
so that at any one instant a program sees 8 global integer registers plus a 24-register win-
dow. The number of register windows is implementation-dependent and can be configured
within the limit of the SPARC standard (2-32), with a default setting of 8. A basic con-
figuration has been built to perform a fault injection campaign. The system configuration
includes one LEON3 integer unit with 8 register windows, instruction and data caches (2
kB each), instruction trace interface, interrupt controller, system bus (AMBA), memory
controller and general purpose input/output. Using the same synthesis design flow and
library used for miniMIPS, the size of the LEON3 model is about 150K equivalent gates.

The LEON3 model includes a debug interface which perfectly fits the requirements of
our method, and allows the continuous tracing of both the PC and IR registers. While
for miniMIPS, in order to mimic the behavior of a debug interface, which is not available
in the original miniMIPS model, its VHDL code was modified so that the address and
machine code of the instruction which is currently being executed (i.e., which is in the
EXE stage) are available.

Then the CFC Module was implemented in VHDL, customized it in two versions to
make it suitable for usage with each of the two processors and synthesized the two versions
in the same way as above. The costs for the two CFC (Dyn-CFC) modules (excluding the
CFC-ST, which is implemented as a memory) amounts in about 800 and 2300 equivalent
gates, corresponding to less than 2% and 1.4% of the total hardware size of the miniMIPS
and LEON3 processor, respectively (the CFC module with static CFC-ST is even smaller).

The benchmarks used in the fault injection experiments include:

1. Bubble implements the Bubble Sort algorithm on a vector composed of 8 integer
elements,

2. Matrix computes the multiplication between two 3 by 3 integer matrices,

3. Dijkstra implements the Dijkstra shortest path searching algorithm on a weighted
graph with 9 nodes,

4. RLE implements the Run Length Encoding and Decoding algorithm on a data set
composed of 100 integers (of two different values),

5. MF implements the Ford-Fulkerson algorithm which computes the maximum flow
in a flow network (of 32 nodes connected with at least 64 random edges).

Table 2.1 reports the characteristics of the benchmarks.

2.3.2 Fault injection results

For the fault model mentioned before, 10,000 faults (we used 10,000 fault injections as
it provided good confidence in the results of error classification and test coverage) were

15

2 – Online Test of Control Flow Error

Table 2.1: Benchmark applications

Size[#instr] Duration[#cc] BBs[#]
miniMIPS LEON3 miniMIPS LEON3 miniMIPS LEON3

Bubble 39 26 710 867 12 19
Matrix 45 61 1,240 1,500 19 20
Dijkstra 113 147 4,174 2,888 31 24
RLE 229 257 8,567 7,699 58 43
MF 1,082 744 456,560 401,332 253 172

injected for each of them and classified the effects of the injected faults as in Table 2.2,
where the "Wrong Results" denotes the faults cause wrong data in the memory at the end
of application comparing to the fault-free execution.

Table 2.2: Fault injection results

Fault Model # Injected
Faults

CFEs (miniMIPS) CEFs (LEON3)
Total Wrong Results Total Wrong Results

Bubble
#1 10,000 6,173 4,145 7,306 3,122
#2 10,000 7,377 4,148 8,078 5,243
#3 10,000 6,136 2,453 3,623 623

Matrix
#1 10,000 9,252 6,079 9,747 5,232
#2 10,000 8,305 6,908 7,267 5,042
#3 10,000 9,283 3,421 5,855 4,577

Dijkstra
#1 10,000 6,175 3,069 9,161 3,683
#2 10,000 7,792 3,866 7,863 6,589
#3 10,000 6,129 4,169 4,197 2,110

RLE
#1 10,000 8,235 5,096 7,810 2,346
#2 10,000 7,954 6,079 7,617 6,792
#3 10,000 8,160 3,732 3,942 1,173

MF
#1 10,000 9,670 9,290 8,757 5,504
#2 10,000 9,457 7,523 8,337 6,614
#3 10,000 9,720 5,139 5,719 3,165

With a unlimited sized CFC-ST able to store signatures of the BBs, the test capability
is reported in Table 2.3 using the percentage of faults detected out of the faults causing
the CFEs and Wrong Results as metric.

Furthermore to evaluate firstly the techniques for choosing the BBs whose signatures
to be pre-computed and stored for the static CFC-ST when the size of CFC-ST is smaller
than the number of BBs in the software, fault injection was carried out with the same
setup with different BB ranking techniques described before applied. The fault injection
result in Table 2.4, however, with only the larger ones in all the benchmark applications,
shows that the Fault Coverage, although clearly decreasing with the CFC-ST size, does
not collapse, but slowly decreases, allowing the designer to trade-off between achieved

16

2.3 – Experiment results with fault injection

Table 2.3: Detection capabilities (Unlimited CFC-ST size)

Fault Model miniMIPS LEON3
Faults Causing

CFEs &
Wrong Results

Detected
(%)

Faults Causing
CFEs &

Wrong Results

Detected
(%)

Bubble
#1 4,145 100 3,122 100
#2 4,148 100 5,243 100
#3 2,453 100 623 100

Matrix
#1 6,079 100 5,232 100
#2 6,908 100 5,042 100
#3 3,421 100 4,577 100

Dijkstra
#1 3,069 100 3,683 100
#2 3,866 100 6,589 100
#3 4,169 100 2,110 100

RLE
#1 5,096 100 2,346 100
#2 6,079 100 6,792 100
#3 3,732 100 1,173 100

MF
#1 9,290 100 5,504 100
#2 7,523 100 6,614 100
#3 5,139 100 3,165 100

Fault Coverage and hardware cost. Clearly, the method effectiveness weakens when the
size of the program overcomes a given threshold, as it happens for the largest among our
benchmarks.

Even though the Static-CFC module can provide high fault coverage with relatively
low cost when the number of BBs in the application to be monitored is low, when it comes
to large software running on the processor, the Static-CFC method will lose information
of most of BBs and fail in achieving an acceptable fault coverage. The Dyn-CFC module
can be used in these cases. Table 2.5 reports fault injection results with the same larger
benchmark applications.

As can be seen from the figures, the Dyn-CFC module can still achieve very high fault
coverage, even when the CFC-ST size is significantly smaller than the number of BBs to
be monitored. The fault coverage appears to be lower for smaller benchmarks than for
larger ones. The reason for this behavior is because the Dyn-CFC method starts with an
empty CFC-ST, and hence cannot detect some faults in the early phases of the application
execution, which can be detected by the static method. After the CFC-ST is filled up,
the dynamic method becomes more effective than the static one. For large applications
the initial drawback is negligible, and the advantages of the dynamic method (in terms
of ability to dynamically store in the CFC-ST the most useful information) dominate. In
this scenario, the designer need to determine which version and which size of the CFC-ST
is most suitable for the actual system to achieve optimal results.

A new method was proposed in this work for online test of Control Flow Errors by

17

2 – Online Test of Control Flow Error

Table 2.4: Fault coverage with a smaller static CFC-ST

CFC-ST Size Fault Model
Detected (miniMIPS) Detected (LEON3)

T1 T2 T3 T1 T2 T3
% % % % % %

Dijkstra

16
#1 89.35 98.11 98.11 97.80 94.46 99.24
#2 91.33 96.61 96.43 99.94 99.94 99.94
#3 83.71 98.22 98.22 98.48 98.53 98.53

8
#1 71.91 75.86 88.95 43.36 77.36 71.63
#2 63.32 79.51 88.57 99.94 99.94 99.94
#3 63.49 87.57 89.66 83.84 95.36 91.85

RLE

32
#1 85.69 98.00 98.00 71.44 99.66 99.66
#2 92.45 96.46 97.07 100 100 100
#3 88.83 96.60 96.60 90.20 99.06 99.06

16
#1 81.30 77.53 89.60 46.80 58.65 62.66
#2 61.23 69.11 85.08 100 100 100
#3 83.31 60.26 84.38 83.80 91.82 88.92

MF

128
#1 99.09 99.89 99.93 97.52 99.80 99.83
#2 69.03 99.74 99.75 99.93 99.98 99.98
#3 39.97 99.65 99.82 87.48 99.80 99.98

64
#1 97.96 98.73 99.22 87.97 98.77 98.92
#2 60.45 97.69 98.10 99.93 99.98 99.98
#3 24.91 95.74 96.69 80.36 99.12 99.32

32
#1 96.54 96.43 96.51 43.42 98.23 98.23
#2 53.70 93.45 94.66 99.90 99.98 99.98
#3 21.29 90.19 91.17 67.58 98.83 98.91

16
#1 95.94 95.47 95.34 42.85 93.59 93.87
#2 52.73 89.15 89.96 99.90 99.98 99.98
#3 7.90 86.32 85.02 67.22 95.08 95.24

exploiting the debug infrastructure that already exists in some processors in market. The
information which can be extracted on the fly from the processor using the debug interface
are managed by an external module which is able to perform a few checks and to guarantee
a high Fault Coverage with respect to CFEs.

The method does not require any change either in the processor hardware or in
the application software: it only involves adding outside the processor an application-
independent module which monitors the output of the debug port, and compares it with
the expected values. With the static CFC module, signatures of the BBs need to be stat-
ically computed at compile time, or when the machine code is available, while Dyn-CFC
can be used directly without such requirement. No performance penalty is involved. A
major advantage of the proposed method with respect to previous ones lies in its ability
to work even with processors equipped with caches.

18

2.3 – Experiment results with fault injection

Table 2.5: Detection capabilities with Dyn-CFC module

CFC-ST Size Fault Model miniMIPS LEON3
Detected (%) Detected (%)

Dijkstra 16
#1 86.02 93.76
#2 98.89 99.94
#3 98.22 95.36

RLE

32
#1 96.29 97.53
#2 98.83 100.00
#3 98.04 99.66

16
#1 92.50 89.60
#2 81.74 100.00
#3 89.34 95.82

MF

128
#1 99.78 99.92
#2 99.70 99.98
#3 99.32 99.96

64
#1 99.49 99.49
#2 99.36 99.98
#3 98.74 99.76

32
#1 98.41 98.97
#2 97.64 99.98
#3 97.14 99.39

16
#1 96.26 97.89
#2 94.96 99.98
#3 93.54 98.14

Depending on the actual application to be monitored, designer can choose which ver-
sion of the CFC module should be applied, and the size of CFC-ST to achieve reasonable
test coverage taking into considering the resource overhead of the CFC module. In case,
the static CFC-ST is applied, designer can use the BB ranking techniques proposed in this
work to cope with a size-limited CFC-ST.

Experimental results gathered by performing extensive fault injection campaigns on
the miniMIPS and LEON3 processors show that the method detects a high percentage
of the faults causing Control Flow Errors. Although the resulting figures are sometimes
slightly lower than the ones achieved by other methods, it should be taken into account
that this result comes at practically no cost in terms of hardware or performance over-
head. Experimental results also demonstrate that the hardware overhead of the proposed
external module is very limited.

As a conclusion, the method proposed (that can be complemented by other methods
to address data faults, too) provides high fault detection capabilities at low cost, and
its adoption is characterized by minimal intrusiveness and easy integration into existing
design flows.

19

20

Chapter 3

Hybrid Nonintrusive Error
Detection Technique

As discussed in previous chapter, the CFC module proposed can be used for online CFE
detection, and to handle Data Errors, it needs to be complied with other techniques for
Data Error detection. So this chapter discusses a new hybrid nonintrusive error detection
technique using dual control-flow monitoring1. The hybrid technique involves an external
hardware module and a combined software-based data hardening technique applied at high
level source code.

This chapter is organized as follows: firstly, information related to Single Event Effects
causing CFE and Data Errors is provided in the background section; then the mechanism
implemented in the hardware module for dual Control-Flow monitoring is explained, fol-
lowed by the data hardening technique applied for handling data errors; finally the fault
injection campaign results and analysis is presented, proving that the proposed hybrid
technique is able to detect a high percentage of soft errors caused by Single Event Effects
in processor-based systems.

3.1 Background

Nondestructive Single Event Effects (SEEs), also known as soft errors, are an increasing
concern for the reliability of complex digital systems. They occur when a particle strikes
a node in a circuit and generates a transient voltage pulse that can propagate within the
circuit [19]. When the transient pulse occurs in a memory element, such as a register, it is
known as Single Event Update (SEU). When the transient pulse occurs in a combinational
element, the effect is known as a Single Event Transient (SET).

Errors produced by SEEs in a microprocessor are usually divided into Data Errors and
Control Flow Errors. If an error occurs in a register or memory position storing data, a

1This work was done with collaboration with our colleagues in University Carlos III of Madrid, Leganes,
Madrid and supported in part by EU FP7 STREP project BASTION; related publications can be found
as [52]

21

3 – Hybrid Nonintrusive Error Detection Technique

wrong computation result may be obtained. If an error occurs in a control register, such
as the program counter or the instruction register, the instruction flow may be corrupted
and a wrong result may be produced or the processor may lose control and enter an infinite
erroneous loop. Both types of errors can be detected using software techniques. Fault-
tolerance techniques based on software rely on adding extra instructions to the original
program code to detect or correct faults [49]. Software-based techniques provide high
flexibility, low development time and low cost, since they can be implemented without
modifying the hardware. However, software-based techniques cannot achieve full system
protection against soft errors [9] and may produce large overheads in processing time and
storage needs, particularly when designed to protect the microprocessor against CFEs [7,
6].

Hybrid techniques involve combining hardware and software fault-tolerant techniques
to improve error detection and reduce the performance degradation that software tech-
niques entail. The hardware technique typically consists of introducing an external hard-
ware module to monitor the execution of instructions in the processor. With the hybrid
technique discussed in this chapter, both the input and output of the instruction stream,
which are captured through system bus between memory and processor and trace interface
of the processor respectively, are monitored. A major advantage of the proposed approach
is that it does not require any software modification and, therefore, it produces no perfor-
mance degradation. By complementing it with software fault-tolerance techniques to cover
data errors, a complete solution against SEEs with reduced performance degradation and
low memory overhead is obtained.

3.2 Dual Control-Flow monitoring

In a processor-based system, the processor retrieves instructions to be executed from
memory and the trace interface in the processor (such as the one in LEON3) is able to
provide the execution flow of the instructions executed by the processor. The input and
output of the instruction stream are monitored by the the external hardware module, and
together with the data hardening technique, this approach can achieve high fault coverage.

3.2.1 External hardware module

The external hardware module is used to monitor the instructions executed by the pro-
cessor both at the input and output stream. A system adopting the hardware monitor is
shown in Fig. 3.1.

One of the observation points of the hardware monitor is the memory or cache bus
(input of the instruction stream). This bus provides information of the program counter
(PC) and the instruction code (opcode and operands) at the fetch stage, just when the
instruction is loaded in the microprocessor.

The second observation point is the instruction trace interface (debug interface as pre-
vious chapter), which provides the most relevant information of each executed instruction,
including the PC, instruction code (opcode and operands), time tag and trap and error
flags [28]. This information is provided just after the instruction is executed. In the case

22

3.2 – Dual Control-Flow monitoring

Figure 3.1: Hardware monitor observation points

of LEON3, which has seven pipeline stages (fetch, decode, register access, execute, mem-
ory, exception, and write back), the information in the trace interface corresponds to the
exception stage. The trace interface can be accessed without affecting normal operation of
the processor or adding any performance penalties. Moreover, the use of the trace inter-
face as an observation point does not interfere with the possible use of the trace interface
for debugging purposes.

Once an instruction is loaded from the memory, the instruction information travels
along the microprocessor data path and is used in each stage to drive the operation of
the microprocessor. An error which occurs in the PC or the instruction register (IR) at
any stage will be finally observed at the trace interface and can be detected by comparing
the trace interface output with the upstream information collected at the fetch stage.
Notwithstanding, an error in the PC at the fetch stage may not be detected because it
is issued by the microprocessor. When such an error occurs, both observation points
(memory bus and trace interface) provide the very same information, but it is erroneous.
To improve the detection capabilities including those errors, a PC prediction technique is
used [54].

PC prediction is a control-flow checking approach that consists of predicting the next
PC value by checking the opcode and the present PC value. The predicted PC value is then
compared with the PC value of the next executed instruction. If there is any difference
between both PCs, an error in the program flow is detected. The opcode of every new
instruction executed is checked. If the opcode corresponds with a branch instruction, the
PC must be incremented either by the branch offset if the branch is taken, or by the

23

3 – Hybrid Nonintrusive Error Detection Technique

instruction size if the branch is not taken. For a nonbranch instruction, the PC must be
incremented by the instruction size. The trace interface provides the information required
by the PC prediction technique just after the instruction is executed.

A dedicated hardware monitor (HM) module has been designed to implement the
proposed approach. Fig. 3.2 shows the internal structure of the HM. There is an interface
for each observation point and a block for each implemented technique. The control block
is responsible for the correct behavior of the different blocks and interfaces.

Figure 3.2: Internal architecture of the hardware monitor

The information provided at the two observation points must be synchronized for a
correct comparison. For this purpose, upstream data are stored in an input buffer with
a size equal to the number of pipeline stages of the processor. When a new instruction
appears in the memory bus at the fetch stage, the HM catches the opcode and the PC of
the instruction and stores them in the input buffer. Then, every new instruction provided
by the trace interface is compared with the instruction stored in the input buffer in order
of appearance. It must be noted that the error detection latency is minimal, because an
error can be detected as soon as the executed instruction appears at the trace interface.

In addition to instruction comparison and PC prediction, the control module of the
hardware monitor also checks the time tag and the trap and error flags provided in the
trace interface. The trace interface time tag is the output of an internal counter inside
the processor that is incremented in each clock cycle as long as the processor is running.
A timeout condition is set to cope with the case the processor hangs in a particular
instruction. The timeout condition activates the error signal if the time tag advances
without issuing new instructions for a long period of time.

The trap and error flags provided by the trace interface are used for exception handling.
To implement exception handling, it is important to differentiate between fault-induced
exceptions, which may be caused by an SEE, and implemented exceptions, which are
expected to occur under normal execution. The HM uses the trace interface flags to

24

3.2 – Dual Control-Flow monitoring

detect fault-induced exceptions that cause an unexpected trap or the processor entering
error mode. Unexpected traps can be caused in several ways, such as invalid instructions or
invalid memory addresses. They can be differentiated from implemented traps by checking
the next instruction provided by the trace interface. The trap signal of Fig. 3.2 is triggered
when an unexpected trap occurs or the processor enters error mode.

The HM can be implemented with small hardware overhead since it does not require
storing information obtained at compilation time. The proposed module can work with the
observed information without disturbing the normal microprocessor behavior. Moreover,
the HM can detect control-flow errors without any specific support from the application
software.

3.2.2 Data hardening technique

A software-based data hardening to lessen the impact of data-flow hardening in the HM.
Hardware-based data-flow hardening requires additional connections to the microprocessor
architecture that are not easily available. Another drawback of the hardware implemen-
tations is the area increase. Data hardening techniques require instruction re-execution
with the corresponding additional storage.

A combination of two software-based technique, namely total data-flow duplication
and inverted branches, was used to cover Data Errors.

Total data-flow duplication duplicates all of the software data and compares both data
flows whenever a write operation is performed. When a discrepancy between the two
data flows appears, an error is detected. This method achieves good data error coverage
but increments code size and decreases performance. In order to reduce the performance
penalty as well as the code size, the checking points of the code were reduced as proposed
by [50]. In [50], the entire data flow is duplicated but only certain variables (final variables)
are checked. A similar approach can be found in [8] where the number of checks is varied
depending on system requirements. This approach maintains the data integrity since every
operation is performed twice but checking instructions are considerably reduced, at the
expense of some acceptable increase in error detection latency, that is, the time between
an error occurs and when it is detected.

Another software hardening technique has been applied to our code in order to detect
errors in conditional branches. In a conditional branch, errors may appear in the evaluation
of the condition codes or in the condition codes themselves, resulting in the branch being
incorrectly taken or not taken. The technique called "inverted branches" [8] was used to
detect errors in conditional branches. This technique re-evaluates the branch condition
in two locations. When the branch is taken, the branch instruction is repeated with an
inverted condition. In addition, when the branch is not taken, the branch instruction
is simply repeated. The objective of this technique is to repeat the evaluation of the
condition codes. If the repeated evaluation does not produce the same result, an error is
detected.

25

3 – Hybrid Nonintrusive Error Detection Technique

3.3 Fault injection campaign

A fault injection campaign targeted on LEON3 processor was carried out to validate our
approach. A basic configuration has been built, including one LEON3 integer unit with
eight register windows, instruction and data caches (2 kB each), instruction trace inter-
face, interrupt controller, system bus (AMBA), memory controller, and general purpose
input/output. The memory controller can drive external random-access memory (RAM)
and read-only memory (ROM) where code and data are stored. It must be noted that this
system includes several components, besides the LEON3 processor core, that are typically
needed to interface the processor. Hardening these components is beyond the scope of this
work. However, they have been kept in the system because, in practice, it is very difficult
to clearly distinguish them from the LEON3 processor hardware.

The HM logic area is about 22% of the LEON3 logic area, excluding the memories that
implement the register file. Table 3.1 shows the synthesis results for 90-nm technology.
It must be noted that the utilized LEON3 configuration is minimal. Upgrading LEON3
with additional modules does not modify the HM architecture and does not increase the
HM area.

Table 3.1: Synthesis results

#Gates #FFs Area(um2) Memory
LEON3 7,185 1,851 116,881 16Kb
HM 1,230 399 27,613 512b

Three software applications have been used for testing:

1. BBS implements the bubble sort algorithm for a vector of 15 values,

2. Mmult implements a 5x5 matrix multiplication,

3. AES implements the AES encryption algorithm.

In all cases, intermediate computation results are frequently sent to a parallel output
port, where they can be checked during the fault-injection process. All algorithms were
developed in C and compiled with GCC using the -O2 optimization option. To better
demonstrate the capabilities of our approach, the experiments were first conducted with
an unhardened version of the application software, as given by the compiler with no further
manipulation to harden it. Then, the experiments were repeated with a software version
that is hardened for data errors as described in previous section. The hardened software
version was also developed in C and compiled with the same options.

In the experiments, the same approach as in [42] and [53] was adopted to evaluate the
error detection capabilities. We estimate the global error rate using fault injection. The
dynamic cross-section can then be calculated as the product of the static cross-section
and the estimated global error rate. Because the static cross-section is the same for the
hardened and unhardened versions of the circuit, relative comparisons can be made in

26

3.3 – Fault injection campaign

terms of the global error rate. Moreover, fault injection allows us to perform a more
detailed error analysis.

To obtain the global error rate, the AMUSE tool [24, 25] was used. This tool is an
emulation-based fault-injection system that can cover SEU and SET, including logical,
latch-window, and electrical masking effects. It also provides very high performance,
which enables very large fault-injection campaigns to be executed in a short time. With
respect to test coverage, as described in [58], AMUSE typically provides 100% coverage
of expected radiation test results with respect to fault locations, input vectors, and clock
cycles of operation for small- or medium-size test cases.

Fault-injection campaigns were conducted for SEUs and SETs. For SEU experiments,
SEUs were injected in every flip-flop and clock cycle, covering the full SEU space of the
application. For SET experiments, faults were injected at several random instants within
every clock cycle for every gate and with a pulsewidth of 10th of the clock period, using
the approach described in [25].

In the experiments, errors were classified in several categories, following the terminol-
ogy proposed in [46]. Errors that are not detected by either the HM or hardened software
are classified as silent data corruption (SDC) or Hang. An error is classified as SDC as
soon as an erroneous output is observed at the output port. An error is classified as Hang
if no new values are observed at the output port for a long time, which indicates the
processor may be lost. For this purpose, a timeout condition has been established with
some extra clock cycles that enable correct completion of the computation. An error is
classified as Hang if the timeout condition is overtaken. Note that a Hang error can be
produced by control-flow error (e.g., an incorrect jump) or by a data error (e.g., an error
in the index of a loop that prevents the program from finishing in due time).

Tables 3.2-3.4 summarizes the results of the fault-injection campaigns with the HM for
the three selected software applications with unhardened and hardened software versions.
The internal registers of the LEON3 have been divided in two sets: Set I includes the PC
& IR for all stages (346 FFs) and Set II includes the remaining registers (1,505 FFs). The
first three rows in the tables show the results of SEU fault injection for sets I and II, and
all of the registers, respectively. The last row shows the results of SET fault injection.
From left to right, the table shows the number of injected faults, the total amount of
observed errors, and the classification of errors as SDC, Hang, or Detected by the HM.
The percentage of errors in each category with respect to the total amount of observed
errors is provided in brackets.

Errors reported in the table are true errors, that is errors that produce wrong observable
behavior. False errors, such as those can occur in the hardware monitor, have not been
included. The effect of a false error is to trigger unnecessary error-recovery action. For
low error rates, the impact of some sporadic error-recovery action is negligible. Otherwise,
the hardware module can be hardened to reduce the chance of false errors.

As shown in Table 3.2, the unhardened Bubble Sort algorithm takes 3404 clock cycles.
Therefore, 3404 SEUs were injected per flip-flop, up to 6.3 million SEUs in total. 10234
SETs were injected per combinational node, up to 80.6 million SETs in total. Taking into
account the large amount of injected faults, the error margin is smaller than 0.1% with
95% confidence [72].

27

3 – Hybrid Nonintrusive Error Detection Technique

Table 3.2: Fault injection results with BBS

Benchmark Elements Faults
injected

Errors
observed

SDC Hang Errors
detected

BBS, Un-
hardened
SW

PC & IR(I) 1.177M 343,278 0 0 343,278
(100%)

Other Regs(II) 5.123M 361,307 167,192
(46.3%)

36,764
(10.2%)

157,351
(43.6%)

All Regs 6.301M 704,585 167,192
(23.7%)

36,764
(5.2%)

500,629
(71.1%)

Comb. logic(SETs) 80.649M 777,634 258,768
(33.3%)

24,579
(3.2%)

494,287
(63.6%)

BBS,
Hardened
SW

PC & IR(I) 2.997M 767,712 0 0 767,712
(100%)

Other Regs(II) 13.038M 813,107 81,996
(10.1%)

45,195
(5.6%)

685,916
(84.4%)

All Regs 16.035M 1,580,819 81,996
(5.2%)

45,195
(2.9%)

1,453,628
(92.0%)

Comb. logic(SETs) 205.233M 1,881,373 78,992
(4.2%)

10,448
(0.6%)

1,791,933
(95.2%)

Table 3.3: Fault injection results with Mmult

Benchmarks Elements Faults
injected

Errors
observed

SDC Hang Errors
detected

Mmult,
Unhard-
ened
SW

PC & IR(I) 2.125M 466,416 0 0 466,416
(100%)

Other Regs(II) 9.245M 599,949 264,051
(44.0%)

50,084
(8.3%)

285,814
(47.6%)

All Regs 11.371M 1,066,365 264,051
(24.8%)

50,084
(4.7%)

752,230
(70.5%)

Comb. logic(SETs) 145.533M 1,495,468 436,119
(29.2%)

25,499
(1.7%)

1,033,850
(69.1%)

Mmult,
Hardened
SW

PC & IR(I) 5.11M 1,173,644 0 0 1,173,328
(100%)

Other Regs(II) 22.3M 1,586,301 65,174
(4.1%)

117,046
(7.4%)

1,404,397
(88.5%)

All Regs 27.4M 2,759,945 65,174
(2.4%)

117,046
(4.2%)

2,577,725
(93.4%)

Comb. logic(SETs) 350.3M 3,921,304 69,807
(1.8%)

50,633
(1.3%)

3,800,864
(96.9%)

28

3.3 – Fault injection campaign

Table 3.4: Fault injection results with AES

Benchmarks Elements Faults
injected

Errors
observed

SDC Hang Errors
detected

AES, Un-
hardened
SW

PC & IR(I) 1.514M 833,840 0 0 833,840
(100%)

Other Regs(II) 6.587M 610,326 321,583
(52.7%)

11,968
(2.0%)

276,775
(45.31%)

All Regs 8.102M 1,444,166 321.583
(22.3%)

11,968
(0.8%)

1,110,615
(76.9%)

Comb. logic(SETs) 103.701M 1,017,164 324,243
(31.9%)

1,439
(0.1%)

691,482
(68.0%)

AES,
Hardened
SW

PC & IR(I) 2.271M 1,150,973 0 0 1,150,973
(100%)

Other Regs(II) 9.879M 762,482 107,390
(14.1%)

30,487
(4.0%)

624,605
(81.9%)

All Regs 12.150M 1,913,455 107,390
(5.6%)

30,487
(1.6%)

1,775,578
(92.8%)

Comb. logic(SETs) 155.511M 1,336,025 78,167
(5.9%)

2,999
(0.2%)

1,254,859
(93.9%)

The proposed approach is able to detect 100% of the errors in Set I and many of the
errors in Set II. Although Set I is much smaller than Set II, it accounts for about half of
the total observed errors. This is because the PC and IR registers are very critical. In
particular, Set I accounts for all control-flow errors [76]. Errors in other registers (Set II)
may produce a wide variety of effects, but they can also be detected by the HM if they
eventually produce a control-flow error, invalid addresses, infinite loops, etc. The HM is
also able to detect a similar percentage of errors caused by SETs.

When the BBS application is hardened with SW technique, it takes 8,663 clock cycles,
and the amount of injected faults goes up to 16 million SEUs and 205 million SETs. Again,
all errors in Set I are detected. Some of these errors may be detected by software, if the
software error detection triggers earlier than the HM. By combining the HM with software
hardening for data errors, 92.0% of SEUs and 95.2% of SETs are detected. The majority of
the remaining undetected errors correspond to faults injected outside the processor core,
which are not covered by the proposed approach. For instance, an error in the memory
controller or the bus controller may be affected in a common way to duplicated variables
and, therefore, may not be detected by the hardened software. Protection against these
errors should be provided by other means, which are outside the scope of this work.

The Mmult application is more complex and requires 6,143 clock cycles to complete
for the unhardened software case, and 14,788 clock cycles for the hardened software case.
Therefore, the amount of injected faults is increased to provide the same test coverage.
The error detection capabilities are very similar to the BBS application. Again, the HM
detects all errors in Set I and many of the errors in Set II. For this software application,

29

3 – Hybrid Nonintrusive Error Detection Technique

93.4% of SEUs and 96.9% of SETs were detected with a combination of the HM and
software hardening for data errors.

The AES application has a larger code, although it executes in fewer clock cycles,
namely, 4,377 clock cycles using unhardened software and 6,564 clock cycles for the hard-
ened software version. The error detection capabilities are again similar to the other
applications.

Finally, several fault-injection campaigns were performed on the register file. The pur-
pose of these campaigns is to evaluate the capability of the HM for error detection, even
though errors in the register file are data errors. The register file of LEON3 consists of
two RAM modules that implement the eight register windows and the eight global regis-
ters. The RAM modules are commonly protected by using radiation-hardened memory or
using error detection and correction (EDAC) codes. Otherwise, software fault-tolerance
techniques can be used. For these campaigns, assumption has been made that the RAM
modules are not protected except for the error detection mechanisms of the HM and the
implemented hardened software.

The results of the fault-injection campaigns on the register files for several software
applications are summarized in Table 3.5. Again, the full SEU space was covered and SEUs
were injected in every RAM bit and clock cycle. The first three rows show the results for
the BBS, Mmult, and AES applications, respectively, using the HM with unhardened
software. Although the injected faults produce data errors, the HM is able to detect
30.8%, 42.8%, and 38.0% of them, respectively. These errors are mainly detected by the
timeout and exception handling features of the HM. The next three rows in Table 3.5
show the results using hardened software versions. In these cases, the error detection rate
rises to 93.3%, 92.4%, and 97.3%, respectively. The reason why no full error detection is
achieved is that the compiler optimizes away some of the redundant code used for error
detection. Error detection can be improved by reducing the compiler optimization level
at the expense of increasing the execution time. For instance, the error detection rate in
the Mmult application rises to 99.3% by reducing the compiler optimization level to , as
shown in the last row of Table 3.5.

The novel hybrid approach proposed in this work for error detection in microprocessors
which is based on monitoring and comparing the instruction flow at the input and at the
output of the microprocessor. The proposed technique is intended for complex micropro-
cessors with several pipeline stages in which instructions can be corrupted as they move
into the pipeline of the processor. This technique has several advantages with respect to
previous approaches that use a single observation point. First, it does not require software
modifications or additional information to compare with. Second, since the control flow is
observed at two different points, just before and after instruction execution, it can detect
any error that occurs in between.

Experimental results with the LEON3 microprocessor demonstrate that the proposed
approach can achieve 100% control-flow error detection. On the other hand, CFEs ac-
count for the majority of errors. By complementing it with software-based fault-tolerance
techniques, which are only required for protection against data errors, a complete solution
against SEEs with reduced performance degradation and low memory overhead can be
obtained.

30

3.3 – Fault injection campaign

Table 3.5: Fault injection results with Register File

Benchmarks Faults
injected

Errors
observed

SDC Hang Errors
detected

BBS (HM) 29.628M 509,955 310,197
(60.8%)

42,467
(8.3%)

157,291
(30.8%)

Mmult (HM) 53.469M 1,413,124 580,597
(41.1%)

227,806
(16.1%)

604,721
(42.8%)

AES (HM) 71.708M 1,414,901 844,203
(59.7%)

32,470
(2.3%)

538,228
(38.0%)

BBS (HM+SW) 75.403M 2,626,626 175,623
(6.7%)

0 (0%) 2,451,003
(93.3%)

Mmult (HM+SW) 128.715M 1,510,704 49,016
(3.2%)

65,885
(4.4%)

1,395,803
(92.4%)

AES (HM+SW) 107.538M 3,479,705 22,668
(0.7%)

72,626
(2.1%)

3,384,411
(97.3%)

Mmult (HM+SW -O0) 284.621M 1,976,912 7,864
(0.4%)

6,040
(0.3%)

1,963,008
(99.3%)

31

32

Chapter 4

Printed Circuit Board Assembly
Power-On Self-Test

This chapter describes the method to exploit the processors’ debug features for PCBA
Power-On Self-Test (POST)1. As discussed in previous chapters, the debug interface is
able to provide information regarding the execution of software on the processor. In
processor, such as LEON3, a stream of executed instruction along with corresponding
Program Counter value can be retrieved through the debug interface; and in processor,
such as ARM, even though no such stream is generated, but the CoreSight components
are still able to generate rich useful data including target address of an executed branch
instruction, exception information and clock cycle count between two branch instructions
etc., which can contribute to improve processor observability during POST. And the pro-
posed technique takes advantage of such information, introducing a Monitoring IP can be
mapped to a FPGA device on the same board.

This chapter is organized as follows: firstly, information regarding POST and func-
tional test is provided in the background section; and then an introduction of the CoreSight
architecture provided by ARM is presented, explaining the possible information regarding
the software running on the processor can be extracted through the debug/trace inter-
face; afterward, the architecture of the proposed Monitoring IP with the workflow how
this technique can be adopted is explained proving the feasibility for implementing such a
component; finally, due to lack of internal knowledge of the ARM processor, experiment
result with miniMIPS processor is presented, with comparison between the fault coverage
of the proposed technique and when all outputs of the processor is observable, proving the
effectiveness of the approach with Monitoring IP.

1This work was done with collaboration with our colleagues in Universidad de la República Montevideo,
Uruguay, and Testonica Lab, Tallinn, Estonia and supported in part by EU FP7 STREP project BAS-
TION; As the time of writing, this work has been accepted as a regular paper in 2016 IEEE International
Symposium on Design and Diagnostics of Electronic Circuits and Systems

33

4 – Printed Circuit Board Assembly Power-On Self-Test

4.1 Background

Power-On Self-Test (POST) plays an important role in many systems, since it may detect
faults arising during the life time of the product, thus increasing its dependability. POST
may use different solutions, which should match the constraints of the environment the
system is deployed in.

Functional test [67, 65] represents a commonly adopted solution for POST. More in
general, functional test is adopted in many scenarios, at the device, board and system
levels [39]. In some of them it complements other test steps, performed resorting to Design
For Testability (DFT). For example, when considering Printed Circuit Board Assemblies
(PCBAs) test, it is common to see functional test as the last step, mainly targeting
dynamic defects. The importance of this kind of defects is significantly increasing in the
last years, especially since they are considered one of the major contributors for Non
Failure Found (NFF) [37, 41], thus raising the interest for any solution able to improve
the achievable defect coverage.

Hence, functional test plays a key role for in-field test of PCBAs [26]. In this context,
functional test is particularly attractive due to its relatively low implementation cost (no
equipment required), low intrusiveness (no or limited changes in the PCBA design and
low impact on the application) and flexibility (since functional test is typically based on
forcing the processor to execute a suitable test program, possibly mimicking some specific
application code). A commonly adopted solution consists in launching at the power-on
the execution of a functional test targeting all the critical modules in the system, or,
alternatively, some specifically crafted test able to make observable the highest percentage
of defects [55]. Functional test is normally based on a sequence of instructions to be
executed by the in-system processor(s), aimed at exciting possible defects in the processor
itself or in any other device on the board, as well as in the interconnect. Therefore, this
kind of test is sometimes referred to as Software-Based Self-Test, or SBST [57].

Major limitations to the effectiveness of functional test include

• The difficulty in assessing the achieved defect coverage: although many efforts have
been done to introduce high-level metrics, their correlation with real defect coverage
is still a matter of discussion and a hot research topic [36].

• The cost for creating suitable functional stimuli; a lot of work has been done to
automate this part, or at least to provide guidelines for the test engineer in charge
of developing suitable functional tests.

• The limited observability that can be obtained on the behavior of the system under
test, both as a whole and in terms of its components.

The method discussed in this chapter focuses on the last point, and is an approach based
on combining different solutions.

First of all, the method uses the features currently provided by many processors in
order to support the debug of the software for test purposes. In particular, these features
often allow to access on-the-fly during the normal behavior of the processor (and without
slowing it down) to several information about its internal behavior. As an example, they

34

4.1 – Background

typically allow to trace the sequence of instructions executed by the processor, writing
them to ad hoc external interfaces.

Secondly, since the on-the-fly monitoring of the flow of data produced by the debug
interface can only be done resorting to ad hoc hardware, a module was proposed to be
mapped on an FPGA, assuming that some programmable hardware is available on the
board [38].

Finally, a scheme was described, in which the access to the debug features supported
by the module mapped on the FPGA is integrated into a board-level test environment
that can be used for in-field test.

In order to assess the effectiveness and limitations of the proposed solution, a Zynq-
7000 system by Xilinx was used, which integrates one or more ARM processors and a
programmable module. An IP core was developed that can be mapped on the latter
and is able to monitor the TPIU (Trace Port Interface Unit) debug interface provided by
ARM. Also a small software library was developed to be integrated into the code of the
functional test, so that the debug features are properly programmed at the beginning of
the test, and then used to increase the observability during the test execution. In this way,
the feasibility of the proposed solution and its (rather limited) cost in terms of required
FPGA resources could both be demonstrated.

Finally, since the lack of detailed information about the structure of the ARM processor
clearly prevents us from computing the increase in defect coverage that can be achieved
using the solution, some fault simulation experiments were performed on a MIPS-like
processor for which the model is available. The same information produced by the ARM
debug interface is extracted from this processor during the execution of the test, and
the achieved fault coverage is computed. Results show the effectiveness of the proposed
solution. Interestingly, they demonstrate that the stuck-at fault coverage that can be
achieved is comparable with the one reachable using a corresponding test program in a
scenario where all the processor outputs can be continuously monitored.

4.1.1 CoreSight Architecture from ARM

A Zynq-7000 SoC by Xilinx was used as a platform for concepts evaluation. The Zynq
device has a ARM-based SoC with a CortexA9 dual core processor embedded in the same
chip with the FPGA part, and the ARM-based SoC is equipped with the CoreSight On-
chip Trace and Debug Architecture [4] that can output trace data via TPIU from which
custom IP mapped on the FPGA part retrieve data.

According to the CoreSight Architecture, all the CoreSight components belong to one
of the following four classes:

1. Access and Control includes the ARM Debug Access Port (DAP) which provides
access to the internal memory and memory-mapped configuration registers of the
device controllers (including the CoreSight components) via the JTAG port; the
Embedded Cross Trigger (ECT) components which implements a mechanism to pass
debug events between processor cores (hard and soft cores in case of the Zynq-7000
SoC) allowing one CoreSight component to communicate with others via trigger
events.

35

4 – Printed Circuit Board Assembly Power-On Self-Test

2. Trace source includes components that generate trace information from different
aspects of the system. The Program Trace Macrocell (PTM) generates trace data for
the software running on the processor; the Instrumentation Trace Macrocell (ITM)
allows software developer to explicitly insert trace points into the software to ease
the effort for application-level trace and debug; the Fabric Trace Monitor (FTM)
is a Xilinx specific trace Macrocell that compiles with the CoreSight architecture
specification and enables, in cooperation with ITM and PTM, to trace data generated
by peripherals implemented inside the programmable logic (FPGA) of the Zynq-7000
SoC.

3. Trace link includes two components for the communication between the trace source
and trace sink components. The Funnel is in charge of merging trace data from
multiple sources (PTM, FTM and ITM) into a single stream and sending it to the
ARM Trace Bus (ATB); the Replicator duplicates the trace stream onto its two
output ATM master ports, namely Embedded Trace Buffer (ETB) and Trace Port
Interface Unit (TPIU), from the input ATB slave port.

4. Trace sink includes two components for dumping trace information. The ETB is an
on-chip storage module with limited size (4KB) which enables short-window real-
time and full-speed tracing; while the TPIU allows the trace packages to be output
to the FPGA part or to the chip output pins.

The CoreSight components implemented inside Zynq-7000 device is shown in Fig. 4.1.

Figure 4.1: CoreSight System Diagram in Zynq-7000[5]

4.2 Monitoring IP

As described above, the CoreSight trace and debug infrastructure implemented in Zynq-
7000 allows us to request the processor to generate a flow of trace data and output it

36

4.2 – Monitoring IP

through the TPIU port. In order to monitor this flow of data during the test execution, a
custom IP was proposed, which is configured as a peripheral connected to the TPIU and
mapped on an FPGA, which is supposed to exist on the board. Hence, following here the
general idea already introduced in other papers (e.g., [2]), FPGAs possibly existing on
the board for functional purposes can also be used for test purposes. It is important to
underline that the proposed approach does not require any additional FPGA resources,
since those used for test purpose are then also used for functional purposes when the test
is finished.

To demonstrate the feasibility of the approach, a simple monitoring IP was imple-
mented to be mapped on the Zynq-7000 device. With the monitoring IP, it is possible to
monitor on-the-fly the trace packages from the PTM and read several relevant information
about the test program execution including, for example, taken/not-taken decisions, the
target PC address of branch instructions, cycle accurate information between two branch
instructions, the exception status of the processor.

To determine if the test running on the processor is executed correctly, the monitoring
IP directly compresses the information extracted from the TPIU by sending them to a
Multiple Input Shift Register (MISR) for signature computation. At the end of the test,
the test program itself checks the signature generated by the MISR and compares it with
the expected signature.

Note that the Program Flow Trace (PFT) architecture, which is part of the CoreSight
specification, defines the types of trace packages as follows [5]:

1. A-sync: (Address synchronization) identifies a package boundary;

2. I-sync: (Instruction synchronization) specifies the processor state for the next in-
struction to be executed;

3. Atom: Useful when cycle-accurate tracing is enabled;

4. Branch without exception: contains the branch target address;

5. Branch with exception: contains exception vector address;

6. Waypoint update: contains waypoint update address (a waypoint is a point where
instruction execution by the processor might involve a change in the program flow);

7. Context ID: indicates Context ID change for the instructions following this package
(Context ID indicates source of the packages);

8. Trigger: indicates a trigger occurred (a trigger event can be enabled or defined by
user through software);

9. Ignore: has no effect;

10. Exception return: (for ARMv7-M processor) indicates the return from an exception
handler;

11. Timestamp: contains the absolute value of timestamp;

37

4 – Printed Circuit Board Assembly Power-On Self-Test

12. VMID: indicates the Virtual Machine ID of the processor.

Though the overall set of package types may provide a lot of information about the
program flow, only a few of them are worth being used for program flow error checking.
Hence, the Monitoring IP does not use (thus simplifying the configuration of the CoreSight
components) the packages like Context ID, Timestamp and VMID. Moreover, since a
MISR is used to check that the correct sequence of jump instructions is executed, a package
filter module is applied to preliminarily remove any information that is non-deterministic
(e.g., Timestamp and Ignore packages). The structure of the monitoring IP is shown in
the Fig. 4.2 and the resource consumption in terms of Look-Up Tables (LUTs) in the
FPGA is reported in Table 4.1.

Figure 4.2: Architecture of the Monitoring IP

Table 4.1: Resource consumption for the Monitoring IP

Resource
#Used in
Monitoring
IP

%Used in
Monitoring
IP

Slice LUTs LUTs as Logic 981 5.58
LUTs as Memory 0 0

Slice Registers Registers as FlipFlop 1,129 3.21
Registers as Latch 0 0

Muxes F7 Muxes 64 0.80
F8 Muxes 32 0.70

The monitoring IP reads data from the TPIU through the EMIO, and the Finite State
Machine (FSM) implemented in the monitoring IP firstly waits for the A-sync package
(which is at least 5 bytes of 0) to determine the boundary of the packages. Afterwards,
when a header byte is found, the FSM goes into the state devoted to extracting information
for the specified package while determining the end of the current package. If not filtered,

38

4.2 – Monitoring IP

the information from the package is then padded, if necessary, and sent to the MISR for
calculating the signature.

The FSM uses detailed format about the package to decode and extract information.
To provide the reader with an example of the format of the packages, one of the branch
address package is described in Fig. 4.3, where only one of the variants depending on the
configuration and current processor state is considered. The first section of the package
contains 1 to 5 bytes for the address, while the second section contains 0 to 2 bytes for
the possible exception information. When the FSM enters the state devoted to extracting
information from such a package, it needs to check the bit "C" (see Fig. 4.3) to see if the
following byte is still part of the section of the package (i.e., to check the boundary of the
package). Then, with the boundary determined, the information extracted (in this case,
all the bytes in the package) is sent to the MISR.

Figure 4.3: Format of the branch with exception package [5]

Furthermore an ARM Advanced eXtensible Interface (AXI) slave was implemented
containing several registers which hold the configuration data and run-time status of the
other components in the monitoring IP. Through these registers, the user can configure
the monitoring IP at the beginning and check the status and final results of the MISR at
the end. The whole workflow adopted by the proposed technique is shown in Fig. 4.4.

Following this workflow, the following steps are executed during the Power-On Self-Test
of the board

1. The board is powered on, and all the standard initialization procedures are executed

2. The FPGA is programmed with a bitstream stored in some external memory (typi-
cally, a Flash); after this step the monitoring IP is available on the FPGA

3. The control passes to the test code (possibly also stored in some Flash memory),
which executes the following operations

(a) Configures the CoreSight components by writing into the proper configuration
registers of the device

(b) Configures the monitoring IP, by writing into its configuration registers
(c) Launches the execution of the test program; during this phase, each time the

test program executes a branch instruction, suitable packets are sent to the

39

4 – Printed Circuit Board Assembly Power-On Self-Test

Figure 4.4: Workflow of the proposed technique

TPIU, and processed by the monitoring IP, which extracts the relevant infor-
mation and compress them in the MISR

(d) Accesses to the monitoring IP, reads the final signature and compares it with
the expected one; if a mismatch arises, some error procedure is activated.

Obviously, the test of other parts of the PCBA (including the FPGA itself) is not
discussed here, that can be performed resorting to any other mechanism without impacting
on the effectiveness of the approach proposed here, which mainly targets the processor
module.

40

4.3 – Fault coverage analysis

4.3 Fault coverage analysis
This section presents some experimental figures aimed at assessing the fault detection
increase that one can achieve by adopting the observation mechanism supported by the
debug features.

The miniMIPS processor was used, synthesized using Synopsys Design Compiler with
a technology library developed in-house. A test program was used, which was manually
developed by a test engineer knowing the netlist of the processor and targeting the max-
imization of the stuck-at fault coverage. The size and duration of this test program are
1,520 bytes and 14,617 clock cycles, respectively. Several fault simulation experiments
aimed at assessing the Fault Coverage achievable with such a test program with different
observation mechanisms were performed using Synopsys TetraMAX.

Table 4.2 reports for the adopted processor the number of detected faults (out of the
total of 266,410 stuck-at faults in the whole processor) using several observation mecha-
nisms:

• Always observing all the output signals of the processor (ATE); this mechanism is
the one which is typically adopted when performing end-of-manufacturing test of the
processor (before mounting it on the board); in this case, the device is mounted on
an ATE, which provides full controllability of all input signals, and full observability
of all output signals;

• Observing the content of the memory at the end of the test (mem); this mechanism is
the one which is typically adopted for in-field functional test; the processor executes
a test program, and then the final content of the memory area where results are
written is checked for compliance with the expected values;

• Observing the debug port when a jump is executed (dbgm_branch); this mechanism
is the one described in this paper, using debug features like the ones available in the
ARM processor.

Table 4.2: Experimental results on the MIPS-like processor

ATE mem dbgm_branch mem+dbgm_branch
Detected 240,591 218,787 48,083 240,547
Fault Coverage(%) 90.30 82.12 18.05 90.29

It is interesting to note that the dbgm_branch mechanism proposed in this paper, when
combined with the mem one, allows a significant increase in the achievable Fault Coverage.
In fact, a significant percentage of the faults detected by dbgm_branch is not detected by
mem. Hence, the total number of faults combining the two mechanisms (reported in the
rightest column) is higher than both of them, and basically equal to what cab be observed
with the first mechanism, which is not usable in in-field test. This result can be explained
by recalling that the dbgm_branch mechanism allows accessing information about the
internal behavior of the processor.

41

4 – Printed Circuit Board Assembly Power-On Self-Test

It is finally worth noting that a non-negligible percentage of the faults in the processor
(2,429 according to TetraMAX, at least 3,291 according to [64]) are untestable, and thus
never produce any misbehavior.

In this work, the usage of some debug features originally introduced in processors was
proposed to support software development in order to increase the observability (and hence
the fault and defect coverage) during the functional test of PCBAs, with special emphasis
on Power-On Self-Test. In particular, these features allow the on-the-fly access to trace
information during the test execution, that can be monitored using a special hardware
module that may be mapped on an external FPGA which is supposed to exist on the
board.

The feasibility and the cost of the solution was demonstrated and evaluated on a
Zynq-7000 system by Xilinx equipped with an ARM core. To assess the increase in Fault
Coverage, a MIPS-like processor (with modification to mimic the behavior of debug inter-
face in CoreSight architecture) was used whose gate-level netlist is available, and the fault
coverage analysis results showed that the proposed technique can achieve figures similar
to those obtained during end-of-production testing of the same processor, when it can be
tested using an ATE. In this way, the defect coverage that can be obtained during in-field
test of a PCBA is greatly enhanced, thus successfully attacking important issues, such
as the reduction of No Failure Found (NFF). It is also worth noting that our method
supports the at-speed test of the system, thus appearing particularly promising especially
when dynamic faults represent an issue.

The monitoring IP in the current version is still simple and just uses a subset of the de-
bug features supported by the considered device. However, the feasibility was shown clear
for implementing such a module to extract and process information from the processor in
a non-intrusive way. Several extensions are possible, leading to the usage of more informa-
tion provided by the debug and trace facilities, for example, the information as in Fig. 4.3
when exceptions happen can be extracted to monitor the exception handling procedure
(which, for sake of simplified miniMIPS experiments, it is not taken into consideration).

Currently further work is being done towards the extension of the method by using
further debug features (e.g., extract detailed information in different types of packages
instead of send the bytes directly to MISR) and an improved architecture of the monitoring
IP. Moreover, a more detailed evaluation of the defect detection capabilities of the proposed
approach, e.g. by considering delay fault models, is undergoing.

42

Part II

Analysis and Mitigation of Single
Event Effects on FPGAs

43

Chapter 5

Introduction

Field Programmable Gate Arrays (FPGAs) are becoming more and more commonly used
in various application fields due to their flexibility and low development cost. Furthermore,
with technology scaling, the computing power they can provide keeps increasing while the
cost and power consumption remains low. This makes them even attractive in safety- and
mission-critical fields such as automotive, avionics and space applications.

The FPGA, by different manufacture process technology, can be divided into SRAM-
based FPGA, Flash-based FPGA and so on (Antifuse, EEPROM etc. are not in the scope
of this work). SRAM-based FPGA, such as the ones from Xilinx and Altera, provide
large amount of on-chip resources including Logic Blocks, Digital Signal Processing (DSP)
Units, On-chip Memory etc. Together with high performance, low power consumption and
high flexibility via partial reconfiguration, these features make SRAM-based FPGA very
popular in the market. While comparing to SRAM-based FPGA, Flash-based FPGA does
not require extra memory device to store configuration file, and does not require to re-
program after each power-on, due to the non-volatile Flash-based configuration memory.
More importantly, the configuration memory inside Flash-based FPGA are almost immune
to permanent loss of configuration data. Thus, Flash-based FPGA are gaining more and
more interest in space and avionic applications.

Though internal architectures may vary from device to device, the SRAM-based FPGA
and Flash-based FPGA share the same general architecture as shown in Fig. 5.1, which
includes Logic Blocks and Switch Boxes.

• The Logic Blocks topically contains resources such as Look Up Table (LUT), Multi-
plex and Registers and so on that user can configure according to the logic circuit
to be implemented and mapped on the FPGA. An example of Logic Block (from
Virtex-5 device of Xilinx) is shown in Fig. 5.2.

• The Switch Boxes usually contains interconnection segments which can be configured
as active or inactive as required by the routing of the implemented circuit on FPGA.
An example of routed design mapped on FPGA (ProASIC3 from Microsemi) is
shown in Fig. 5.3.

With other resources provided, such as Block Memories, PLLs etc., designer can create

45

5 – Introduction

Figure 5.1: FPGA general architecture

complicated system on FPGA using high level Hardware Description Language (HDL) or
High Level Synthesis methods supported by vendor tools (such as Vivado from Xilinx,
Quartus Prime from Altera). A complete design flow usually includes the steps in Fig. 5.4.
The synthesis tool compiles the design files in HDL or other high level design format to
Gate-Level netlist, and then Place & Route tool is used to map the design to the hardware
resources on FPGA. In this process, the netlist could be used for different level simulation
to validate the design and timing correctness. Afterwards, the Post-Layout netlist is used
by Bitstream Generation tool to generate the bitstream file that can be downloaded to
FPGA for implement the design.

5.1 Single Event Effects on FPGAs
With the exponential growth of transistor count, shrinking of transistor size, voltage scal-
ing and increasing operating clock frequency make digital circuits more susceptible to
Single Event Effects (SEEs). A SEE may occur when an outside disturber, such as radia-
tion particle from space, hits the device causing wrong behavior in the circuit. The energy
for a particle to trigger SEE decreases along with the transistor size, while considering
SEEs induced by radiation particles at sea level have been reported more than a few years
[61], it is mandatory to apply fault tolerant strategies to improve reliability of the system
when designing safety- and mission-critical applications.

Two main effects among SEEs considered in this work are Single Event Upset (SEU)
and Single Event Transient (SET). A SEU happens when a charged particle hit a storage
element in the design, such as register and memory cell, causing the value stored in the
element to change. Meanwhile, A SET happens when a charged particle hit the device (the
combinational gate, interconnection resources etc.) causing an abnormal voltage pulse in
the circuit that can propagate through the gates till a storage element is reached along the

46

5.1 – Single Event Effects on FPGAs

Figure 5.2: Logic Block (SLICEL) diagram from Virtex-5 device of Xilinx [74]

path. And if sampled by the storage elements, then the SET can induce SEU or Single
Event Multiple Upsets (SEMUs) depending on how many elements are affected.

5.1.1 SEEs on SRAM-based FPGA

As for SRAM-based FPGA, SEU is the main concern due to the vulnerability of its con-
figuration memory. Since the data (i.e. bitstream) in configuration memory contains the
configuration data for various hardware resources on the FPGA used in the design, which
includes the LUTs, registers and so on in Logic Blocks and programmable interconnection
segments in Switch Boxes, a SEU in the configuration memory may cause a permanent
error in the mapped design in FPGA depending on whether the bit affected by the SEU
is used in the implemented design or not. For an example, taking the Virtex-5 FPGA
from Xilinx, a bitflip inside the configuration memory can change a Programmable Inter-
connection Point (PIP) from active to inactive causing the circuit to misbehave as shown
in Fig. 5.5.

In SRAM-based FPGA, the configuration memory is made using SRAM cells, while

47

5 – Introduction

Figure 5.3: A routed design mapped on ProASIC3 from Microsemi

Figure 5.4: Typical FPGA design flow

the SRAM cells are most vulnerable components to SEUs [45], extra caution needs to be
applied when SRAM-based FPGA is used.

5.1.2 SEEs on Flash-based FPGA

When it comes to Flash-based FPGA, its configuration memory is made of Flash-based
cells which are almost immune to permanent loss of the configuration data. Thus they
are becoming increasingly interesting in safety critical fields, in particular for space and
avionic applications. However, the floating gate based switches in the Flash-based FPGA

48

5.1 – Single Event Effects on FPGAs

Figure 5.5: A SEU in configuration memory corrupting interconnection

can still suffer transient effects (i.e., SEEs); if hit by high energetic particles, possible
critical consequences can be caused on the implemented circuit.

Two distinct effects on Flash-based FPGAs may be identified. The former occurs
inside of the floating gate switch: the pass transistor and floating gate transistors usually
constitute the floating gate switch. The second occurs when a high charged particle hits
a sensitive node of a logic cell belonging to the FPGA’s configuration tile. The generated
pulse may propagate through the logic depending on the FPGA tile configuration. If the
tile is configured to implement a latch, the pulse may turn directly into a SEU because
of the feedback paths implemented by the tile logic configuration. Meanwhile if the tile is
configured to implement a logic gate, the transient pulse may propagate along the logic
paths, reach and be sampled into storage elements corrupting the data stored in them.

49

50

Chapter 6

Single Event Effects in
SRAM-based FPGA

This chapter discusses the Single Event Effects on SRAM-based FPGA. Due to the SRAM
cell’s high sensitivity against Single Event Upset (SEU) induced by radiation effects, the
SRAM-based FPGA is highly susceptible to loss of configuration data in harsh radiation
environment, which can lead to critical system failure when used in safety- and mission-
critical applications. So the main focus of current chapter is on the analysis and mitigation
technique applied to protect the SRAM-based FPGA against SEUs in configuration mem-
ory.

The chapter is organized as follows: firstly, a background section is provided with in-
troduction of SEUs in the configuration memory of SRAM-based FPGA, including related
approaches for SEU mitigation; then the VERI-Place tool for error rate prediction and
SEU mitigation is explained; and finally, two radiation experiments with results analysis
is presented to verify the accuracy and effectiveness of proposed analysis and mitigation
technique.

6.1 Background

As mentioned in previous chapter, the SRAM cells used for the configuration memory
in SRAM-based FPGA are very sensitive to SEUs, which can be induced by a charged
particle. And a SEU in the configuration memory can corrupt the functionality of a logic
gate (implemented using LUT), a register or an interconnection segment which in turn
can cause whole design to misbehave.

There are already several techniques proposed to mitigate the SEUs (and SETs) for
SRAM-based FPGA. The most known technique is based on redundancy, such as Triple
Modular Redundancy (TMR) and its variants. Configuration memory scrubbing is also
a well-known technique, in which, the configuration memory is periodically (or triggered
by some other mechanism) re-written to correct the SEU, and recently with the high
flexibility provided by partial reconfiguration feature, there is technique proposed to detect
and correct SEU in the configuration memory in a finer granularity.

51

6 – Single Event Effects in SRAM-based FPGA

6.1.1 Techniques based on redundancy

Among the redundancy-based techniques, the TMR technique involves triplicate the logic
in the design and insert a voter before the output as shown in Fig. 6.1. The voter generates
the final outputs using a majority vote algorithm r = xy ∨ yz ∨ xz.

Figure 6.1: General TMR architecture

The TMR could be applied at different level in the system, such as gate level, entity
level and system level, where the Logic in Fig. 6.1 would be gate (often register or Flip-
Flop (FF)), system components (e.g., IP) and system itself (e.g., SoC, Chip) respectively.

Different variants of the traditional TMR techniques were proposed over the years to
handle different application scenarios. For example, a feedback network can be added to
TMR not only to detect which copy of the Logic is misbehaving but to correct it; and in
case the error is not possible to fix, the TMR can be downgrade to Duplicate Modular
Redundancy mode to detect error and so on.

When TMR is applied at gate level where all the registers are triplicated and voter
inserted at the outputs of the registers, SEU can be effectively mitigated, as shown in
Fig. 6.2. However, if a SET causes a pulse that can propagate to the registers, all the
three registers may be corrupted at the same time and TMR can not provide correct
output any more.

With the SRAM-based FPGA from Xilinx, a Xilinx TMR (XTMR) tool is provided
to automatically apply TMR to the design. And instead of using single majority voter,
XTMR triplicates all the design inputs and use three minority voters at the outputs which
are also triplicated as shown in Fig. 6.3. And the minority voter’s implementation is shown
in Fig. 6.4.

Since the XTMR tool triplicates the logic paths in the design directly and only inserts
the voters before the final output pins, that means when a SEU occurs in the configuration
memory altering one of the paths, the design can still behave correctly. But, if without
detect and correct mechanism to fix the corrupted bit in configuration memory, SEU can
accumulate overtime, that is, if after some time, another SEU in configuration memory
corrupts the other path among the three, the design may fail as illustrated in Fig. 6.5.

52

6.1 – Background

Figure 6.2: TMR applied at gate-level with registers triplicated

Figure 6.3: Input and output triplication in XTMR [80]

Figure 6.4: XTMR minority voter implementation [80]

53

6 – Single Event Effects in SRAM-based FPGA

Figure 6.5: Accumulated SEU in configuration memory corrupts design with XTMR

A solution to improve the reliability upon the XTMR applied design is to increase the
granularity of the TMR, i.e., divide the logic path into finer segments and insert voters
between segments. However, this solution increase the hardware and power consumption
overhead significantly due to the extra logic to be introduced into the design. Another
solution is to apply scrubbing technique in configuration memory to prevent SEU to be
accumulated over time which is discussed in later section.

6.1.2 Configuration memory scrubbing via Partial Reconfiguration

As discussed in previous section, configuration memory scrubbing could be used to correct
the SEU in configuration memory and prevent accumulation of SEU. Depending on how
the scrubbing is performed, it can be divided into two categories:

1. The entire configuration memory is refreshed by external device. And during the
refresh the device can not perform the normal operation and resume after the scrub-
bing.

2. The configuration memory is refreshed part by part (Partial Reconfiguration). And
the design can stay operational (or at least part of it) during this procedure which
is enabled the reconfiguration module provided in the FPGA (e.g., Internal Config-
uration Access Port (ICAP) in Xilinx FPGA).

Since the second method provides much higher system availability comparing to the
first option, it gained popularity since partial reconfiguration becomes possible in SRAM-
based FPGA with granularity at Frame level [81] (A Frame is a smallest addressable
segment in configuration memory, a group of Frames together is used to configure a column
of tiles of different type as in Fig. 6.6). However, the mechanism used to trigger the
scrubbing and to choose which frames to be refreshed has impact on the performance and
Mean Time To Failure (MTTF).

54

6.2 – Verification and Error Rate Integrated Tool

Figure 6.6: Frames in Virtex-5 SRAM-based FPGA’s configuration memory [81]

The simplest strategy is to blindly refresh the configuration memory frame by frame
[81, 31]. The fault-free configuration data (i.e., bitstream), namely Golden Copy, is stored
in an external memory device and is read and written to the configuration memory of the
FPGA through the ICAP module.

And to detect SEUs in the configuration memory, a readback can be performed to read
the configuration data from FPGA frame-by-frame to compare with the Golden Copy.
Then according to the existence of SEU, a frame is decided to be refreshed or not.

Other solutions for scrubbing strategy has been proposed to increase performance and
system reliability regarding MTTF, such as in [66, 48]. Thus the analysis regarding the
sensitive bits in the configuration memory is valuable for determining the strategy to apply
scrubbing.

6.2 Verification and Error Rate Integrated Tool

The Verification and Error Rate Integrated (VERI-Place) tool is a software able to perform
the Soft-Error Analysis and Placement oriented to the Soft-Error mitigation of circuits on
SRAM-based FPGAs1.

1The VERI-Place tool is developed in our research group in Politecnico di Torino by Prof. Luca
Sterpone, and currently available online.

55

6 – Single Event Effects in SRAM-based FPGA

6.2.1 Sensitivity analysis with SEUs in configuration memory

The VERI-Place takes the Xilinx Design Language (XDL) file, which is native Xilinx
netlist format for describing and representing FPGA designs, as input, performs SEE
sensitivity analysis and generates several outputs including:

1. Exposure reports, which contain the logic and routing resources related to each
Configurable Logic Block (CLB). Each resource is considered for being exposed to
possible radiation effects, therefore this output reports the overall exposure of the
implemented design.

2. Heatmap for sensitive area, where sensitivity is measured by the probability of a
failure inside of the specific location, an example is shown in Fig. 6.7 (a and c).

3. Cross-Domain Failure report, which contains the logic and routing resources expo-
sure that may provoke a Cross-Domain Failure affecting the XTMR/TMR design
structure (this is only available for design with XTMR/TMR applied).

4. Heatmap for graphical visualization of the interconnection congestion level, which is
relative to the whole percentage of PIP and computed for each design, an example
is shown in Fig. 6.7 (b and d).

5. Sensitive bit report, which contains the list of sensitive bits with the location of the
resources corresponding to the bits. Note this report does not provide the expected
Error Rate of the target design.

Furthermore, the VERI-Place tool executes automatically the Error Rate computation
by means of a progressive Monte Carlo analysis. The tool analyzes the effects of SEUs
within the configuration memory ox Xilinx SRAM-based FPGA, by performing 60,000
random iterations of a number of SEUs ranging from 1 to 500 SEUs. For each number of
SEUs, the expected Error Rates for both the original circuit design (Plain version) and
the version with XTMR applied are calculated, and shown by the tool as "Plain Error
Rate" and "Cross-Domain Error Rate" respectively.

The Error Rate is the ratio between the number of erroneous iterations and the total
number of iterations. An erroneous iteration is identified once the analyzed configura-
tion memory bits report an architectural modification that affects the circuit behavior
provoking an error on the circuit outputs (independently from the circuit workload).

6.2.2 SEU mitigation with re-placement

The VERI-Place tool is able to execute the replacement and repacking of the circuit in
order to be compliant with the Single Fault Assumption full mitigation and to optimize
the Maximal Error Gain with respect to the traditional XTMR tool.

Two User Constraint File (UCF) are to be generated during this phase:

1. TMR_area_group.ucf contains the TMR area division performed on the basis
of the TMR single fault assumption.

56

6.3 – Experiment Analysis

(a) Heatmap for
sensitive area

(b) Heatmap for in-
terconnection con-
gestion level

(c) Heatmap for
sensitive area, B14
with XTMR

(d) Heatmap for in-
terconnection con-
gestion level, B14
with XTMR

Figure 6.7: Heatmaps generated by VERI-Place tool on B14 from ITC99 benchmarks [18]

2. TMR_unpacking.ucf contains the low level packing of the CLB resource that can
be placed on the FPGA using the Xilinx PlanAhead tool.

The two output files can be easily integrated into the Xilinx commercial tool’s workflow
to generate a new improved implementation of the target design.

6.3 Experiment Analysis

To investigate the accuracy and effectiveness of the analysis and mitigation performed
by the VERI-Place tool, two radiation experiments were carried out using the Virtex-5
SRAM-based FPGA from Xilinx.

57

6 – Single Event Effects in SRAM-based FPGA

6.3.1 Radiation experiments with ARM-based SoC on SRAM-based
FPGA

One of the experiments2 is with a simple ARM-based System-on-Chip (SoC) with a Cortex-
M0 processor provided by ARM as flattened synthesized netlist through the ARM Uni-
versity Program.

Along with other peripherals such as Digital Clock Management (DCM) and memory
peripherals, a UART peripheral was added as a mean of IO device for monitoring the
results of the software running on the processor during the experiment. The architecture
of the original design is illustrated in Fig. 6.8.

Figure 6.8: Architecture of ARM SoC on Virtex-5 FPGA

Including the original version, totally three versions of the design were prepared and
tested, the XTMR version’s architecture is shown in Fig. 6.9.

1. Plain version includes the original ARM-based SoC design,

2. XTMR version is based on the Plain version with XTMR tool applied, by which all
the resources in the design (including IOs) are triplicated and voters are inserted to
protect the design against SEUs,

3. XTMR-VP version is based on the XTMR version with the mitigation from VERI-
Place tool applied. The UCF files from the VERI-Place tool are used to generate

2The radiation experiments were done in collaboration with European Space Agency

58

6.3 – Experiment Analysis

the this version of design, to improve the reliability of the circuit acting only on the
Place and Route.

Figure 6.9: Architecture of ARM SoC with XTMR applied on Virtex-5 FPGA

A bubble sort program was used as software benchmark running on the processor
(continuously), and results were sent out through UART (in case of the two versions with
XTMR, UARTs) to be monitored by a host PC application. The characteristics, in terms
of resources, for the three versions of design are reported in Table 6.1, while the physical
layout of each version of the design is shown in Fig. 6.10.

Table 6.1: Design characteristics for three versions of ARM SoC

Design Version LUTs[#] FFs[#] BRAM[#]
Plain 3563(12%) 961(3%) 4(6%)
XTMR 13,229(45%) 2887(10%) 12(20%)
XTMR-VP 13,229(45%) 2887(10%) 12(20%)

The radiation experiment was carried out in the Paul Scherrer Institute (PSI), Switzer-
land, in collaboration with European Space Agency (ESA). The Xilinx Virtex-5 FPGA
board was placed under the proton beam with a diameter of 2.5cm , covering only the

59

6 – Single Event Effects in SRAM-based FPGA

Figure 6.10: Physical layouts showing interconnection networks of a)Plain b)XTMR c)
XTMR-VP version of the ARM-SoC from FPGA Editor tool

FPGA chip itself. The flux of proton beam used was about 7.22 · 106p/(cm2 · s) with an
energy level of 9MeV.

Since the beam time if expensive in terms of both money and energy, an application
was developed to help automating the experiment flow. The application runs on host PC
is able to monitor the output data from the UART peripheral (three at the same time
in case of XTMR applied) and compare it with the fault-free data gathered before the
experiment. In case there is a mismatch, the application will download the configuration
memory of the FPGA device by means of bitstream readback operation, record the number
of SEUs in the configuration memory and re-flash the FPGA to start a new run of the
experiment. The workflow of the host PC application is shown in Fig. 6.11.

Due to the existence of BRAM component in the design (for holding the software
code and data), the bitstream readback operation (through Xilinx’s verify command in
iMPACT tool) will corrupt the data in BRAM if the BRAM is used by the ARM processor
at the same time. To avoid data corruption, which may lead false error detection through
the output, input of the UART component was used to send a command from host PC to
put the processor into sleep mode in order to release the control of BRAM before bitstream
readback; then another command was sent to wake up the processor to resume normal
execution of the program.

As mentioned in previous section, VERI-Place could be used to generate error rate pre-
diction of the design ahead of the radiation experiment. With the data gathered during the
radiation experiment and the error rate estimation from VERI-Place tool, if consistency
is to be found int he comparison of these two (with same trend), the radiation experiment
can be stopped with current configuration and start with a new one (with different design

60

6.3 – Experiment Analysis

Figure 6.11: Workflow of the host PC application

version, different FPGA board etc.). In this way, the beam time required is reduced, and
tests over different configurations of the design can be carried out efficiently, in this case,
three versions of the design with two FPGA boards.

6.3.2 Radiation experiment with custom benchmark on SRAM-based
FPGA

Another radiation experiment was carried out on the same Virtex-5 FPGA, but with a
customized benchmark B13 from ITC99 benchmarks [18].

The B13 circuit is a sequential circuit without memory blocks implementing the inter-
face of weather sensor. Since the B13 circuit itself is quite small comparing to the amount
of resources available on the Virtex-5 FPGA, 30 instances of B13 were used together as
target design (noted as B13x30).

Also three versions for the B13x30 design were implemented including the Plain ver-
sion, XTMR version and XTMR-VP version, with the design characteristics reported in
Table 6.2. The physical layout of three versions of B13x30 is shown in Fig. 6.12. Different
with the setup used for the experiment in PSI, another FPGA board was used to provide
input signals to the Virtex-5 FPGA board under test and monitor the outputs.

The radiation experiment was carried out Los Almos Neutron Science Center (LAN-
SCE), also in collaboration with ESA. The SRAM-based Virtex-5 board was placed under
the neutron beam, with the flux of neutron set to 5.58 · 105p/(cm2 · s) and energy level

61

6 – Single Event Effects in SRAM-based FPGA

Table 6.2: Design characteristics for three versions of B13x30

Design Version LUTs[#] FFs[#]
Plain 1830(6%) 1590(5%)
XTMR 10,841(37%) 4770(16%)
XTMR-VP 10,841(37%) 4770(16%)

Figure 6.12: Physical layouts showing interconnection network of a)Plain b)XTMR c)
XTMR-VP version of the B13x30 from FPGA Editor tool

set to be above 10MeV (this experiment was carried out in parallel with other research
groups, with all the boards placed in a row with Device Under Test (DUT) aligned with
the neutron beam).

A similar host PC application was used to automate the experiment but instead directly
communicating with the Virtex-5 FPGA board, the application communicates with the
monitor board via UART, which in turn provides the input stimuli to the DUT and monitor
the output. In case of an error is detected by the monitor board, the host PC application
is notified and a readback of the configuration memory of the Virtex-5 FPGA board is
performed to count SEUs in the configuration memory and a re-flash is executed to start
a new round of test. Furthermore, a periodical readback was used during experiment to
monitor the SEUs accumulated in the configuration memory over time.

6.3.3 Experimental results and analysis

The two radiation experiments allow the collection of several data, including the log files
containing the output from the DUT, the readback configuration memory files for counting

62

6.3 – Experiment Analysis

the number of SEUs accumulated. The Fluence of the radiation beam was computed
and the Silence Data Corruption (SDC) cross-section was used as the metric for design
reliability assessment, as reported in Table 6.3.

Table 6.3: Fluence and SDC cross-section

Benchmark Design Version Fluence SDC cross-section

ARM SoC (Proton)
Plain 9.44e10 (3.65± 0.01)e− 9

XTMR 1.47e11 (1.88± 0.01)e− 9
XTMR-VP 1.89e11 (1.68± 0.01)e− 7

B13x30 (Neutron)
Plain 1.11e10 (1.61± 0.01)e− 8

XTMR 1.60e10 (1.33± 0.01)e− 8
XTMR-VP 2.61e10 (1.42± 0.01)e− 6

Then the error rate was calculated as the probability of wrong data generated when
certain number of SEUs accumulated in the configuration memory. Also the VERI-Place
is able to generate the error rate estimation before the radiation test, in which two error
rate figures for each design show the error rate predictions under high and low circuit
switching activity respectively. The error rates from the radiation test and VERI-Place
prediction were plotted in Fig. 6.133, where X-axis is the number of SEUs accumulated
in the configuration memory while the Y-axis is the corresponding error rate (i.e. the
probability to have error in the output).

Please note in the Fig. 6.13 that, the error rate curve with data from radiation exper-
iments fits between the two error rate curves (red curve presents the error rate prediction
with high circuit switching activity, yellow with low switching activity) predicted by the
VERI-Place tool, however, with an offset. The reason for the offset is that during the radi-
ation experiments, it requires around 3 seconds to re-flash the FPGA device during which
time there is no the precise control over the radiation beam so more SEUs accumulated
in the configuration memory were counted.

The comparison over the three design versions is shown in Fig. 6.14. It is clear that
the version XTMR-VP with VERI-Place tool applied based on the version with XTMR,
is the most robust one when SEUs accumulated in the configuration memory (i.e., with
the same number of SEUs accumulated in the configuration memory, the XTMR-VP has
the lowest error rate).

Meanwhile, when certain number of SEUs accumulated in the configuration memory,
the XTMR version actually has worse behavior than the Plain version, due to the gran-
ularity the TMR technique is applied by the XTMR tool explained in previous section,
and also the XTMR version utilized much more hardware resources in the FPGA leading
higher chance the design to be affected by the radiation particles. And this could be
tuned by either applying finer granularity with TMR technique or applying configuration
memory scrubbing to avoid SEU accumulation.

3Currently due to the VERI-Place tool tends to make very pessimistic estimation with XTMR-VP
version, so the comparison is not shown here

63

6 – Single Event Effects in SRAM-based FPGA

(a) B13x30 - Plain version (b) ARM SoC - Plain version

(c) B13x30 - XTMR version (d) ARM SoC - XTMR version

Figure 6.13: The error rate from radiation experiments and VERI-Place tool

However, when a very few SEUs accumulated in the configuration memory, the XTMR
version has the lower error rate than the Plain version as shown in Fig. 6.15 as when only
one logic path is corrupted a few SEUs, the XTMR version is still able to deliver correct
operations. And number of SEUs corresponding to the point when the error rate of
Plain and XTMR design version cross each other, namely breakeven point, together with
the radiation profile of the environment the system will be deployed, could be used as a
reference metric for tuning the period for configuration memory scrubbing technique.

Two radiation experiments were carried out in two different facilities, with two different
radiation profiles, with the same Virtex-5 SRAM-based FPGA from Xilinx. An ARM-
based SoC with bubble sort as software application and a customized B13x30 from ITC99
were used as benchmark circuits. Three design versions for each benchmark circuit were
used. With the data collected from the experiments, the error rate prediction from VERI-
Place tool with the error rate derived from the real data from radiation test were compared.
The consistency found in these data validates the accuracy of the error rate prediction
from the VERI-Place tool.

In turn, the prediction from the VERI-Place could be used for early stage design reli-
ability assessment to help designer understand the weakpoint of the design against Single
Event Effects when SRAM-based FPGA is to be used in harsh radiation environment.

64

6.3 – Experiment Analysis

Figure 6.14: The SDC error rate comparison over three design versions

And the error rate prediction could also be used as reference metric for other fault toler-
ant techniques (such as configuration memory scrubbing).

Furthermore, the VERI-Place is able to generate constraint files for Place & Route,
which can be easily integrated into commercial tool, for generating an improved version
of the target design, which is verified with the comparison across the three design versions
during the radiation experiments.

65

6 – Single Event Effects in SRAM-based FPGA

Figure 6.15: Breakeven point in case of B13x30 benchmark

66

Chapter 7

Single Event Effects on
Flash-based FPGA

This chapter discusses SEEs analysis and mitigation techniques on Flash-based FPGA1.
Since the configuration memory in Flash-based FPGA is almost immune to SEUs, the
main focus of this chapter is on the Single Event Transients (SETs). The chapter is
organized as follows: firstly, a background regarding Flash-based FPGA and the radiation
induced Single Event Effects is given, including previously proposed approaches; then the
proposed SEE analysis and mitigation flow including a SET analytical model, a FPGA
logic and route model, a SET Analyzer and a SET-aware place and route tool is described
in separate sections; and finally, the analysis experiment and radiation experiment to verify
the proposed flow is explained.

7.1 Background
Due to the non-volatile configuration memory, the Flash-based FPGA are commonly used
space and avionic applications. However, these devices are composed of floating gate based
switches that can suffer SETs, if hit by high energetic particles, provoking possible critical
consequences. An SET may cause the circuit mapped on the FPGA to misbehave if it is
able to propagate through the logic paths and eventually be sampled by memory element
corrupting the value previously stored inside (or directly corrupt the output signal).

In the last years, science researchers have acknowledged SET as a forthcoming issue
in digital technologies, especially due to the technology shrink [63]. Several works in-
vestigated the nature of SETs on Flash-based FPGAs, analyzing the propagation of the
transient pulse through the combinational logic data path and routing resources [77, 62].
Previous works reported radiation test experiment [14] and electrical fault injection [70]
of SET propagating on custom circuits designed specifically to observe SETs, also some

1This work has been done with collaboration with ESA and Microsemi; And part of the research tools
and results has been used in collaboration with CGS S.p.A within the European Elucid space mission
project

67

7 – Single Event Effects on Flash-based FPGA

results on SET dependency on clock frequency have been presented in [11]. Recent ex-
periments of accurate SET pulse electrical injection [71] show a strong SET pulse-width
modulation when SET pulses traverse logic gates. Besides, it has been observed that the
SET pulse width at the input of a storage element is strictly dependent on the propagation
and type of traversed logic gates [63].

7.1.1 SET pulse profile in Flash-based FPGA

A SET appears when an amount of current causing a voltage glitch of elevated magni-
tude is generated. Generally, this happens when a charged particle crosses a junction
area. The voltage glitch propagates for notable distances and becomes indistinguishable
from normal signal traversing combinational gates and routing interconnections. As far as
sub-nanometer technology is considered, the main source of SETs corresponds to the com-
binational logic, since the effects are generated by the reversed biased junction collection
charge accumulated in the sensitive area of logic gates.

Regarding Flash-based FPGAs, two distinct effects may be identified. The former
occurs inside of the floating gate switch: the pass transistor and floating gate transistors
usually constitute the floating gate switch. The second occurs when a high charged particle
hits a sensitive node of a logic cell belonging to the FPGA’s configuration tile. The gener-
ated pulse may propagate through the logic depending on the FPGA tile configuration. If
the tile is configured to implement a latch, the pulse may turn directly into a SEU because
of the feedback paths implemented by the tile logic configuration. Meanwhile if the tile
is configured to implement a logic gate, the transient pulse is assumed to be propagated
only if the voltage glitch generated by the particle hit on the struck node changes by more
than VDD/2 [79]. Once a SET is generated into the sensitive area of a logic gate it starts
its propagation through the logic paths until a sequential element is reached. During its
propagation the SET pulse may pass through inverting (i.e. INV, NAND, NOR ...) and
non-inverting (i.e. AND, OR ...) gates. The SET propagation through logic gates undergo
to different electrical phenomena that affect the shape of the pulse modifying its voltage
amplitude, the width and the speed along the traversed logic path [11, 71].

SET propagation in Flash-based FPGAs has been investigated by electrical injection
and radiation tests [70], where the analysis denoted that while traversing inverting gates,
both the amplitude and the duration of the SET are broadened or filtered depending on the
number and type of crossed-gates. Recently a full characterization of the Microsemi Ver-
satile logic gates has been performed by developing an analytical model for the electrical
simulation considering the Propagation Induced Pulse Broadening (PIPB) effect. Consid-
ering the shape of an SET effect, which an example of its propagation through an inverting
gate is illustrated in Fig. 7.1, given an SET transition 0-1-0, the developed analytical model
is able to dynamically describe a broadening coefficient C(x) = ∆tU (x) −∆tI(x), where
in case C(x) > 0 the SET pulse is broadened, otherwise attenuated.

Although the dynamic model of the PIPB effects has been proven to be an effective
solution to analyze the SET propagation in Flash-based FPGAs, it is not efficient nor
suitable when it comes to full analysis of the SET sensitivity of complex circuits having
several thousands of logic gates and FFs fully interconnected in millions of logic paths,

68

7.1 – Background

Figure 7.1: The SET propagation through an inverting gate with an input transition 0-1-0

since a complete SET analysis with this dynamic model would require an extremely huge
simulation time which will be impractical. In the present work, an algorithm was developed
that allows to perform automatic SET sensitivity analysis of complex circuits mapped on
Flash-based FPGAs in an optimal time and is able to provide accurate results.

7.1.2 Previous analysis and mitigation techniques for SEEs on
Flash-based FPGA

Several radiation test campaigns had proven the immunity of commercial Flash-based
FPGAs to upsets in their configuration memory cell [62]. Several works addressed the
problem of SEUs in the user memory resources. Error Correcting Code (ECC) [78] is a
conventional solution to protect soft errors in SRAM, while Triple Modular Redundancy
(TMR) is the most widely applied technique for mitigating SEUs in logic memory. On the
other hand, SET effects in CMOS Integrated Circuits (ICs) have become a severe concern
in all Deep SubMicron (DSM) technologies. The principal technology factors that make
ICs more sensitive to transient pulses generated by energetic particles are the smaller
dimension of transistor size and the reduced thickness of interconnections. Indeed, the
progressive technology shrinking induces the simultaneous reduction of both the circuit
node capacitance and voltage levels.

When Flash-based FPGAs are considered, the number of sensitive nodes belonging to
a single configurable cell (also referred as Versatile) is drastically greater than standard
ASICs since a cell has several configuration points that have been shown to be critically
sensitive. Several works have been proposed in the past in order to analyze and to mitigate

69

7 – Single Event Effects on Flash-based FPGA

the problem of SET. The first kind of methods is based on the classical fault-tolerant
approach such as TMR [12]. Other techniques have been proposed relying on replication
design methodology by using time or spatial redundancy. For example, in [44] the FF
implementation is divided into two latches block by synthesis tools, through which the
original FF is modified including a dual-sampling latch with delayed signal sampling able
to filter the SET effects.

However, the usage of checkers and logic duplication inherently introduces significant
delay, area and power overhead. Since the overhead introduced by these techniques is
dramatically high due to the full logic replication, less area expensive solutions have been
proposed aiming at directly modifying the configuration of the Versatile sensitive nodes
by changing their configuration memory pattern [1]. Such kind of techniques firstly an-
alyzes the sensitive nodes of the mapped circuit basing on the probability of having a
critical location. All the selected sensitive gates are then reconfigured by changing the
configuration memory pattern without changing the Versatile implemented logic function.
Nevertheless these techniques provide effective solutions, they all rely on full redundancy
since the advantages of logic function patterns modification are very limited.

As reported in [68], place and route algorithms are a viable solution to mitigate SET
effects on Flash-based FPGAs since they can be adopted at the application level without
requiring modification of the logic cells and FFs configuration, however such solutions
must be rightly calibrated in order to optimize their capabilities of reducing the PIPB
effect and must be corroborated by suitable redundancy and filtering techniques in order
to avoid the impact of both SEUs and SETs.

A preliminary place and route algorithm developed for this specific purpose has been
proposed in [68], while a placement re-timing algorithm has been proposed in [82]. How-
ever, an accurate radiation experiment evaluation of this approach [69] showed that it is
only capable to partially reduce the overall SET sensitivity of a circuit, while most of the
transient errors are bypassing the filtering optimizations. The main limitation of these
previous approaches is due to the application of the mitigation strategies on an already
available place and route solution. Indeed, such kind of techniques firstly analyzes the
sensitive nodes of an already mapped circuit basing on the probability of having a sen-
sitive node on specific critical logic gates, secondly the mapper and the place and route
algorithms are applied on the previously estimated sensitive nodes in order to minimize
the SET sensitivity. A second relevant limitation of the previously developed methods is
characterized by the absence of detailed routing data, since both routing infrastructure
and routing algorithm are not available. The missing availability of routing information
and algorithm provokes an evident limit on the applicability of transient filtering, since
routing segment capacitive and resistive loads are only estimated by placement. So a
detailed FPGA logic and routing model that allows the execution of both placement and
routing algorithms on the basis of the target Flash-based FPGA architecture is needed.

70

7.2 – A complete flow for analysis and mitigation of SETs for Flash-based FPGA

7.2 A complete flow for analysis and mitigation of SETs
for Flash-based FPGA

In this work, a complete flow was proposed including the analytical model for the SET
propagation along with the logic and routing model, and a SEE-aware place and route
algorithm for SEE mitigation for Flash-based FPGA. The flow is illustrate in the Fig. 7.2.

Figure 7.2: The proposed flow for analysis and mitigation of SEEs in Flash-based FPGA

In order to apply the proposed flow, it is required to use a commercial tool chain
able to generate a post-layout netlist (EDF netlist) and a Physical Design Constraints
(PDC) placement file (in case of Microsemi Flash-based FPGA). The netlist file contains
the full functional description of the circuits at the FPGA physical level, in the form
of Versatile logic gates, FFs and interconnection links, while the placement file contains
all the locations of the logic resources and input/output pins on the FPGA logic array.
These two files are commonly generated by all FPGA manufactures (may in a different
file format with the same information). Generally they start from a circuit design in HDL
and through synthesis and implementation tools they generate post-layout EDF and PDC
files.

Our flow starts with elaborating the EDIF post-layout netlist and the PDC placement

71

7 – Single Event Effects on Flash-based FPGA

locations of the circuit by means of the SETA tool, which consists of an algorithm able
to perform an exhaustive evaluation of SET effects on all the sensitive nodes of a circuit
mapped on Flash-based FPGAs. The results of the SETA tool are two profile databases:
the Flip-Flops maximal sensitivity list database and the Gate To Gate broadening coef-
ficient database. The former reports for each FF the maximal pulse width observed on
its input, while the latter reports the broadening width coefficient between each couple of
gates through all the circuit data paths. The maximal pulse width is a number that may
vary from 0 to several nanoseconds, while the broadening coefficient may be a positive or
a negative number depending if the effect is filtering (negative) or broadening (positive).

Once the profiles are generated, the SET path placer algorithm is executed. The
algorithm performs a placement of the logic gates and FFs regulating their locations by
a timing and capacitive load metric able to achieve the reduction of PIPB effect between
each couple of gates through the circuit data paths.

Then, the Selective Guard Gate (SGG) mapper is executed. This mapper is able to
modify the circuit post-layout netlist in two ways. The first modification is related on the
FFs profile: if the FF is considered sensitive, the algorithm triplicates the FF and inserts a
voter structure. The second modification is related to the pulse propagation: if the pulse
is considered critical, it inserts a suitable guard gate filtering structure on the inputs of all
the FFs that have not been protected by the SET path placer and according to the SET
pulse width reported by the FFs database profile. Both the modifications are performed
acting on the circuit EDIF netlist file. Finally, according to the results of the mapper and
of the placer a new placement constraint and netlist files are generated. The generated
files can be used by standard Flash-based FPGA implementation flow.

7.2.1 Analytical SET nanometer model

An accurate modeling of the SET phenomena generated by radiation particles within the
silicon structure of nanometer devices was proposed. The method consists of three phases:
the generation of the SET pulse phenomena which is modeled as transient pulse shape,
the localization of all the combinational gates within the circuit description and finally
the execution of the propagation of the SET pulse starting from each sensitive node of
the circuit and traversing the logic gates and routing interconnections until an input of a
storage element (i.e., a Flip-Flop or a Memory Bank) is reached. The model allows the
identification of the expected SET width and allows estimation of the global sensitivity of
the circuit. To the best knowledge of the authors, this model is the first solution that is
able to integrate physical design analysis and Matlab computations in order to evaluate
the dynamic behavior of a VLSI device.

SET generation and analytical model

In order to generate the pulse shape, the developed model elaborates the physical layout
description of each circuit logic gate, described by standard Graphic Database System
for IC layout (GDS-I), which represents a 3D model of the implemented circuit. The
model consists of 3 phases described by Matlab code. The first phase, based on the

72

7.2 – A complete flow for analysis and mitigation of SETs for Flash-based FPGA

characterization that was provided in [70], generates the SET model according to the
definition depicted by the shape tn in Fig. 7.3.

Figure 7.3: SET pulse shape modeling the original pulse (i.e., positive transition) generated
from the GDS-I model (tn) and after the propagation through a logic gate (tn+1)

The second phase executes the propagation on the basis of the Resistive and Capacitive
load calculated on the GDS-I 3D model of the circuit. The propagation coefficient is used
in the model reported in Eq. 7.1 in order to generate the expected propagation coefficients
for all the logic paths [71]. Please note that when the coefficient is lower than 0 the signal
is filtered, and vice versa the original pulse is broadened. In Fig. 7.3, the pulse shape
tn+1 is obtained in case of broadening. The third phase includes the execution of the
propagation and on the classification of each Flip-Flop sensitivity. The model has been
used to reduce the sensitivity of the benchmark circuits that used for the experimental
evaluation.

Tn+1 =

0, if (Tn < ktp)
Tn + ∆tp, if (Tn > (k + 3)tp)
(T 2

n−T 2
p)

Tn
+ ∆tp, if ((k + 1)tp < Tn < (k + 3)tp)

(k + 1)tp(1− e
k−Tn

tp) + ∆tp, if (ktp < Tn < (k + 1)tp)

(7.1)

SET characterization

The Single Event Transients (SETs) characterization has been performed using the SETA
tool, which has been implemented in [69] which is an algorithm that performs the SET

73

7 – Single Event Effects on Flash-based FPGA

propagation analysis of a circuit mapped on a Flash-based FPGA. It consists of two phases:
the former locates all circuit combinational gates and identifies their propagation nodes
until a storage element (a FF or a Latch) is reached, the latter performs the propagation
of a SET pulse starting from each sensitive node and traversing all the circuit logic path
and storing the maximal length observed by the SET pulse at the input of each storage
element. The results are stored in two databases reporting the maximal SET pulse at the
input of each FF and the broadening coefficient between the couple of gates.

7.2.2 FPGA logic and routing model

Contemporary FPGA architectures are generally characterized by the well-known island-
style FPGA model [16] including a two-dimensional array of logic elements that are in-
terconnected via a programmable routing network. On the basis of these resources or-
ganization, FPGA families may have different architecture depending on the number of
logic elements, local and global routing wires as well as pin locations and short wires
granularity. The present section describes the FPGA logic and routing model developed
for supporting the placement and routing algorithm oriented to the SET mitigation. The
model has been developed following a parametric format named Generic Array Format
(GAF) is supported by a two dimensions matrix mesh format where all the FPGA re-
sources refer too. Basically, all the resources are defined by nodes and lines organized on
the two dimensions mesh space. The parametric format, whose graphical organization is
illustrated in Fig. 7.4, allows the definition of the following FPGA characteristics:

1. 2-D mesh matrix space: it defines the maximal space area and the number of logic
elements and switch matrix column and rows. This parameter allows also the identi-
fication of FPGA regions that are not used for reconfigurable switches (e.g., in par-
ticular when these areas are used for embedded hardwired microprocessors, memory
blocks or DSP modules).

2. Switch matrix and logic element block: it defines the number, dimension and organi-
zations of the routing and logic element areas. A traditional island style FPGA has
generally one or more logic elements for each switch matrix block, our model allows
different organizations where routing segments are divided into more switch blocks
and logic elements are organized in different position. Please note that since both
the switch matrix block and the logic elements are defined by rectangular shape with
proper dimensions on the 2D-mesh, our model supports any kind of FPGA architec-
ture and it can be eventually adapted to novel FPGA logic and routing topology.

3. Internal routing resources: it defines the programmable interconnection points of
a switch matrix block. Each resource is defined by a segment with a source and
destination point that can be placed according to the user definition in any position
of the two dimensions mesh matrix (e.g., reasonably source and destination points
are placed on the same switch matrix frame).

4. Hardwired routing resources: it defines the starting and ending points of all the
hardwired lines on the FPGA architecture. It includes the horizontal and vertical

74

7.2 – A complete flow for analysis and mitigation of SETs for Flash-based FPGA

hardwires lines, horizontal and vertical long lines as well as the logic element in-
put/outputs. Each single routing line is defined by a set of points identifying the
source point and the destination points. Please note that the position of the source
and destination points must correspond to the one of the internal routing resource.

5. Input/Output pins: it defines the position of the I/O pins. They can be located on
all the available two dimensions mesh matrix space allowing the modeling of all the
kinds of FPGA pin-out organizations.

Figure 7.4: Parametric architectural FPGA model for mesh-matrix oriented place and
route algorithms (a) and the mesh matrix format in two-dimension (b)

The GAF parametric architectural FPGA model has been defined within a textual
file where it is possible to specify regular or not regular resources, by this way it is not
necessary to define internal short segments for all the switch matrix elements, since they
are replicated on all of them, and, using the same model, it is possible to define singular
routing and logic resources. The main advantage of this format is the extremely high
flexibility to be adapted to various kinds of FPGA architectures covering almost all the
state-of-the-art FPGA devices.

7.2.3 SETA: Single Event Transient Analyzer

The SETA tool firstly loads the circuit netlist description and the PDC file for the physical
location of each logic gate and input/output pin. Secondly, it creates a Physical Design

75

7 – Single Event Effects on Flash-based FPGA

Description (PDD) file of the circuit consisting in a direct graph where logic gates are mod-
eled as vertices while interconnections as edges, using a tool developed called AFL2PDD.
The Actel Flattened Netlist (AFL) netlist format is a traditional flattened netlist including
detailed FPGA gate level description and nets between cells that can be generated through
the Synopsys synthesizer embedded within the Microsemi Libero SoC tool.

Furthermore, the tool generates a logic and routing global graph integrating the in-
formation read from PDC file with information related to the FPGA technology library
of the target device. For this purpose, the logic and routing model described above was
used with the data previously collected during the characterization performed in [70] and
calibrated in the model presented in [11]. The final logic and routing graph consists of
a directed graph structure where I/O pins, FFs, RAM or ROM pins are considered as
terminal points, while combinational logic gates are considered as crossing points. Inter-
connections are defined as weighted direct edges between nodes. The weight of each edge
provides information on the resistive and capacitive load of each FPGA interconnection
segment.

To analyze SET sensitivity of the circuit, the main SETA algorithm executes in two
steps: 1) locates all circuit combinational gates and identify their propagation nodes until
a storage element (a FF or a Latch); 2) performs the propagation of a SET pulse starting
from each sensitive node and traversing all the circuit logic path and storing the maximal
length observed by the SET pulse at a the input of each storage element. The generation
and propagation of SETs is performed by the algorithm depicted in Fig. 7.5.

Figure 7.5: The main SETA algorithm steps

The first step is executed by the function generate_list_SET that creates a list of
original pulse shapes derived from a defined voltage amplitude and a time duration. Each
pulse shape is described by 100,000 points, allowing a precision of 1 ps. The second step
consists in the propagation of the transient pulse. Each original SET pulse is applied to
each circuit sensitive node and propagated.

The propagation function is the core of the developed algorithm. At each recursive

76

7.2 – A complete flow for analysis and mitigation of SETs for Flash-based FPGA

iteration, the pulse, described as a voltage array P, is propagated through the crossing-
points (i.e. combinational gates) up to the next terminal point (i.e. a sequential element).
When crossing a combinational gate the source input voltage array is transformed into a
drain output voltage array. The transformation of the pulse propagation is the key-feature
of the proposed algorithm. Taking the analytical SET nanometer model with the several
routing parameters integrated into PDD graph with the FPGA logic and route model, it
is able to calculate the PIPB coefficient during each SET propagation.

The results of the SET analyzer algorithm are stored in two databases reporting the
maximal SET pulse at the input of each FF and the broadening coefficient between all
the couples of gates. An example of such results is shown in Fig. 7.6.

Figure 7.6: Example circuit and results from SETA tool

7.2.4 Selective Guard Gate mapper

After the two databases generated by the SETA tool, a Selective Guarding Gate (SGG)
mapper is used for SEE mitigation before the SET-aware Place & Route tool is applied.

The SGG mapper performs two modifications against the original design, based on the
information in the two databases provided by the SETA tool in previous step:

1. If the SETA tool reports a register (FF) as SEU sensitive, the SGG mapper will
insert a TMR logic structure including a majority voter to protect the sequential
element against SEU.

2. Depending on the sensitivity estimated by the SETA tool and the expected maximal
SET pulse reaching at the register’s input, the SGG mapper will insert a combina-
tional Guard Gate (GG) logic structure before the input of the selected register, for
example, as in Fig. 7.7. This modification is applied to those registers exceeding
the expected sensitivity. And the overhead of each GG structure is related to the
maximal pulse length.

77

7 – Single Event Effects on Flash-based FPGA

Figure 7.7: Example of inserted GG logic with filtering capability of 900 ps

7.2.5 SET-PAR: placement and routing tools for SET mitigation

A SET-aware Place & Route algorithm (SET-PAR) was developed for implementing SET
hardened circuits on Flash-based FPGAs following the SGG mapper. In our case, the tool
fits in our SEE analysis and mitigation flow as illustrated in Fig. 7.8.

The SET-PAR tools executes the placement and the routing algorithms in two distinct
phases. The details of the two algorithms are depicted in the following subsections.

The PDD placement algorithm

The goal of the PDD placement algorithm is to find an effective placement for each logic
node while optimizing the filtering capabilities of each logical path and minimizing the
overhead delay of the circuit. The algorithm reads from the PDD circuit description the
logic nodes, their interconnections and the I/O pins; while it loads the FPGA architectural
characteristics, in terms of switch matrices rows and columns from the GAF FPGA array
model. The core of the placement algorithm is based on an average Manhattan distance
optimization technique including a detailed logical path analysis. The placement strategies
consist in two phases, as it is illustrated in Fig. 7.9. After the initialization of the placement
environment, the PDD placement firstly works on the optimal local placement of each logic
cone optimizing the filtering capabilities in order to provide the maximal SET filtering;
secondly it optimizes the overall logic cones placement locations for guaranteeing a routable
solution.

In details, during the initialization phase, the circuit description is loaded into a di-
rected graph called L_element, where each node is characterized by a type and an initial
unplaced location and the set of input output nets (io_nets) is identified. Based on the
PDD and GAF information, the placement area (P_Area) is generated. At the beginning
of the first phase, it is computed the optimal filtering capabilities of each logic cone without
considering the routing characteristics. This coefficient, named ∆K, provides the best SET
filtering coefficient that a specific logic cones can achieve. The placement is then performed

78

7.2 – A complete flow for analysis and mitigation of SETs for Flash-based FPGA

Figure 7.8: SET-aware Place & Route (SET-PAR) flow

analyzing the type of logic elements involved and each gate is characterized by a specific
inverting coefficient which is calculated on the basis of the probability that the logic func-
tion provides in output the logical opposite value of input. The Place_Manhattan_Min
function generates a temporal placement following: if a couple of connected gates have an
inverting coefficient greater than 0.5, the placement is performed locating the two gates
with a minimal distance; in the other cases, the placement is performed in a longer distance
limited by the local_k coefficient. This process is repeated until the temporary placement
has a SET coefficient (SET_k) which is equivalent to the optimal one with a degree of
freedom provided by a flexibility coefficient D.

The second phase consists in the global placement; all the temporary placement macros
are placed on P_area. During this phase, the major issue is due to the logic gates sharing
multiple logic cones. These gates are identified and the placement modified accordingly
minimizing the distance between their original positions with respect to the temporary
placement. Finally, a new placement annotated PDD file (aPDD) including the placement
location of each logic element within the FPGA array is generated.

79

7 – Single Event Effects on Flash-based FPGA

Figure 7.9: The PDD placement algorithm

7.3 Experiment results and analysis

The proposed design flow has been experimentally evaluated in order to prove its effi-
ciency and accuracy. Two experimental analyses have been performed. The former aimed
at evaluating the improvements of the SET mitigation on transient error pulses set ranging
from 10ps to 10ns. The latter consists of a detailed timing analysis measuring the maxi-
mum delay of the critical path between the different solutions of the implemented circuits.
Both the evaluations have been performed using some benchmark circuits included in the
ITC99 benchmarks and including a RISC processor core [18]. Besides, all the circuits have
been implemented using a Microsemi A3P250 Flash-based FPGA based on 130 nm CMOS
manufacturing process and counting up to 6,144 logic cells [43].

80

7.3 – Experiment results and analysis

The characteristics of the implemented circuits are illustrated in Table 7.1, where for
each circuit is reported the number of logic cells, the number of nets and the number of
routing segments including short and long wires, obtained with commercial tools and with
the proposed SET-PAR approach.

Table 7.1: Characteristics of the implemented benchmark circuits

Circuit
Logic
Cells
[#]

Routing
Nets
[#]

Commercial tools and [69] SET-PAR approach
Short Wires

[#]
Long Lines

[#]
Short Wires

[#]
Long Lines

[#]
B03 131 466 1,365 555 1,112 432
B05 544 2,070 6,407 2,573 6,301 2,509
B07 244 1,038 2,821 1,066 2,373 893
B08 149 464 1,326 545 1,199 486
B09 115 480 1,705 663 1,348 535
B10 168 474 1,375 543 1,251 486
B11 311 1,290 3,798 1,423 3,094 1,197
B12 619 2,856 7,731 2,905 6,916 2,404
B13 222 584 1,429 516 1,203 450
B14 3,872 16,722 71,621 27,025 70,517 26,636
RISC 3,425 11,814 36,368 13,112 33,642 11,951

As it is possible to observe the physical routing used by the SET-PAR algorithm
provides a number of routing segments ranging from 10% to 20% lower than the one
obtained using commercial solutions based on the previously developed method [69].

The analysis of the Single Event Transient sensitivity has been performed with the
Single Event Transient Analyzer platform [70] using a large set of transient pulses ranging
from 10 ps to 10 ns thus covering the entire realistic transient events induced in a harsh
radiation environment. The validation has been obtained by randomly choose the location
where to electrically inject the pulses and by applying random input stimuli to the tested
circuits. Then, a result was classified as wrong answer, if during the test application
produces at least one output pattern that differs from the expected one. Finally, the
number of SETs provoking errors on the circuit outputs were counted. The results gathered
are illustrated in Fig. 7.10, where the reduction was indicated in percentage, of the SET
number provoking errors within the output of the implemented circuits. The reduction
is extremely high since around 30% of SETs are correctly mitigated with respect to the
previously developed approach. Besides, it is possible to notice that the SET-PAR tool
works properly independently from the complexity of the implemented circuit (e.g., the
overall SET-induced errors reduction is always greater than 27% whatever is the circuit
under analysis).

Finally, the benchmark circuits have been timing analyzed using Microsemi vendor’s
software in order to estimate the maximum working frequency. The results obtained with
the timing analysis are reported on Fig. 7.10 as percentage of frequency improvement
provided by the SET-PAR tools with respect to the previous solution. The results demon-
strate that the SET-PAR algorithm is efficiently implementing circuits on Flash-based

81

7 – Single Event Effects on Flash-based FPGA

Figure 7.10: SET reduction and Frequency improvements of the SET-PAR implemented
circuits w.r.t. the previously developed solution based on Microsemi commercial tools

FPGA.

7.3.1 Radiation experiment on Microsemi Flash-based FPGA

Besides the analysis performed above, a radiation experiment was also carried out with a
heavy ions beam in order to provoke radiation-induced SET and classify their effects.

Experiment setup

RISC5X from OpenCores is a RISC CPU that is compatible with the 12-bit opcode PIC
family [73]. It consists of an Instruction Decoder (IDEC), an Arithmetic Logic Unit (ALU)
which is capable of 8-bit addition, subtraction and logic shift operation, and a register file
of 128 bytes used as RAM. The RISC5x has three 8-bit wide ports which can be used as
input and output ports connecting to different peripherals. The ports are named PORTA,
PORTB and PORTC respectively, as illustrated in Fig. 7.11. To map RISC5x to the
FPGA, a ROM module was added to hold the instructions by means of signal array in
VHDL, which was inferred as logic gates instead of Flip-Flops or latches by the Synplify
tool in Libero IDE from Microsemi.

The original RISC5x from OpenCores has no fault tolerant strategy applied. In order
to reduce data corruptions in RAM caused by SEUs and to focus on the analysis of SETs
induced by the radiation particles, the original RAM module was replaced with another
version protected by a Hamming Code which is enabled to correct two bit errors when

82

7.3 – Experiment results and analysis

Figure 7.11: RISC5x architecture

they reside separately in the higher and lower half of the 8-bit register. The scheme of
the Error Correction Code (ECC) applied to the register file RAM resources is depicted
in Fig. 7.12.

Figure 7.12: ECC scheme adopted in order to protect RISC register file, implemented
using Flash-based FPGA embedded RAM modules against SEU accumulation

A hardened implementation of the RISC microprocessor described above was devel-
oped, applying TMR at different logic levels in order to drastically mitigate SEUs. Two
different methods were used. The first method consists in applying the Synplify tool
oriented to radiation hardened FPGA designs [44]; it applies the triplication of all the
Flip-Flops inserting a majority voter on their outputs. The second has been applied at

83

7 – Single Event Effects on Flash-based FPGA

the entity level, in which the components in RISC5x, such as IDEC and ALU are directly
triplicated as represented in Fig. 7.13, except for the register file module (REGS) which
has been already protected by ECC implementation as mentioned above.

Figure 7.13: TMR at entity level (IDEC & ALU)

Totally four versions of the design were prepared and tested in the radiation experiment
for comparison, whose characteristics are reported in Table 7.2. The four versions are:

1. RISC5x is the original version with only ECC protection applied to the register file
memory.This version is also called Plain version.

2. RISC5x TMR+GG(1ns) is based on the Plain version with entity level TMR applied
and also with Guard Gates targeting on SET filtering up to pulse with of 1 ns.

3. RISC5x TMR-FF is based on the Plain version with Synplify’s TMR technique
applied on the FFs in the design.

4. RISC5x SEE-aware P&R is the version with proposed SEE analysis and mitigation
flow applied on the Plain version.

The same test program was used running on the RISC5x micro-controller across the
four different versions, which generates a sequence of data output with fixed time gap
between each output. During execution of the test program, SEEs can cause errors in
different components in FPGA, which can lead to corrupted data outputs and wrong time
gaps between outputs. At this step, still there are errors that will be silenced by the fault
tolerant strategies applied or the initialization stage in the test program.

84

7.3 – Experiment results and analysis

Table 7.2: Characteristics of four RISC5x versions

Design version Logic Gates [#] FFs [#]
RISC5x 1,401 1,156
RISC5x TMR+GG(1ns) 20,808 3,468
RISC5x TMR-FF 2,403 3,468
RISC5x SEE-aware P&R 5,514 3,468

Another FPGA board from Altera was used as monitor board to control the Microsemi
board, capture the data outputs and communicate with the host PC outside the radiation
beam chamber, as illustrated in the scheme reported in Fig. 7.14. As the three ports in
RISC5x were synchronized with clock source in the Microsemi board which was not shared
with the Altera board, another port (PORTB) was used to indicate valid data on PORTA
so that the asynchronous capturer in the monitor board can read the correct data from
PORTA and store them in SRAM. The monitor board also controls the reset signal of the
Microsemi board, and to avoid reset signal hazard, the reset signal was triplicated and
used a voter in the design to ensure that the test program will be executed and stopped,
as wanted.

Figure 7.14: Radiation experiment setup

The radiation campaign has been performed in September 2013 at the Cyclotron of
the Université Catholique de Louvain (UCL) on four different versions of the RISC5x
micro-processor. The RISC working frequency has been settled to 20 MHz while the
experiments have been performed using a Kripton ion with a fluence of 3.04e8 (particles)
and an average flux of 1e4 (particles/sec).

85

7 – Single Event Effects on Flash-based FPGA

Radiation experiment results and analysis

The experimental results have been collected comparing the cross-section (errors/particles)
for each of the implemented RISC5x version. The results obtained during the radiation
test campaign demonstrated that the RISC5x implemented with SEE-aware analysis and
mitigation flow has a sensitivity of about two orders of magnitude with respect to the
RISC hardened with full TMR and Guard-Gate filtering 1 ns SET pulse. Error bars were
computed on the basis of the Monte Carlo process, which is calculated as 1√

N
where N

corresponds to the number of errors counted. In the worst case, the statistical error is
10%; the obtained results are reported in Fig. 7.15.

Figure 7.15: SEE cross-section comparison between different RISC5x versions

The Plain version of the RISC only protected with the ECC mechanism applied to the
register file memory, reports a cross-section of 1.52e− 6cm2. The TMR implementations,
either using Guard-Gates (TMR+GG) or adopting TMR on sequential element (TMR-FF)
have a reduction of cross-section of about 55% versus the plain version, while a negligible
difference between the two TMR solutions is observed. On the other hand, the RISC5x
implemented and mapped using the proposed SEE-aware flow provides a reduction of more
than 78% with respect to the plain version and about 48% less SEE sensibility compared
to the TMR RISC5x implementations. Please note that performances are not degraded
among the execution of three different RISC5x versions. In order to characterize the
collected data, the data outputs provided by the RISC5x from the PORTA was analyzed,
which can be divided into sequences containing 8 data output records each. The time
difference between two adjacent data records in a sequence was measured by the monitor
board and reports a fixed number of clock cycles when no error is presented in the design.
According to the data outputs collected by the monitor board, the errors caused by SEEs
can be functionally classified into 4 types:

1. time gap, corresponding to the time difference between two data output outside the

86

7.3 – Experiment results and analysis

margin of the corrected ones;

2. wrong data, corrupted data reported on the PORTA output;

3. wrong records, an erroneous number of records in a data sequence;

4. wrong sequence, an erroneous number of data sequences.

The classification, reported in Fig. 7.16, gives insight on the improvements performed
by the SEE aware placement design of the RISC5x. In particular, the SEE-aware RISC5x
reports a drastic reduction of the wrong data effect (i.e., more than 60% versus the plain
RISC5x) and an evident reduction of about 25% and 30% versus the TMR implementa-
tions, related to the time gap and missing sequence effects.

Figure 7.16: Error events classification

In this work, a novel design flow is presented for implementing circuits hardened versus
SEE effects on Flash-based FPGAs. The design flow contains an accurate SET analytical
model, a FPGA logic and route model, the SETA (SET Analyzer) tool and SET-PAR
(SET-aware Place And Route) tool integrated together. Since The design flow takes the
netlist and place constraint files from standard commercial tools (in our case, Microsemi
Libero), modifies the netlist and generates the constraints file so that it can be integrated
with commercial toolchain easily.

Verified by analysis and radiation experiment, the solution proposed here has the main
advantage of being capable of fully mitigate SEUs and drastically reduce the impact of
SETs with a limited number of overhead resources with respect to traditional redundancy
and filtering-based approaches. In particular our approach presents a reduction of the
area overhead of more than 83% with respect to traditional mitigation approaches, while
circuits results two orders of magnitude less sensitive with respect to soft errors. As
future research, a plan has been made to perform further evaluation on the performance
of the proposed method addressing high performance computation circuits implemented
on ultra-nanometer Flash-based technology.

87

7 – Single Event Effects on Flash-based FPGA

Last but not least, the SET analytical model and the SET-aware Place & Route tool
developed are not bound to the FPGA design, instead, with input of cell technology library
and GDS-II layout model of the target design, our design flow can be tuned to work with
ASIC design for SEE-aware analysis and mitigation solution. And this is also part of our
current and future works.

88

References

[1] Francesco Abate, Luca Sterpone, Massimo Violante, and F Lima Kastensmidt. “A
study of the single event effects impact on functional mapping within flash-based
FPGAs”. In: Design, Automation & Test in Europe Conference & Exhibition, 2009.
DATE’09. IEEE. 2009, pages 1226–1229.

[2] Igor Aleksejev, Artur Jutman, Sergei Devadze, Sergei Odintsov, and Thomas Wenzel.
“FPGA-based synthetic instrumentation for board test”. In: Test Conference (ITC),
2012 IEEE International. IEEE. 2012, pages 1–10.

[3] Zeyad Alkhalifa, VS Sukumaran Nair, Narayanan Krishnamurthy, and Jacob A.
Abraham. “Design and evaluation of system-level checks for on-line control flow
error detection”. In: Parallel and Distributed Systems, IEEE Transactions on 10.6
(1999), pages 627–641.

[4] ARM. url: http://www.arm.com/products/system-ip/debug-trace/.
[5] ARM. CoreSight Program Flow Trace (PFTv1.0 and PFTv1.1) Architecture Specifi-

cation. url: http://infocenter.arm.com/help/topic/com.arm.doc.ihi0035b/
IHI0%20035B_cs_pft_v1_1_architecture_spec.pdf.

[6] Jose Rodrigo Azambuja, Mauricio Altieri, Jurgen Becker, and Fernanda Lima Kas-
tensmidt. “HETA: hybrid error-detection technique using assertions”. In: Nuclear
Science, IEEE Transactions on 60.4 (2013), pages 2805–2812.

[7] José Rodrigo Azambuja, Ângelo Lapolli, Lucas Rosa, and Fernanda Lima Kas-
tensmidt. “Detecting SEEs in microprocessors through a non-intrusive hybrid tech-
nique”. In: Nuclear Science, IEEE Transactions on 58.3 (2011), pages 993–1000.

[8] José Rodrigo Azambuja, Samuel Pagliarini, Mauricio Altieri, Fernanda Lima Kas-
tensmidt, Michael Hübner, Jürgen Becker, Gilles Foucard, and Raoul Velazco. “A
fault tolerant approach to detect transient faults in microprocessors based on a non-
intrusive reconfigurable hardware”. In: Nuclear Science, IEEE Transactions on 59.4
(2012), pages 1117–1124.

[9] José Rodrigo Azambuja, Samuel Pagliarini, Lucas Rosa, and Fernanda Lima Kas-
tensmidt. “Exploring the limitations of software-based techniques in SEE fault cov-
erage”. In: Journal of Electronic Testing 27.4 (2011), pages 541–550.

[10] T Baghai and V Hildeman. “Avionics Certification: A Complete Guide to DO-178
(Software), DO-254 (Hardware)”. In: United States (2007).

89

http://www.arm.com/products/system-ip/debug-trace/
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0035b/IHI0%20035B_cs_pft_v1_1_architecture_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0035b/IHI0%20035B_cs_pft_v1_1_architecture_spec.pdf

REFERENCES

[11] Niccolo’ Battezzati, S Gerardin, A Manuzzato, D Merodio, A Paccagnella, C Poivey,
Luca Sterpone, and Massimo Violante. “Methodologies to study frequency-dependent
single event effects sensitivity in flash-based FPGAs”. In: Nuclear Science, IEEE
Transactions on 56.6 (2009), pages 3534–3541.

[12] Mark P Baze, Steven P Buchner, and Dale McMorrow. “A digital CMOS design
technique for SEU hardening”. In: Nuclear Science, IEEE Transactions on 47.6
(2000), pages 2603–2608.

[13] Alfredo Benso, Stefano Di Carlo, Giorgio Di Natale, and Paolo Prinetto. “A watch-
dog processor to detect data and control flow errors”. In: On-Line Testing Sympo-
sium, 2003. IOLTS 2003. 9th IEEE. IEEE. 2003, pages 144–148.

[14] Melanie Berg, H Kim, M Friendlich, C Perez, C Seidleck, K LaBel, and R Ladbury.
“SEU analysis of complex circuits implemented in Actel RTAX-S FPGA devices”.
In: IEEE Trans. Nucl. Sci 58.3 (2011), pages 1015–1022.

[15] S. Bergaoui, P. Vanhauwaert, and R. Leveugle. “IDSM: An improved disjoint sig-
nature monitoring scheme for processor behavioral checking”. In: Test Workshop -
LATW, 2014 15th Latin American. Mar. 2014, pages 1–6. doi: 10.1109/LATW.
2014.6841915.

[16] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture and CAD for
deep-submicron FPGAs. Volume 497. Springer Science & Business Media, 2012.

[17] Phillipe Cheynet, Bogdan Nicolescu, Raoul Velazco, Maurizio Rebaudengo, Matteo
Sonza Reorda, and Massimo Violante. “Experimentally evaluating an automatic ap-
proach for generating safety-critical software with respect to transient errors”. In:
IEEE Transactions on Nuclear Science 47.6 (2000), pages 2231–2236.

[18] F. Corno, M. S. Reorda, and G. Squillero. “RT-level ITC’99 benchmarks and first
ATPG results”. In: IEEE Design Test of Computers 17.3 (July 2000), pages 44–53.
issn: 0740-7475. doi: 10.1109/54.867894.

[19] Paul E Dodd and Lloyd W Massengill. “Basic mechanisms and modeling of single-
event upset in digital microelectronics”. In: Nuclear Science, IEEE Transactions on
50.3 (2003), pages 583–602.

[20] B. Du, M. S. Reorda, L. Sterpone, L. Parra, M. Portela-Garcia, A. Lindoso, and
L. Entrena. “Exploiting the debug interface to support on-line test of control flow
errors”. In: On-Line Testing Symposium (IOLTS), 2013 IEEE 19th International.
July 2013, pages 98–103. doi: 10.1109/IOLTS.2013.6604058.

[21] B. Du, M. Sonza Reorda, L. Sterpone, L. Parra, M. Portela-Garcia, A. Lindoso,
and L. Entrena. “A new solution to on-line detection of Control Flow Errors”. In:
On-Line Testing Symposium (IOLTS), 2014 IEEE 20th International. July 2014,
pages 105–110. doi: 10.1109/IOLTS.2014.6873680.

[22] B. Du, M. Sonza Reorda, L. Sterpone, L. Parra, M. Portela-Garcia, A. Lindoso,
and L. Entrena. “On-line Test of Control Flow Errors: A new Debug Interface-based
approach”. In: IEEE Transactions on Computers PP.99 (2015), pages 1–1. issn:
0018-9340. doi: 10.1109/TC.2015.2456014.

90

http://dx.doi.org/10.1109/LATW.2014.6841915
http://dx.doi.org/10.1109/LATW.2014.6841915
http://dx.doi.org/10.1109/54.867894
http://dx.doi.org/10.1109/IOLTS.2013.6604058
http://dx.doi.org/10.1109/IOLTS.2014.6873680
http://dx.doi.org/10.1109/TC.2015.2456014

REFERENCES

[23] Heidrun Engel. “Data flow transformations to detect results which are corrupted
by hardware faults”. In: High-Assurance Systems Engineering Workshop, 1996. Pro-
ceedings., IEEE. IEEE. 1996, pages 279–285.

[24] Luis Entrena, Mario Garcia-Valderas, Raul Fernandez-Cardenal, Almudena Lindoso,
Marta Portela, and Celia Lopez-Ongil. “Soft error sensitivity evaluation of micropro-
cessors by multilevel emulation-based fault injection”. In: Computers, IEEE Trans-
actions on 61.3 (2012), pages 313–322.

[25] Luis Entrena, Mario García Valderas, Raúl Fernández Cardenal, Marta Portela Gar-
cía, and Celia López Ongil. “SET emulation considering electrical masking effects”.
In: IEEE Transactions on Nuclear Science 4.56 (2009), pages 2021–2025.

[26] Hongxia Fang, Zhiyuan Wang, Xinli Gu, and Krishnendu Chakrabarty. “Mimicking
of functional state space with structural tests for the diagnosis of board-level func-
tional failures”. In: Test Symposium (ATS), 2010 19th IEEE Asian. IEEE. 2010,
pages 421–428.

[27] Aeroflex Gaisler. “Leon3 processor”. In: Nanoscale Integration and Modeling (NIMO)
Group (2010).

[28] Jiri Gaisler, Sandi Habinc, and E Catovic. “Grlib ip library user’s manual”. In:
Aeroflex Gaisler (2010).

[29] Michelangelo Grosso, M Sonza Reorda, Marta Portela-García, Mario García-Valderas,
Celia López-Ongil, and Luis Entrena. “An on-line fault detection technique based on
embedded debug features”. In: On-Line Testing Symposium (IOLTS), 2010 IEEE
16th International. IEEE. 2010, pages 167–172.

[30] LMOSS Hangout and S Jan. “The minimips project”. In: (2009). url: http://
opencores.org/project,minimips.

[31] Jonathan Heiner, Benjamin Sellers, Michael Wirthlin, and Jeff Kalb. “FPGA par-
tial reconfiguration via configuration scrubbing”. In: Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on. IEEE. 2009, pages 99–
104.

[32] Jian Huang and David J Lilja. “Exploiting basic block value locality with block
reuse”. In: High-Performance Computer Architecture, 1999. Proceedings. Fifth In-
ternational Symposium On. IEEE. 1999, pages 106–114.

[33] IEC61508 IEC. “61508 functional safety of electrical/electronic/programmable elec-
tronic safety-related systems”. In: International electrotechnical commission (1998).

[34] ISO/DIS 26262-1 - Road vehicles â Functional safety â Part 1 Glossary. Technical
report. Geneva, Switzerland, July 2009.

[35] Mostafa Jafari-Nodoushan, Seyed Ghassem Miremadi, and Alireza Ejlali. “Control-
flow checking using branch instructions”. In: Embedded and Ubiquitous Computing,
2008. EUC’08. IEEE/IFIP International Conference on. Volume 1. IEEE. 2008,
pages 66–72.

91

http://opencores.org/project,minimips
http://opencores.org/project,minimips

REFERENCES

[36] Artjom Jasnetski, Jaan Raik, Anton Tsertov, and Raimund Ubar. “New Fault Models
and Self-Test Generation for Microprocessors Using High-Level Decision Diagrams”.
In: Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2015 IEEE
18th International Symposium on. IEEE. 2015, pages 251–254.

[37] Artur Jutman. “Filling a Gap in Board-Level At-Speed Test Coverage”. In: Defects,
Adaptive Test, Yield and Data Analysis (DATA’2015), IEEE International Work-
shop On. IEEE. 2015, pages 1–7.

[38] Artur Jutman, Sergei Devadze, Igor Aleksejev, and Thomas Wenzel. “Embedded
synthetic instruments for Board-Level testing”. In: 2012 17TH IEEE EUROPEAN
TEST SYMPOSIUM (ETS). 2012.

[39] Artur Jutman, M Sonza Reorda, and H-J Wunderlich. “High Quality System Level
Test and Diagnosis”. In: Test Symposium (ATS), 2014 IEEE 23rd Asian. IEEE.
2014, pages 298–305.

[40] Markus Kowarschik and Christian Weiß. “An overview of cache optimization tech-
niques and cache-aware numerical algorithms”. In: Algorithms for Memory Hierar-
chies. Springer, 2003, pages 213–232.

[41] Erik Larsson, Bill Eklow, Scott Davidsson, Rob Aitken, Artur Jutman, and Christophe
Lotz. “No Fault Found: The Root Cause”. In: VLSI Test Symposium (VTS), 2015
IEEE 33rd. IEEE. 2015, pages 1–1.

[42] Wassim Mansour and Raoul Velazco. “An automated SEU fault-injection method
and tool for HDL-based designs”. In: Nuclear Science, IEEE Transactions on 60.4
(2013), pages 2728–2733.

[43] Microsemi. “Automotive ProASIC3 Flash Family FPGAs”. In: Datasheet, Revision
5 (2013).

[44] Microsemi. “Using Synplify to Design in Microsemi Radiation-Hardened FPGAs”.
In: Application Note AC139 (2012).

[45] Subhasish Mitra, Norbert Seifert, Ming Zhang, Quan Shi, and Kee Sup Kim. “Robust
system design with built-in soft-error resilience”. In: Computer 2 (2005), pages 43–
52.

[46] Shubhendu S Mukherjee, Christopher Weaver, Joel Emer, Steven K Reinhardt, and
Todd Austin. “A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor”. In: Proceedings of the 36th annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Soci-
ety. 2003, page 29.

[47] “NanGate FreePDK45 Open Cell Library”. In: Available at http: // www. nangate.
com/ ?page_ id= 2325 (2011).

[48] Gabriel L Nazar, Leonardo P Santos, and Luigi Carro. “Accelerated FPGA repair
through shifted scrubbing”. In: Field Programmable Logic and Applications (FPL),
2013 23rd International Conference on. IEEE. 2013, pages 1–6.

92

http://www.nangate.com/?page_id=2325
http://www.nangate.com/?page_id=2325

REFERENCES

[49] B Nicolescu, Y Savaria, and R Velazco. “Software detection mechanisms providing
full coverage against single bit-flip faults”. In: Nuclear Science, IEEE Transactions
on 51.6 (2004), pages 3510–3518.

[50] B Nicolescu and Raoul Velazco. “Detecting soft errors by a purely software approach:
method, tools and experimental results”. In: Embedded Software for SoC. Springer,
2003, pages 39–51.

[51] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. “Control-flow checking
by software signatures”. In: Reliability, IEEE Transactions on 51.1 (2002), pages 111–
122.

[52] L. Parra, A. Lindoso, M. Portela-Garcia, L. Entrena, B. Du, M. S. Reorda, and
L. Sterpone. “A New Hybrid Nonintrusive Error-Detection Technique Using Dual
Control-Flow Monitoring”. In: IEEE Transactions on Nuclear Science 61.6 (Dec.
2014), pages 3236–3243. issn: 0018-9499. doi: 10.1109/TNS.2014.2361953.

[53] Lucas Parra, Almudena Lindoso, Marta Portela, Luis Entrena, Felipe Restrepo-
Calle, Sergio Cuenca-Asensi, and Antonio Martínez-Álvarez. “Efficient mitigation of
data and control flow errors in microprocessors”. In: Nuclear Science, IEEE Trans-
actions on 61.4 (2014), pages 1590–1596.

[54] Luis Parra, Almudena Lindoso, Michelangelo Grosso, M Sonza Reorda, Marta Portela-
García, Mario García-Valderas, Celia López-Ongil, and Luis Entrena. “Control flow
checking through embedded debug interface”. In: Design of Circuits and Integrated
Systems (DCIS), 26th Conference on. 2011, pages 339–342.

[55] J Perez Acle, R Cantoro, AT Hailemichael, E Sanchez, and M Sonza Reorda. “Ob-
servability solutions for in-field functional test of processor-based systems”. In: De-
sign of Circuits and Integrated Systems (DCIS), 2015 Conference on. IEEE. 2015,
pages 1–6.

[56] Marta Portela-García, Michelangelo Grosso, M Gallardo-Campos, M Sonza Reorda,
Luis Entrena, Mario García-Valderas, and Celia López-Ongil. “On the use of embed-
ded debug features for permanent and transient fault resilience in microprocessors”.
In: Microprocessors and Microsystems 36.5 (2012), pages 334–343.

[57] Mihalis Psarakis, Dimitris Gizopoulos, Ernesto Sanchez, and Matteo Sonza Reorda.
“Microprocessor software-based self-testing”. In: IEEE Design & Test of Computers
3 (2010), pages 4–19.

[58] Heather M Quinn, Dolores A Black, William H Robinson, and Stephen P Buch-
ner. “Fault simulation and emulation tools to augment radiation-hardness assurance
testing”. In: Nuclear Science, IEEE Transactions on 60.3 (2013), pages 2119–2142.

[59] Maurizio Rebaudengo, Matteo Sonza Reorda, Marco Torchiano, and Massimo Vi-
olante. “Soft-error detection through software fault-tolerance techniques”. In: Defect
and Fault Tolerance in VLSI Systems, 1999. DFT’99. International Symposium on.
IEEE. 1999, pages 210–218.

93

http://dx.doi.org/10.1109/TNS.2014.2361953

REFERENCES

[60] Maurizio Rebaudengo, Matteo Sonza Reorda, and Massimo Violante. “Software-
level soft-error mitigation techniques”. In: Soft Errors in Modern Electronic Systems.
Springer, 2011, pages 253–285.

[61] Paolo Rech, Caroline Aguiar, R Ferreira, Christopher Frost, and Luigi Carro. “Neu-
tron radiation test of graphic processing units”. In: On-Line Testing Symposium
(IOLTS), 2012 IEEE 18th International. IEEE. 2012, pages 55–60.

[62] Sana Rezgui, JJ Wang, Yinming Sun, Brian Cronquist, and John McCollum. “Con-
figuration and routing effects on the SET propagation in flash-based FPGAs”. In:
Nuclear Science, IEEE Transactions on 55.6 (2008), pages 3328–3335.

[63] Sana Rezgui, Raymond Won, and Jonathan Tien. “Set characterization and miti-
gation in 65-nm cmos test structures”. In: Nuclear Science, IEEE Transactions on
59.4 (2012), pages 851–859.

[64] Andreas Riefert, Riccardo Cantoro, Matthias Sauer, Matteo Sonza Reorda, and
Bernd Becker. “On the automatic generation of SBST test programs for in-field
test”. In: Proceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition. EDA Consortium. 2015, pages 1186–1191.

[65] Andreas Riefert, Lyl Ciganda, Matthias Sauer, Paolo Bernardi, M Sonza Reorda,
and Bernd Becker. “An effective approach to automatic functional processor test
generation for small-delay faults”. In: Design, Automation and Test in Europe Con-
ference and Exhibition (DATE), 2014. IEEE. 2014, pages 1–6.

[66] Ricardo Santos, Shyamsundar Venkataraman, Aruneema Das, and Ajit Kumar.
“Criticality-aware scrubbing mechanism for SRAM-based FPGAs”. In: Field Pro-
grammable Logic and Applications (FPL), 2014 24th International Conference on.
IEEE. 2014, pages 1–8.

[67] Alodeep Sanyal, Krishnendu Chakrabarty, Mahmut Yilmaz, and Hideo Fujiwara.
“RT-level design-for-testability and expansion of functional test sequences for en-
hanced defect coverage”. In: Test Conference (ITC), 2010 IEEE International. IEEE.
2010, pages 1–10.

[68] L. Sterpone and N. Battezzati. “On the mitigation of SET broadening effects in
integrated circuits”. In: Design and Diagnostics of Electronic Circuits and Systems
(DDECS), 2010 IEEE 13th International Symposium on. Apr. 2010, pages 36–39.
doi: 10.1109/DDECS.2010.5491820.

[69] L. Sterpone and Boyang Du. “Analysis and mitigation of single event effects on
flash-based FPGAS”. In: Test Symposium (ETS), 2014 19th IEEE European. May
2014, pages 1–6. doi: 10.1109/ETS.2014.6847804.

[70] Luca Sterpone, Niccolo’ Battezzati, and V Ferlet-Cavrois. “Analysis of SET prop-
agation in flash-based FPGAs by means of electrical pulse injection”. In: Nuclear
Science, IEEE Transactions on 57.4 (2010), pages 1820–1826.

94

http://dx.doi.org/10.1109/DDECS.2010.5491820
http://dx.doi.org/10.1109/ETS.2014.6847804

REFERENCES

[71] Luca Sterpone, Niccolo’ Battezzati, F Lima Kastensmidt, and Raul Chipana. “An
analytical model of the propagation induced pulse broadening (PIPB) effects on sin-
gle event transient in flash-based FPGAs”. In: Nuclear Science, IEEE Transactions
on 58.5 (2011), pages 2333–2340.

[72] “The Nexus 5001 forum Standard for a Global Embedded Processor Debug Inter-
face”. Version 2.0. In: IEEE-ISTO 5001-2003 (2003).

[73] “The RISC5x project”. In: (2009). url: http://opencores.org/project,risc5x.
[74] Xilinx UG190. “Virtex-5 FPGA user guide”. In: UG190 5 (2009).
[75] Ramtilak Vemu and Jacob A Abraham. “Ceda: Control-flow error detection through

assertions”. In: On-Line Testing Symposium, 2006. IOLTS 2006. 12th IEEE Inter-
national. IEEE. 2006, 6–pp.

[76] Ramtilak Vemu, Sankar Gurumurthy, and Jacob A Abraham. “ACCE: Automatic
correction of control-flow errors”. In: Test Conference, 2007. ITC 2007. IEEE In-
ternational. IEEE. 2007, pages 1–10.

[77] JJ Wang, S Samiee, H-S Chen, C-K Huang, M Cheung, J Borillo, S-N Sun, B
Cronquist, and J McCollum. “Total ionizing dose effects on flash-based field pro-
grammable gate array”. In: Nuclear Science, IEEE Transactions on 51.6 (2004),
pages 3759–3766.

[78] Zhen Wang, Mark Karpovsky, and Ajay Joshi. “Reliable MLC NAND flash memories
based on nonlinear t-error-correcting codes”. In: Dependable Systems and Networks
(DSN), 2010 IEEE/IFIP International Conference on. IEEE. 2010, pages 41–50.

[79] Gilson I Wirth, Michele G Vieira, Egas Henes Neto, and FGL Kastensmidt. “Sin-
gle event transients in combinatorial circuits”. In: Integrated Circuits and Systems
Design, 18th Symposium on. IEEE. 2005, pages 121–126.

[80] Carmichael C XAPP197. Triple Modular Redundancy Design Techniques for Virtex
FPGAs. 2006.

[81] Xilinx Application Notes XAPP216. Correcting Single-Event Upset Through Virtex
Partial Reconfiguration. 2000.

[82] Wenyao Xu, Jia Wang, Yu Hu, Ju-Yueh Lee, Fang Gong, Lei He, and Majid Sar-
rafzadeh. “In-place FPGA retiming for mitigation of variational single-event tran-
sient faults”. In: Circuits and Systems I: Regular Papers, IEEE Transactions on 58.6
(2011), pages 1372–1381.

95

http://opencores.org/project,risc5x

	Summary
	List of Figures
	List of Tables
	I Testing for SoC/SoPC by Exploiting Debugging Infrastructures
	Introduction
	Online test of Control Flow Error
	Previously proposed techniques
	Control Flow Checking module

	A hybrid nonintrusive error detection technique
	Print Circuit Board Assemblies Power-On Self-Test
	Functional test for POST
	Monitoring IP

	Online Test of Control Flow Error
	Background
	Control Flow Checking module
	Architecture of the CFC module

	Experiment results with fault injection
	Experiment setup
	Fault injection results

	Hybrid Nonintrusive Error Detection Technique
	Background
	Dual Control-Flow monitoring
	External hardware module
	Data hardening technique

	Fault injection campaign

	Printed Circuit Board Assembly Power-On Self-Test
	Background
	CoreSight Architecture from ARM

	Monitoring IP
	Fault coverage analysis

	II Analysis and Mitigation of Single Event Effects on FPGAs
	Introduction
	Single Event Effects on FPGAs
	SEEs on SRAM-based FPGA
	SEEs on Flash-based FPGA

	Single Event Effects in SRAM-based FPGA
	Background
	Techniques based on redundancy
	Configuration memory scrubbing via Partial Reconfiguration

	Verification and Error Rate Integrated Tool
	Sensitivity analysis with SEUs in configuration memory
	SEU mitigation with re-placement

	Experiment Analysis
	Radiation experiments with ARM-based SoC on SRAM-based FPGA
	Radiation experiment with custom benchmark on SRAM-based FPGA
	Experimental results and analysis

	Single Event Effects on Flash-based FPGA
	Background
	SET pulse profile in Flash-based FPGA
	Previous analysis and mitigation techniques for SEEs on Flash-based FPGA

	A complete flow for analysis and mitigation of SETs for Flash-based FPGA
	Analytical SET nanometer model
	FPGA logic and routing model
	SETA: Single Event Transient Analyzer
	Selective Guard Gate mapper
	SET-PAR: placement and routing tools for SET mitigation

	Experiment results and analysis
	Radiation experiment on Microsemi Flash-based FPGA

