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Randomized algorithms for distributed nonlinear
optimization under sparsity constraints

Chiara Ravazzi, Member, IEEE, Sophie M. Fosson, Member, IEEE, and Enrico Magli, Senior Member, IEEE

Abstract—Distributed optimization in multi-agent systems un-
der sparsity constraints has recently received a lot of attention. In
this paper, we consider the in-network minimization of a contin-
uously differentiable nonlinear function which is a combination
of local agent objective functions subject to sparsity constraints
on the variables.

A crucial issue of in-network optimization is the handling of
the communications, which may be expensive. This calls for effi-
cient algorithms, that are able to reduce the number of required
communication links and transmitted messages. To this end, we
focus on asynchronous and randomized distributed techniques.
Based on consensus techniques and iterative hard thresholding
methods, we propose three methods that attempt to minimize the
given function, promoting sparsity of the solution: asynchronous
hard thresholding (AHT), broadcast hard thresholding (BHT),
and gossip hard thresholding (GHT). Although similar in many
aspects, it is difficult to obtain a unified analysis for the proposed
algorithms. Specifically, we theoretically prove the convergence
and characterize the limit points of AHT in regular networks
under some proper assumptions on the functions to be minimized.
For BHT and GHT, instead, we characterize the fixed points of
the maps that rule their dynamics in terms of stationary points of
original problem. Finally, we illustrate the implementation of our
techniques in compressed sensing and present several numerical
results on performance and number of transmissions required
for convergence.

Index Terms—Distributed optimization, nonlinear optimiza-
tion, sparse signal recovery, randomized algorithms.

I. INTRODUCTION

Distributed optimization has been receiving increasing at-
tention in the last years [1], [2], [3], [4], [5] due to its
applications in diverse multi-agent frameworks, ranging from
detection and estimation over sensor networks [6], [7] to
compressed sensing [8] and medical imaging [9]. Modern
networked technologies have demonstrated that distributed
systems of interconnected and low-power units can efficiently
replace a single, powerful centralized processor for tasks
like, e.g,, monitoring, tracking, localization, and imaging [9],
[10], [11], [12], [13]. In some cases, networked systems are
used only to acquire data, and optimization is performed by
a single data fusion center. However, more interesting and
challenging is the problem of distributed optimization, whose
goal is to compute the solution in-network, leveraging local
communication and cooperation among agents.
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As explained in [1], [2], [3], [4], the natural mathematical
formulation of distributed optimization consists in the mini-
mization of a cost functional that is sum of different terms,
each of which associated with an agent. In this paper, we
undertake such model imposing a sparsity constraint, that is,
we assume that the desired solution is a vector with few non-
zero components. In many practical cases, in fact, models are
constrained structurally so that only few degrees of freedom
compared to their ambient dimension are significant. In the
last decades, optimization problems under sparsity constraints
have attracted much interest, especially in statistics, signal
processing, machine learning, and coding theory. The reader
can refer to [14] and references therein for an overview of
possible applications.

In the sparse distributed optimization context, considerable
effort has focused on sparse linear regression models [15],
which lead to classical square residual cost functions. One
of the most studied examples is compressed sensing, where
optimization starts from linear, compressed measurements
(that is, measurements of kind y = Ax, with x ∈ Rn, y ∈ Rm,
A ∈ Rm×n, m � n) acquired by a networked system; the
case of totally decentralized optimization is particularly timely
[8], [15], [16], [17], [18], [19]. Less attention instead has
been devoted to nonlinear sparse models, even if they are
able to better describe a variety of real applications, where
measurements might be quantized [20], quadratic (yi = (Ax)2

i ,
i = 1, . . . ,m, [21]), exponential (yi = e(Ax)i , i = 1, . . . ,m)
or realizations of random variables [22]. Nevertheless, it is
well known that nonlinearity is more difficult to analyze
theoretically, which explains the lack of literature in particular
for what concerns sparse models. New interest in this direction
has however raised very recently: in [21], [23], [24] nonlinear
sparse optimization has been addressed, while in [8], [17] the
networked case is considered.

The goal of this paper is to tackle distributed sparse nonlin-
ear optimization (e.g., as in [8]), devoting particular attention
to energy efficiency, in terms of transmissions and memory
requirements. In distributed optimization, indeed, a single
agent typically has limited memory and processing capability,
therefore a cooperation is the key to compensate for this
shortcoming and achieve satisfactory performance, as proved
in many works, e.g., [8], [18], [19]. Cooperation, however,
raises the problem of communication among agents, which
can be expensive from different viewpoints. For example, if we
consider a territorial monitoring wireless sensor network, the
agents (that is, the sensors) may be deployed at large distance
or in unfavorable conditions, which makes communication
uneconomical.
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The drawbacks due to network communications have mo-
tivated us to investigate algorithms that reduce the number
of necessary information exchanges. In particular, in this
paper we consider randomized techniques, in which data
transmissions are ruled by suitable probabilistic models [25].
This not only allows us to limit the communication load,
but also to overcome synchronization issues. Specifically,
structured communication schemes typically require the agents
to coordinate in order to activate and transmit at the right
moment. This is no more necessary in the randomized setting,
in which agents are randomly activated or are activated by
other agents.

The distributed algorithms that we propose are based on
iterative hard thresholding (IHT, [26], [27]), which combines
a gradient descent step and a thresholding step. We show
that IHT can be generalized to a distributed and randomized
setting, and also that it requires little computational effort
at each iteration, providing an extremely appealing solu-
tion to distributed sparse nonlinear optimization. We analyze
three different protocols, through both mathematical analysis
and numerical simulations: asynchronous hard thresholding
(AHT), broadcast hard thresholding (BHT), and gossip hard
thresholding (GHT). In particular, we theoretically prove the
convergence and characterize the limit points of AHT in regu-
lar networks under some proper assumptions on the functions
to be minimized. Our numerical simulations suggest that these
hypotheses on the network regularity, that are useful to prove
the convergence of AHT, are not really necessary. In fact, we
have tested also non-regular topologies, and convergence has
been always achieved (see Section VI). For BHT and GHT,
instead, we characterize the fixed points of the maps that
rule their dynamics in terms of stationary points of original
problem.

In [8], distributed methods based on IHT were developed
as well, which however are different from ours in the network
communication management. A comprehensive comparison is
proposed in Section IV-F.

The example of compressed sensing is considered through-
out the paper as application benchmark on which we test
the proposed theory. The paper is organized as follows. In
Section II we discuss the model and the optimization problem
associated with sparse constraints in a distributed setting. In
Section III we review the IHT method in a non distributed
setting, discussing the related literature and known theoretical
results. This is used in Section IV to derive the proposed
algorithms. Section V is then devoted to our theoretical results.
The most technical parts are postponed to the Appendix.
Further discussion on the algorithms’ performance is provided
in Section VI through a consistent variety of numerical simu-
lations. Finally, we draw our conclusions (Section VII).

We conclude this introduction with some notation used in
the sequel. We denote column vectors with small letters, and
matrices with capital letters. If x ∈ Rn we denote its j-th
element with xj and, given S ∈ [n] := {1, . . . , n}, by x|S the
subvector of x corresponding to the indices in S. The support
set of x is defined by supp(x) = {i ∈ [n] : xi 6= 0} and we
use ‖x‖0 = |supp(x)|. We denote with r(x) the non increasing

rearrangement of x, i.e.,

r(x) = (|xi1 |, |xi2 |, . . . , |xin |)T (1)

where |xi` | ≥ |xi`+1 |, ∀` = 1, . . . , n − 1 and {i1, . . . , in} =
[n] and we define rk(x) = |xik |. Given a matrix X , XT

denotes its transpose and X(v) (or xv) denotes the v-th
column of X . For any matrix M ∈ Rn×m, the Frobenius
norm is defined as ‖M‖F :=

√∑n
i=1

∑m
j=1 |Mi,j |2. For a

square matrix M ∈ Rn×n, we consider the induced norm
‖M‖2 = supz 6=0 ‖Mz‖2/‖z‖2. Finally, the symbol ‖ · ‖ with
no subscript has always to be intended as ‖ · ‖2.

II. SPARSITY CONSTRAINED OPTIMIZATION IN
MULTI-AGENT SYSTEMS

As in [8], we consider a network of N agents (that we
label as v ∈ V = {1, . . . , N}) which can represent sensors
or processing units that collect measurements of a physical
variable x? ∈ Rn. The agents seek to estimate the unknown
vector x? that is k-sparse (i.e., it has at most k nonzero entries),
starting from their own sets of measurements yv = yv(x

?) ∈
Rm, v ∈ V . A loss function f(x; yv) : Rn → R, denoted
with fv(x) for brevity, is defined for each v ∈ V , which
indicates how much a vector x ∈ Rn is consistent with the
measurements yv . In addition to their own yv’s, the agents
can leverage local communication in the network to estimate
x?. The corresponding optimization problem can be written as
follows:

min f(x) s.t. x ∈ Σk, (2)

with

f(x) :=
∑
v∈V

fv(x) and Σk := {x ∈ Rn : ‖x‖0 ≤ k}.

The following assumptions are made throughout the paper.
Assumption 1. The problem (2) admits a unique solution xopt.
Assumption 2. For all v ∈ V ,

a) fv is lower bounded, i.e., there exists κv ∈ R such that
fv(x) ≥ κv for all x ∈ Rn;

b) fv is twice continuously differentiable in Rn;
c) the gradient ∇fv(x) is Lipschitz continuous over Rn,

that is, there exists Lv ∈ R such that

‖∇fv(x)−∇fv(z)‖2 ≤ Lv‖x− z‖2 ∀x, z ∈ Rn.

Furthermore, let us consider the following definition [28].
Definition 1. Let g be a twice continuously differentiable
function whose Hessian is denoted by ∇2g(·) and let

αk = inf{xT∇2g(ξ)x : |supp(x) ∪ supp(ξ)| ≤ k, ‖x‖ = 1}.

We say that g satisfies the left stable restricted Hessian
property with constant αk (αk-LSRHP for short).
Assumption 3. For all v ∈ V , fv satisfies the αk-LSRHP with
αvk ≥ 0 and there exists v ∈ V such that αvk > 0 .

A key property of the considered model is that the functions
f : Rn → R that satisfy the Assumption 3 are convex over
canonical sparse subspaces, but they are not necessarily con-
vex everywhere, as often assumed in literature of distributed
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optimization [3], [4], [29], [30]. Some examples that describe
non-convex functions that satisfy the αk-LSRHP can be found
in [28, Example 1 and Example 2]. This makes the problem
much more general and applicable to diverse scenarios as in
compressed sensing [31] and transmission tomography [32].
Moreover, the fact that Σk is not a convex set, makes the
problem very challenging.

Before presenting an example satisfying Assumptions 1, 2,
and 3, we give a preliminary definition introduced in [21] and
we recall a necessary condition for optimality.
Definition 2. z ∈ Rn is called a basic feasible (BF) vector of
(2) when one of the following conditions holds:

(a) if ‖z‖0 < k then ∇f(z) = 0;
(b) if ‖z‖0 = k then ∇if(z) = 0 for all i ∈ supp(z).
Theorem 2.1 in [21] establishes the fact that any optimal

solution of (2) is also a BF vector of (2). We show in
the following theorem that, under a suitable assumption, BF
vectors are local minima of (2).

Theorem 1. Suppose that Assumptions 2 and 3 hold. Any BF
vector of (2) is a strict local minimum for (2).

Proof. Let z be a BF vector of (2) and ε ∈
(0,mini∈supp(z) |zi|). We now show that for any z + h ∈ Σk
and ‖h‖2 < ε we have f(z+h)−f(z) > 0. From Assumption
2 we have that

f(z + h)− f(z) = 〈∇f(z), h〉+
1

2
hT∇2f(ξ)h

where ξ = z + γh with γ ∈ (0, 1). From Definition 2, if
‖z‖0 < k then ∇f(z) = 0 otherwise, if ‖z‖0 = k then the
constraint z + h ∈ Σk with ‖h‖2 < ε implies that supp(h) ⊆
supp(z). Consequently, 〈∇f(z), h〉 = 0, and

f(z + h)− f(z) =
∑
v∈V

1

2
hT∇2fv(ξ)h ≥ 0.

If there exists v ∈ V such that fv satisfies the αk-LSRHP with
αk > 0 (see Assumption 3) then the last inequality is strict
and the assertion is proved.

Example: Distributed compressed sensing We consider the
distributed reconstruction problem in compressed sensing (see
[8], [15], [16], [17], [18], [19], [33]). We assume that each
agent v ∈ V of a network senses a common, k-sparse signal
x? ∈ Rn and acquires m � n linear measurements of the
form

yv = Avx
? + ξv, (3)

where yv ∈ Rm, Av ∈ Rm×n, and ξv ∈ Rm is a Gaussian
noise N(0, σ2). The agents seek to estimate x? given the
measurements and knowing the sparsity level k. It is thus
natural to consider the following optimization problem in order
to approximate x?:

min
x∈Rn

∑
v∈V

1

2
‖yv −Avx‖22 s.t. x ∈ Σk. (4)

In absence of noise (i.e., ξv = 0,∀v ∈ V), if for every
index set Γ ⊆ {1, . . . , n} with |Γ| = 2k the columns of
A = (AT1 , . . . , A

T
N )T associated with Γ are linearly indepen-

dent, then x? is the unique solution to (4) [31].

It is straightforward to verify that fv(x) = 1
2‖yv − Avx‖

2

satisfies Assumption 2.a)-b). The Hessian matrix has the form
∇2fv(x) = ATv Av, and Assumption 2.c) is guaranteed with
constant Lv = ‖Av‖22. It is easy to check that if Av has rank
not smaller than k, then fv satisfies also the αk-LSRHP with
αk > 0.

III. ITERATIVE HARD THRESHOLDING

Problems of the form (2) have been largely studied in the
centralized setting, that is, when all the data are processed by a
single fusion center. In this section we review a few elements
of the centralized reconstruction techniques, which will be the
basis to develop our distributed methods.

An efficient method to tackle the problem (2) in a central-
ized way is the IHT [23], [21]. A comprehensive overview of
IHT is given in [21], where different procedures to solve (2)
have been proposed. More precisely, at each iteration step,
the classical IHT procedure performs a gradient step and
then a best k-term approximation. We denote the best k-term
approximation of x with

σk(x) := argmin
z∈Σk

‖x− z‖2

that sets to zero the n − k components of x with smallest
magnitude.

Algorithm 1 IHT
1: Initialization: x(0) = 0 ∈ Rn, τ > 0
2: for t = 0, 1, . . . , StopIter do
3: x(t+ 1) = σk[x(t)− τ∇f(x(t)]
4: end for

Definition 3. [21, Definition 2.3] A vector z is called a τ -
stationary point of (2) if it satisfies the following relation

z = σk (z − τ∇f(z)) .

Theorem 2.2 in [21] shows that, under Assumption 2.c),
τ -stationarity is a necessary condition for optimality for any
τ ∈ (0, (

∑
v∈V Lv)

−1). Moreover, the following result holds
for IHT.

Theorem 2. [21, Theorem 3.1] Let {x(t)}t∈N be the sequence
generated by IHT with stepsize τ ∈ (0, (

∑
v∈V Lv)

−1), where
Lv is the Lipschitz constant defined in the Assumption 2.c).
Then any accumulation point {x(t)}t∈N is a τ - stationary
point.

A direct result of Lemma 2.2 in [21] is that any τ -stationary
point is a BF vector of (2). Combining this with Theorems 1
and 2 we obtain that any accumulation point of IHT is a local
minimum of (2).

Results on the convergence of IHT have been proposed in
[27] for compressed sensing, and in in [23] for compressed
sensing with nonlinear observations.

Although not considered in this work, we remark that other
approaches based on the relaxation of the problem to `0/`1
regularized functionals have been widely studied in literature.
For these approaches there is also a variety of proposed
algorithms, including quadratic programming methods [34],
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interior-point methods [34], projected gradient methods [35],
and iterative (hard and soft) thresholding algorithms [36], [26],
[27].

IV. DISTRIBUTED HARD THRESHOLDING

Our goal is to develop distributed techniques to solve (2)
in an energy efficient way, that is, reducing the number of
communications as much as possible. The presence of the
common variable x in (2) imposes a coupling between the
agents, and distributed algorithms require collaboration. This
entails repeated transmissions, which clearly have a cost in
terms of energy to transmit and use of the communication
links. The study of algorithms that limit the number of sent
messages is then encouraged.

Motivated by this observation, we now introduce our family
of distributed, randomized algorithms, built on IHT (Section
III). From now on, we consider a connected network and we
model it by an undirected graph G = (V, E), where V is the
set of agents and E ∈ V ×V represents the set of the available
communication links. The set of neighbors of v ∈ V is denoted
as Nv = {w ∈ V : (v, w) ∈ E}. We assume that (v, v) ∈ E
for all v ∈ V .

Given this network structure, our algorithms are all based
on the idea that each agent performs an IHT reconstruction
procedure, but adjusts its own estimate based on knowledge
of the estimates of its neighbors. The communication protocols
can be of different kind, that give rise to different algorithms.
Here, we study three cases, that correspond to the above
mentioned AHT, BHT, and GHT. These methods are iterative,
hence stopping criteria should be defined. Generally, if the
algorithm is analytically proved to converge, we can stop it
when numerical convergence is achieved, that is, when the
distance between the estimates of two successive iterates is
below a fixed threshold; if the algorithm is not guaranteed to
converge, we can fix a maximum number of iterations. These
criteria will be discussed for AHT, BHT, and GHT in Section
VI, after having studied their convergence properties.

We now describe each algorithm in detail.

A. Asynchronous hard thresholding (AHT)

In the AHT algorithm (see Algorithm 2), at each iteration
step, one agent (that is, a vertex in the graph) is selected and
communicates with its neighbors to receive their estimates. Af-
ter communication, the selected agent performs the following
operations: (a) gradient of its loss function fv; (b) average of
the received neighbors’ estimates (included itself; in Algorithm
2, dv = |Nv|); (c) combined gradient step using (a) and (b);
(d) best k-term approximation of (c). The procedure is iterated
until a stopping criterion is met. The selection at step 3 is
discussed in Section IV-D.

B. Broadcast hard thresholding (BHT)

In the BHT procedure (Algorithm 3), the communication
protocol is reversed with respect to AHT.

At each iteration step, one agent v ∈ V is selected and sends
its estimation to the neighbors w ∈ Nv . After communication,

Algorithm 2 AHT
1: Initialization: xv(0) = 0 ∈ Rn, τ > 0
2: for t = 0, 1, . . . , StopIter do
3: Selection of v ∈ V
4: xv(t+ 1) = σk

[
1
dv

∑
w∈Nv

xw(t)− τ∇fv(xv(t))
]

5: xh(t+ 1) = xh(t) for any h 6= v
6: end for

Algorithm 3 BHT
1: Initialization: xv(0) = 0 ∈ Rn, τ > 0
2: for t = 0, 1, . . . , StopIter do
3: Selection of a v ∈ V
4: xw(t+1) = σk

[
1
2 (xv(t) + xw(t))− τ∇fw(xw(t))

]
for

all w ∈ Nv
5: xh(t+ 1) = xh(t) for all h /∈ Nv
6: end for

each agent w ∈ Nv updates its status performing the following
operations: (a) computation of gradient ∇fw(xw); (b) average
between its estimate xw and the received estimate xv; (c)
combined gradient step using (a) and (b); (d) best k-term
approximation of (c). The procedure is iterated until a stopping
criterion is met.The selection at step 3 is discussed in Section
IV-D.

C. Gossip hard thresholding (GHT)

In GHT, only one communication link is used at each
iteration step. One agent is selected and woken up and, in
turn, chooses one neighbor, receives its estimate, and performs
the update as in Algorithm 4. The procedure is iterated until
a stopping criterion is reached. The selection at step 3 is
discussed in Section IV-D.

Algorithm 4 GHT
1: Initialization: xv(0) = 0 ∈ Rn for all v ∈ V , τ > 0
2: for t = 0, 1, . . . , StopIter do
3: Selection of (v, w) ∈ E
4: xv(t+ 1) = σk

[
xv(t)+xw(t)

2 − τ∇fv(xv(t))
]

5: xh(t+ 1) = xh(t) for all h 6= v
6: end for

D. Selection models

For the selection of the node in AHT and BHT and of
the edge in GHT (see step 3 in Algorithms 2, 3, and 4), we
consider two scenarios, which are formally described in the
following definitions.

Definition 4. A network of N nodes is said to be uniformly
persistent if there exists a positive integer number T > 0 such
that, for all t ∈ N, each node makes the update at least once
within the iteration-interval [t, t+ T ).

Definition 5. A network of N nodes is said to be randomly
persistent if there exists a N -upla (p1, . . . pN ) such that pv >
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0, for all v ∈ V ,
∑
v∈V pv = 1, and such that, for all t ∈ N,

P[Ωv,t] = pv, where Ωv,t is the event

Ωv,t = {node v makes the update at iteration t}.

Basically, the node/edge selection can be done in any way
that guarantees that the network is uniformly persistent or
randomly persistent (see Theorem 6).

These definitions can be extended also in the case an edge
is selected instead of a node.

In Figure 1, an example of iterative step is shown for a 4-
agent network, illustrating the difference between AHT, BHT,
and GHT. Agent 3 is initially selected for all schemes. The
active agents, that is, the ones that update their estimates,
are boldfaced, as well as the active links; the communication
direction is indicated by the arrows.

E. Computational requirements

We conclude the presentation of the algorithms with some
remarks on their computational requirements. For simplicity
we assume that all the nodes v ∈ V have degree dv = d.

The requirements in terms of memory usage are comparable
for the all three algorithms: each agent v has to store the
information encoded by fv and 2k real values of the solution
estimation (the nonzero components and their positions) at
each agent, while the temporary information for computation
is of order O(n).

For GHT only one communication link is used at each
iteration step, while for AHT and BHT the number depends
on the degree d. It is however clear that the total number of
usages of communication links depends on the total number
of iterations.

The use of best k-term approximation is an advantage for
what concerns the transmission of the current estimate at each
iteration step, as the number of real values that have to be
sent is reduced from n to 2k for each communication link [8],
[15], [16], [17], [18], [19].

We finally notice that the number of computations per
agent is actually the same for each activated agent for all
three algorithms. However, the number of updating agents
(that is, agents that perform computations to update their own
estimations) is d for BHT, and just 1 for both AHT and GHT.
The number of agents sending messages is d on average for
AHT, and 1 for BHT and GHT.

In Table I, AHT, BHT and GHT are compared in terms of
computational effort and communication requirements.

Table I
COMPUTATIONAL REQUIREMENTS AT EACH ITERATION STEP

AHT BHT GHT
Active comm. links d− 1 d− 1 1
Sent values 2k(d− 1) 2k(d− 1) 2k
Updating agents 1 d 1
Sender agents d− 1 1 1

F. Relation to prior literature

Distributed approaches to problems of kind (2) have drawn
much attention very recently. Our main reference is [8], in
which the authors address (2) over static and time-varying
networks proposing two protocols based on IHT.

The first method is distributed iterative hard thresholding
(DIHT), that can be outlined as follows. Given a network,
one agent r is chosen and a spanning tree is built fixing r as
root; then, iterative communication is activated from the root
towards the leaves and vice versa so that (a) r broadcasts its
estimate of the signal, (b) the other agents receive this estimate
and transmit back information to r to update it. More precisely,
given the current estimate x(t), each agent v 6= r receives it
and computes its own gradient ∇fv(x(t)); then, starting from
the leaves the gradients are sent back and accumulated so that
r receives their sum and use it (along with is own ∇fr(x(t)))
to update x(t) to x(t+1) through hard thresholding. In [8], this
method has been shown to work efficiently and overcome other
distributed methods in terms of convergence times and number
of required transmitted values. Its main limitation is in the
imposed hierarchy, specifically, an exclusion of agent r (due,
for example, to a failure) would seriously disrupt the process,
as it is the only agent storing all the necessary information to
pursue the recovery.

The necessity of a spanning tree is removed in the second
method proposed in [8], known as CB-DIHT and based on
diffusive consensus. In CB-DIHT, instead of summing the
gradients from the leaves to the root of a spanning tree, local
means of the gradients are computed by each agent as in
consensus procedures. In order to do this, all the agents should
receive from a prescribed agent r the current estimate x(t)
through a diffusive procedure. This idea can be used even
when the topology of the network is time-varying, provided
that some connectivity conditions are respected. Interestingly,
CB-DIHT is identical to IHT except that at each iteration the
gradient is approximated [8, Proposition 4.4]. Concerning con-
vergence times and number of transmitted values, numerical
results show that CB-DIHT is barely worse than DIHT, see
[8, Tables II-III].

The current literature offers various other algorithms that
address problems similar to (2). In particular, in [17] different
constraints are considered: the variables should belong to
closed and convex sets. For example, problems in which the
sparse constraint is relaxed with the `1-norm is considered
in [16], [17]. The algorithm proposed in these works, known
as D-ADMM, is an extension of ADMM to the distributed
context, using graph coloring techniques. In terms of required
transmitted values, in [8] D-ADMM is proved to be less
efficient than DIHT and CB-DIHT, which is mainly due to
the local transmission of non sparse information. In DIHT
and CB-DIHT, instead, the estimate x(t) diffused by the
agent r is k-sparse, which requires less bandwidth usage.
Nevertheless, DIHT and CB-DIHT also require to share non
sparse information when the information about gradients is
conveyed towards r. This aspect is improved by AHT, BHT,
and GHT, in which only k-sparse vectors (namely, the signal’s
estimates produced by each single agent) are shared.
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3 1

2

x+3 = σk

[
x3+x2+x4

3
− τ∇f3(x3)

]
x1

x2

4

x4

(a) AHT

3
1

2

x+3 = σk [x3 − τ∇f3(x3)] x1

x+2 = σk [(x3 + x2)/2− τ∇f2(x2)]

4

x+4 = σk [(x3 + x4)/2− τ∇f4(x4)]

(b) BHT

3
1

2

x+3 = σk [(x3 + x4)/2− τ∇f3(x3)]

x1

x2

4

x4

(c) GHT

Figure 1. Example of a network with 4 agents: behaviors of AHT, BHT, and GHT when agent 3 is initially selected. In AHT, agent 3 gets information from
its neighbor and updates its estimate; in BHT, agent 3 broadcasts its estimates, and its neighbors 2 and 4 update their own estimate; in GHT, agent 4 is in
turn randomly selected among the neighbors of agent 3, which gets the estimate of agent 4 and updates itself.

We finally mention that relaxed versions of distributed
problems with constraints can be tackled by methods like
distributed subgradient algorithms (DSM, [2], [3], [29]) and
deterministic distributed (soft and hard) iterative thresholding
(DISTA and DIHTA, [18], [19]).

V. THEORETICAL RESULTS

In this section, we analyze the behaviors of AHT, BHT, and
GHT. Specifically, we prove the convergence of AHT and we
characterize the fixed points of the maps that rule the dynamics
of BHT and GHT.

A. Convergence of AHT

We analyze the convergence of AHT under the following
assumption.
Assumption 4. The graph of communication is

1) connected;
2) regular, that is, all nodes v ∈ V have degree dv = d.
In order to prove the convergence, we first recast the

optimization problem in (2) into a separable form that fa-
cilitates distributed implementation. The goal is to split the
problem into simpler subtasks executed locally at each node.
Let us replace the global variable x in (2) with local variables
{xv}v∈V . We rewrite the distributed problem as follows

min
x1,...,xN∈Rn

∑
v∈V

fv(xv), (5)

s.t. xv ∈ Σk and xv = xw, ∀w ∈ Nv,∀v ∈ V.

We now relax the problem (5) and consider the minimization
of the functional F : Rn×N 7−→ R+ defined as follows

F (X) :=
∑
v∈V

[
fv(xv) +

1

4τd

∑
w∈Nv

‖xv − xw‖2
]

(6)

s.t. xv ∈ Σk, ∀v ∈ V

where X = (x1, . . . , xN ). By minimizing F , each node seeks
to estimate the sparse solution to (2) and to enforce agreement
with the estimates calculated by other nodes in the network.
It should also be noted that F (x1T ) = f(x).

Inspired by the terminology introduced in [21], we derive
necessary optimality conditions of (6) and discuss the rela-
tionships with the original problem (2).

Definition 6. Z = (z1, . . . , zN ) ∈ ΣNk is called a basic feasible
(BF) point of (6) if it satisfies the following conditions ∀v ∈ V:

zv = zv − τ∇fv(zv) if ‖zv‖0 < k
zjv = zjv − τ∇jfv(zv),∀j ∈ supp(zv) if ‖zv‖0 = k

where zv = 1
d

∑
w∈Nv

zw.

Proposition 1. If Z is an optimal solution of (6), then Z is
a BF point of (6).

Proof. If Z is such that ‖zv‖0 < k, then for any j ∈
{1, . . . , n} we have

0 ∈ argmin {G(t) = F (Z + teje
T
v )}.

By imposing G′(0) = 0 and by using the Assumption 4, we
obtain

0 =∇jfv(zv) +

∑
w∈Nv

(xjv − xjw)

2τd
+

∑
w∈V:v∈Nw

(xjv − xjw)

2τd

= ∇jfv(zv) +
1

τ
xjv −

1

τd

∑
w∈Nv

xjw.

If ‖zv‖0 = k, the same condition holds for j ∈ supp(zv). The
proof is completed iterating the argument for all v ∈ V .

Proposition 1 gives a necessary condition for optimality.
However this condition is weak and there are in principle
many BF points of(6) that are not optimal. Let us introduce
the following definition.
Definition 7. Z ∈ ΣNk is called a τ -stationary point of (6) if
it satisfies the following condition ∀v ∈ V:

zv = σk (zv − τ∇fv(zv)) .

The following proposition gives another representation of
τ -stationary points. The proof is omitted for brevity but can
be easily checked from Definition 7.

Proposition 2. Z is a τ -stationary point of (6) if and only if
∀v ∈ V the vector zv ∈ Σk and{

zjv − τ∇jfv(zv) = zjv if j ∈ supp(zv)

|zjv − τ∇jfv(zv)| ≤ rk(zv) if j /∈ supp(zv).
(7)

Corollary 1. If Z is τ -stationary point of (6), then it is a BF
point of (6).
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We now show that under an appropriate Lipschitz condition,
τ -stationarity is a necessary condition for optimality. Before
presenting the optimality conditions we give a preliminary
result.

Lemma 1. Let X,Y ∈ ΣNk such that yv = σk(xv −
τ∇fv(xv)), then the following relation is true for all v ∈ V:

〈∇fv(xv), yv − xv〉 ≤ −
1

2τ
‖yv − xv‖2

− 1

τd

∑
w∈Nv

〈xv − xw, yv − xv〉.

Proof. It should be noticed that

yv = argmin
s∈Σk

[
1

2
‖s−

(
xv − τ∇fv(xv)

)
‖2

+
1

d

∑
w∈Nv

〈xv − xw, s〉

]
.

This yields to the following inequality:

1

2
‖yv − (xv − τ∇fv(xv))‖2 +

1

d

∑
w∈Nv

〈xv − xw, yv〉

≤ 1

2
‖τ∇fv(xv))‖2 +

1

d

∑
w∈Nv

〈xv − xw, xv〉

and, consequently,

1

2
‖yv − xv‖2 + τ〈∇fv(xv), yv − xv〉

≤ −1

d

∑
w∈Nv

〈xv − xw, yv − xv〉.

Theorem 3. Suppose that Assumptions 2 and Assumption 4
hold and let Z? be an optimal solution of (6). Then Z? is a
τ -stationary point for any τ < 1

dL with L = maxv∈V Lv.

Proof. Let us suppose ad absurdum that Z? ∈ ΣNk is not a
τ -stationary point. This means that there exists ` ∈ V such
that

y` = σk(z?` − τ∇f`(z?` )) 6= z?` .

Let us consider now Ỹ = (z?1 , z
?
2 , . . . , y`, . . . , z

?
N ) ∈ ΣNk .

Then

F (Ỹ )− F (Z?) =
∑
v∈V

[
fv(ỹv)− fv(z?v)

]
+
∑
v∈V

∑
w∈Nv

1

4τd

[
‖ỹv − ỹw‖2 − ‖z?v − z?w‖2

]
= f`(y`)− f`(z?` ) +

∑
w∈N`\{`}

1

2τd

[
‖y` − z?w‖2 − ‖z?` − z?w‖2

]
= 〈∇f`(z?` ), y` − z?` 〉+

1

2
(y` − z?` )T∇2f`(ξ)(y` − z?` )

+
∑

w∈N`\{`}

1

2τd

[
‖y` − z?` ‖2 + 2〈y` − z?` , z?` − z?w〉

]

where in the first equality the multiplying factor 1/2τd (in-
stead of 1/4τd) follows from the following observation:∑

w∈N`\{`}

1

4τd

[
‖y` − z?w‖2 − ‖z?` − z?w‖2

]

=
∑

v∈V\{`}

∑
`∈Nv

1

4τd

[
‖y` − z?w‖2 − ‖z?` − z?w‖2

] (8)

and ξ = (1−γ)z?` +γy` for some γ ∈ (0, 1). Applying Lemma
1 to y` = σk(z?` − τ∇f`(z?` )) we have

〈∇f`(z?` ), y` − z?` 〉 ≤ −
1

2τ
‖y` − z?` ‖2

− 1

τd

∑
w∈N`

〈z?` − z?w, y` − z?` 〉

and, together with Assumption 2.c), we conclude

F (Ỹ )− F (Z?)

≤ − 1

2τ
‖y` − z?` ‖2 +

1

2
L‖y` − z?` ‖2 +

d− 1

2τd
‖y` − z?` ‖2

≤ Lτd− d+ d− 1

2τd
‖y` − z?` ‖2

or, equivalently,

F (Z?)− F (Ỹ ) ≥ 1− Lτd
2τd

‖y` − z?` ‖2 > 0 (9)

contradicting the optimality of Z?. We conclude that

z?v = σk(z?v − τ∇fv(z?v)), ∀v ∈ V.

The following theorem proves that, with the additional
Assumption 3, τ -stationary points are local minima of (6).
This means that τ -stationarity is necessary, but not sufficient
for optimality.

Theorem 4. Suppose that Assumptions 2, 3, and 4 hold. Any
τ -stationary point of (6) is a local minimum for (6).

Proof. Let Z be a τ -stationary point of (6). We now show that
for any Z+H with zv+hv ∈ Σk for all v ∈ V and ‖H‖F < ε
we have F (Z +H)−F (Z) > 0. Fix ε = minv∈V r

k(zv) and
zv + hv ∈ Σk for all v ∈ V . This fact implies that

F (Z +H)− F (Z) =
∑
v∈V

[
fv(zv + hv)− fv(zv)

]
+
∑
v∈V

∑
w∈Nv

1

4τd

[
‖zv + hv − zw − hw‖2 − ‖zv − zw‖2

]
=
∑
v∈V

[
〈∇fv(zv), hv〉+

1

2
hTv∇2fv(ξv)hv

]
+
∑
v∈V

∑
w∈Nv

1

4τd

[
‖hv − hw‖2 + 2〈zv − zw, hv − hw〉

]
where ξv = zv + γvhv for some γv ∈ (0, 1). It can be easily
checked that in a regular graph

1

d

∑
v∈V

∑
w∈Nv

〈zw, hw〉 =
∑
v∈V
〈zv, hv〉
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and
1

d

∑
v∈V

∑
w∈Nv

〈zv, hw〉 =
1

d

∑
v∈V

∑
w∈Nv

〈zw, hv〉

from which
F (Z +H)− F (Z)

=
∑
v∈V

[ ∑
w∈Nv

1

4τd
‖hv − hw‖2 +

1

2
hTv∇2fv(ξv)hv

]
+

1

τ

∑
v∈V
〈zv − (zv − τ∇fv(zv)), hv〉.

(10)

Recall that Z is also a τ -stationary point and from Corollary
1 also a BF point of (6). Therefore, if ‖zv‖0 < k then

zv − (zv − τ∇fv(zv)) = 0

otherwise, if ‖zv‖0 = k then the constraint zv+hv ∈ Σk with
‖H‖F < ε implies that supp(hv) ⊆ supp(zv) and

〈zv − (zv − τ∇fv(zv)), hv〉 = 0,

F (Z +H)− F (Z) ≥
∑
v∈V

1

2
hTv∇2fv(ξ)hv ≥ 0.

If there exists v ∈ V such that fv satisfies the αk-LSRHP with
αk > 0 then the last inequality is strict.

Let us state the relation between the global minimizer of
(6) and of (2).

Theorem 5. Suppose that Assumptions 1, 2, and 3 hold. Let us
denote as X̂τ the minimizer of F (X) in (6). If G is connected,
then limτ→0 X̂

τ = xopt1
T , where xopt is the minimizer of (2).

Proof. We prove the assertion by showing
i. the convergence to a consensus, i.e.

lim
τ→0
‖x̂τv − x̂τw‖ = 0 ∀v, w ∈ V;

ii. the convergence to a common value

∀v ∈ V lim
τ→0

x̂τv = x?,

which is the solution of (2), i.e. f(x?) ≤ f(x),∀x ∈ Σk.
We start with point i.. From Assumption 2 and from the
definition of global minimizer for (6) we have that there exists
(v, w) ∈ E such that∑
v∈V

κv +
1

4τd
‖x̂τv − x̂τw‖2 ≤ F (X̂τ ) < F (0) =

∑
`∈V

f`(0)

from which we conclude that 1
4τd‖x̂

τ
v − x̂τw‖2 is bounded and

‖x̂τv − x̂τw‖2 → 0 as τ → 0. Since the graph is connected we
deduce that limτ→0 ‖x̂τv − x̂τw‖ = 0, ∀v, w ∈ V.

We now prove point ii.: by definition of X̂τ we have for
all X ∈ ΣNk∑
v∈V

fv(x̂
τ
v) ≤ F (X̂τ ) ≤

∑
v∈V

[
fv(xv) +

1

4τd

∑
w∈Nv

‖xw − xv‖22

]
.

and, in particular, by definition of minimum, there exists C =∑
v∈V fv(0)∑

v∈V
fv(x̂

τ
v) ≤ F (X̂τ ) ≤ C =

∑
v∈V

fv(0).

From Assumption 2 and Assumption 3 we have that there exist
v ∈ V , αvk > 0 and ξ = γx̂τv with γ ∈ (0, 1) such that

fv(x̂
τ
v) = f(0) + 〈∇fv(0), x̂τv〉+

1

2
(x̂τv)T∇2f(ξ)x̂τv

≥ f(0) + 〈∇fv(0), x̂τv〉+
1

2
αvk‖x̂τv‖2

and, consequently,

C ≥ F (X̂τ ) ≥
∑
v∈V\v

fv(x̂
τ
v) + fv(x̂

τ
v)

≥
∑
v∈V\v

fv(x̂
τ
v) + f(0) + 〈∇fv(0), x̂τv〉+

1

2
αvk‖x̂τv‖2

=
∑
v

κv + 〈∇fv(0), x̂τv〉+
1

2
αvk‖x̂τv‖2.

We deduce that x̂τv is bounded for any τ . Then for any
sequence {x̂τ`v }`∈N we can extract a convergent subsequence
and from point i. we deduce that {x̂τ`sv }s∈N such that
lims→∞ x̂

τ`s
v = ξ for all v ∈ V .

By letting s → ∞ and considering that F is a continuous
function, we obtain

f(ξ) = lim
s→∞

F (X̂τ`s ) ≤ f(x), ∀x ∈ Σk.

Repeating the argument for any subsequence and from unique-
ness of the global minimizer we conclude that limτ→0 x̂

τ
v =

ξ = xopt.

Theorem 5 guarantees that parameter τ can be interpreted as
a temperature; as τ decreases, estimates xv’s associated with
adjacent nodes become increasingly correlated. This suggests
that if τ is sufficiently small, then each vector x̂τv can be used
as an approximation of the optimal solution xopt of (2).

We are now ready to state the main convergence result,
whose proof is postponed to the Appendix.

Theorem 6 (AHT convergence). Let X(0) ∈ ΣNk and
{X(t)}t∈N be the sequence generated by AHT . Under As-
sumption 2, 3, 4, and assuming that the network is uniformly
persistent (see Definition 4), if τ < 1/(dL) then the sequence
{X(t)}t∈N converges to a τ -stationary point of (6).

Theorem 6 guarantees that, under proper assumptions, the
AHT converges to a limit point. The proof can be extended to
randomly persistent networks (see Definition 5) with similar
techniques to [37]. In the proposed numerical experiments (see
Section VI), nodes are sampled according to uniform distri-
butions: this choice is made for simplicity, but the approach
can in principle be extended to any other distribution that
guarantees that the network is randomly persistent. Then, the
convergence has to be intended almost surely.1.

Theorem 7. Let us consider the scenario described in Def-
inition 4 and assume that Assumption 2, 3, 4 hold. Let
τ < 1/(dL) and X̂τ be the limit point produced by AHT
with initial condition X(0) = 0. Then limτ→0 X̂

τ = x̃1T ,
where x̃ is a local minimum of (2).

1We say that the sequence {X(t)}t∈N converges almost surely towards X
if events for which {X(t)}t∈N does not converge to X have probability 0.
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Proof. It can be proved that for any τ < 1/(dL) the sequence
{X(t)}t∈N generated by AHT is such that F (X(t + 1)) ≤
F (X(t)) for every t ∈ N (see Lemma 3 in Appendix).
Therefore, the limit point X̂τ , that is the output of AHT with
initial condition X(0) = 0, is such that F (X̂τ ) ≤ F (0). This
fact and the argument used to prove Point i. in the proof of
Theorem 6 imply that limτ→0 x̂

τ
v = x̃, ∀v ∈ V.

We now prove that x̃ is a BF vector and, consequently, a
local minimum of (2) (see Theorem 1). We consider the case
when ‖x̃‖0 = k (the case with ‖x̃‖0 < k can be treated with
similar arguments). Let us fix ε ∈ (0,minj∈supp(x̃) |x̃j |); then
there exists τ0 such that for all τ ∈ (0, τ0) it holds |(x̂τv)j −
x̃j | < ε. This implies that if j ∈ supp(x̃), then j ∈ supp(x̂τv)
for any τ ∈ (0, τ0) and for all v ∈ V . We deduce that for any
j ∈ supp(x̂τv), for any τ ∈ (0, τ0), and for all v ∈ V

(x̂τv)j =
1

d

∑
w∈Nv

(x̂τw)j − τ∇jfv(x̂τv)

from which, computing the average over all possible nodes,
we obtain 1

N

∑
v∈V ∇jfv(x̂τv) = 0 for any j ∈ supp(x̂τv) and

for any τ ∈ (0, τ0). By letting τ go to 0 and by the fact that
∇fv are Lipschitz continuous we obtain

∑
v∈V ∇jfv(x̃) =

∇jf(x̃) = 0 for all j ∈ supp(x̃). From Definition 2 x̃ is a BF
vector.

B. Fixed points analysis for BHT and GHT

In this section we characterize the fixed points of the maps
that rule the GHT dynamics. A similar argument can be used
for BHT.

Let us denote for each (v, w) ∈ E the map φ(v,w) :
Rn×N → Rn×N which acts on X = (x1, . . . , xN ) as

(φ(v,w)(X))u =

{
xu if u 6= v

σk(xv+xw

2 − τ∇fv(xv)) if u = v.

Definition 8. Z ∈ Rn is called a fixed point of Φ = {φ(v,w) :
(v, w) ∈ E} if

Z ∈
⋂

(v,w)∈E

{X ∈ Rn×N : φ(v,w)(X) = X}.

The set of fixed point is denoted with Fix(Φ)

In the following theorem, we prove that each fixed point is
a consensus point and we give its characterization.

Theorem 8. If G is connected, then for any X ∈ Fix(Φ),
there exists x ∈ Rn such that X = x1T , and x =
σk
(
x− τ

N∇f(x)
)
.

Proof. Let X ∈ Fix(Φ) and Sv = supp(xv). By definition,
for any j ∈ Sv

xjv =
xjv + xjw

2
− τ∇jfv(xv) (11)

for all w ∈ Nv (included v itself). We then obtain ∇jfv(xv) =
0 and, consequently, xjv = xjw 6= 0 for all w ∈ Nv . If G is
connected then there exists a path connecting every pair of
vertices. Iterating the argument in (11) for all edges in the
aforementioned path we conclude that xjv = xjw 6= 0 for all

v, w ∈ V. We thus have X = x1T with x = σk(x−τ∇fv(x))
for all v ∈ V .

Let S = supp(x). By definition of fixed point, we obtain for
each v ∈ V and ∀j ∈ S that ∇jfv(x) = 0 and, consequently,∑

v

∇jfv(x) = ∇j
∑
v

fv(x) = ∇jf(x) = 0. (12)

If j /∈ S we can write for all v ∈ V

|xj − τ∇jfv(x)| < rk(x− τ∇jfv(x))

= |xik − τ∇ikfv(x)| = |xik |

where the last equality follows from the fact that ik ∈ S. Let
us assume that xik > 0 (the case xik < 0 can be proved in
an analogous way), then xj − τ∇jfv(x) ∈ (−xik , xik) for all
v ∈ V, j /∈ S, from which, by multiplying each inclusion by
1/N and summing over all possible nodes, we obtain xj −
τ
N∇jf(x) ∈ (−xik , xik) and hence

xj − τ

N
∇jf(x) ≥ −xik − τ

N
∇ikf(x)

xj − τ

N
∇jf(x) ≤ +xik − τ

N
∇ikf(x)

(13)

where the last inclusion follows from (12), being ik ∈ S. From
(12) and (13), we conclude the proof.

Theorem 8 guarantees that fixed points of GHT and BHT
are stationary points of (2). Finally, we recall the following
result.

Theorem 9. Let G be connected, let f satisfy the α2k-LSRHP
with α2k > 0 and τ ∈ ( 3

4α2k
, 1∑

v∈V Lv
). If x̃ is a τ stationary

point for (2) then

‖x̃− xopt‖2 ≤ c(τ, α2k)f(xopt)

where xopt is the optimal solution of (2) and c(τ, α2k) > 0 is
a function of τ and α2k.

It should be noted that if f(x?) = 0, Theorem 9 implies
that x̃ = x?. The proof, omitted for brevity, can be obtained
immediately using techniques devised in Theorem 5 in [23].

VI. NUMERICAL RESULTS

In this section, we present some results of numerical tests
about AHT, BHT, and GHT on compressed sensing.

We focus on noise-free scenarios, we study the behavior of
our algorithms in terms recovery accuracy and transmission
efficiency. Finally, we report some considerations about how
to tackle the noisy cases.

A. Example (continued): recovery accuracy

We start by presenting some numerical results in the noise-
free compressed sensing framework (i.e., ξv = 0 for all v ∈ V).
In all the simulations we have performed, we have observed
that convergence to the true signal can be achieved by AHT,
BHT, and GHT, provided that the number of measurements
is large enough (but keeping the number of measurements
per node smaller than the number sufficient for individual
reconstruction).



10

The considered setting is as follows. We fix the parameters
n = 200 and k = 10. The nonzero components’ positions are
chosen uniformly at random; the amplitude of each nonzero
component is drawn from a Gaussian distribution N(0, 1). The
sensing matrices Av ∈ Rm×n are sampled from the Gaussian
ensemble: Aijv ∼ N (0, 1/m) , ∀v ∈ V which is a popular
choice in compressed sensing [31]. The measurements are
yv = Avx

? ∈ Rm.

Figure 2. Noise-free compressed sensing, n = 200, k = 10, m = 15,
N = 10, τ = 0.1, complete graph: GHT converges to x? (whose components
are marked by blue circles). The same color is assigned to the same estimates’
components for each node.

An illustrative single example where perfect recovery is
achieved is shown in Figure 2: here, GHT is implemented,
over a complete graph, with m = 15, N = 10, τ = 0.1.
Clearly, m = 15 is not sufficient for individual recovery,
but collaboration among the 10 agents allows to get it, in a
reasonable number of iterations.

We assume that each agent can in turn acquire m =
10, 15, 20 measurements and we study how the recovery
accuracy varies at the increasing of the number of agents.
On one hand, adding agents we augment the total number of
measurements, which is expected to improve the recovery; on
the other hand, a larger network may cause some degradation
due to greater decentralization.

In Figure 3, we show that the good effect prevails, that is,
increasing the total number of measurements mN (namely,
the network size, having fixed m) the performance accuracy
improves. More precisely, in Figure 3 we show the results
over two different topologies: ring (all the nodes communi-
cates with two neighbors), and random geometric (we assign
a uniformly random position to each node in the square
[0, 1]× [0, 1], and we let communication between nodes with
distance below a certain radius, in this case 0.75, [38]). The
ring topology represents the least connected, regular case,
while with the random geometric topology we explore the
non-regular framework (for which we do not have theoretical
guarantees). The algorithms are stopped at time T such that∑
v∈V

∥∥xT−1
v − xTv

∥∥2

2
< 10−15 or after T = 2×105 iterations,

whichever occurred first [8, Section V.C].
The graphs show the rate of success (we declare a success

Table II
SPARCO PROBLEMS’ SETTING

Problem n m N k
Sparco 902 1000 4 50 3
Sparco 7 2560 15 40 20

when the accuracy condition
∑

v∈V‖xT
v −x

?‖2
2

N‖x?‖22
< 10−4 holds)

as a function of mN for AHT, BHT, and GHT. All the
results are obtained by averaging over 500 different runs.
For these experiments, for each node v ∈ V we choose a
τv = N−1 ‖Av‖−2

2 (N ‖Av‖22 turns out to be a good individual
approximation for the theoretical bound dmaxv∈V ‖Av‖22). In
all the figures, we draw the curve for the (centralized) IHT as
a benchmark.

Observing Figure 3, we conclude that BHT tends to work
better in the few measurements regime, immediately followed
by GHT. AHT is a bit less reliable, in particular for m = 10
and ring topology. This can be explained with the presence
of many stationary points when the number of measurements
is low, among which the search of the true signal is even
more difficult over few connected networks that do not support
much collaboration. We finally notice that the gap with IHT
is not dramatic, and that a 95% of success is achieved by all
the algorithms, over the different topologies, for mN ≥ 120
(except for AHT with m = 10 in the ring topology).

B. Example (continued): number of sent values

We now study the efficiency of AHT, BHT, and GHT in
terms of number of transmitted values necessary to achieve
convergence (by transmitted value we mean a real scalar sent
over a communication link in the network). As communi-
cations typically are energy expensive, we aim to keep that
number as low as possible. To the best of our knowledge,
among the possible distributed approaches to problem (2),
DIHT [8] is the most efficient in terms of transmitted values:
in [8, Section V], some tests are proposed that compare
DIHT to CB-DIHT, D-ADMM and subgradient methods, and
the outcomes attest its higher performance. Those tests were
conducted on a set of sparse problems selected from the
Sparco dataset [39]; here, we consider a couple of those Sparco
problems, with the same network topologies and parameters,
and we show that AHT, BHT and GHT outperform DIHT.

We retrieve the experiments of [8]. More precisely, we
consider the following problems: (a) Sparco 7, in which a
sign spike signal is compressed through a Gaussian matrix;
(b) Sparco 902, in which a signal sparse in the DCT domain
has to be recovered (see [39]). Signals’ lengths, number of
measurements, and network specifications that we assume (see
Table II) are taken from [8, Table 1]). We consider Erdos-
Rényi (ER) and random geometric graphs (Geo), respectively
with connectivity parameters 0.25, 0.75 and 0.5, 0.75. The
setting that we consider is then envisaged in [8, Section V],
the unique differences being in the different realizations for
the random graphs and in the number of instances: our results
are averaged over 100 instances, while in [8] 5 runs were
performed.
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Figure 3. Noise-free compressed sensing: probability of success over a ring (left) and over a random geometric graph with radius 0.75 (right) as a function
of mN

Table III
SPARCO TESTS: TOTAL NUMBER OF SENT VALUES TO CONVERGE. BHT AND GHT CONVERGE TO THE TRUE SIGNAL x? , WHILE AHT CONVERGES TO A

STATIONARY POINT (WHICH IS INDICATED BY ?). A SUBSTANTIAL REDUCTION OF SENT VALUES IS OBTAINED WITH RESPECT TO DIHT [8]

.

Accuracy → 10−2 10−5

BHT mean BHT min - max GHT mean GHT min - max BHT mean BHT min - max GHT mean GHT min - max
Sparco 902

ER p = 0.25 1.67×104 15768 - 18108 1.71×104 16110 - 18300 4.27×104 41616 - 43362 4.31×104 39492 - 45054
ER p = 0.75 2.72×104 25944 - 29652 2.77×104 26994 - 28482 5.07×104 48414 - 54300 5.24×104 50826 - 53580
Geo d = 0.5 2.30×104 19104 - 26070 2.30×104 20634 - 24456 4.72×104 44364 - 50586 4.87×104 45408 - 50424
Geo d = 0.75 2.63×104 24168 - 28998 2.68×104 26244 - 27372 4.94×104 44676 - 53694 5.14×104 50250 - 52398

Sparco 7

ER p = 0.25 1.82×105 165360 - 188760 1.57×105 133200 - 182440 3.79×105 359240 - 391840 3.67×105 341040 - 395600
ER p = 0.75 1.89×105 178600 - 203360 1.73×105 159960 - 184560 3.74×105 362560 - 396040 3.56×105 340960 - 372440
Geo d = 0.5 1.66×105 157640 - 173080 1.42×105 125040 - 152600 3.57×105 347880 - 372840 3.38×105 314560 - 352480
Geo d = 0.75 1.76×105 160240 - 188480 1.70×105 156640 - 178760 3.62×105 334400 - 383760 3.57×105 344360 - 366080

AHT? mean AHT? min - max DIHT AHT? mean AHT? min - max DIHT
Sparco 902

ER p = 0.25 4.58×104 36690 - 58254 2.32×106 3.02×105 290874 - 316698 5.67×106
ER p = 0.75 3.71×105 337524 - 402828 2.32×106 1.23×106 1204188 - 1254288 5.67×106
Geo d = 0.5 1.78×105 145758 - 233646 2.32×106 7.02×105 585984 - 785532 5.67×106
Geo d = 0.75 3.79×105 332460 - 434796 2.32×106 1.25×106 1122006 - 1333182 5.67×106

Sparco 7

ER p = 0.25 4.98×105 375320 - 623280 6.39×106 2.44×106 2252680 - 2632720 1.39×107
ER p = 0.75 1.70×106 1611440 - 1761160 6.39×106 6.80×106 6655040 - 6932000 1.39×107
Geo d = 0.5 8.29×105 607840 - 1002960 6.39×106 4.43×106 3680560 - 4894320 1.39×107
Geo d = 0.75 1.94×106 1655360 - 2444440 6.39×106 7.54×106 6838160 - 8961760 1.39×107

In Table III we present our experimental results of the
implementation of AHT, BHT, GHT, and DIHT on Sparco
7 and Sparco 902. As in [8, Section V.C], (a) algorithms are

stopped at the time T such that
√∑

v∈V‖xT
v −x?‖22

N‖x?‖22
< tol, with

tol = 10−2 or tol = 10−5; (b) x? is the true original signal
or the stationary point to which the algorithm converges. In
the following, we will show that not only AHT, but also BHT
and GHT are always convergent in this setting, which makes
unnecessary to fix an upper limit of iterations.

As in [8], in the implementation of DIHT we have con-
sidered τ = 1

2.01 . The results that we obtain (in which we
neglect the communications necessary to build the spanning
tree) are substantially consistent with those presented in the
original paper. It should be noted that the number of sent
values for DIHT does not depend on the given topology, as
communications are performed on the spanning tree which
always has N − 1 edges. The number of transmitted values is

then (N+1)(2k+n)T , where T is the number of iterations to
get convergence, 2k is the number of values required to diffuse
the current k-sparse estimate from the root to the leaves, while
n is the length of the non sparse gradients that are accumulated
and sent from the leaves to the root.

Concerning AHT, BHT. and GHT, we have fixed τ = 0.01.
For the Sparco 7 problem, no particular initialization is re-
quired, and the initial estimates are fixed to zero. For Sparco
902, instead, we assume that before starting the iterative proce-
dure, each node v computes xv(0) = σk

[∑
w∈Nv

τAT
wyw

]
(if

connectivity is high, the sum can be reduced over a selection of
neighbors). This initialization has been experimentally proved
to speed up the convergence. The total number of sent values
is evaluated as 2kT (

∑T
t=1 l(t) + I), where T is the total

number of iterations to get convergence, l(t) is the number
of used links at each time step (this number depends on the
nodes’ degree for AHT and BHT, while is simply 1 for GHT)



12

and I is the number of used links in case of initialization.
Notice that, as a difference from DIHT, only k-sparse vectors
are transmitted (from which the coefficient 2k), as each node
performs hard thresholding before transmitting.

We remind that in principle BHT and GHT may not
converge, and in particular may not converge to x?; however,
for Sparco 7 and 902 considered in Table II, we always observe
convergence to x?, no matter which communication topology
is assumed. In the table, we show mean, the minimum and the
maximum number of sent values we have obtained over 100
runs (for each run, a different topology is generated). We point
out that BHT, GHT, and DIHT converge to the true signal,
while AHT converges to a stationary point different from x?

(this fact is highlighted by a ? in Table III).
In Table III we can appreciate the gain obtained by AHT,

BHT, and GHT with respect to DIHT: in the 100 runs we
consider, the number of sent values is always smaller using
our methods, which are then expected to outperform also CB-
DIHT, D-ADMM and subgradient methods, according to the
results in [8].

We finally remark that AHT and BHT require less sent
values over less connected topologies. This means that a
limited collaboration, which reduces the number of used links
at each iteration step, does not necessarily slow down the total
algorithms’ dynamics.

C. Example (continued): approach to the noisy case

When noise occurs, i.e., ξv 6= 0, the estimates provided
by GHT and BHT may oscillate and not converge in a
deterministic sense. This is not surprising, as x? is no more a
fixed point of the dynamics being f ls

v (x?) > 0 for all v ∈ V .
However, simulations show that the oscillations asymptoti-
cally concentrate around a mean value that approximates x?.
Therefore, oscillations can be smoothed out performing a time-
averaging operation as in [40], which is reported in Algorithm
5 and must be added as last instruction in Algorithms 3 and
4. This inner-loop just requires that each agent individually
stores the number of times it has woken up in the variable
κv(t) and uses it to construct a time-averaged estimate x̃v(t);
no knowledge of global clocks or any other global variables
is needed.

An example is presented in [41, Figure 3], where the
smoothing effect can be appreciated: for any v, x̃v(t) con-
verges in a neighborhood of x?. The analysis of the ergodicity
of the dynamics Algorithm 4 in case of noisy measurements
and, consequently, the convergence of x̃v(t) is left for future
research. We refer to [37] for an overview of ergodic dynamics
over networks.

It is also worth mentioning that different implementations
have been proposed to smooth the oscillations of a dynamical
system and guarantee the almost sure convergence of the
system. In [42] this goal is achieved using diminishing step-
sizes, which damp the gradient step in the long run, while
maintaining it active for a sufficiently long time. A thorough
comparison of the latter approach with GHT is an interesting
topic for future research.

Algorithm 5 Smoothing procedure
Require: θ(t) = (v, w), xv(t+ 1), xw(t+ 1)

1: κv(t+ 1) = κv(t) + 1
2: κw(t+ 1) = κw(t) + 1
3: κh(t+ 1) = κh(t) for any h 6= v, w
4: x̃v(t+ 1) = 1

κv(t+1) (κv(t)x̃v(t) + xv(t+ 1))

5: x̃w(t+ 1) = 1
κw(t+1) (κw(t)x̃w(t) + xw(t+ 1))

6: x̃h(t+ 1) = x̃h(t) for any h 6= v, w

VII. CONCLUDING REMARKS

In this paper, we have presented distributed, randomized
algorithms for in-network optimization under sparsity con-
straints, which dramatically reduce the number of necessary
transmissions and overcome synchronization issues. The al-
gorithms are shown to converge almost surely to the right
solution under some conditions, which have been investigated
in a number of simulations.
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APPENDIX

The Appendix is devoted to the proof of Theorem 6, which
requires some intermediate steps. In what follows, we indicate
by {θ(t)}t∈N the sequence of activated nodes for AHT.

Lemma 2. Let X(0) ∈ ΣNk and {X(t)}t∈N be the sequence
generated by AHT and let {fv}v∈V satisfy Assumption 2. If,
at a certain time step t, θ(t) = v, then the AHT iterate satisfies
the following relation:

〈∇fv(xv(t)), xv(t+ 1)− xv(t)〉 ≤ −
1

2τ
‖xv(t+ 1)− xv(t)‖2

− 1

τd

∑
w∈Nv

〈xv(t)− xw(t), xv(t+ 1)− xv(t)〉.

Proof. Since θ(t) = v, we have x`(t + 1) = x`(t),∀` 6= v
and xv(t + 1) = σk(xv(t) − τ∇fv(xv(t))). The assertion is
obtained applying Lemma 1.

Lemma 3. Let Assumption 4 hold, and let X(0) ∈ ΣNk
and {X(t)}t∈N be the sequence generated by AHT and let
{fv}v∈V satisfy Assumption 2. Then, given L = maxv Lv , for
any t ∈ N

F (X(t))−F (X(t+ 1)) ≥ (1/d− τL)

2τ
‖X(t+ 1)−X(t)‖2F .

Proof. Let us suppose that θ(t) = `. Then the regularity of
the graph implies that

F (X(t+ 1)) =
∑

v∈V\{`}

[
fv(xv(t+ 1))

+
1

4τd

∑
w∈Nv\{`}

‖xv(t+ 1)− xw(t+ 1)‖2
]

+ f`(x`(t+ 1)) +
1

2τd

∑
w∈N`\{`}

‖x`(t+ 1)− xw(t+ 1)‖2

=
∑

v∈V\{`}

[
fv(xv(t)) +

1

4τd

∑
w∈Nv\{`}

‖xv(t)− xw(t)‖2
]

+ f`(x`(t+ 1)) +
1

2τd

∑
w∈N`\{`}

‖x`(t+ 1)− xw(t)‖2

where the multiplying factor 1/(2τd) in the last equation
follows from (8). From Assumption 2 and the definition of
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L we obtain

F (X(t+ 1)) ≤

≤
∑

v∈V\{`}

fv(xv(t)) +
1

4τd

∑
w∈Nv\{`}

‖xv(t)− xw(t)‖2


+ f`(x`(t)) + 〈∇f`(x`(t)), x`(t+ 1)− x`(t)〉

+
L

2
‖x`(t+ 1)− x`(t)‖2 +

1

2τd

∑
w∈N`\{`}

‖x`(t)− xw(t)‖2

+
1

τd

∑
w∈N`\{`}

〈x`(t)− xw(t), x`(t+ 1)− x`(t)〉

+
1

2τ

d− 1

d
‖x`(t+ 1)− x`(t)‖2

= F (X(t)) + 〈∇f`(x`(t)), x`(t+ 1)− x`(t)〉

+
L

2
‖x`(t+ 1)− x`(t)‖2

+
1

τd

∑
w∈N`\{`}

〈x`(t)− xw(t), x`(t+ 1)− x`(t)〉

+
1

2τ

d− 1

d
‖x`(t+ 1)− x`(t)‖2.

Finally, applying Lemma 2, we get

F (X(t+ 1)) ≤ F (X(t)) +
Lτ − 1

2τ
‖x`(t+ 1)− x`(t)‖2

+
1

2τ

d− 1

d
‖x`(t+ 1)− x`(t)‖2

= F (X(t)) +
Lτ − 1/d

2τ
‖x`(t+ 1)− x`(t)‖2.

We conclude that

F (X(t+ 1)) ≤ F (X(t)) +
Lτ − 1/d

2τ
‖X(t+ 1)−X(t)‖2F

being xv(t+ 1) = xv(t), ∀v 6= `.

Using this result, we can establish that two successive
iterations of AHT become closer and closer. If AHT is
executed with finite precision, it will converge numerically
(when the distance between two consecutive estimates is below
the machine epsilon, the algorithm reads the same value).

Proposition 3. Let X(0) ∈ ΣNk and {X(t)}t∈N be the
sequence generated by AHT , and let {fv}v∈V satisfy Assump-
tion 2. If τ < 1/(dL) with L = maxv∈V Lv , then

1) there exists 0 < α < ∞ such that for all T ≥ 0∑T
t=0 ‖X(t+ 1)−X(t)‖2F ≤ α;

2) limt→∞ ‖X(t+ 1)−X(t)‖2F = 0.

Proof. Let us consider the sum over time

T∑
t=0

(F (X(t))− F (X(t+ 1)))

= F (X(0))− F (X(T + 1)) ≤ F (X(0))− c

where the last inequality follows from the fact F is lower
bounded by a constant c =

∑
v κv . This bound holds for all

T ≥ 0. From Lemma 3 we have, for all T ≥ 0,

1/d− τL
2τ

T∑
t=0

‖X(t+ 1)−X(t)‖2F

≤
T∑
t=0

(F (X(t))− F (X(t+ 1)))

≤ F (X(0))− c.

Since F (X(0)) is finite, this proves 1) with α =
2τ(F (X(0)) − c)/(1/d − τL). It should be noted that{∑T

t=0 ‖X(t+ 1)−X(t)‖2F
}
T∈N

is monotonic increasing
and upper bounded. We evince that it admits limit for T →
+∞.

Proof of Theorem 6
1) (Accumulation points – τ -stationary points) Let X̃ be an

accumulation point of the sequence {X(t)}t∈N, we want to
prove that X̃ is a τ -stationary point for (6). From definition
of accumulation point, there exists a subsequence {X(ts)}s∈N
converging to X̃ [43]. Since from Proposition 3

lim
s→∞

F (X(ts))− F (X(ts + 1)) = 0

then, due to the continuity of the function F , lims→+∞X(ts+
1) = X̃ . If the network is uniformly persistent (see Definition
4), all the nodes are activated infinitely many times. Let
{t`}`∈N be the sequence, for which v has been updated . If we
consider j ∈ supp(x̃v) then ∀ε ∈ (0, |x̃jv|) there exists `0 such
that for all ` ≥ `0 it holds |xjv(t`)− x̃jv| < ε. This implies that
j ∈ supp(xv(t`)) and j ∈ supp(xv(t` + 1)) for all ` ≥ `0.
Therefore, from line 4 of Algorithm 2, we have ∀` > `0

xjv(t` + 1) =
1

d

∑
w∈Nv

xjw(t`)− τ∇jfv(xv(t`)).

Taking ` go to infinity, the fact that {∇fv(x)}v∈V are
Lipschitz-continuous implies that ∀v ∈ V

0 ≤ ‖∇fv(xv(t`))− τ∇fv(x̃v)‖ ≤ Lv‖xv(t`)− x̃v‖ → 0,

and, consequently, we obtain for all j ∈ supp(x̃v)

x̃jv =
1

d

∑
w∈Nv

x̃jw − τ∇jfv(x̃jv). (14)

Let us consider now the zero elements of x̃v , i.e. j /∈
supp(x̃v). We want to prove that if j /∈ supp(x̃v)

1

d

∑
w∈Nv

x̃jw − τ∇jfv(x̃jv) < rk(x̃v)

(see (1) for the definition of r). Two scenarios have to be
considered: (a) there exists a subsequence {t`s}s∈N of {t`}`∈N
such that j ∈ supp(xv(t`s + 1)) (b) there exists `1 such that
j /∈ supp(xv(t` + 1)) for all ` > `1. In the first scenario we
have

xjv(t`s + 1) =
1

d

∑
w∈Nv

xjw(t`s)− τ∇jfv(xv(t`s)).
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Moreover, if we let s go to infinity, using the fact that
{∇fv(x)}v∈V are Lipschitz-continuous, we obtain

x̃jv =
1

d

∑
w∈Nv

x̃jw − τ∇jfv(x̃v).

Since j /∈ supp(x̃v), then

1

d

∑
w∈Nv

x̃jw − τ∇jfv(x̃jv) = 0 < rk(x̃v).

In the second scenario, i.e. if there exists `1 such that j /∈
supp(xv(t` + 1)) for all ` > `1 then∣∣∣∣∣1d ∑

w∈Nv

xjw(t`)− τ∇jfv(xv(t`))

∣∣∣∣∣ < rk(xv(t` + 1))

and, letting ` go to infinity, we finally obtain∣∣∣∣∣1d ∑
w∈Nv

x̃jw −∇jfv(x̃jv)

∣∣∣∣∣ < rk(x̃v).

From Proposition 2 we conclude that X̃ is a τ -stationary point
of (6).

2) (Convergence) Since {fv}v∈V satisfy Assumption 3, we
obtain that there exists v ∈ V such that fv satisfies the αvk-
LSRHP with αvk > 0. From Lemma 3 and from Assumption
2 we have, for all t ∈ N,

F (X(0)) ≥ F (X(t)) ≥
∑

v∈V\{v}

κv + fv(xv(t))

then there exists c = F (X(0)) −
∑
v∈V\{v} κv such that for

all t ∈ N

c ≥ fv(xv(t)) ≥ fv(0) + 〈∇fv(0), xv(t)〉+
1

2
αvk‖xv(t)‖2

≥ fv(0)− ‖∇fv(0)‖‖xv(t)‖+
1

2
αvk‖xv(t)‖2.

We deduce that the sequence {xv(t)}t∈N is bounded.
In analogous way, for all t ∈ N,

F (X(0))−
∑
v∈V

κv ≥
1

2τd
‖xv(t)− xw(t)‖, ∀w ∈ Nv

hence also the sequences {xw(t)}t∈N, w ∈ Nv , are bounded.
Iterating the argument and by connectivity of the graph we
conclude that {xv(t)}t∈N is bounded for all v ∈ V . Finally, by
LaSalle invariance principle [44], we conclude that {X(t)}t∈N
converges to a τ -stationary point.
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