
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

User-Customizable Web Components for Building One-Page Sites / Lisena, Pasquale; Xhembulla, Jetmir; Malnati,
Giovanni; Morra, Pasquale. - ELETTRONICO. - (2016), pp. 411-416. (Intervento presentato al convegno ACHI 2016,
The Ninth International Conference on Advances in Computer-Human Interactions tenutosi a Venezia, Italia nel 24 - 28
Aprile, 2016).

Original

User-Customizable Web Components for Building One-Page Sites

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2643086 since: 2016-05-27T12:10:23Z

IARIA

User-Customizable Web Components for Building One-Page Sites

Pasquale Lisena, Jetmir Xhembulla, Giovanni Malnati

Department of Control and Computer Engineering

Politecnico di Torino

Turin, Italy

e-mail: {pasquale.lisena, jetmir.xhembulla,

giovanni.malnati}@polito.it

Pasquale Morra

Research and Development Division

Seat PagineGialle S.p.a.

Turin, Italy

e-mail: morra.pasquale@seat.it

Abstract—Most of online website builders work by combining

and customizing reusable HTML modules. This approach

could rise the risk of conflicts among modules. The World

Wide Web Consortium (W3C) is writing the specification of

Web Components. This standard provides a browser-native

solution in order to realize encapsulated Document Object

Model (DOM) elements, in which the Cascading Style Sheets

(CSS) and JavaScript scope is locally bound and the

interaction with the document is strictly designed by the

component author. Upon this standard, libraries have been

built, Google’s Polymer being an example, which provide a

declarative and easy way to realize Components. In this paper,

we provide a solution to the module approach limit in website

builders by using Web Components as modules that are

customizable by the end user. Our approach uses standard

web technologies that modern browsers are natively

supporting. We describe how a customizable Web Component

is designed and how to bind their options with the generator

UI. Furthermore, we will show an application of this approach

in a Landing Page generator. We demonstrate that the

generator could import again the generated HyperText

Markup Language (HTML) and edit it, without any

intermediary data structure (i.e., eXtensible Markup

Language, XML or JavaScript Object Notation, Json). Finally,

we outline further future development of this approach.

Keywords-Website generation, Web Components, HTML5,

modularity, end-user generation, SME.

I. INTRODUCTION

The spread of smartphones in the last 5 years has deeply

changed the market, forcing businesses of any kind and size

to conform their online presence, in order to avoid the lack

of an important market share.
Overwhelmed by contents, the constantly connected

consumers use now to spend the slightest of their time on a

Web site, mostly by mobile devices, becoming bothered

about navigation trees and expecting to find on the first page

– with no more “click and wait” – the information they

need. For these and further reasons, one-page sites are

nowadays very popular, often together with responsive

design patterns.
This worldwide transformation is very quick and radical

and produces two consequences: on one hand, businesses -

which are mostly devoid of the required skills for managing

and distributing contents on their own - had to delegate

these tasks to service companies; on the other hand, the

media agencies - in order to reduce costs and fulfill the

market demand of high customized products - have left the

previous artisanal production methods in favor of a

modules-based approach.

Following the mission of digitalizing its wide customer

portfolio of enterprises, the Italian media agency Seat

PagineGialle has identified the semi-automatization of the

process for creating pages as a key point in various context:

we are talking about low budgets, e.g., small and medium

sized enterprises (SMEs) websites [1], and time limited

contents, e.g., a promotional online campaign.
The new World Wide Web Consortium (W3C) standard

of Web Components represents a standard solution for

modularization and reusing of HyperText Markup Language

(HTML) in a web page. Isolation of scope, reusability, and

freedom from server-side logic are some of the advantages

of this standard. This solution is – either natively or thanks

to the so called "polyfills" – built directly in the browser.
This paper will present a Web page generator that uses

Web Components as modules. In our Web application, these

Web Components should not be assembled on the code by

the developer, but a friendly interface makes their

combination, manipulation and customization available to

the end-user. As corporate requirement, integration with

other existing and different Seat PagineGialle products must

be possible. The rest of the paper is structured as follows:

Section II overviews briefly current trends in website

generator, with strengths and limits and describes the

standard of Web Components, that we use as modules in

Section III. Section IV shows an application in a real

production environment. Finally, conclusions are drawn in

Section V.

II. STATE OF THE ART

A. Trends and limits in website building

A notable number of online website builders is available

on the market, designed for the end user with no knowledge

about HTML, Cascading Style Sheets (CSS and JavaScript.

These tools have the most common and powerful feature in

the modular design [2]: standalone parts of the page, called

modules, could be combined – often thanks to a drag and

drop interface - and customized in style, color, text content

and position, so that their reuse produces each time a

different look and content. In the resulting HTML

411Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

document, modules are actually slices of its Document

Object Model (DOM) that represent headers, footers,

images gallery, text boxes and various kinds of widgets.

Each module should follow the generator internal set of

rules and conventions (framework) in order to avoid

conflicts with its siblings: duplicated IDs, influence of CSS

rules from other modules (or vice versa, overflow of their

CSS outwards), not scoped scripts [3]. Each framework has

his own syntax that produces a lack of interoperability

between different technologies [4].
Usually, the final output of this builder is a thick tree of

nested tag (mostly DIVs, the most common Document

Division in HTML) that is hardly to reconvert into an

editable format. These template-based solutions [1] [5] need

an eXtensible Markup Language (XML) or JavaScript

Object Notation (Json) structure with a list of modules and

options, stored on the builder server for future editing

purpose; this is an expedient, because the proper language

for describing a Web page is HTML. Other applications

could use modules generated on the server, like portlets:

however, they need specific server environments able to

deploy and serve them, hardly to integrate in custom

applications as it happens in the Seat PagineGialle case.

B. The Web Components standard

In the context of the HTML5 revolution, the W3C is

defining a standard for Web Components. This standard

allows you to create new type of DOM elements and use

them in a document as if they were DIVs, INPUTs and other

standard HTML tags. Creating a component means writing

its HTML template, defining its CSS rules and managing its

properties, method and lifecycle with JavaScript. For a Web

developer, using a Web Component is as simple as inserting

a tag <my-component-name> in the HTML and dealing

with it like any HTML native tag.
The family of the Web Components W3C standards

includes four new specifications about:
 Custom Elements [6], that enable to define and use

custom DOM elements in a document;

 HTML Imports [7], for including and reusing

HTML documents as dependencies;

 Templates [8], inert DOM elements for describing

HTML structures;

 Shadow DOM [9], a method for encapsulating

DOM trees and bounding their interaction with the

whole document.
Thanks to these technologies, we can define the structure

of a component in a not-rendered <template> tag and

register it as Custom Element, so that the browser becomes

aware of the match between the component tag name, e.g.,

<descriptive-content>, and its definition. When an instance

of a registered component is created in the page, the browser

creates a parallel tree of DOM – called Shadow DOM –

associated to the component element. This Shadow DOM

contains the structure we defined in the <template>.

Although not visible as a child node of the element, this

structure is rendered and the user can interact with it. All

that lives in the Shadow DOM has its own isolated scope

and can react to events and attributes modification on its

parent component. This isolation solves all problems about

duplicated IDs and ingestion of external CSS; besides, it

provides a bounded scope to scripts: the Shadow DOM is

solidly separated from the main document [10] [11], and the

only possible interactions are those explicitly allowed by the

component designer. Finally, the specification introduce a

standard way for importing components, with <link

rel=”import”> tag.

At a glance, this specification covers all the needed

requirements: reusability, isolation of JS and CSS and it is a

browser standard, so it is fully compatible with any other

technology that runs on the server or on the client. These

and other advantages of Web Components ecosystem have

been investigated thoroughly in [4].

C. Polymer

In the last years, many libraries have been developed

with the dual aim to extend the support to older browsers by

using polyfills [12], and to further simplify the

implementation of the Web Components. Recently Google

released the version 1.0 of the Polymer library [13], which

offers a declarative way for creating components. In

Polymer, a component definition is an HTML page that

contains imported resources (dependencies, style, template)

and a call to the Polymer function for the configuration of

properties, methods and lifecycle callbacks. We choose

Polymer for the clearness of component’s code and for its

ease-of use.

III. WEB COMPONENTS AS MODULES

We can split the core of our approach in two

complementary branches: the design of a component and its

manipulation.

A. Design of a component

Polymer provides a declarative syntax for creating Web

Components. We describe the general structure of a

Polymer component and we provide details only in those

parts that we added or that are functional to the next tasks.

We refer to the example in Figure 1.
The whole component is wrapped in an inert tag <dom-

module>. Its id attribute is the tag name of our component.

All the nodes contained in <dom-module> will be

encapsulated in the Shadow DOM of the tag. We can group

these nodes in three distinct sections.
The first one is the style section, which defines the look

of the component. Thanks to DOM isolation, there are no

constraints about specificity of rules, because they will be

applied only in the context of the component. Polymer also

allows including other style-specific components for styling,

like a CSS-reset or a common base style for all components.

Moreover, the library includes support to the CSS Variables

specification [14], currently at working draft state. For our

412Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

purposes, we need to know that you can apply the same CSS

variable and so the same value to different selectors and that

this value could be set through Polymer Application

programming interface (API).
The second part is the <template> tag, the content of

which will form the internal DOM structure of our

component. Double curly brackets denote the insertion point

for properties value, so that “{{text}}” will be replaced with

the value of the “text” property.

Figure 1. The definition of <descriptive-content> component.

Figure 2. The usage of <descriptive-content> component.

Figure 3. The <descriptive-content> component as it appears in a browser,

with the button for customizing settings.

Finally, we deal the registration of the component

through the Polymer function. The properties object

contains the value that will be bound in the

template. According to the library, a property has the

following sub properties:
 type, the JavaScript type of the property,

 value, its default value,

 reflectToAttribute, if true, causes attribute to be set

on the host node when the property value changes,

 observer, a method to call on property changes.

In addition, we added the following properties:
 customizable, when set to true, this property should

be used as customizable option,

 logicType, refers to a human concept rather than a

coding one; each logic type has a specific User

Interface (UI) input element; we support as logic

types “text”, “color”, “background”, “textarea”,

“image”;

 cssVariable, means that this property is connected

to a CSS variable in the <style> tag,

 a human-readable label for displaying purpose.

A modification of the attributes on the component host

tag (Figure 2) will reflect in a modification on the properties

and consequently on the component’s content or style as it

is rendered by the browser (Figure 3).

We specify also a behavior, which is Polymer’s way of

making certain properties and methods inheritable. The

ComponentBehavior is a custom behavior that manages

some customization-related tasks. It shows an options

button on the element that triggers, when clicked, a

“settingRequested” event. Additionally, it defines the

“computeStyle” method, set as observer of properties with

cssVariable in order to propagate changes to the CSS

variables.

B. Component manipulation

The generator should read the components properties

and provide the user with a proper User Interface (UI) for

modifying it.
Manipulation starts when our page generator interceps

the “settingRequested” event from one of the components.

Component customizable properties are retrieved from the

source DOM element via JavaScript. For each of them, we

read the logicType property and according to it, we choose a

proper input element. For some types, the choice is an

HTML input element: an <input type="text"> for a "text", a

<textarea> for a "textarea". For types like "background" or

"image", we have not a suitable input tag. Once again, we

use Web Components specification for creating custom

<background-input> and <image-input> element. For

example, we implement a complex input for background,

letting the user to choose between a color, an uploaded

image, an image from our gallery and a transparent

<dom-module id="descriptive-content">

 <style include="component-base"></style>

 <style>

 p { color: var(--descriptive-text-color); }

 </style>

 <template><p>{{text}}</p></template>

 <script>

 Polymer({

 is: 'descriptive-content',

 behaviors: [ComponentBehavior],

 properties: {

 text: {

 type: String,

 logicType: 'textarea',

 value: 'Lorem ipsum....',

 label: 'Text',

 reflectToAttribute: true,

 customizable: true

 },

 textColor: {

 type: String,

 logicType: 'color',

 value: '#ffffff',

 cssVariable: '--descriptive-text-color',

 label: 'Text color',

 reflectToAttribute: true,

 customizable: true,

 observer: 'computeStyle'

 }, // other properties

 }

 //methods and lifecycle callback

});

</dom-module>

<descriptive-content text="Lorem ipsum..." text-
color="#ffffff”>
 #shadow-root //not shown
 <style> ... </style>
 <p> Lorem ipsum...</p>
</descriptive-content>

413Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

background. This complex component – and all option

components we defined – exposes a value property that

contains the current selection, exactly like native input

elements. We valorize the component with the current value

of the property, and display its label.
The value of the value property of the input element

changes upon user interaction. Consequently, we overwrite

the corresponding property on the source element: this

change propagates to the component Shadow DOM and to

its attributes in the HTML, thanks to the reflectToAttribute

feature. In this way, the HTML node always contains in its

attributes the current state of the component.
Form components have a special behavior. They have

been designed as containers of an array of <input-field>

components, each of them exposing as customizable

properties the label, the placeholder, the type (i.e., text, date,

mail) and the requirement. The user can modify these

options and add, move or remove the input field.

IV. THE PAGE GENERATOR

We currently use the described approach in xPlanner, a

beta Web app for promotional campaign management for

Seat PagineGialle. A succint demo of the landing generator

is available at goo.gl/LW3WGE.

A. Application overview

We propose a classic drag and drop Graphic User

Interface (GUI), visible in Figure 4. On the right column, we

show a gallery of modules, which are Web Components.

When the user accedes to the tool for the first time, the left

side appears blank: the user can drop his\her favorite

component on it in the place they prefer. Once on the drop

area, the component shows the settings button on top left

corner.

Pressing the button, the “settingRequested” event is

dispatched and the right bar shows the available options for

the active component, in the appearance of the input

elements described in Section 2.B (Figure 5). Every edit on

those options will reflect on source components.

User can than continue to add components and modify

them until it is satisfied of the result. By clicking on the

“Save” button, the components are inserted in a full HTML

skeleton and the final HTML is exported and stored on the

server.

Figure 5. The right column visualize the customizable options.

Figure 4. The GUI of the page generator.

414Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

http://goo.gl/LW3WGE

Figure 6. Example of an exported page.

We reported a common result in Figure 6. As shown, the

appearance of components in this HTML has not changed:

the tag continues to appear without its inner template (once

again hidden in the Shadow DOM) and the attributes reveal

the values of properties as the user set them.

B. Application flow

Figure 7 shows the complete flow of the application.

The generator is in charge of importing the components that

the user can add to the page. Reading the exposed options

from component description itself, the generator makes

possible their manipulation, together with an eventual

custom sorting. At the end of the process, it generates the

HTML file. When it comes to the browser, the needed

components are imported and the page is rendered.

Figure 7. Scheme of the generator application.

The HTML itself is ready for further editing: when the

user wants to edit again his/her page, the generator simply

retrieves it from server, extracts the content from the body

and insert it in the drop area of the GUI. The process

continues in the same way.

The application has completely been developed using

Web Components and the Polymer technology. In this case,

the intrinsic isolation of each Web Component implied

some implementation issue. It happens specifically when

two components need to communicate each other and are

not direct siblings in the DOM, i.e., the option input and the

component that input refers: the isolation forced the

development to propagate each information up to the nearest

common parent of both, and that means to declare a data

binding in the definition of multiple components. It seems

useful to make an exploration about improving this

approach and on the possibility of make use of alternative

frameworks for Web application development on top of the

components.

C. Evaluation of the usability

We introduced the complete xPlanner beta application –

site generator included – to a small panel of webmasters and

sales agents of SeatPG. The former have a quite good

background on Web design and development, while the

latter have commercial skills. The feedback has been

different between the two profiles.

People with computer experience, and in particular in

this type of tools, gave a good evaluation, because it

fulfilled their expectation based on their own passed

experience. On the other hand, the generator was considered

complicated by people with low technical skills. In

particular, they were lost in the large number of available

options of each component. We are considering a different

UI approach and the creation of a light version of the

application.

V. CONCLUSION AND FUTURE WORKS

We built a Web page generator that works by combining

and customizing Web Components. The feature of the

standard grants native isolation to each component for CSS

and Javascript, avoiding conflicts in namespace. The

generated HTML is the standalone structure that can be used

for viewing the page and that can be imported in the

generator for further editing. Therefore, the final HTML

describes the page perfectly, in a suitable way for both the

browser and the generator application. No other structure

needs to be stored.

For the first time, the standard of Web Components have

been used in a novel way: the combination and manipulation

of each component is no longer in charge to the developer

through the code, but it is the final user itself to have the

ability of doing this through a specific User Interface, in a

context of end-user programming.

The page edit and assembly is managed client-side.

Components are modular: they can be defined and edited by

simply relying on the existing standard and are independent

of any other client or server-side technology. The HTML

generates and describe itself, following its own rules instead

of backend logics. This allows components to correctly

behave in complex scenarios.

In order to further improve the approach, we intend to

give users with a minimum of Web development skills the

<html>
<head><!-- dependencies loading --></head>
<body>
 <!-- other components -->
 <descriptive-content text-color="#40AAE6"
 text="Lorem ipsum dolor...">
 </descriptive-content>
 <!-- other components -->
</body>
<html>

415Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

possibility to add their own components. The idea is to

design a collaborative platform for SeatPG webmasters,

which are constantly in touch with the sales force, in order

to make them autonomous in creating suitable modules that

are specific to a business category. Each webmaster should

be able to design a component, defining the HTML, the CSS

and the customizable properties, and share it to the internal

community in such a collaborative way.

Other improvements could involve the support to

components with external dependencies (by using a

dependency manager, e.g., npm or bower). For limiting

server requests, we will add a process of concatenation of

used components inside the exported HTML. This process,

in the Polymer naming convention, is called Vulcanization

[15]. We are also working on the definition of a color theme

for the whole page, using the CSS variables.

REFERENCES

[1] Y. Jiang, and H. Dong, "TEB: A Template-Based E-

commence Website Builder for SMEs," Second International

Conference on Future Generation Communication and

Networking Symposia, 2008 (FGCNS'08) IEEE, Vol. 1, Dec.

2008, pp. 23-28.

[2] A. K. Kalou, D. A. Koutsomitropoulos, G. D. Solomou,

"CMSs, Linked Data and Semantics: A Linked Data Mashup

over Drupal for Personalized Search," Metadata and

Semantics Research, Springer International Publishing, 2013,

pp. 48-59.

[3] M. Krug, and M. Gaedke, "SmartComposition: Enhanced

Web Components for a Better Future of Web Development,"

Proceedings of the 24th International Conference on World

Wide Web Companion (WWW’15 Companion) ACM, May

2015, pp. 207-210.

[4] T. Savage, "Componentizing the web," Communications of

the ACM, vol. 58, no. 11, pp. 55-61, Nov. 2015.

[5] K. Nakano, Z. Zhenjian, M. Takeichi, "Consistent Web site

updating based on bidirectional transformation," International

journal on software tools for technology transfer, vol. 11, no.

6, pp. 453-468, Dec. 2009.

[6] D. Denicola, “Custom Elements,” W3C Editor’s Draft, Mar.

2016, [Online]. Available from:

http://w3c.github.io/webcomponents/spec/custom/ 2016.03.09

[7] D. Glazkov, H. Morrita, “HTML Imports,” W3C Editor’s

Draft, Mar. 2016. [Online]. A2016.03.09vailable from:

http://w3c.github.io/webcomponents/spec/imports/

2016.03.09

[8] S. Pieters, A. van Kesteren, et al., “HTML 5.1,” W3C Editor’s

Draft, Mar. 2016. [Online]. Available from:

https://html.spec.whatwg.org/multipage/scripting.html#the-

template-element 2016.03.09

[9] D. Glazkov, H. Ito, “Shadow DOM,” W3C Editor’s Draft,

Mar. 2016. [Online]. Available from:

http://w3c.github.io/webcomponents/spec/shadow/

2016.03.09

[10] P. De Ryck, N. Nikiforakis, L. Desmet, F. Piessens, W.

Joosen, "Protected Web Components: Hiding Sensitive

Information in the Shadows," IT Professional, vol. 17, no. 1,

pp. 36-43, Jan.-Feb. 2015

[11] W. He, D. Akhawe, S. Jain, E. Shi, D. Song, "ShadowCrypt:

Encrypted Web Applications for Everyone," Proceedings of

the 2014 ACM SIGSAC Conference on Computer and

Communications Security (CCS 2014) ACM, 2014, pp. 1028-

1039.

[12] WebComponents.org contributors, “WebComponents

Polyfills,” WebComponents.org Blog, 2015. [Online].

Available from: http://webcomponents.org/polyfills/

2016.03.09

[13] Google, “Polymer Project,” Website. [Online]. Available

from: https://www.polymer-project.org 2016.03.09

[14] T. Atkins Jr., “CSS Custom Properties for Cascading

Variables Module Level 1,” W3C Candidate

Recommendation, Dec. 2015. [Online]. Available from:

http://www.w3.org/TR/css-variables-1/ 2016.03.09

[15] A. Osmani, “Concatenating Web Components with
Vulcanize,” Polymer Website, Dec. 2013. [Online]. Available
from: http://polymer-project.org/articles/concatenating-web-
components.html 2016.03.09

416Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

http://w3c.github.io/webcomponents/spec/custom/
http://w3c.github.io/webcomponents/spec/imports/
https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
http://w3c.github.io/webcomponents/spec/shadow/
http://webcomponents.org/polyfills/
https://www.polymer-project.org/
http://www.w3.org/TR/css-variables-1/
http://polymer-project.org/articles/concatenating-web-components.html
http://polymer-project.org/articles/concatenating-web-components.html

