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Supermodular comparison of dependence models
and multivariate processes, with applications

Esther Frostig1 and Franco Pellerey2

Abstract. The supermodular order is a well-known tool to compare the intrinsic

degree of dependence between random vectors or multivariate processes. In this note we

describe a general framework for the supermodular comparisons of models incorporating

individual and common factors. Examples are given on how to apply these models in

comparing hitting times for multivariate processes of interest within risk analysis and

reliability theory.

1. Introduction

In dealing with vectors of risks, or vectors of lifetimes, a common way to model
the dependence among their components is to consider sets of independent random
variables, some of them describing the individuality of the risks and some other
describing factors that give rise to mutual partial dependence. Next step is to de-
fine the components of the vectors as functions of these factors. For example, in
reliability analysis of multicomponent systems (see, e.g., [4]) vectors of lifetimes
having Marshall-Olkin multivariate exponential distribution are often considered
whose margins are defined as minimum between random values, appropriately cho-
sen from a set of independent and exponentially distributed variables describing
individual and common causes of failure. Similarly, multivariate processes are con-
sidered in di↵erent fields of applied probability. Their components are functions of
independent processes, describing individual behaviors in some cases and in some
other describing evolutions depending on common environmental conditions. This
happens, for example, in the reliability field involving multivariate Poisson processes
(see, e.g., [2]), or in risk analysis (like in [22]).

In this setup, sometimes is important to figure out the influence of common fac-
tors on the strength of positive dependence among vector components. One possible
way is to use comparisons among random vectors based on monotone dependence
concepts, or comparisons based on their copulas. Here we describe conditions under
which two random vectors (or multivariate processes) defined as above, and having
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distributions in the same Fréchet class, are comparable in the supermodular order.
In recent literature these comparisons are considered the most well known positive
dependence. As a result, we provide a tool to immediately recognize the e↵ects
of common factors, in spite of the fact that the direct computation of dependence
through other tools, like their copulas, is in many cases not easy.

We provide examples of application: criteria to compare the positive dependence
in default times, or to compare failure times in reliability systems of components
subjected to wear, according to Lévy processes. We also provide criteria to compare
some multivariate parametrical distributions in supermodular order.

This is the plan of the paper. Section 2 is devoted to the description of the general
dependence model that incorporates individual and common factors, and to a brief
description of the supermodular order. In two propositions of Section 3, su�cient
conditions are given for the supermodular comparison of models, accordingly to our
setup. In Section 4 we present some applications.

First, we give some conventions and notations used throughout the paper. The
notation =st stands for equality in distribution. For any family of parameterized
random variables {X✓ | ✓ 2 T}, such that T ✓ R is the support of a random
variable ⇥, then we denote by X(⇥) the mixture of the family {X✓ | ✓ 2 T} with
respect to ⇥. For any random variable (or vector)X and an event A, [X |A ] denotes
a random variable whose distribution is the conditional distribution of X given A.
Also, throughout this paper we write “increasing” instead of “non-decreasing” and
“decreasing” instead of “non-increasing”.

2. Preliminaries

Useful definitions and preliminary results are recalled in this section. In partic-
ular, a description of the multivariate models employed in the following, together
with the definition of supermodular order, is provided.

2.1. A general model for multivariate risks and multivariate lifetimes
with common and individual factors. The model here presented is a natural
generalization, in higher dimensions, of the one defined and studied in the bivariate
setting, see [14].

Let � denotes any binary increasing, commutative and associative operator be-
tween real numbers, and denote with

J
the repeated application of this operator:J

i2{1,2,··· ,n} xi = x1 � x2 � · · · � xn. For example, the operator � can be mini-
mum ^ or the maximum _, and in this case

J
i2{1,2,··· ,n} xi =

V
i2{1,2,··· ,n} xi orJ

i2{1,2,··· ,n} xi =
W

i2{1,2,··· ,n} xi, respectively, or it can be the sum or the product
(restricted to non-negative real numbers, to preserve increasing property), so that
in these cases

J
i2{1,2,··· ,n} xi stands for

P
i2{1,2,··· ,n} xi or

Q
i2{1,2,··· ,n} xi.

Let now I = {1, · · · , n}, and let S = {Sj , j 2 J ✓ N} be a collection of subsets of
I. Also, let {Xj , j 2 J} be a set of independent random variables describing possible
factors influencing multivariate risks or lifetimes. Define the set ⇤i = {Sj : i 2
Sj} for i = 1, · · · , n and let Ti =

J
{j :Sj2⇤i} Xj be the i-th component in the

vector T = (T1, · · · , Tn). For example, given I = {1, 2} and S = {S1, S2, S3} =
{{1}, {2}, {1, 2}}, the independent variables X1, X2, X3 contributes to define the
vector of lifetimes T = (T1, T2) = (X1�X3, X2�X3): the first lifetime is influenced



Supermodular comparison of dependence models and multivariate processes, with applications 127

by factors X1 and X3, while factors X2 and X3 act on the second lifetime. In this
example X1 and X2 describe individual factors (that influence the first and the
second component, respectively), while X3 is a random factor acting to both the
components of T.

This model has been considered in reliability theory to describe the vector of
lifetimes of a set of components subjected to common and individual shocks. In fact,
Xj can be seen as the waiting time to the j-th shock event, that causes the failure of
components indexed by Sj . Define ⇤i = {Sj : i 2 Sj} for i = 1, · · · , n, and let � be
the minimum. Then Ti = minj :Sj2⇤i{Xj} is the time to failure of component i and
the joint distribution of T = (T1, · · · , Tn) is the Generalized Marshall-Olkin (GMO)
distribution studied in [11] (see also the references therein). In the particular case,
when Xj are exponentially distributed, the well-known multivariate exponential
distribution given in [12] is recovered.

Similar models have been considered in risk theory or in multiple default prob-
lems to describe sets of dependent risks. Indeed, let again S = {Sj , j 2 J ✓ N} be a
collection of subsets of I = {1, · · · , n}, and let {Xj , j 2 J} be a set of independent
random variables. Assume that every Xj additively acts on all the components of
index i 2 Sj . Define the set ⇤i = {Sj : i 2 Sj} for i = 1, · · · , n. Then one can
consider the vector T = (T1, · · · , Tn) of dependent risks, where Ti =

P
j : Sj2⇤i

Xj

for all i = 1, · · · , n, thus replacing the operator � with the sum. For example,
a vector of risks defined as (T1, T2, T3) = (X1 + X4, X2 + X5, X3 + X4 + X5),
where the Xi are independent each other, is defined as above, with I = {1, 2, 3}
and S = {{1}, {2}, {3}, {1, 3}, {2, 3}}. This kind of additive risks model has been
recently considered in [16] (see also [17] and references therein).

2.2. Supermodular order. We recall here the supermodular order, which is one
of most well know orders considered in the literature to compare the degree of
positive dependence among components of random vectors.

Let � denote the coordinatewise ordering in Rn. Let us recall that a function
' : Rn ! R is said to be supermodular if for any x,y 2 Rn it is

(2.1) '(x) + '(y) � '(x ^ y) + '(x _ y) ,

where the operators ^ and _ denote respectively coordinatewise minimum and
maximum.

Definition 2.1. Let X = (X1, X2, ..., Xn) and Y = (Y1, Y2, ..., Yn) be two n-
dimensional random vectors, then X is said to be smaller than Y in the supermod-
ular order (denoted by X �sm Y ) if

E[�(X)]  E[�(Y )] ,

for every supermodular real-valued function � defined on Rn for which the expec-
tations exist.

To provide an intuitive interpretation of the supermodular order, which is actu-
ally a comparison dealing with concordance between components of random vectors,
recall that two random variables are said to be concordant if large values of one
correspond to large values of the other, and if small values of one correspond to
small values of the other. Similarly, given two points (x1, y1) and (x2, y2) in R2, we
say that (x1, y1) and (x2, y2) are concordant if x1 < x2 and y1 < y2, or if x1 > x2
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and y1 > y2, and we say that (x1, y1) and (x2, y2) are discordant if x1 < x2 and
y1 > y2, or if x1 > x2 and y1 < y2. Observe that supermodular functions assign
higher values along lines connecting concordant points, rather than along lines con-
necting discordant points. So expectations of supermodular functions of random
vectors assume higher values when the probability mass of the random vector is
concentrated along lines connecting concordant points. Therefore the probability
of concordance is higher than the probability of discordance. Thus, X �sm Y if
the concordance (positive dependence) among the components of Y is greater (in
the sense defined above) than the concordance (positive dependence) among the
components of X.

For example, as is well-known, if X is a multivariate normal random vector with
mean vector 0 and variance-covariance matrix S, and Y is a multivariate normal
random vector with mean vector 0 and variance-covariance matrix S + D, where
D is a matrix with zero diagonal elements such that S+D is nonnegative definite,
then X �sm Y if, and only if, all the entries of D are nonnegative (see [21] page
400). Moreover, given the vectors X and Y assuming values on R2, X �sm Y

implies rX  rY, ⇢X  ⇢Y and ⌧X  ⌧Y, where r, ⇢ and ⌧ denote, respectively,
the Pearson’s correlation coe�cient, the Spearman’s concordance index and the
Kendall’s concordance index.

The supermodular order has been considered in several applied contexts (see [20],
[15], [7], [18], or [6], among others). For a complete description of the supermodular
order and its properties see [21]. Among other properties of the supermodular
order, the following one will be used in the next sections; the proof may be found
for example in [20].

Lemma 2.1. Let X1, · · · , Xn be identically distributed random variables. Then

(X1, · · · , Xn) �sm (X1, · · · , X1) .

3. Sufficient conditions for supermodular comparisons

We present here two results describing conditions for the supermodular compari-
son of random vectors defined according to the dependence model introduced in the
previous section. These results are not new, since they have been proved already in
literature for specific choices of the operator �, like the minimum or the sum (see,
e.g., [24]). Moreover, they can be proved by using known closure properties of the
supermodular order, stated in [21]. However, the statements, and the proofs, given
here are more general than those given in the literature, being comprehensive of all
the possible choices of �.

Let us consider the random vector T described in Subsection 2.1, and a new
random vector eT defined by means of the same set S = {Sj , j 2 J ✓ N}, but with
di↵erent common and individual random factors eXj .

Let I = {I1, · · · , Ik} ✓ S be such that the Ir, r = 1, · · · , k, are disjoint subsets

of I = {1, · · · , n} and also such that
Sk

r=1 Ir 2 S, and let E and Er, r = 1, · · · , k be
independent and identically distributed random variables, independent of the Xj
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and X̃j . Let:

X̃j =st Xj if Sj 62 {I1, · · · , Ik,[k
r=1Ir} ,

Xj =st X̃j � E if Sj = [k
r=1Ir ,

X̃j =st Xj � Er if Sj 2 {I1, · · · , Ik} .

Now consider the random vector eT = ( eT1, · · · , eTn), where the eTi are defined aseTi =
J

{j :Sj2⇤i}
eXj . It is easy to observe that, under relations above, because of

associativity of �, the vectors T = (T1, · · · , Tn) and eT = ( eT1, · · · , eTn) have the
same marginal distributions.

For example, given T = (T1, T2) = (X1 � X3, X2 � X3), a new vector having
the same marginal distributions of T can be defined considering three new inde-
pendent and identically distributed random variables E , E1 and E2, observing that
T is defined by letting S = {S1, S2, S3} = {{1}, {2}, {1, 2}}, and considering the
independent variables eXj such that eX1 = X1�E1, eX2 = X2�E2 and X3 = eX3�E .
The corresponding vector is eT = ( eT1, eT2) = ( eX1� eX3, eX2� eX3), and the two vectors

T and eT have the same marginal distributions, being, e.g.,

T1 = X1 �X3 = X1 � E � eX3 =st X1 � E1 � eX3 = eX1 � eX3 = eT1 .

The following statement provides a comparison of the degree of dependence between
the two vectors.

Proposition 3.1. Let the vectors T and eT be defined as above. Then eT �sm T.

Proof. For i 2 I = {1, 2, · · · , n} let

Zi =
K

{j :Sj2⇤i,Sj 62{I1,··· ,Ik,[k
j=1Ij}}

Xj .

Consider now the variables Wi defined as

Wi =

(
Zi if i /2 [k

r=1Ir ,

Zi � eX[k
r=1Ir

�XIr if i 2 Ir, r 2 {1, · · · , k} .

Then the components Ti of the vector T can be represented as

(3.1) Ti =

(
Wi if i /2 [k

r=1Ir

Wi � E if i 2 Ir, r 2 {1, · · · , k} .

Similarly, the components eTi of the vector eT can be represented as

(3.2) eTi =

(
Wi if i /2 [k

r=1Ir

Wi � Er if i 2 Ir, 2 {1, · · · , k} .

Let |Ir| = mr, r = 1, · · · , k, and m =
Pk

r=1 mr. Without loss of generality, assume
that the first m components are the ones in [k

r=1Ir. Consider any supermodular
function eg from Rn to R. Observe that for fixed w = (w1, · · · , wn), the function
g(x1, · · · , xm) = eg(x1�w1, · · · , xm�wm, wm+1, · · · , wn) is a supermodular function
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from Rm to R. Thus, to prove that E[eg(eT)]  E[eg(T)], it enough to show that

E[eg(eT)|W = w]  E[eg(T)|W = w], or equivalently, that:

E[g(E1, · · · , E1| {z }
m1

, E2, · · · , E2| {z }
m2

, · · · , Ek, · · · , Ek| {z }
mk

)]  E[g(E , · · · , E| {z }
m

)] .

The last inequality follows from (3.1), (3.2) and Lemma 2.1.
⇤

Proposition 3.1 applies, for example, to the parametric h–transform of the Mar-
shall-Olkin (MO) multivariate exponential distributions defined in [23]. Consider an
MO exponential distribution defined by means of a set {Xj , j 2 J} of independent
and exponentially distributed variables, with respective rates L = {�Sj , j 2 J}.
Assume that every Xj is the waiting time to the j-type shock, which causes the
failure of the component in the set Sj . Define ⇤i = {Sj : i 2 Sj} for i = 1, · · · , n
and let Ti = minj :Sj2⇤i{Xj} be the time to failure of i-th component, having

survival function FTi(t) = exp(�lit), where li =
P

j :Sj2⇤i
�Sj . Then the vector

T = (T1, · · · , Tn) has an MO exponential distribution and its joint survival function
is defined as

(3.3) FT(t1, · · · , tn) = P (T1 > t1, · · · , Tn > tn) =
Y

j :Sj2S

min
i2Sj

{exp(��Sj ti)} .

For every fixed � 2 R+ such that �  �Sj , 8j 2 J , and for every I = {I1, · · · , Ik}
✓ S as above, a new set h�,I(L) of rates is defined letting

h�,I(�Sj ) =

8><>:
�Sj if Sj 62 {I1, · · · , Ik,[k

r=1Ir} ,

�Sj � � if Sj = [k
r=1Ir ,

�Sj + � if Sj 2 {I1, · · · , Ik} ,

thus obtaining a new vector of lifetimes having a MO exponential distribution that
has the same marginal distributions of the original one. From Proposition 3.1,
letting � to be the minimum and observing that the hazard rate of the minimum
of two independent and exponentially distributed random variables is given by the
sum of the corresponding rates, one immediately gets the following corollary.

Corollary 3.1. Let T = (T1, · · · , Tn) have a MO exponential distribution with set

parameters L = {�Sj , Sj 2 S}, and let eT = ( eT1, · · · , eTn) be another random vector
having MO exponential distribution with set parameters h�,I(L) = {h�,I(�Sj ), Sj 2
S}. Then eT �sm T.

Note that, actually, Proposition 3.1 applies to all random vectors, or multivariate
distributions, defined as described above and satisfying

erj(t) =
8><>:

rj(t) if Sj 62 {I1, · · · , Ik,[k
r=1Ir} ,

rj(t)� �(t) if Sj = [k
r=1Ir ,

rj(t) + �(t) if Sj 2 {I1, · · · , Ik} ,

for every t � 0, where erj and rj are the hazard rates of the variables eXj and Xj ,
respectively. Thus, �sm can be applied to compare two vectors having multivariate
Weibull distributions and identical shape parameter in supermodular order (see,
e.g [13] for definition of multivariate Weibull distributions) or vectors having the
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Generalized Marshall-Olkin distribution, as defined in [11]. A list of similar results
on comparisons, but for other multivariate distributions, is provided in Section 4.

Using techniques similar to these described in the proof of Proposition 3.1, su-
permodular comparisons of random vectors can be provided where the dependence
among components is described by means of more sets of commonalities. An exam-
ple is provided in the following. Below, for any set A ✓ I = {1, · · · , n} the notation
A denotes the complement of A with respect to I.

Let T have joint survival function defined as in Subsection 2.1. Consider two
sets of indexes I1, I2 ✓ I having nonempty intersection and such that

I1 [ I2 62 {I1, I2} and I1, I2, I1 \ I2 2 S .

Consider two independent and identically distributed random variables E1 and E2,
independent also on the Xj . Then define two random vectors eT = ( eT1, · · · , eTn) and

T̂ = (T̂1, · · · , T̂n) such that

(3.4) eTi =

8>>>><>>>>:
Ti if i /2 I1 [ I2

Ti � E1 if i 2 I1 \ I2

Ti � E2 if i 2 I1 \ I2

Ti � E1 � E2 if i 2 I1 \ I2 ,

and

(3.5) T̂i =

8><>:
Ti if i /2 I1 [ I2

Ti � E1 if i 2 (I1 \ I2) [ (I1 \ I2)

Ti � E1 � E2 if i 2 I1 \ I2 .

For example, the two vectorseT = (X1 � E1, X2 � E1 � E2, X3 � E2) and T̂ = (X1 � E1, X2 � E1 � E2, X3 � E1)

can be defined as above, where S = {{1}, {2}, {3}, {1, 2}, {2, 3}} and I1 = {1, 2},
I2 = {2, 3}.

Constructions of random vectors by means of pairwise inclusion-exclusion trans-
forms like the one described above are considered, for instance, in [24], in the
context of Marshall-Olkin multivariate exponential distribution applied to compare
reliabilities of multicomponent systems.

The two vectors defined in (3.4) and (3.5) can be compared in supermodular
order, as stated in the following proposition.

Proposition 3.2. Let eT and T̂ be as defined as above. Then eT �sm T̂.

Proof. Without loss of generality we assume that the first m1 components of T̂
and eT are in I1\I2, the next m2 components are in I2\I1, the next m3 components
are in I1 \ I2. Then m = m1 +m2 +m3.

Let eg be any supermodular function defined on Rn. Let us prove that E[eg(eT)] 
E[eg(T̂)]. Observe that for any fixed t = (t1, · · · , tn),

g(x1, · · · , xm) = eg(t1 � x1, · · · , tm � xm, tm+1, · · · , tn)
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is a supermodular function of (x1, · · · , xm). In order to prove the proposition, we
need

(3.6) E[eg(T̃1, · · · , T̃n)|T = t] � E[eg(T̂1, · · · , T̂n)|T = t] ,

where T = (T1, · · · , Tn). In view of (3.4) and (3.5) inequality (3.6) is equivalent to

E[g( E1, · · · , E1| {z }
m1+m2

E1 � E2, · · · , E1 � E2| {z }
m3

)] �

� E[g( E1, · · · , E1| {z }
m1

E2, · · · , E2| {z }
m2

E2 � E2, · · · , E1 � E2| {z }
m3

)] .

Let F be the cumulative distribution function of Er, r = 1, 2. Notice that

E[g( E1, · · · , E1| {z }
m1+m2

E1 � E2, · · · , E1 � E2| {z }
m3

)] =

=

ZZ
g(x1, · · · , x1| {z }

m1+m2

, x1 � x2, · · · , x1 � x2| {z }
m3

) dF (x1) dF (x2) =

=

ZZ
x1<x2

0@g(x1, · · · , x1| {z }
m1+m2

, x1 � x2, · · · , x1 � x2| {z }
m3

) +

(3.7) + g(x2, · · · , x2| {z }
m1+m2

, x1 � x2, · · · , x1 � x2| {z }
m3

)

1A dF (x1) dF (x2) .

Similarly,

E[g( E1, · · · , E1| {z }
m1

, E2, · · · , E2| {z }
m2

E1 � E2, · · · , E1 � E2| {z }
m3

)] =

=

ZZ
g(x1, · · · , x1| {z }

m1

, x2, · · · , x2| {z }
m2

, x1 � x2, · · · , x1 � x2| {z }
m3

) dF (x1) dF (x2) =

=

ZZ
x1<x2

0@g(x1, · · · , x1| {z }
m1

, x2, · · · , x2| {z }
m2

, x1 � x2, · · · , x1 � x2| {z }
m3

) +

(3.8) + g(x2, · · · , x2| {z }
m1

, x1, · · · , x1| {z }
m2

, x1 � x2, · · · , x1 � x2| {z }
m3

)

1A dF (x1) dF (x2) .

Since g is supermodular, then x1 < x2 implies that

g(x1, · · · , x1| {z }
m1+m2

, x1 � x2, · · · , x1 � x2| {z }
m3

) + g(x2, · · · , x2| {z }
m1+m2

, x1 � x2, · · · , x1 � x2| {z }
m3

) �

� g(x1, · · · , x1| {z }
m1

, x2, · · · , x2| {z }
m2

, x1 � x2, · · · , x1 � x2| {z }
m3

) +

+ g(x2, · · · , x2| {z }
m1

, x1, · · · , x1| {z }
m2

, x1 � x2, · · · , x1 � x2| {z }
m3

)
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and the result follows. Note that, the common termX
g(x, · · · , x| {z }

m1+m2

, x� x, · · · , x� x| {z }
m3

)P [E1 = x]P [E2 = x]

should be added in equations (3.7) and (3.8).
⇤

4. Applications

Some examples of application of the results presented in the previous section are
described here. In one of them, the well-known usual stochastic order, which is a
stochastic comparison between univariate random variables, is considered. For this
reason, its definition is recalled here.

Definition 4.1. Let X and Y be any two random variables. Then X is said
to be smaller than Y in the usual stochastic order (denoted by X st Y ) if
E[�(X)]  E[�(Y )] for every increasing function such that the expectations ex-
ist, or, equivalently, if P [X > t]  P [Y > t] for all t 2 R.

The usual stochastic order, also known as first order stochastic dominance, is
a stochastic comparison often considered in actuarial sciences and reliability. For
a comprehensive discussion on properties and applications of the usual stochastic
ordering we refer to [21].

4.1. Applications to default models and system’s lifetimes. Consider n de-
faultable firms, and let (⌧1, · · · , ⌧n) denote their default times. In recent years, a
growing interest has been observed in describing dependence among default times
and in separating the dependence structure and marginal default probabilities.
This, because financial failures have been attributed to erroneous assessment of
the degree of dependence between risks (see, e.g., [9] and [19]).

Thus, many di↵erent models have been defined and studied in recent literature
to describe relationships among default times. For example, dependence among
default times is introduced by considering time change of a univariate subordinator
in [12], while dependence among the default times subordinating to hitting times
for multivariate dependent subordinators is introduced in [22]. We introduce a
default model in the same spirit, applying the results described in previous section
to introduce dependence among the default times.

To this aim, recall that a Lévy process is a process with independent stationary
increments, and that a subordinator is a Lévy process with non-decreasing sample
paths. Also recall that, for ✓ > 0, given a subordinator X = {X(t), t 2 R+}, then

E[e�✓X(t)] = e�t (✓), (✓) = µ✓ +

Z 1

0

(1� e�✓x) d⌫(x) ,

where µ � 0 is the drift, and ⌫ is the Lévy measure. The function  is commonly
called Laplace exponent of the Lévy process. For more details see [12], or standard
references on Lévy processes. Similarly, we can define an n-dimensional subordina-
tor X = (X1, · · · ,Xn) = {(X1(t), · · · , Xn(t)), t 2 R+}, as an n-dimensional process
with stationary independent increments and non-decreasing sample paths such that

E[e�h✓,X(t)i] = e�t (✓) ,

where ha,bi =
Pn

i=1 aibi.
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It is possible to introduce a dependence structure forX according to Propositions
3.1, or to Proposition 3.2. Consider, e.g., the scenario according to Proposition 3.1.
Let {Vj , j 2 J} and {eVj , j 2 J} be two sets of independent subordinators, with

drifts ⌘j � 0, e⌘j > 0 and Lévy measures ⇧j , e⇧j , respectively. Similarly, let Z and
Zr, r = 1, · · · , k, be identically distributed independent subordinators independent
of Vj and eVj , with drift ⇠ and a Lévy measure &. Let I1, · · · , Ik be disjoint sets in
S and let

(4.1)

eVj =st Vj if Sj 62 {I1, · · · , Ik,[k
r=1Ir} ,

Vj =st
eVj + Z if Sj = [k

r=1Ir ,eVj =st Vj + Zr if Sj 2 {I1, · · · , Ik} .

Finally, for i = 1, · · · , n, let

Xi =
X

j : i2Sj

Vj and eXi =
X

j : i2Sj

eVj

(i.e., let Xi(t) =
P

j : i2Sj
Vj(t) and eXi(t) =

P
j : i2Sj

eVj(t) for all t 2 R+).

Clearly, Xi and eXi are subordinators with the same drift and the same Lévy
measure. Thanks to Proposition 3.1, for any t 2 R+ the following ordering holds

(X1(t), · · · , Xn(t)) �sm ( eX1(t), · · · , eXn(t)) .

By independence and stationarity of the increments, and by the closure of the
supermodular order with respect to sums (see [20]), one can immediately verify
that for any sequence t1, · · · , tn, we also have

(4.2) (X1(t1), · · · , Xn(tn)) �sm ( eX1(t1), · · · , eXn(tn)) .

Let now Ej , j = 1, · · · , n be i.i.d exponentially distributed random variables with
parameters 1. [22] defined the default time of the i-th firm, ⌧i, is defined as follows:

⌧i = inf{t � 0 : Xi(t) � Ei} .

Then ⌧ has the multivariate Marshall-Olkin exponential distribution as proved in
[22] where the parameters are given as functions of the drifts and of the Lévy
measures of X, through its Laplace exponent  (✓).

Let e⌧i be similarly defined with respect to eXi. By (4.2), reasoning as in Propo-
sition 2.6 in [6], (see also [5]), we immediately have

(4.3) ⌧ = (⌧1, · · · , ⌧n) �sm e
⌧ = (e⌧1, · · · , e⌧n)

that is, the degree of positive dependence is greater in ⌧ than in e
⌧ .

To consider dependence comparison in the case Ei not exponentially distributed,
we apply the time change procedure described in [12]. Assume that Ei has dis-
tribution Gi with 1 � Gi(t) = exp(�Hi(t)). Then Hi(t) is strictly monotone and
continuous, and grows to infinity as t goes to infinity. Assume that for i = 1, · · · , n,
the equation  i(1) = E[e�Xi(t)] = 1 holds. This can be achieved by controlling the
drift (see [12], Example 2.3). Thus

P[Xi(Hi(t))  Ei] = e�Hi(t) = P(⌧i > t) .
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Consider now the sequence s1 < · · · < sm, such that sm ! 1 as m ! 1, and
sup{si � si�1 < �}. Similarly to the ideas in [6], we can define

min{⌧i,m} =
mX

k=1

kY
l=1

1(Xi(Hi(sl)Ei)) ,

where 1A denotes the indicator function of the event A. Again, by using the same
arguments given in Proposition 2.7 (see [6]), taking into account (4.2), equation
(4.3) is recovered.

It is interesting to observe that the same model, and the same results, can
be applied in reliability analysis of multicomponent systems. In fact, a system
having components subjected to wear and modelling the accumulated wears, for
each component, can be considered through a set of processes {Xi, i = 1, 2, ..., n}.
Assuming the failure of a component whenever the accumulated wear reaches a fixed
(or random) threshold, the vector ⌧ = (⌧1, · · · , ⌧n) of the components lifetimes is
defined similarly to the vector of default times above. And, reasoning as above,
comparisons like (4.3) for vectors of lifetimes are recovered. This inequality is
of interest in reliability analysis since lifetimes of series or parallel systems are
compared by usual stochastic order. In fact, observing that the supermodular order
implies the positive orthant dependence order (see [21], for details), the following
result is a corollary

P [min(⌧1, · · · , ⌧n) > t] = P [⌧1 > t, · · · , ⌧n > t] 
 P [e⌧1 > t, · · · , e⌧n > t] = P [min(e⌧1, · · · , b⌧n) > t] ,

for all t � 0, i.e.,
min(⌧1, · · · , ⌧n) st min(e⌧1, · · · , b⌧n) ,

and

P [max(⌧1, · · · , ⌧n)  t] = P [⌧1  t, · · · , ⌧n  t] 
 P [e⌧1  t, · · · , e⌧n  t] = P [max(e⌧1, · · · , b⌧n)  t] ,

for all t � 0, i.e.,
max(⌧1, · · · , ⌧n) �st max(e⌧1, · · · , b⌧n) .

Thus, lifetimes of series and parallel systems can be compared by means of the
usual stochastic order and making use of the results described in Section 3.

4.2. Supermodular order for families of multivariate distributions. Apart
for the Generalized Marshall-Olkin distribution, and in particular for the Marshall
Olkin exponential distribution, the results described in Section 3 can be used to
provide simple conditions to compare random vectors having specific multivariate
parametric distributions, in the supermodular order. Few examples are described
in the following.

Example 4.1. Proposition 3.1 applies to multivariate Gamma distributions, whose
interest in actuarial sciences is clearly described in [1]. Consider a collection
S = {Sj , j 2 J ✓ N} of subsets of I = {1, · · · , n}, and let {Xj , j 2 J} be a set of in-
dependent and Gamma distributed random variables with shape parameters ↵j , and
scale parameters �j , respectively. Consider the random vector T = (T1, · · · , Tn)

defined by letting Ti =
P

j :Sj2⇤i

�j

bi
Xj , for fixed bi > 0, i 2 I, i.e., according to

the general model replacing � with the sum. Then T has a multivariate Gamma
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distribution, whose margins are Gamma distributed with parameters (ai, bi), where
ai =

P
j :Sj2⇤i

↵j . In particular, when S = {I, {1}, {2}, · · · , {n}}, then T has a

Cherian and Ramabhadran multivariate Gamma distribution (see [10]), whose mar-
gins are Gamma distributed with parameters (↵0 + ↵i, bi), where ↵0 is the shape
parameter associated to the set I and ↵i the shape parameter associated with {i}.

Let I = {I1, · · · , Ik} ✓ S be such that the Ir, r = 1, · · · , k are disjoint sets in

I and also such that
Sk

r=1 Ir 2 S. Consider any fixed � 2 R+ such that �  ↵j ,

8j 2 J . A new multivariate Gamma distributed vector eT can be defined by means
of a set { eXj , j 2 J} of independent and Gamma distributed random variables with
scale parameters �j and shape parameters

e↵j =

8><>:
↵j if Sj 62 {I1, · · · , Ik,[k

r=1Ir} ,

↵j � � if Sj = [k
r=1Ir ,

↵j + � if Sj 2 {I1, · · · , Ik} .

Observing that eT has the same marginal distributions of T, from Proposition 3.1
one immediately gets the following corollary.

Corollary 4.1. Let T and eT be two vectors having multivariate Gamma distribu-
tions defined as above. Then eT �sm T.

Example 4.2. Multivariate Pareto distributions are also of remarkable interest in
actuarial sciences. In [3], applications are described of multivariate Pareto of the
second kind to the pricing problem both in life and non-life insurance contexts.

As shown in Proposition 2.2 in [3], a possible representation of vectors having
these distributions is X = (X1, · · · , Xn) = (µ1+�1(eY1 �1), · · · , µn+�n(eYn �1)),
where Y = (Y1, · · · , Yn) is a vector having MO exponential distribution, and joint
survival function

FY(y1, · · · , yn) = exp(�↵1y1 � · · ·� ↵nyn � ↵0 max(y1, · · · , yn)) .
Consider now another vector eX = ( eX1, · · · , eXn) similarly defined through a vectoreY having MO exponential distribution. If the parameters ↵i are such that e↵0 =
↵0 � � and e↵i = ↵i + � for all i = 1, · · · , n and for any � < ↵0 then Y �sm

eY
holds from Corollary 3.1. If eµi = µi, e�i = �i and the same conditions on the e↵i

and ↵i are true, then X �sm
eX follows from Theorem 9.A.9 in [21]. Applications

in comparisons of premiums can be derived (see, again, [3]). Note that in the caseeµi 6= µi and/or e�i 6= �i, the vectors X and eX are no more ordered in supermodular
order, since they have di↵erent marginal distributions.

Example 4.3. Multivariate Poisson distributions are a third simple case, where
the results in Section 3 can be used to define a criteria for dependence comparisons
among vectors having multivariate parametric distributions by using comparisons
among their parameters. In fact, they also admit a representation as in our model,
replacing � with the sum (see, e.g., [8]). Consider a collection S = {Sj , j 2 J ✓ N}
of subsets of I = {1, · · · , n}, and let {Xj , j 2 J} be a set of independent and
Poisson distributed random variables with parameters �j , respectively. Consider
the random vector N = (N1, · · · , Nn) defined by letting Ni =

P
j :Sj2⇤i

Xj ; then
N has a multivariate Poisson distribution, whose margins are Poisson distributed
with parameters li, where li =

P
j :Sj2⇤i

�j .
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Let I = {I1, · · · , Ik} ✓ S be such that the Ir, r = 1, · · · , k, are disjoint sets

in I and also such that
Sk

r=1 Ir 2 S, and consider any fixed � 2 R+ such that

�  �j ,  8j 2 J . A new multivariate Poisson distributed vector eN can be defined

by means of a set { eXj , j 2 J} of independent and Poisson distributed random
variables having parameters

e�j =

8><>:
�j if Sj 62 {I1, · · · , Ik,[k

r=1Ir} ,

�j � � if Sj = [k
r=1Ir ,

�j + � if Sj 2 {I1, · · · , Ik} .

Observe that eN has the same marginal distributions of N. Moreover eN �sm N
follows from Proposition 3.1.

Obviously, the same considerations can be done dealing with multivariate Pois-
son processes instead of multivariate Poisson distributions, i.e., replacing the set
{Xj , j 2 J} with a set of independent univariate Poisson processes.

Actually, Proposition 3.1 can be similarly applied to any multivariate distribution
whose margins are infinite-divisible distributions.
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