
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fast thermal simulation using SystemC-AMS / Chen, Yukai; Vinco, Sara; Macii, Enrico; Poncino, Massimo. -
ELETTRONICO. - (2016), pp. 427-432. (Intervento presentato al convegno ACM Great Lake Symposium on VLSI
(GLSVLSI) tenutosi a Boston, Massachusetts, USA nel 2016) [10.1145/2902961.2902975].

Original

Fast thermal simulation using SystemC-AMS

Publisher:

Published
DOI:10.1145/2902961.2902975

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2643254 since: 2020-02-22T22:12:48Z

ACM

Fast Thermal Simulation using SystemC-AMS∗

Yukai Chen, Sara Vinco, Enrico Macii and Massimo Poncino
Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy

name.surname@polito.it

ABSTRACT

Out of the many options available for thermal simulation of dig-
ital electronic systems, those based on solving an RC equivalent
circuit of the thermal network are the most popular choice in the
EDA community, as they provide a reasonable tradeoff between
accuracy and complexity. HotSpot, in particular, has become the
de-facto standard in these communities, although other simulators
are also popular. These tools have many benefits, but they are rela-
tively inefficient when performing thermal analysis for long simu-
lation times, due to the occurrence of a large number of redundant
computations intrinsic in the underlying models.

This work shows how a standard description language, namely
SystemC and its analog and mixed-signal (AMS) extension, can
be used to successfully simulate the equivalent thermal network,by
achieving accuracy comparable to existing simulators, yet with much
better performance. Results show that SystemC-AMS thermal sim-
ulation can outpace HotSpot simulation by 10X to 90X, with speedup
improving as the size of the thermal network increases, and negli-
gible estimation error. As a further advantage, the adoption of the
same language to describe functionality and temperature allows the
simultaneous simulation of both dimensions with no co-simulation
overhead, thus enhancing the overall design flow.

Keywords

Thermal analysis; Thermal estimation; Simulation; SystemC-AMS

1. INTRODUCTION
Temperature is a critical dimension in embedded system design,

as it heavily impacts performance, power consumption and relia-
bility of the final system [2]. This has led to the use of a variety of
tools for estimating temperature (both transient and steady-state),
with the goal of enhancing the design flow with increased reliabil-
ity and knowledge of the underlying physical mechanisms.

∗This work was supported by the EC co-funded CONTREX (De-
sign of embedded mixed-criticality CONTRol systems under con-
sideration of EXtra-functional properties) project Grant Agreement
FP7-ICT- 611146

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI ’16, May 18-20, 2016, Boston, MA, USA

c© 2016 ACM. ISBN 978-1-4503-4274-2/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2902961.2902975

All these tools solve the same problem (i.e., a 2D or 3D heat dif-
fusion equation) and basically differ in terms of their granularity
and of the type of solver employed, with the latter aspect affect-
ing their accuracy [7, 9, 10, 15, 16, 19]. In the EDA and computer
architecture community, the de-facto standard for thermal simual-
tion is HotSpot, a tool based on the circuit-equivalent of a thermal
network, which achieves a good trade-off between granularity and
accuracy [16]. HotSpot uses the chip floorplan and thermal pack-
age information to build an equivalent circuit description, that is
solved over time on given traces of power dissipation.

A few approaches have been proposed to speed up the underlying
equation solving mechanisms of HotSpot [8, 10, 17, 20]. However,
all such solutions are relatively inefficient when performing ther-
mal analysis for long simulation times, due to a large number of
redundant computations intrinsic in the underlying models.

As a further limitation, all tools are designed to work stand-
alone, thus making the integration with other embedded system
design tools, e.g., for functional or power simulation, extremely
challenging. Executing the thermal simulators on traces produced
offline by power simulation tools prevents the possibility of evalu-
ating the mutual influence of temperature and power [5, 18]. This
limitation is overcome by the construction of co-simulation frame-
works, that integrate dedicated simulators through complex syn-
chronization and data exchange mechanisms [3, 6]. However, co-
simulation introduces a significant overhead, together with possible
errors or timing misalignments.

This work shows how a standard functional description language,
namely SystemC and its Analog and Mixed Signal extension (AMS)
[1], can be successfully used to simulate the equivalent thermal
network. The AMS extension provides electrical linear network
constructs, thus allowing the straightforward implementation of the
electrical circuit equivalent thermal model. The AMS solver proves
to guarantee a high level of accuracy w.r.t. existing simulators, cou-
pled with speedups of up to 90X w.r.t. HotSpot simulation, that
increase with the size of the thermal network.

As a further advantage, the adoption of a functional language
allows to simulate the thermal network simultaneously w.r.t. the
system functional and power models, thus enhancing the overall
embedded system desi gn flow.

2. BACKGROUND AND RELATED WORK

2.1 Thermal modeling
When referring to silicon chips, temperature estimation amounts

to solving the heat diffusion equation in 3D, which is typically used
to describe heat conduction in a chip and to calculate the tempera-
ture profile [11]:

∇
2T +

q̇

k
=

1

α

∂T

∂t
(1)

where T is the temperature, q is the heat flux (in W/m2), k is ther-
mal conductivity of the material (in W/(mK)), and α = k

ρc
is the

thermal diffusivity, corresponding to the ratio between the thermal
conductivity and volumetric heat capacity (density ρ times specific
heat capacity c). ∇2T is the Laplacian of T and corresponds in 3D

to ∂T2

∂x
+ ∂T2

∂y
+ ∂T2

∂z
.

Equation 1 can be solved using numerical methods such as Fi-
nite Difference Method (FDM), Finite Element Method (FEM), or
methods based on the Green function [13]. Both FDM and FEM
methods discretize the entire chip according to some granularity
and construct a system of linear equations, thus handling compli-
cated material structures with different thermal properties in differ-
ent layers. Methods based on Green function, conversely, provide a
semi-analytical approach that analyzes only layers of interest. This
reduces the problem size compared to FDM or FEM, but results in
less accurate estimates due to the simplified two dimensional mod-
eling of the thermal problem.

2.2 Related Work on Thermal Simulation
A number of methods for solving Equation 1 rely on the well-

known duality between thermal and electrical networks, i.e., they
represent heat flow as a current passing through a thermal resis-
tance and leading to a temperature difference, analogous to voltage.
Such methods rely on existing circuit-level simulators like SPICE
to solve the steady-state or transient voltage of the nodes of the
equivalent circuit [9, 19].

Among the thermal simulators based on an electrical circuit equiv-
alent, HotSpot [16] is the most popular one, particularly in the com-
puter architecture and EDA communities. The equivalent circuit of
the chip is built from a given floorplan and from the essential fea-
tures of the thermal package. HotSpot solves Equation 1 at each
time step by using an adaptive solver of Runge-Kutta equations,
based on a given trace of power dissipation values. It can model
both steady-state and transient cases, and it supports two levels of
granularity (i.e., block-level and grid-level) with obvious tradeoff
between accuracy and speed. Other approaches try to reduce the
overhead of the HotSpot equation solver by implementing some
context-specific optimizations; for instance, the authors of [8] ex-
ploit periodicity in the power trace to speed up the solution of tran-
sient analysis, whereas [20] uses spatially and temporally adaptive
techniques to reduce computation time.

SESCTherm [10] is a thermal modeling infrastructure based on
finite-difference analysis, that adopts the same underlying equation
solver as HotSpot, but adopts a mix of grid and block modes.

DTTEM [17] uses a similar interface as HotSpot (i.e., conduc-
tance and capacitance matrices). The main difference between DT-
TEM and HotSpot lies in the temperature evaluation mechanism;
by sampling power values at small and constant time intervals, tran-
sient temperature evaluation can be discretized, thus simplifying
the solution of the heat transfer differential equation.

Except for the solutions based on SPICE simulations, all these
approaches basically try to implement different strategies to speed
up the solution of the differential heat diffusion equation by opti-
mizing either time sampling or analysis granularity. However, they
are relatively inefficient when performing thermal analysis for long
simulation times, due to the occurrence of a large number of redun-
dant computations intrinsic in the underlying models. Moreover, all
approaches are based on pre-built power simulation traces, which
implies that multiple runs correspond to multiple constructions of
the equations and/or of the thermal network.

In this work we show that a standard circuit solver like the one
provided by SystemC-AMS can result in comparable if not bet-
ter speed/accuracy tradeoffs than those optimized solutions, while

achieving the benefit of a concurrent simulation of functionality,
power and temperature within a single simulation run.

2.3 Introduction to SystemC-AMS
SystemC-AMS extends SystemC with constructs for modelling

analog and mixed-signal systems (AMS) [1]. To cover a wide va-
riety of domains, SystemC-AMS defines three different abstraction
levels, supporting different communication styles and representa-
tions w.r.t. the physical domain. Timed Data-Flow (TDF) models
are scheduled statically by considering their producer-consumer
dependencies in the discrete time domain. Linear Signal Flow

(LSF) supports the modelling of continuous time through a library
of pre-defined primitive modules (e.g., integration, delay), each as-
sociated with a linear equation. Finally, the Electrical Linear Net-

work (ELN) level models electrical networks through the instanti-
ation of predefined primitives, e.g., resistors or capacitors, associ-
ated with electrical equations.

SystemC-AMS is supported by an internal solver, that analyzes
the ELN and LSF components to derive the equations modelling
system behaviour. The equations are solved numerically over time
to determine the evolution of system state, by adopting numerical
solvers, e.g., Euler and trapezoidal methods. The internal solver
also guarantees that ELN descriptions are conservative, i.e., the set
of equations derived from ELN is extended with the application of
conservation laws.

3. A SYSTEMC-AMS THERMAL SIMULA-

TOR FOR SOC
The construction of the SystemC-AMS thermal model relies on

electrical circuit equivalent models, as they allow to reduce a phe-
nomenon that can not be natively represented in SystemC-AMS
(i.e., temperature) to linear networks, that have a dedicated ab-
straction level. The RC network is built by following state-of-the-
art methods, and in particular the method used by HotSpot [16].
The novelty of the current work lies in the code generation pro-
cess. HotSpot provides a stand-alone tool that explicitly solves
circuit equations modeled as matrices. On the contrary, the pro-
posed approach exploits the native support of SystemC-AMS for
electric network primitives to map the RC network elements one-
to-one to SystemC-AMS constructs (e.g., resistors and capacitors).
Circuit equations are then automatically derived and solved by the
SystemC-AMS internal solver.

The resulting methodology is as depicted in Figure 1:

• construction of the RC network by reproducing the method used
by HotSpot (Section 3.1);

• SystemC-AMS code generation, achieved by mapping the RC
network elements to SystemC-AMS primitives (Section 2.3);

• simulation of the RC network by using the SystemC-AMS sim-
ulation kernel as a circuit solver (Section 3.3). Inputs are pro-
vided by a dedicated testbench, either (a) as power dissipation

traces (á la HotSpot), or (b) by simulating the thermal model in

parallel w.r.t. functional and power models.

3.1 Construction of the RC network
The algorithm to construct the RC network reproduces the method

followed by HotSpot. In the current version of the methodology, we
support only block-level simulation, i.e., the simulator estimates
one temperature value for each component. Finer granularity, i.e.,
the grid-level of HotSpot, will be supported as part of future work.
Both steady-state and transient simulation are supported.

Figure 2 exemplifies the application to a simple case study con-
sisting of a core, a memory, a RF transceiver and a UART device.

RC NETWORK

CONSTRUCTION

SYSTEMC-

AMS CODE

SYSTEMC-AMS

GENERATION

FLOORPLAN

TECHNOLOGY

RC NETWORK

SYSTEMC-

BASED

SIMULATION

POWER

TRACES

FUNCTIONAL

AND POWER

MODELS

SYSTEMC

TESTBENCH

CODE GENERATION

SIMULATION

a.

b.

Figure 1: Proposed methodology for the construction of the

SystemC-AMS thermal simulator.

The construction of the RC network heavily depends on the input
information: chip floorplan, necessary to determine which com-
ponents are adjacent, and technology information (e.g., number of
layers, materials, thermal characteristics).

Each chip component is mapped to a RC network node, whose
current represents power consumption and whose voltage repre-
sents temperature. Additional nodes are used to represent the un-
derlying package layers (i.e., heat spreader and heat sink). Heat
transfer flow between adjacent nodes is represented by a resistor,
whose thermal resistance is proportional to the thickness of the ma-
terial and inversely proportional to the cross-sectional area and to
the thermal conductivity. Resistance values are stored in a matrix
whose lines and columns are circuit nodes. If the RC network
is used for transient simulation, capacitors are connected to each
node, to capture the delay before a change in power determines a
change in temperature. Thermal capacitance is proportional to both
thickness and area, and it depends on the thermal capacitance per
unit volume. Capacitance values are stored in a dedicated array.

3.2 SystemC-AMS code generation
The second step is the implementation of the computed RC net-

work in SystemC-AMS. Figure 3 exemplifies the proposed approach
by showing how the lateral model depicted on top of Figure 2 is im-
plemented in SystemC-AMS1.

Interface modeling.
The electrical circuit equivalent model is instantiated as a single

SystemC module (SC_MODULE, line 1), encapsulating the entire
RC network. The interface of the module is made of two ports
for each chip component: one input port to gather the evolution of
power consumption over time, and one output port to convey the
corresponding value of temperature.

The flexibility of SystemC-AMS and its support for multiple
levels of abstraction allows to decouple the semantics of the in-
terface from the semantics of the actual behavior implementation.
For this reason, the abstraction level adopted for ports is TDF, that
determines a fixed timestep at which input ports are read, RC net-

1
Note that this constitutes only a subset of the complete RC network. Sym-

bols adopted for the primitives are as standardized in the SystemC-AMS
standard [1].

MEMORY

UART

CORE RFTR

RFTRCORE

UART

MEMORY

Figure 2: Example of electrical circuit equivalent model: the

RC network is decomposed in a lateral model (top), repre-

senting heat transfers that occur horizontally between adjacent

components, and a vertical model (bottom), that sketches the

heat spread across the package layers.

work is evaluated and output ports are updated. This reflects the
behavior of HotSpot, that assumes that the power traces contain
samples collected at fixed time steps. Ports are thus declared as
sca_tdf::sca_in and sca_tdf::sca_out ports of type
double (lines 2–3).

Body implementation.
The body of the SC_MODULE includes the implementation of

the RC network, by reproducing the model computed as in Section
3.1. This is realized by adopting the ELN level of abstraction, that
natively supports electrical network elements. The construction of
the SystemC-AMS thermal model is thus a one-to-one mapping of
circuit elements into SystemC-AMS primitives.

Each circuit node is implemented as a SystemC-AMS ELN node
(sca_node, lines 6–7), despite of ground, that is represented with
an ad-hoc primitive (sca_node_ref, line 5).

Resistors are mapped to instances of the sca_r primitive, that
represents SystemC-AMS resistors (line 12). The resistance value
is extracted from the resistance matrix computed in the previous
methodology step (Section 3.1); e.g., the snapshot of code in Figure
3 shows that the resistance modeling the heat flow between the core
and the memory is 215.48Ω (lines 27–30).

Capacitors are mapped to an instance of the sca_c primitive,
that represents SystemC-AMS capacitors (line 11). The capaci-
tance value is extracted from the computed capacitance array; e.g.,
the core capacitance is 874 10−5F (lines 23–26).

The input power ports are connected to the ELN circuit via cur-
rent source primitives, that transform a numerical value into a cur-
rent (sca_isource primitive, lines 9 and 15–18). In the pictorial
representation in Figure 3, TDF ports are represented by the white
square terminals of the primitive blocks.

Conversely, the temperature of each chip component is extracted
through a voltage sink, that extrapolates a voltage value and makes
it available on the output ports. Voltage sinks are represented with
instances of the sca_vsink primitive, whose output terminal is
connected to the corresponding output temperature port (the black
square terminals, lines 10 and 19–22).

3.3 Stimuli Generation

Resistor (sca_r)

Capacitor (sca_c)

Current source

(sca_isource)

Voltage sink

(sca_vsink)

Ground

(sca_node_ref)

LEGEND:

Input TDF port

(power values)

Output TDF port

(temperature values)

Nodes corresponding to

circuit components

(sca_node)

C
O

R
E

MEMORY

RFTR

Characteristics of the

circuit components

1. SC_MODULE (thermal_network){

2. sca_tdf::sca_in<double> p_CORE ;

3. sca_tdf::sca_out<double> t_CORE ;

4. …

5. sca_eln::sca_node_ref gnd;

6. sca_eln::sca_node node_CORE;

7. sca_eln::sca_node node_MEMORY;

8. ...

9. sca_eln::sca_tdf::sca_isource* iCORE;

10. sca_eln::sca_tdf::sca_vsink* vCORE;

11. sca_eln::sca_c* c_CORE;

12. sca_eln::sca_r* r_MEM_CORE;

13. …

14. SC_CTOR(thermal_network){

15. i_CORE = new sca_eln::sca_tdf::sca_isource("i_CORE");

16. i_CORE->p(gnd);

17. i_CORE->n(node_CORE);

18. i_CORE->inp(p_CORE);

19. v_CORE = new sca_eln::sca_tdf::sca_vsink("v_CORE");

20. v_CORE->p(node_CORE);

21. v_CORE->n(gnd);

22. v_CORE->outp(t_CORE);

23. c_CORE = new sca_eln::sca_c("c_CORE");

24. c_CORE->p(node_CORE);

25. c_CORE->n(gnd);

26. c_CORE->value=0.00008741;

27. r_MEM_CORE= new sca_eln::sca_r("r_MEM_CORE");

28. r_MEM_CORE->p(node_MEMORY);

29. r_MEM_CORE->n(node_CORE);

30. r_MEM_CORE->value = 215.48122572;

31. …

32. } };

U
A

R
T

Figure 3: Example of implementation of the lateral model of Figure 2 in SystemC-AMS: implementation of the RC network with

ELN primitives (left) and excerpt of SystemC-AMS code (right).

The final step is the generation of input stimuli. The SystemC-
AMS thermal simulator is connected to a testbench module through
a complementary interface: power ports are in output, and temper-
ature ports are in input. The testbench generates stimuli over time
for the thermal simulator, by adopting two possible strategies.

The first option is to load dissipation power traces from files
previously generated by a power simulator (option a in Figure 1).
The estimated temperature values are then dumped to a thermal
trace file for future elaborations. This corresponds to the simulation
semantics of all thermal simulators, including HotSpot.

The second option consists of simulating the RC network on dy-

namically generated power information (option b in Figure 1). In
this scenario, the testbench wraps SystemC processes implement-
ing power models, or functional models enriched with power infor-
mation [4, 12]. This approach is made possible by the adoption of
a functional language for thermal simulation. A major advantage is
that power information is generated dynamically, depending on the
evolution of functionality, and that the mutual effects of power and
temperature can be reproduced at runtime.

An example of this strategy is sketched in Figure 4. The test-
bench includes both a functional model and a power model: the
pause functional signal is used to determine the evolution of the
power state machine, that dynamically updates the power values
written in output to the thermal model.

It is important to note that this second scenario provides a nov-
elty w.r.t. the current state-of-the-art. Simultaneous simulation is
indeed achieved by simulating all aspects in a single simulation
run and by adopting a single simulation kernel, i.e., SystemC with

SystemC-

AMS

THERMAL

MODEL

SYSTEMC TESTBENCH

POWER

pause ==

true

power = HIGH

power

= LOW

ACTIVE

SLEEP

FUNCTIONAL

void P1(){

if(...)

pause.write(true);

}

...

void Pn(){

if(pause.read() == true)

wait();

else

// functionality

}

Figure 4: Example of how functional and power models can

influence thermal simulation through simultaneous simulation.

its AMS extension. Comparing this solution with approaches such
as [3, 6], we avoid the overhead and the criticality of building a
co-simulation framework, thus achieving faster simulation and an
enhanced guarantee of correctness.

4. EXPERIMENTAL RESULTS

4.1 Simulation Setup
The proposed methodology has been automated in a C++ tool,

that takes in input two files, modeling floorplan and technology in-
formation. The tool builds the RC network and saves the generated
code to a SystemC file, named by default RCnetwork.h. Fur-
thermore, the tool generates the interface of the testbench module,

while its implementation is left to the designer. Table 1 summarizes
the technology values. Air is always set to a fixed ambient tempera-
ture of 40oC. Convection capacitance w.r.t. ambient is 140.4 J

K
, and

convection resistance is 0.1 K
W

.

Layers Thickness Thermal Conductivity

Die 1.5e-04 m 100.0 W/m-K

TIM 2.0e-05 m 4.000 W/m-K

Heat-spreader 1.0e-03 m 400.0 W/m-K

Heat-sink 6.9e-03 m 400.0 W/m-K

Table 1: Technology parameters.

4.2 Case Studies
To compare our methodology to HotSpot, we used five bench-

marks of different sizes and complexity: the example in Figure
2 (benchmark 1), two built-in examples of HotSpot (benchmark
2 and 3), and two synthetic benchmarks (4 and 5). The latter
two do not correspond to any functionality, and are only used to
prove effectiveness and scalability of the proposed simulation ap-
proach. The benchmarks have been generated by replicating a num-
ber of cores, caches and memories, with typical power consumption
traces. The corresponding floorplans have been derived by using
the HotSpot thermal-aware floorplanning tool.

To ensure a fair comparison, we fed both HotSpot and our tool
with the same power traces and floorplan and technology files.

4.3 Correctness of the Computed RC Network
To test the correctness of our approach, we compared the RC

network built by our approach for each benchmark with the one
built by HotSpot. Table 2 reports the main characteristics of the
RC networks.

Since our RC network construction algorithm is based on HotSpot,
it is no surprise that the RC networks are identical, in terms of both
number of nodes, resistors and capacitors. This guarantees that
both SystemC-AMS and HotSpot solve the same equations, and
that any inaccuracy lies in the solver, rather than in the constructed
thermal model.

Benchmark Components Nodes Resistors Capacitors
(#) (#) (#) (#)

1 4 28 64 28

2 18 84 288 84

3 30 132 442 132

4 40 172 586 172
5 86 356 1,206 356

Table 2: Characteristics of the computed RC networks.

4.4 Simulation Time
To evaluate the temporal performance of SystemC-AMS simula-

tions, we compare separately the time to generate the RC thermal
model and the time to simulate the network. Table 3 reports gen-

eration times, and shows that the time necessary to build the ther-
mal model is similar for HotSpot and SystemC-AMS, since both
the approaches rely on the same algorithm for RC network con-
struction. The time is slightly higher for our approach, since it
requires a further step to map the resistor and capacitor matrices
to SystemC-AMS primitives, and to print the generated code onto
a file. To overcome this limitation, we could avoid the dump of
the RC on a file and rely on some interprocess communication fa-
cility to exchange the data structure representing the netlist with
SystemC-AMS. In any case, generation times are truly negligible,
as shown in Table 3.

Benchmark SystemC-AMS (s) HotSpot (s)

1 0.002 0.001

2 0.004 0.001
3 0.011 0.002

4 0.016 0.003

5 0.120 0.020

Table 3: Comparison of RC Network Generation Time.

Table 4 completes the analysis with the most relevant informa-
tion, i.e., the comparison of simulation times. Data refers to a
1000ms trace with timestep 1ms. SystemC-AMS proves to be much
faster than HotSpot, with a speedup of up to 96X. The interesting
aspect is that speedup scales linearly with the size of the netlist.
This proves that the improved performance is due to the SystemC-
AMS simulation kernel, that handles more efficiently the RC net-
work equations. Note that the achieved simulation speedup com-
pensates for the slightly longer generation time (Table 3). These
results allow us to claim that our approach is competitive also w.r.t.

optimized variants of HotSpot, that achieve speedups around 4X
over standard HotSpot [21], thus far lower than our experienced
performance.

Benchmark SystemC-AMS (s) HotSpot (s) Speedup

1 0.101 1.472 14.55

2 0.536 17.446 32.55

3 0.983 40.609 41.31
4 1.425 72.591 50.94

5 3.343 321.397 96.14

Table 4: Comparison of Simulation Time.

4.5 Accuracy
To prove the accuracy of our simulator, we determine the relative

error w.r.t. HotSpot, by analyzing the traces of each component.
The relative error is computed as in Equation 2:

Errrelative = (TAMS−THotSpot)/(THotSpot−TAmbient) (2)

We first compared SystemC-AMS and HotSpot on steady-state

scenarios. The input power traces consist of a single power value
per component, corresponding to the average power dissipation of
the component over time. SystemC-AMS proved to be extremely
accurate, as we got a 0% error on all benchmarks. This can be
explained by the similar underlying solvers, and by the fact that
steady-state evaluation does not require iterations, thus avoiding
the accumulation of approximations.

Case Study Avg. error (%)

1 0.034

2 0.052

3 0.140

4 0.160

5 0.015

Table 5: Accuracy of transient temperature estimation.

The transient scenario is more interesting, as the RC network
includes also capacitors and multiple iterations are necessary to
compute the thermal trace. Table 5 shows that the average error
committed on all benchmarks is far below 1%. This proves that
the SystemC-AMS solver is extremely accurate w.r.t. the HotSpot
simulation kernel. Figure 5 proves the high level of accuracy by
showing that the temperature curves computed by SystemC-AMS
and HotSpot for benchmark 1 are overlapped (top), and that the

Figure 5: Transient temperature profile from SystemC-AMS

and HotSpot applied to benchmark 1 (top) and zoomed view of

the memory transient temperature profiles (bottom).

error becomes visible only by zooming in on very small time win-
dows (bottom).

By zooming in the curves, we observed that the maximum er-
ror always happens at inflection points of the temperature profiles.
This is caused by the electrical characteristics of SystemC-AMS
capacitors and resistors, that result in slightly different time con-
stants. The inspection of the traces suggests however that the less
abrupt transitions resulting by SystemC-AMS simulation are more
realistic than the discontinuous sawtooth profile computed by the
solver in HotSpot.

4.6 Simultaneous simulation with functional
and power models

As a final experiment, we implemented a scenario in which the
SystemC-AMS thermal simulation of benchmark 1 (Figure 2) is run
concurrently with functional and power models. To this extent, we
enriched the testbench by implementing the functional and power
models sketched in Figure 4 as SystemC processes. Our goal was
to dynamically derive power information for the digital core from
its functional evolution [14], to determine the influence of the exe-
cuted application on the thermal profile.

Figure 6 traces the evolution of the resulting simulation. As soon
as the pause signal is set to 0, the power model reacts and per-
forms the transition from ACTIV E to SLEEP , thus lowering
power dissipation from 0.2314W to 0.0500W. This is detected by
the thermal simulator, that gradually decreases the core temperature
from 41.42oC to 40.33oC. Overall simulation lasted 6.302s and was
performed in a single run with the sole support of the SystemC sim-
ulation kernel. Building the same scenario with HotSpot, or with
any other custom thermal simulator, would have required the con-
struction of a co-simulation infrastructure with an architectural or
a circuit simulator.

5. CONCLUSIONS
This work demonstrated that SystemC-AMS can be used to suc-

cessfully simulate thermal evolution by modeling the equivalent
thermal network through ELN primitives without the need of im-
plementing custom circuit simulators. Experimental results showed
that our SystemC-AMS-based approach reaches a high level of ac-
curacy w.r.t. HotSpot, with an average error lower that 1% on all
tested benchmarks, while achieving speedup of up to 90X, that
scales linearly with the size of the thermal network. Given this lat-
ter nice scalability feature, we are confident that the speedup will
be even larger for grid-level simulation, where the number of elec-

Figure 6: Effect of simultaneous simulation of functional and

power models with the SystemC-AMS thermal model.

trical elements and circuit nodes is much larger. This will be our
future work on this subject.

6. REFERENCES
[1] Accellera. SystemC-AMS. www.systemc-ams.org.

[2] A. H. Ajami, K. Banerjee, and M. Pedram. Modeling and analysis of
nonuniform substrate temperature effects on global ULSI interconnects. IEEE

TCAD, 24(6):849–861, 2005.

[3] B. Beckmann, Y. Eckert, et al. A comprehensive timing, power, thermal, and
reliability model for exascale node architectures. In Proc. of DOE MODSIM,
2013.

[4] L. Benini, R. Hodgson, and P. Siegel. System-level power estimation and
optimization. In Proc. of ACM/IEEE ISLPED, pages 173–178, 1998.

[5] N. Hatami, R. Baranowski, et al. Multilevel simulation of nonfunctional
properties by piecewise evaluation. ACM TODAES, 19(4):37:1–37:21, 2014.

[6] M. Hsieh, K. Pedretti, J. Meng, et al. SST + Gem5 = a scalable simulation
infrastructure for high performance computing. In Proc. of ACM SIMUTOOLS,
pages 196–201, 2012.

[7] T. Kemper, Y. Zhang, Z. Bian, and A. Shakouri. Ultrafast temperature profile
calculation in IC chips. In IEEE THERMINIC, pages 133–137, 2006.

[8] P. Liu, Z. Qi, H. Li, L. Jin, W. Wu, S. Tan, and J. Yang. Fast thermal simulation
for architecture level dynamic thermal management. In IEEE ICCAD, pages
639–644, 2005.

[9] W. Liu, A. C. A., A. Macii, et al. Layout-driven post-placement techniques for
temperature reduction and thermal gradient minimization. IEEE TCAD,
32(3):406–418, 2013.

[10] J. Nayfach and J. Renau. SOI, interconnect, package, and mainboard thermal
characterization. IEEE ISLPED, pages 327–330, 2009.

[11] M. Ozisik. Boundary Value Problems of Heat Conduction. Oxford University
Press, 1968.

[12] X. Pan, J. Molina, and C. Grimm. Modeling power consumption at system-level
for design of power integrity-aware AMS-circuits. In Proc. of ECSI/IEEE FDL,
pages 1–8, 2015.

[13] M. Pedram and S. Nazarian. Thermal modeling, analysis, and management in
VLSI circuits: Principles and methods. Proc. of the IEEE, 94(8):1487–1501,
2006.

[14] S. Rhoads. Plasma CPU Core, 2001. opencores.org.

[15] K. Skadron, M. Stan, W. Huang, et al. Temperature-aware computer systems:
Opportunities and challenges. IEEE Micro, 23(6):52–61, 2003.

[16] K. Skadron, M. R. Stan, B. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware microarchitecture: Extended discussion and
results. Technical Report CS-2003-08, Univ. of Virginia Dept. of CS, 2003.

[17] L. Thiele, L. Schor, H. Yang, and I. Bacivarov. Thermal-aware system analysis
and software synthesis for embedded multi-processors. In ACM/EDAC/IEEE

DAC, pages 268–273, 2011.

[18] A. Viehl, B. Sander, O. Bringmann, and W. Rosenstiel. Integrated requirement
evaluation of non-functional system-on-chip properties. In ECSI/IEEE FDL,
pages 105–110, 2008.

[19] T.-Y. Wang and C. Chen. SPICE-compatible thermal simulation with lumped
circuit modeling for thermal reliability analysis based on modeling order
reduction. In IEEE ISQED, pages 357–362, 2004.

[20] Y. Yang, Z. Gu, C. Zhu, R. Dick, and L. Shang. ISAC: Integrated
space-and-time-adaptive chip-package thermal analysis. IEEE TCAD,
26(1):86–99, 2007.

[21] A. Ziabari, E. Ardestani, J. Renau, and A. Shakouri. Fast thermal simulators for
architecture level integrated circuit design. In IEEE SEMI-THERM, pages
70–75, 2011.

