
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Reconfigurable Systolic Array: From Architecture to Physical Design for NML / Causapruno, Giovanni; Riente, Fabrizio;
Turvani, Giovanna; Vacca, Marco; RUO ROCH, Massimo; Zamboni, Maurizio; Graziano, Mariagrazia. - In: IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. - ISSN 1063-8210. - ELETTRONICO. -
24:11(2016), pp. 3208-3217. [10.1109/TVLSI.2016.2547422]

Original

Reconfigurable Systolic Array: From Architecture to Physical Design for NML

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TVLSI.2016.2547422

Terms of use:

Publisher copyright

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2643338 since: 2017-04-06T11:49:25Z

IEEE - INSTITUTE ELECTRICAL ELECTRONICS ENGINEERS INC

1

Reconfigurable Systolic Array:

From Architecture to Physical Design for NML
G. Causapruno, F. Riente, G. Turvani, M. Vacca, M. Ruo Roch, M. Graziano, Member, and M. Zamboni

Abstract—NanoMagnet Logic (NML) is among the emerging
technologies that might replace CMOS in next decades. Accord-
ing to its physical characteristics, to better exploit the potential
of this technology – and of other similar ones – the use of parallel
architectures with regular layout that avoid long interconnection
signals is advised. Systolic Arrays are among these architectures,
being composed of a grid of equal Processing Elements locally
interconnected. However, they are usually implemented to execute
only a small set of algorithms, and for this reason throughout
the years they have not been an appealing solution for CMOS.

To seriously analyze the potentials of NML, complex archi-
tectures must be conceived, and their physical implementation
explored taking into account realistic technological constraints.
With the increasing complexity of NML circuits, two issues,
then, are noticed: 1) The need for a regular structure arises,
that at the same time helps to reduce the intrinsic pipelining
nature of NML and can be configured to be used for several
applications without developing a dedicated design for each
algorithm. 2) The capability to synthesize, place and route NML
circuits is fundamental to demonstrate the feasibility of the
architecture in two important conditions: efficiently managing
the complexity of the design and sticking to the characteristics
that are technologically feasible at the time of writing. In this
article we address these issues presenting a new Reconfigurable
Systolic Array, that can be programmed to execute different
algorithms, and we provide two examples to show its working
principle. Moreover the Array is synthesized and simulated with
the aid of the first real tool for nanotechnology circuits that
we have conceived, ToPoliNano. The joint contribution at both
architectural and physical design level gives a relevant step
forward to the state of the art in the demonstration of this
emerging technology potential.

Index Terms—NanoMagnet Logic, Parallel Architectures, CAD
for nanocomputation

I. MOTIVATION

During last years the successful trend of CMOS scaling,

predicted by Moore in 1965, has suddenly slowed down due

to technological limitations such as the increasing leakage

current and minimum fabrication sizes achievable [1]. Emerg-

ing technologies, that could replace CMOS in next several

years, are currently under study. These technologies will be

able to process data at an extremely high operating frequency

[2] or with a significant reduction of consumed power [3].

The ITRS report [4] summarizes several possible technologi-

cal solutions, among which carbon nano-tubes and graphene

based devices, Quantum-dot Cellular Automata (QCA) and

silicon nanowire based nanoarrays. Our attention is focused

Authors are with the Department of Electronics and Telecommu-
nications, Politecnico di Torino, TO, I10129 Italy e-mail: maria-
grazia.graziano@polito.it. M. Graziano is also with the London Center for
Nanotechnology (UCL), m.graziano@ucl.ac.uk

0

VH

t0 t1

H1 H2 H3

t2
'0' '1' null

(A)

(B)

(E)

AND

OR

HOLD

H1 H2 H3

PE

PE PE PE

PE PE

PE PE PE

(D)

SWITCH RESET

X

REG REG

REGREG

AxB

CxD

ExF

B

A C

E

Cycle 5

(C)

Fig. 1. (A) (NML) principle: magnetization represents logic values. (B)

Systolic Array structure. (C) An example of signal propagation in a NML
circuit. The circuit is split in 3 different clock zones. Nanomagnets with one
cut corner implement logic functions AND, OR. (D) Clocking scheme for
magnetic QCA circuits. (E) Pipeline interleaving technique: input data are
interleaved to execute 3 operations exploiting the feedback cue.

on Quantum-dot Cellular Automata since different studies

envisage this technology as a promising alternative to CMOS

[5]. In particular we consider in this article NanoMagnet Logic

(NML) implementation (Fig. 1.A), which has been already

experimentally demonstrated [6] and is then an excellent case

study to explore how emerging technologies can find their way

into the future with the accompanying cumbersome inheritance

of the CMOS success story.

One important aspect to be underlined, and valid for all

the emerging technologies conceived for computation, is the

unavoidable need to tackle the design of circuits of a rea-

sonable complexity. We strongly believe this is an essential

point for two reasons. The first is that it is not at the device

level that a realistic evaluation of the potential of a new

technology can be really compared to CMOS performance and

success history. The second relies on the fact that only with

complex architectures real problems and needs are understood

and proper countermeasures and directions at the architectural,

the design and the technological levels can be found.

Having these motivating principles in mind we addressed

our attention to architectures for nanocomputation of a certain

complexity. We tried to analyze how architectural solutions

can at the same time exploit these technologies’ remarkable

characteristics and solve critical aspects. These critical aspects

are partially related to their intrinsic nature and partially due

to the immaturity of technological processes. With the same

motivation we do not stop at the architectural level, but also

consider the feasibility of these architecture at the physical

level by tackling their physical design down to the single de-

vice element. This physical design phase should then take into

2

account the technological characteristics and constraints and,

at the same time, tackle the design of complex architectures

to clearly demonstrate the feasibility of the design. Without

this physical design step, that we consider fundamental, the

architectural evaluation would not be reliable and its actual

feasibility would not be demonstrated at the design phase.

These two stages of the design for nanocomputation are at

the basis of this work.

The rest of the paper is organized as follows: in section II

we start from physical characteristics of NML to introduce a

new architecture called Reconfigurable Systolic Array. This

addresses the first point of our analysis: the identification

of a complex architecture tailored for NML technology. The

successive section III deals with the physical layout phase of

the design flow: in this section we present ToPoliNano, the

first existing tool able to tackle a complete top-down design

flow for nanotechnologies, showing its working principle and

main steps of the design flow. Section IV presents in detail

the architecture of the Reconfigurable Systolic Array. The

reconfigurability mechanism is described in section V. NML

implementation with ToPoliNano is reported in section VI.

Finally, conclusions are provided in section VII.

II. BACKGROUND

In this section we focus on the first stage of the design flow

for nanotechnologies, focusing on the design of an architecture

able to exploit the remarkable characteristics of NanoMagnet

Logic and at the same time addresses its critical aspects.

NML and the majority of other nanotechnologies are intrin-

sically pipelined, and the pipeline level is usually extremely

high [5]. While in combinational circuits this is not a problem

[7], in sequential circuits, where the result of one operation

depends on previous ones, this represents a big issue [8].

Feedback signals, that require many clock cycles to propagate

back, limit the throughput. Actually a new operation cannot be

started at every clock cycle, and the input data rate is reduced

according to the length of the longest loop in the circuit [9]

[10]. To solve this problem and exploiting the deep pipeline of

the circuit at its best, pipeline interleaving can be introduced:

It requires providing several unrelated input sequences, so as

to fill the pipeline queue present in the loop and maximize the

throughput [8][11] (Fig. 1.E).

Due to this intrinsic pipelining proper architectures should

be adopted: Global interconnections should be avoided, be-

cause their routing would heavily complicate the design and

the delay of the circuit [7]; Regular structures that can be

replicated should be preferred to simplify synchronization of

signals across clock zones [12]. Systolic Arrays (SAs) [13]

are among the architectures that meet the constraints. Indeed

SAs are regular structures based on Processing Elements

(PEs) locally interconnected (Fig. 1.B). This means that each

PE can communicate with its neighbors. For these peculiar

characteristics SAs have already been exploited for general

QCA implementation [14] [15]. In this article we present a

step further tailoring the design for NML technology, taking

into account also physical constraints of this implementation.

In the following paragraph we give an introduction to SAs.

Systolic Arrays

SAs were first introduced by Kung and Leiserson in 1978

[13], but they did not emerge as a valid architectural solution

in past decades because designers have relied on performance

improvements provided by technological scaling rather than

on parallel solutions to increase the throughput. SAs are

gaining great interest in the last years again because they

represent an ideal structure for emerging nanotechnologies

and their parallel nature is now exploited also in CMOS to

increase throughput. Indeed, their structure is ideal for the so

called “Embarrassingly Parallel Algorithms”, where several

computations must be executed in parallel to achieve a rea-

sonable throughput. SAs, given their highly parallel structure,

are also an ideal target for the so called ”Logic-In-Memory”

applications [16][17]. Logic-In-Memory architectures embed

logic and memory in the same device; as a consequence SAs

are ideal for this application since memory can be easily

embedded in each processing element.

In CMOS, SAs are usually designed as dedicated co-

processors to accelerate a given task. This has been done with

ad-hoc designs that cannot be reused for other operations,

i.e. they are algorithm-dependent. For this reason SAs have

been adopted only for a small subset of problems requiring

a high number of calculations: signal processing [18], video

processing [19], biological sequence comparison [20][21]. In

other cases they are mapped to FPGA[22], so that the hardware

could be reused if a different algorithm must be implemented.

The first case (ad-hoc ASIC) can be used only for a small set of

algorithms, the second (implementation on FPGA) limits the

operating frequency and the number of Processing Elements

that can be mapped.

The solution to this disadvantageous duality can be found

in Reconfigurable SAs, that can be reprogrammed to execute

different algorithms. In this article we introduce our Reconfig-

urable Systolic Array (R SA): each Processing Element can

execute a different operation and can use previous results,

input data or results of neighbor PEs as operands depending

on the chosen configuration. In this way the same architecture

can be used for several applications, making it more attractive

for a real implementation, not only for nanotechnologies but

also in CMOS.

Some reconfigurable SAs have been proposed in recent

years: the work in [23] presents a reconfigurable architecture

for VLSI implementation of BP neural networks with on-chip

learning, while in [24] a general purpose architecture for the

parallelization of nested loops in reconfigurable architectures

is described. Both SAs propose reconfigurability to address

a specific problem’s scale. A fully reconfigurable architecture

has been proposed in [25], with a systematic design approach

to map two or more algorithms into a single SA. This study

however lacks real data and physical implementation, and it

has been conceived for CMOS implementation only. In this

article we have developed our R SA with particular attention

to exploit as much as possible the positive features of emerging

nanotechnologies.

3

NanoMagnet Logic

Quantum-dot Cellular Automata (QCA) is an emerging

technology of particular interest for its high frequencies

achievable, low energy and small area requirements [26].

Literature presents two main implementations of the QCA

principle: Molecular QCA, where molecules are used as the

base element, which is studied for the high theoretical clock

frequency that can reach (1 THz) [27][28][29] and Nano-

Magnet Logic (NML), where single domain nanomagnets are

used as the base element [30][31], which is interesting for

its low power consumption [32]. In this article we consider

NML as a reference technology, as it is the nearest to a real

implementation and remarkable experimental proofs have been

already given for its feasibility. Information on the physical

results and procedures also help introducing more reliable and

realistic constraints and data when a physical design phase is

attempted.

NML technology is based on nanomagnets whose mag-

netization represents an encoding binary value (Fig. 1.A).

Nanomagnets align their state according to neighbor elements,

through magnetic interaction, and in this way they propagate

information through the circuit. A 3-phase clock mechanism,

represented in Fig. 1.C-D, is used to guarantee correct prop-

agation of signals. Circuits are divided in small areas called

clock zones. At every clock zone one of 3 clock signals is

applied, which forces the magnets in different states. During

the HOLD state, magnets maintain their polarization hence

storing the contained information. In SWITCH state, magnets

change their polarization according to neighbor magnets in

the HOLD state. These magnets are not influenced by the

successive ones that are placed in an intermediate unstable

state called RESET. To generate this clock mechanism, it is

necessary to force cells in the RESET state in the unstable

state through a current induced magnetic field [33], current

induced spin-torque mechanism [34], or with a mechanical

stress induced by the strain of a piezoelectric substrate [3]

(Magnetoelastic NML) exploiting the magnetoelastic effect

[35]. With micromagnetic simulations it has been proved that

this technology can work at 100 MHz [36].

The use of a clock leads to an intrinsic pipelined behavior:

Every group of 3 consecutive clock zones has a delay of 1

clock cycle. The pipeline level is hence intrinsically related to

the technology and it depends on the circuit layout. This is the

main difference with respect to CMOS circuits. Usually this

pipeline level is extremely “deep” (hundreds of clock cycles).

The intrinsic pipelining leads to the “layout=timing” problem.

The delay propagation of a signal depends on the length of

its correspondent wire. If at the input of a logic circuit the

wires length is not perfectly matched, errors will occur due to

bad synchronization. This problem can be solved both using

asynchronous delay-insensitive logic [9] or with a proper clock

zones layout [8]. Moreover, in case of sequential circuits the

intrinsic pipelining leads to a reduction of throughput of N

times, where N is the length in clock cycles of the longest loop

in the circuit [9]. This problem can be solved applying pipeline

interleaving[11][20], if several unrelated input sequences are

available (Fig. 1.E).

As mentioned in the first section, the pressing need is to

conceive and study complex QCA architectures in order for

them to be comparable to CMOS as well as to reveal the

real needs and advantages of these emerging technologies.

With QCA circuits that are growing in complexity, two main

issues can be noticed: 1) there is the need for a regular

structure that can be used for several application and does not

require a dedicated design; 2) a tool able to synthesize, place

and route QCA circuits is fundamental to manage efficiently

the complexity of the design. We address these two issues

presenting our reconfigurable architecture, synthesized and

simulated with the aid of the first tool for real nanotech

circuits that we have conceived and presented in a first form

in [37][38], here improved to manage the complexity of the

architecture proposed and to adhere to the emerging trends on

clock distribution type.

The R SA structure satisfies our first goal of working

with complex architectures that exploit emerging technologies’

characteristics and solve their critical problems, so our overall

goal can be met by implementing the R SA physical design

in NML technology. This is done using ToPoliNano, the first

existing tool able to tackle a complete top-down design flow

for nanotechnologies [37][38]. In particular ToPoliNano is

able to synthesize, place, route [39] and simulate [40] [41]

NanoMagnet Logic circuits, and evaluate metrics such as the

area occupation and the dissipated power (Fig. 2). For this

paper, ToPoliNano was enriched by essential new algorithms at

the place and route level, that, with respect to previous versions

of the tool [38], can manage big combinational circuits and

use a more evolved NML technology recently presented in the

literature. It is worth mentioning that nothing of this sort is

present in the literature, where only examples of algorithms

managing simple circuits are found, and, in all cases, only

conceived for general QCA, without any realistic adhesion to

really available technology. The main added value of this work

is the demonstration of a new flexible architecture enhancing

NML characteristics through both functional verification and

actual implementation at the physical design level.

III. TOPOLINANO ORGANIZATION

ToPoliNano (Torino Politecnico Nanotechnology Tool), is

a design and simulation tool developed to deal with new

emerging technologies such as nano-array based technologies

and QCA, with a particular focus on NML (for a description

of NML see section VI). The aim was to design a completely

new tool to allow researchers to explore these technologies

exploiting the same top-down approach used for CMOS tech-

nology.

Starting from a HDL description of a circuit, which is a

technology independent description, we can obtain a complete

and detailed layout based on NML logic and then we can

perform logical and electric simulations to evaluate the correct

behavior at device level, to estimate the total occupied area

and the whole power consumption, and to specify feedbacks

to technologists and architects in order for them to devise the

correct new directions in the research. ToPoliNano is fully

developed in C++ and can currently run on three platforms:

4

(A) (B)

(C)

Fig. 2. (A) ToPoliNano design flow. (B) Techniques applied during graph
elaboration. (C) Techniques applied during physical mapping

Linux, Mac OS and Windows. At the moment it counts

more than 100k lines of code, excluding external libraries.

With respect to other existing tools (such as QCA-LG [42]),

ToPoliNano offers a complete working flow starting from the

Register Transfer Level (RTL) description of any kind of

architectures using a High Level Description language (HDL)

to its automatic layout generation and, after the circuit is

placed and routed, it also allow the logic simulation. More

recently ToPoliNano has also been added a full custom layout

feature of a circuit that can be either simulated with logic

simulation or extracted so that a RTL description is obtained

(HDL). Another important feature of ToPoliNano can be

recognized in its flexibility, as it offers the possibility to work

with different emerging technologies and implementations.

Manifold layout engines have been specifically tailored for a

few target emerging technologies. In other words the same

HDL file can be used to design circuits based on silicon

nanoarrays and gate-all-around transistors or circuits based on

NML. In the NML case different kinds of implementations

are possible (e.g. different clock mechanisms, different magnet

shapes etc...). Even the logic simulation that can be performed

on the designed layout can behave differently depending on

the chosen simulation engine.

The main organization and flow of the application is shown

in Fig. 2.A. The application allows the user to select a target

technology (NML or nano-array based at the moment). Then,

the CAD is opened and it is possible to create a new VHDL

file using the integrated editor or to load an existing one from

a specific library. As it happens in commonly used tools,

the VHDL netlist is parsed and compiled, and at this point

the circuit, represented through a graph, is logically linked

to an existing library of elementary NML logic sub-blocks.

ToPoliNano generates the physical layout: first it elaborates

the NML graph generated by the parsing process according to

NML technological constraints, then it performs the physical

mapping of the circuit. These two steps might resemble the

classical procedures used in CMOS technology. However,

it is fundamental to remark that these are completely new

algorithms only inspired to existing ones, but totally reinvented

to tackle new problems and constraints derived by NML

technology. The difficulty that here is on top of the normal

problems in physical design algorithms relies on the fact that

for QCA the layout has a direct impact on the correctness

of logic behavior, not only on performance like in standard

technologies. This imposes a new and critical point of view

on the way the methods normally used are applied.

The NML graph elaboration is achieved in three steps

according to Fig. 2.B-C: 1) The Fan Out Management modifies

the graph taking into account NML limitations of the fan-

out that each magnetic cell can support (which in this case

is not related to a maximum load as in CMOS, but to the

maximum number of magnets that can be correctly driven

in the correct magnetization state). 2) The Reconvergent path

balance phase guarantees signals synchronization, it ensures

that each path is composed by the same number of nodes (to

solve automatically the “layout=timing” problem mentioned

in section II). 3) In the Cross Wire Minimization phase the

graph is elaborated to reduce the number of these com-

ponents starting from the principles of different algorithms

such as Barycenter, Fan-out duplication, Simulated Annealing

and Kernighan-Lin [38], elaborated and modified for better

exploiting the potentials of NML.

During the physical mapping phase, each node of the

elaborated graph is mapped into the corresponding magnetic

logic gate and it is placed in order within the circuit respecting

the strict constraints that this technology imposes for the

correct signal propagation behavior. The final position of each

gate is obtained during the routing phase; here the aim is

to maximize the circuit compaction, therefore reducing the

length of interconnection wires. Again it is worth underlining

that in QCA an interconnection is a sequence of basic cells

(i.e. of nanomagnets in NML) and it is thus a logic element,

not just a wire as in standard technologies. This changes the

point of view on the routing algorithms. At this point the

result produced by the place and route engine – represented

through a graphical interface – are the starting point for the

logical and the electrical (magnetic in NML) simulations. The

tool translates the internal representation of the layout into a

regular matrix in which each node represents a single magnet.

In this way with a specific visiting algorithm, conceived ad-

hoc for this technology, the state of each element can be

evaluated. This kind of approach is unique in literature, where

only physical level micromagnetic finite element simulators

are available which do not allow the simulations of more

than tens of magnets. At the end, ToPoliNano produces the

simulations waveforms (both in graphical and textual format)

describing the behavior of inputs, outputs and clock signals.

In section VI specific description of the NML constraints and

implementation are given.

IV. RECONFIGURABLE SYSTOLIC ARRAY

The Reconfigurable Systolic Array (R SA) is composed

of a square array of Reconfigurable Processing Elements

(R PEs). The structure of an R PE is shown in Fig. 3.

It is composed of a Reconfigurable ALU, a CTRL block,

registers and multiplexers. CTRL block redirects the ctrl in

5

MUX

Reconfigurable

ALUM
U
X

REG

REG

R
E
G CTRL

result_top_petop_in_chain

ct
rl
_
in

re
su
lt
_
le
ft
_
p
e

le
ft
_
in
_
ch
ai
n

feedback

result

down_out_chain

ri
g
h
t_
o
u
t_
ch
ai
n

REG
M
U
X

ri
g
h
t_
o
u
t_
p
e

down_out_pe

op1

o
p
2

fb

Fig. 3. Reconfigurable Processing Element (R PE): CTRL block redirects
the ctrl in signal to all the configurable elements of the R PE, i.e. the 2
input multiplexers, the horizontal chain multiplexer, and the Reconfigurable
ALU. The transmission of ctrl in to R PE below is not represented for sake
of simplicity.

signal to multiplexers and to the Reconfigurable ALU. This

signal defines the behavior of each PE, and it is transmitted

locally from left to right in each column (not represented in

Fig. 3). Each R PE receives 4 input signals: top in chain

is a signal provided from the boundaries of the SA and

transmitted through each PE with a direct propagation via

a register to down out chain; the same behavior can be

observed for left in chain, but in this case the propagation

can occur through 1 or 2 registers depending on the control

signal of the multiplexer; the other two inputs, result top pe

and result left pe are the values calculated in the above and

left PE respectively (Fig. 4.A).

Input multiplexers are used to choose between the two

inputs for each side (the one evaluated in previous PE and the

one that arrives from the outside). The Reconfigurable ALU

can implement a given set of operations, always working on

3 input data: they can be chosen among input data coming

from multiplexers, stored values ‘0’ and ‘1’, and feedback

signal shown in Fig. 3. In our proposal the Reconfigurable

ALU can implement addition, multiplication, Multiply and

ACcumulate (MAC), and logic left shifting (Fig. 4.B). The

adder is implemented as a classical Ripple Carry Adder, while

the multiplier is an Array Multiplier composed of AND gates

to perform multiplications and Ripple Carry Adders to sum

partial products. The MAC is actually a multiply and add

structure that can use the fb (feedback) signal as input to

implement a MAC. Depending on the available area, the

designer can decide to enhance the ALU providing hardware

for other arithmetic or logic functions.

Each R PE can be programmed independently from the oth-

ers (while in classical SA all PEs execute the same function).

In this way a given PE in a custom SA that implements several

operations can be mapped to a set of R PEs in the R SA.

R PEs are programmed sending a set of Ctrl signals at the

first column of the array (in Fig. 4.A local transmission from

one PE to the successive is not represented). Each PE has

a configuration register that stores the Ctrl signal. One bit

of Ctrl signal is used to select between programming and

normal operation mode (it represents the Write Enable of the

configuration register).

V. RECONFIGURABILITY

To demonstrate reconfigurability of the R SA we propose

two different applications: matrix multiplication and a set of

FIR filters.

A. Matrix multiplication

Given two rectangular matrices A = (aik) and B = (bkj)
of order N1 × N3 and N3 × N2 respectively, their product,

matrix C = A × B, C = (cij), of order N1 × N2, can be

obtained according to the equation (1):

cij =

N3∑

k=1

aik · bkj , i = 1, 2, . . . , N1 j = 1, 2, . . . , N2 (1)

This can be mapped to a SA of N1×N2 cells, each performing

Multiply and Accumulate operations to store partial results

cij(k) at each iteration k (Fig. 4.C) [13]. Therefore, the R SA

must be configured in order to: use the MAC resource in

the Reconfigurable ALU, with op1 and op2 as inputs of the

multipliers and fb signal as second input for the adder. The

other multiplexers must select top in chain and left in chain

as input data, and one single register in the left-to-right

transmission of left in chain.

B. FIR filters

The following explanation refers to Fig. 4.D describing the

logic organization of FIR filters, to Fig. 4.E describing the

implementation in the reconfigurable architecture and to Fig. 5

discussing the simulations.

Given a discrete-time FIR filter (Fig. 4.D), the output

sequence y[n] can be expressed in terms of input sequence

x[n] and weights bj with equation (2):

y[n] =
N∑

j=0

bj · x[n− j] (2)

where N is the filter order.

To map FIR filters in the R SA cells must be programmed

in different ways: this is possible since we can manage one

configuration signal for each PE. In Fig. 4.E, two rows of

the Reconfigurable Array are used to implement a FIR filter.

Other FIR filters can be mapped in other rows of the R SA.

They must all share the same weights bj since these must

be provided from the external and are locally transmitted to

PEs below (through each column). To map the filter in the

R SA three different configurations must be used: MUL, ADD

and top-to-right signal transmission (the bottom-left PE in

Fig. 4.E), hereinafter called TRANSMIT. In the following each

of these configuration is described.

1) MUL cells are configured to execute multiplications

on incoming operands from top and left, therefore the Re-

configurable ALU is programmed to use op1, op2 and ‘1’

6

+

x

<<

MAC

M
U

XM
U

X
M

U
X

M
U

X

3 op.

op1

op2

'0'

'1'

fb

result

PE PE PE

PE PE PE

PE PE PE

ri
g

h
t_

o
u

t_
p

e
ri

g
h

t_
o

u
t_

ch
ai

n

re
su

lt
_

le
ft

_
p

e
le

ft
_

in
_

ch
ai

n

PE PE

Top(1)
L

ef
t(

1
)

C
tr

l(
2

)
Top(0) Top(2)

C
tr

l(
1

)
C

tr
l(

0
)

L
ef

t(
0

)
L

ef
t(

2
)

MAC MAC MAC

MAC MAC MAC

MAC MAC MAC

a0i

a1i

a2i

bi0 bi1 bi2
(A) (B) (C)

RECONFIGURABLE ALU

(D)

MUL MUL MUL MUL MUL

ADD ADD ADD ADD

(PE_00) (PE_01) (PE_02) (PE_03) (PE_04)

(PE_10) (PE_11) (PE_12) (PE_13) (PE_14)

x[n]

y[n]

REG REG REGx[n]

y[n]

(E)

Fig. 4. (A) R SA: each PE communicates with the one below and the one at its right using two signals. Ctrl(i) signals are transmitted through rows and
are used to program each PE. (B) Reconfigurable ALU: the 4 computational blocks work on 3 input data, that are chosen configuring the three input Muxes.
Each of this Mux is used to select one of the 5 operands available: op1, op2, fb, 0 and 1. The executed operation is selected configuring the output Mux.
Control signals are not shown for sake of simplicity. (C) SA to execute matrix multiplication. Values of the resulting matrix cij are stored in each PE. (D)
FIR filter with dashed lines to represent the mapping to the R SA. Each line represents a cut-set for retiming, therefore PEs that represent the upper row of
the FIR filter must have a 2-clock delay in left-to-right input transmission. (E) FIR filter on two lines of the R SA. Note that three different configurations
are required (the blank cell must be configured to transmit the value coming from top to the right). Depending on the number of rows, the array can map
several FIR filters, one below the other.

!" #!$

!" %#&

'!(!" #!$

')(!" %#&

ctrl_in(1)

ctrl_in(0)

!!00000000000

00000000000 011011100011

010000001001 011000001101

01 10 00 00 1 1 0 1

1
st

 o
p

er
an

d
:

o
p

1

2
n
d
 o

p
er

an
d
:

o
p

2

3
rd

 o
p

er
an

d
:

'0
'

o
p

er
at

io
n
:
A

D
D

to
p

:
re

su
lt

_
to

p
_
p

e

le
ft

:
re

su
lt

_
le

ft
_
p

e

h
o
ri

z
p

at
h
:

1
 r

eg

re
se

t:
 N

O

01 10 11 10 0 0 1 1

1
st

 o
p

er
an

d
:

o
p

1

2
n
d
 o

p
er

an
d
:

o
p

2

3
rd

 o
p

er
an

d
:

'1
'

o
p

er
at

io
n
:

M
U

L

to
p

:
to

p
_

in
_

ch
ai

n

le
ft

:
le

ft
_

in
_

ch
ai

n

h
o
ri

z
p

at
h
:

2
 r

eg
s

re
se

t:
 N

O

(MUL)

(TRANSMIT) (ADD)

clk

x[n]

01 00 00 00 1 0 0 1

1
st

 o
p

er
an

d
:

o
p

1

2
n
d
 o

p
er

an
d
:

'0
'

3
rd

 o
p

er
an

d
:

'0
'

o
p

er
at

io
n
:
A

D
D

to
p

:
re

su
lt

_
to

p
_
p

e

le
ft

:
le

ft
_

in
_

ch
ai

n

h
o
ri

z
p

at
h
:

1
 r

eg

re
se

t:
 N

O

(TRANSMIT)(MUL) (ADD)(A) (B) (C) (D)

RESET CONFIGURE COMPUTE

! "# $% #& !! #"

! "# $% #& '& $" "#

! "# $% $& "# (%

! "# "") ! '

! # ' $ "

! "# $% #& !! #"

! "# $% #& '& $" "#

! "# $% $& "# (%

! "# "") ! '

! # ' $ "

! " # $ %! " # $ %

n x[n] y[n]

0 5 5

1 4 14

2 3 26

3 2 40
4 1 55

!

y[n]

PE_10

PE_11

PE_12

PE_13

PE_14

!!

(E) (F)

Fig. 5. Simulation of the R SA configured to implement a FIR Filter. (A) Configuration word for MUL cells. (B) Configuration word for TRANSMIT cells.
(C) Configuration word for ADD cells. (D) FIR filters input values and correspondent results. (E) RESET and CONFIGURE waveforms. (F) COMPUTE
waveforms that represent inputs (x[n]) and results of PEs in the bottom row (PE 1x).

as operands. The other multiplexers select top in chain and

left in chain. Notice that in this case the left-to-right trans-

mission must follow the path with two registers, to have one

clock delay difference with respect to the horizontal path

between Adders, where one register only (the one that stores

the result) is present. In Fig. 4.D each dashed line represents

a cut-set for retiming, therefore additional registers must be

inserted in each left-to-right signal transmission and in each

path from multipliers to adders. Configuring word for MUL

cells is shown Fig. 5.A.

2) ADD cells are configured to execute addition on incom-

ing operands from top and left, therefore the Reconfigurable

ALU is programmed to use op1, op2 and ‘0’ as operands. The

other multiplexers select result top pe and result left pe. In

this case the delay for the partial result to be transmitted to

neighbor PE is always 1 clock cycle as expected. Configuring

word for ADD cells is shown Fig. 5.C.

3) TRANSMIT: result top pe must be transmitted as result

to the PE at its right. This can be done configuring the PE to

execute an addition with operands result top pe (op1 inside

the Reconfigurable ALU), ‘0’ and ‘0’. Configuring word for

TRANSMIT cell is shown Fig. 5.B.

Fig. 5 summarizes the example of FIR filter implementation

in the R SA. Three phases are necessary: reset, to clear

registers; configure, to program each PE to execute a given

function (Fig. 5.E); compute, when the array is actually used

for its scope, in this case FIR filtering (Fig. 5.F).

VI. NML IMPLEMENTATION

The R SA was mapped on NML technology using ToPoli-

Nano. At the time of writing the tool is not able to han-

dle sequential circuits and tackle hierarchical floorplanning.

Both functions are under development. In this work we have

automatically generated the layout of all main blocks with

ToPoliNano, while the floorplan customly. Fig. 6 shows the

layout of a simple 2 bits multiplier. This block is not part of

the processing element but is used here to highlight the basic

circuits structure. Clock zones are made by parallel stripes

which correspond to the wires where the current flows and

therefore generates the magnetic field used as clock. This

layout is based on the results shown in [33], where these wires

where physically implemented. While other type of NML cir-

cuits based on different clock mechanisms can have different

clock zones layout, we choose to base our design on this

particular layout because it has the advantage to automatically

synchronize signals without the need of asynchronous logic

[8]. NanoMagnets used for this design are 50× 100× 20nm
blocks of Permalloy, with 20nm spacing between magnets. It

is possible to use magnets of different sizes, guaranteeing an

aspect ratio of 1.2 minimum to have a bistable switch logic

behavior. As shown in Fig. 6 circuits are based on a AND, OR

[43] and inverters as basic logic gates. Two support structures

7

are also required, the coupler and the cross wire. The coupler

is just a simple structure used to split a signal in two parts

while the cross wire is a particular block that allows to cross

two wires on the same plane [33]. The cross wire is crucial

to build any working circuit in NML technology, since up to

now no multilayer structures are possible.

Fig. 6. Layout example of a 2-bit Multiplier. Clock zones layout are organized
in parallel stripes and mirrors the physical structure of the wires where the
current used to generate the magnetic field flows. The logic gate set includes
AND, OR and inverters. These two gates have a different shape with respect to
other magnets; this implies the presence of a preferred verse of magnetization
wich can be used to realize those two logic functions [43]. Couplers are used
to split a signal in two parts, while cross wires allow to cross two wires on
the same plane without interferences.

Fig. 7 shows the general floor plan of the processing

element, on the left the equivalent schematic. The processing

element can be seen as a two stage block. The first stage

is based on an 8 bits adder and an 8 bits multiplier. Their

output is connected through a multiplexer to the second

stage, based on an 8 bits adder and a 16 bits multiplier.

This particular organization was chosen to better exploit the

technology characteristics. Depending on how the multiplexers

are configured we can obtain the three operations required

by the programmable processing element (3-operands sum,

3-operands multiplication and multiply-and-accumulate) and

an additional operation (sum and multiplication) that expands

the capabilities of the SA. A shift register is also required to

complete the logic functionalities of the processing element.

Fig. 7 (top and bottom) shows an example of two blocks

obtained using ToPoliNano, a 2to1 8 bits multiplexer in Fig. 7

(top) and an 8 bits adder in Fig. 7 (bottom). Table I reports the

ToPoliNano performance for the layout creation of the main

blocks of the circuit. In particular, it shows the time (expressed

in ms) taken to design the entire layout and to run the crosswire

reduction algorithms, which have been developed with the aim

to minimize the number of crosswires present in the circuit

and as a consequence able to significantly reduce the area

occupation.

The floorplan organization has a particular U-shape, where

the second stage is bent under the first one. In this way

input signals are from the top-left side and output signals are

connected to the bottom-right side. This solution was chosen

8bit Adder 8bit Mul 8bit 2to1 Mux

Crosswire reduction [ms] 4 12 2

Total layout [ms] 60 357 18

TABLE I
TOPOLINANO PLACE & ROUTE EXECUTION TIME FOR THE MAIN BLOCKS

OF THE SYSTOLIC ARRAY

considering the matrix-like structure of the SA, so that input

and output signals among neighbor processing elements are

perfectly matched. The estimated area of the whole processing

element is 0.18 mm2. This value is quite big but the reason

is intrinsic to the limited maturity of the technology. Up to

now no multilayer structures can be fabricated. Circuits are

therefore constrained to one single layer and this fact leads to

a huge circuit area [7]. Moreover the place&route algorithm

of ToPoliNano is still under development and further im-

provements are possible. It is worth noticing that in literature

often hypotheses on stacked magnetic layers and/or out-of-the

plane crosswires can be found. Here we prefer to maintain

the maximum coherency with technology that is reasonably

feasible at the moment.

At this point it is important to underline a fact. In this

paper we are presenting an innovative architecture designed

and partially obtained through the first CMOS-like CAD for

QCA circuits. This is the first time that a work like this is

presented in literature. Further optimization to the place&route

algorithms, to the floorplan creation and to the technology

itself [8][3] are already under development and they will

lead to a substantial reduction of circuit area. However, the

consequence of this work are very important also at this stage

of development of this nanotechnology.

ToPoliNano is also capable of simulating the generated

circuits using a behavioral simulation [40] suited for circuits

made by a very large number of magnets. The simulations

made with ToPoliNano are at a intermediate level of abstrac-

tion, where the elementary device is modeled in terms of logic

behavior and the interactions among magnets organized as

logic gates reproduce the correct physical behavior. However

this does not involve physical descriptions in order to reduce

the simulation time. Other models [44][45] are more similar

to a micromagnetic simulations, but they do not allow simu-

lations of big circuits and the logic behavior of the circuit is

correspondent to the one of ToPoliNano. For this reason the

approach used for ToPoliNano is to have a simplified model

for “logic” simulation, similar to the approach used in [34].

Nevertheless, the accuracy of ToPoliNano simulations have

been demonstrated [30]; indeed the behavior of a nanomagnet

can be assimilated to a bistable switch [46], which is the

basic assumption used for ToPoliNano simulation. Of course

the technological constraints used during the place and route

phase are those that are coherent with the model used in the

simulations, that have been previously and carefully validated

using micromagnetic simulations. In case different technolog-

ical constraints like magnet sizes and distances are chose, then

micromagnetic simulations are run for every elementary logic

component (AND, OR, MV, wires,...) that is always re-used

in the circuit, so that the switch level simulator is updated and

8

Fig. 7. Processing element floorplan and layout. The general floorplan is shown in the figure center, while on the right the equivalent circuit can be seen.
On top and on the bottom an example of two circuits obtained by ToPoliNano can be seen: A 2to1 8 bits multiplexer (top) and an 8 bits adder (bottom).

validated.

As previously stated, the floorplan was manually estimated

because an appropriate algorithm for top level floorplan cre-

ation is still under development. As a consequence it is not

possible for now to simulate the entire processing element

with ToPoliNano. We have however simulated and verified the

behavior of all major blocks. In Fig. 8 we report as an example

the simulation of the 2 bits multiplier of Fig. 6. While the 2 bit

multiplier is not part of the processing element it was chosen

for the sake of clarity of the simulation. As can be seen from

Fig. 8 the multiplication switch level output value is correct

(A0,A1 and B0,B1 are the values of the magnetization of the

magnets on the left of the multiplier in figure 6 and Mul0

and Mul1 are the values of the magnetization of the output

magnets in the same figure).

Comparison with a commercial FPGA: Although the final

objective of this article is to present a complete design flow

for NML technology, the reconfigurable nature of the proposed

architecture led us to a simple, preliminary but yet interesting,

comparison with existing reconfigurable architectures. In this

paragraph we provide a hint of this comparison, using as target

existing architecture the Altera FPGA Stratix IV EP4SGX70

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

A
0

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

A
1

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

B
0

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

B
1

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

M
U
L
0

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

M
U
L
1

Time[ns]

Fig. 8. Switch level magnetic simulation of a 2-bit multiplier based on NML.

[47]. The chip area for this FPGA is 1225mm2. In an equiva-

lent area it is possible to place about 6800 R PEs. The number

of reconfigurable resources is higher in the FPGA, since it has

9

29040 Adaptive Logic Modules (ALMs), each containing 2 6-

input LUTs. According to [47], the FPGA can perform 153

Giga Multiply-Accumulate Operations per Second (GMACS),

working at 400 MHz. Considering a clock frequency of 100

MHz for NML R SA implementation [36], with one MAC in

each PE, it would be possible to perform 680 GMACS. This

particularly fits the case of DSP applications and highlights

how NML, even if it is still in its infancy, can find its

way against current commercial CMOS technology. We are

currently upgrading the R SA structure and we will provide

a more in-depth comparison with CMOS FPGA architectures

in the future.

VII. CONCLUSIONS

We have presented an innovative architecture, a Reconfig-

urable Systolic Array, thought to exploit the true potential

of emerging nanotechnologies. It couples the regularity and

absence of long interconnection wires of systolic arrays with

the programmability not far from that of a FPGA, greatly en-

hancing the future commercial appealing of these technologies.

We have completely designed the architecture and partially

implemented it with ToPoliNano, a design tool conceived to

emulate the top-down design methodology used in CMOS.

This work represents therefore something never attempted

in literature before and greatly enhances the research in the

nanotechnology field.

REFERENCES

[1] D. Rairigh, “Limits of CMOS Technology scaling and technologies
beyond-CMOS,” 2005.

[2] M. Liu, C. Lent, and Y. Lu, “Molecular electronics - from structure
to circuit dynamics,” in 6th IEEE Conf. Nanotechnology. Cincinnati,
Ohio, USA: IEEE, 2006, pp. 62–65.

[3] M. Vacca, M. Graziano, A. Chiolerio, A. Lamberti, M. Laurenti,
D. Balma, E. Enrico, F. Celegato, P. Tiberto, and M. Zamboni, “Electric
clock for NanoMagnet Logic Circuits ,” Anderson, N.G., Bhanja, S.,

Field-Coupled Nanocomputing. LNCS. Springer, Heidelberg, 2014.
[4] “Int. Technol. Roadmap for Semiconductors (ITRS),” http://www.itrs.

net, 2007.
[5] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum

cellular automata,” Nanotechnology, vol. 4, no. 1, pp. 49–57, 1993.
[6] A. Imre, L. Ji, G. Csaba, A. Orlov, G. Bernstein, and W. Porod,

“Magnetic logic devices based on field-coupled nanomagnets,” in Int.

Symp. Semiconductor Device Research, Dec 2005, pp. 25–25.
[7] M. Awais, M. Vacca, M. Graziano, M. R. Roch, and G. Masera,

“Quantum dot Cellular Automata Check Node Implementation for
LDPC Decoders,” IEEE Trans. Nanotechnol., vol. 12, no. 3, 2013.

[8] M. Vacca, M. Jiang, J. Wang, F. Cairo, G. Causapruno, G. Urgese,
A. Biroli, and M. Zamboni, “NanoMagnet Logic: an Architectural
Level Overview ,” Anderson, N.G., Bhanja, S. (eds.), Field-Coupled

Nanocomputing. LNCS. Springer, Heidelberg, 2014.
[9] M. Graziano, M. Vacca, D. Blua, and M. Zamboni, “Asynchrony in

Quantum-Dot Cellular Automata Nanocomputation: Elixir or Poison?”
IEEE Design Test Comput., vol. 28, no. 5, pp. 72 –83, sept.-oct. 2011.

[10] M. Vacca, J. Wang, M. Graziano, M. Roch, and M. Zamboni, “Feedbacks
in qca: A quantitative approach,” IEEE Trans. Very Large Scale Intgr.

(VLSI) Syst., vol. 23, no. 10, pp. 2233–2243, 2015.
[11] G. Causapruno, M. Vacca, M. Graziano, and M. Zamboni, “Interleaving

in Systolic-Arrays: a Throughput Breakthrough,” IEEE Trans. Comput.,
vol. 64, no. 7, pp. 1940–1953, 2015.

[12] M. Crocker, X. Hu, and M. Niemier, “Design and Comparison of NML
Systolic Architectures ,” Nanoarch, 2010.

[13] H. Kung, C. Leiserson, and C.-M. U. D. of Comput. Science, Systolic

Arrays for VLSI, ser. CMU-CS. Carnegie-Mellon University, Depart-
ment of Comput. Science, 1978.

[14] L. Lu, W. Liu, M. O’Neill, and E. Swartzlander, Jr, “QCA Systolic Array
Design,” IEEE Trans. Comput., vol. 62, no. 3, pp. 548–560, 2013.

[15] L. Lu, W. Liu, M. O’Neill, and E. Swartzlander, “Qca systolic matrix
multiplier,” in IEEE Comput. Society Annual Symp. VLSI (ISVLSI), Oct.
2010, pp. 149–154.

[16] D. Pala, G. Causapruno, M. Vacca, F. Riente, G. Turvani, M. Graziano,
and M. Zamboni, “Logic-in-memory architecture made real,” ISCAS,
May 2015.

[17] M. Cofano, G. Santoro, M. Vacca, D. Pala, G. Causapruno, F. Cairo,
F. Riente, G. Turvani, M. R. Roch, M. Zamboni, and M. Graziano,
“Logic-in-memory: A nanomagnet logic implementation,” ISVLSI, July
2015.

[18] H. Lim and J. Swartzlander, E.E., “Multidimensional systolic arrays for
the implementation of discrete Fourier transforms,” IEEE Trans. Signal

Process., vol. 47, no. 5, pp. 1359 –1370, may 1999.
[19] H. Yeo and Y. H. Hu, “A modular high-throughput architecture for

logarithmic search block-matching motion estimation,” IEEE Trans.

Circuits Syst. Video Technol., vol. 8, no. 3, pp. 299 –315, 1998.
[20] G. Causapruno, G. Urgese, M. Vacca, M. Graziano, and M. Zamboni,

“Protein Alignment Systolic Array Throughput Optimization,” IEEE

Trans. Very Large Scale Intgr. (VLSI) Syst., 2014.
[21] M. Graziano, S. Frache, and M. Zamboni, “A Hardware Viewpoint

on Biosequence Analysis: What’s Next?” ACM J. Emerging Tech.

Computing Syst., vol. 9, no. 4, 2013.
[22] C. K. Wijenayake, A. Madanayake, and L. Bruton, “FPGA-prototypes

of differential-form 2D-IIR systolic-array DSP architectures for multi-
beam plane-wave filters,” in IEEE Workshop Signal Processing Systems

(SIPS), Oct 2010, pp. 58–63.
[23] Q. Wang, A. Li, Z. Li, and Y. Wan, “A Design and Implementation

of Reconfigurable Architecture for Neural Networks Based on Systolic
Arrays,” in Proc. 3rd Int. Conf. Advances in Neural Networks - Vol. Part

III, ser. ISNN’06. Berlin, Heidelberg: Springer-Verlag, pp. 1328–1333.
[24] I. Panagopoulos, C. Pavlatos, G. Manis, and G. Papakonstantinou, “A

Flexible General-purpose Parallelizing Architecture for Nested Loops in
Reconfigurable Platforms,” in Proc. 17th Int. Conf. Integrated Circuit

and System Design: Power and Timing Modeling, Optimization and

Simulation. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 20–30.
[25] W. Jin, C. Zhang, and H. Li, “Mapping multiple algorithms into a

reconfigurable systolic array,” in Canadian Conf. Electrical and Comput.

Engineering (CCECE), 2008, pp. 001 187–001 192.
[26] A. Csurgay, W. Porod, and C. Lent, “Signal processing with near-

neighborcoupled time-varying quantum-dot arrays,” IEEE Trans. Cir-

cuits Syst., vol. 47, no. 8, pp. 1212–1223, 2000.
[27] A. Pulimeno, M. Graziano, D. Demarchi, and G. Piccinini, “Towards

a molecular QCA wire: Simulation of write-in and read-out systems,”
Solid-State Electronics, Elsevier, vol. 1, p. 7, 2012.

[28] A. Pulimeno, M. Graziano, V.Cauda, A. Sanginario, D. Demarchi, and
G. Piccinini, “Bis-ferrocene molecular qca wire: ab-initio simulations of
fabrication driven fault tolerance,” IEEE Trans. Nanotechnol., vol. 12,
no. 3, 2013.

[29] M. Graziano, A. Pulimeno, R. Wang, X. Wei, M. R. Roch, and
G. Piccinini, “Process variability and electrostatic analysis of molecular
qca,” J. Emerg. Technol. Comput. Syst., vol. 12, no. 2, pp. 18:1–18:23,
Sep. 2015. [Online]. Available: http://doi.acm.org/10.1145/2738041

[30] M. Vacca, M. Graziano, and M. Zamboni, “Majority Voter Full Charac-
terization for NanoMagnet Logic Circuits,” IEEE Trans. Nanotechnol.,
vol. 11, no. 5, pp. 940–947, 2012.

[31] M. Graziano, A. Chiolerio, and M. Zamboni, “A Technol. Aware
Magnetic QCA NCL-HDL Architecture,” in Int. Conf. Nanotechnol.

Genova, Italy: IEEE, 2009, pp. 763 – 766.
[32] C. Augustine, X. Fong, B. Behin-Aein, and K. Roy, “Ultra-Low Power

Nano-Magnet Based Computing: A System-Level Perspective,” IEEE

Trans. Nanotechnol., vol. 10, no. 4, pp. 778–788, 2011.
[33] M. Niemier and al., “Nanomagnet logic: progress toward system-level

integration,” J. Phys.: Condens. Matter, vol. 23, p. 34, Nov. 2011.
[34] J. Das, S. Alam, and S. Bhanja, “Low Power Magnetic Quantum

Cellular Automata Realization Using Magnetic Multi-Layer Structures,”
J. Emerging and Selected Topics in Circuits and Syst., vol. 1, no. 3, pp.
267–276, Sep. 2011.

[35] M. S. Fashami, J. Atulasimha, and S. Bandyopadhyay, “Magnetization
Dynamics, Throughput and Energy Dissipation in a Universal Multifer-
roic Nanomagnetic Logic Gate with Fan-in and Fan-out,” Nanotechnol.,
vol. 23, no. 10, Feb. 2012.

[36] N. Rizos, M. Omar, P. Lugli, G. Csaba, M. Becherer, and D. Schmitt-
Landsiedel, “Clocking Schemes for Field Coupled Devices from Mag-
netic Multilayers,” in Int. Workshop Computational Electronics. Beijin,
China: IEEE, 2009, pp. 1–4.

[37] S. Frache, D. Chiabrando, M. Graziano, F. Riente, G. Turvani, and
M. Zamboni, “ToPoliNano: Nanoarchitectures Design Made Real,” in

10

IEEE/ACM Int. Symp. Nanoscale Architectures, Amsterdam, The Nether-
lands, 2012, pp. 160–167.

[38] M. Vacca, S. Frache, M. Graziano, F. Riente, G. Turvani, M. Roch,
and M. Zamboni, “ToPoliNano: NanoMagnet Logic Circuits Design and
Simulation,” in Field-Coupled Nanocomputing, ser. Lecture Notes in
Comput. Science, N. G. Anderson and S. Bhanja, Eds. Springer Berlin
Heidelberg, 2014, pp. 274–306.

[39] G. Turvani, A. Tohti, M. Bollo, F. Riente, M. Vacca, M. Graziano,
and M. Zamboni, “Physical design and testing of nano magnetic
architectures,” in 9th IEEE Int. Conf. Design Technol. Integrated Syst.

In Nanoscale Era (DTIS), May 2014, pp. 1–6.
[40] M. Vacca, S. Frache, M. Graziano, and M. Zamboni, “ToPoliNano:

A synthesis and simulation tool for NML circuits ,” IEEE Int. Conf.

Nanotechnol., pp. 1–6, Aug. 2012.
[41] G. Turvani, F. Riente, M. Graziano, and M. Zamboni, “A quantitative

approach to testing in Quantum dot Cellular Automata: NanoMagnet
Logic case,” in 10th Conf. Ph.D. Research Microelectronics and Elec-

tronics (PRIME), June 2014, pp. 1–4.
[42] T. Teodosio and L. Sousa, “QCA-LG: A tool for the automatic layout

generation of QCA combinational circuits,” in Norchip, 2007, pp. 1–5.
[43] M. Niemier, E. Varga, G. Bernstein, W. Porod, M. Alam, A. Dingler,

A. Orlov, and X. Hu, “Shape Engineering for Controlled Switching With
Nanomagnet Logic,” IEEE Trans. Nanotechnol., vol. 11, no. 2, pp. 220–
230, Mar. 2012.

[44] G. Csaba, W. Porod, and Ã. I. Csurgay, “A computing architecture
composed of field-coupled single domain nanomagnets clocked by
magnetic field,” Int. Journal Circuit Theory and Applications, vol. 31,
no. 1, pp. 67–82, 2003.

[45] S. Breitkreutz, J. Kiermaier, C. Yilmaz, X. Ju, G. Csaba, D. Schmitt-
Landsiedel, and M. Becherer, “Nanomagnetic logic: compact modeling
of field-coupled computing devices for system investigations,” Journal

Computational Electronics, vol. 10, no. 4, pp. 352–359, 2011.
[46] G. Csaba and W. Porod, “Simulation of field coupled computing

architectures based on magnetic dot arrays,” Journal of Computational

Electronics, vol. 1, no. 1-2, pp. 87–91, 2002.
[47] Altera, “Stratix IV FPGA High-Performance DSP Features,”

http://www.altera.com/devices/fpga/stratix-fpgas/stratix-iv/overview/
architecture/stxiv-dsp-block.html.

G. Causapruno Giovanni Causapruno received the
Dr.Eng. degree in Electronics Engineering from Po-
litecnico di Torino, Torino in 2012, where he is a
PhD candidate in Electronics and Communications
Engineering. He works on parallel processing archi-
tectures for nanotechnologies.

F. Riente Fabrizio Riente received his M.Sc. Degree
with honors (Magna Cum Laude) in Electronic Engi-
neering in 2012 from Politecnico di Torino where he
is now a Ph.D. candidate in Electronics. His research
interests are in CAD tools for COMS and beyond-
CMOS circuits performance exploration.

G. Turvani Giovanna Turvani received her M.Sc.
Degree with honors (Magna Cum Laude) in Elec-
tronic Engineering in 2012 from Politecnico di
Torino. She is pursuing her Ph.D. in Electronics with
the same university. Her interests are in CAD tools
development for non-CMOS nanocomputing.

M. Vacca Marco Vacca received the Dr. Eng. degree
in Electronics engineering from the Politecnico di
Torino, Turin, Italy, in 2008. In 2013, he got the
Ph.D. degree in Electronics and Communications
engineering and he is now a Research Assistant. His
research interests include QCA and others beyond-
CMOS technologies.

M. Ruo Roch was born in Torino, Italy, in 1965. He
achieved Dr. Ing. and the Ph.D. degrees in 1989 and
1993, respectively. Since 1989 he is a Researcher
at the Department of Electronic of Politecnico di
Torino. Main area of interest is on dedicated micro-
processor architecture, to telecommunication, DSP
and high speed ASICs and design tools for beyond-
CMOS technologies.

M. Graziano Mariagrazia Graziano received the
Dr.Eng. degree and the Ph.D in Electronics Engi-
neering from the Politecnico di Torino, Italy, in 1997
and 2001, respectively. Since 2002 she is Assistant
Professor at the Politecnico di Torino. Since 2008
she is adjunct Faculty at the University of Illinois
at Chicago and since 2014 she is a Marie-Curie
fellow at the London Centre for Nanoelectronics.
She works on ”beyond CMOS” devices, circuits and
architectures.

M. Zamboni Maurizio Zamboni got his Electronics
Eng. and the Ph.D. degrees in 1983 and in 1988
from the Politecnico di Torino, respectively, where
he is now a Full Professor. His research activity
focuses on multiprocessor architectures design, in IC
optimization for Artificial Intelligence, Telecommu-
nication, low-power circuits and innovative beyond
CMOS technologies.

