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Distributed recovery of jointly sparse signals
under communication constraints

Sophie M. Fosson? Javier Matamoros† Carles Antón-Haro† Enrico Magli?
? Department of Electronics and Telecommunications, Politecnico di Torino (Italy)

†Centre Tecnològic de Telecomunicacions de Catalunya, Barcelona (Spain)

Abstract—The problem of the distributed recovery of jointly
sparse signals has attracted much attention recently. Let us
assume that the nodes of a network observe different sparse
signals with common support; starting from linear, compressed
measurements, and exploiting network communication, each
node aims at reconstructing the support and the non-zero values
of its observed signal. In the literature, distributed greedy algo-
rithms have been proposed to tackle this problem, among which
the most reliable ones require a large amount of transmitted
data, which barely adapts to realistic network communication
constraints. In this work, we address the problem through a
reweighted `1 soft thresholding technique, in which the threshold
is iteratively tuned based on the current estimate of the support.
The proposed method adapts to constrained networks, as it
requires only local communication among neighbors, and the
transmitted messages are indices from a finite set. We analytically
prove the convergence of the proposed algorithm and we show
that it outperforms the state-of-the-art greedy methods in terms
of balance between recovery accuracy and communication load.

Index Terms—Joint sparsity, distributed algorithms, com-
pressed sensing, iterative thresholding, reweighted `1 minimiza-
tion, concave penalization.

I. INTRODUCTION

The recovery of jointly sparse signals has received great
attention in the last few years. By “jointly sparse” we mean
signals that are sparse (i.e., have few non-zero components)
with same support (i.e., the positions of the non-zero com-
ponents are common for all the signals). Measurements of
such signals are assumed to be taken by the nodes of a
network; given the measurements, the aim of each node is to
estimate the common support and eventually evaluate the non-
zero components. The study of this problem is motivated by
diverse applications, among which one of the most outstanding
is spectrum sensing in cognitive radio networks [1], [2], which
consists in the detection of the spectrum occupancy aimed to
the dynamic reallocation of unused frequencies; as described
in [2, Section III.D], in some cases this problem reduces to
the reconstruction of a common support. Other examples of
jointly sparse representations, just to name a few among the
most recent ones, arise from image features extraction [3],
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visual classification [4], speech recognition [5], and biometrics
recognition [6].

In several applications, measurements are linearly acquired
and compressed [1], [2], according to the distributed com-
pressed sensing (CS) paradigm [7], [8]. CS [9] states that a
sparse signal x ∈ Rn can be recovered from measurements
y = Ax where A ∈ Rm,n is a suitable matrix with m < n,
called sensing matrix. In a distributed context, the acquisition
is performed by a networked system: given a set V of nodes,
each v ∈ V has its own measurement yv = Avxv; the case
when the xv’s have common support is known as joint sparsity
model 2 (JSM-2, [8]). Concerning the recovery methods, cen-
tralized and distributed methods have to be distinguished. The
first ones assume the presence of a fusion center that gathers all
the information from the network (namely, measurements and
sensing matrices) and processes them to recover the signals.
In the case that all the sensing matrices are equal, these
methods can be recast in the multiple measurement vectors
framework (MMV) [10], for which theoretical recovery guar-
antees have been provided [10], [11]. More insight on the
recovery methods for MMV can be found in very recent papers
such as [12], [13]. The distributed recovery methods, instead,
perform the reconstruction in-network, with no fusion center,
only exploiting the computational and (local) communication
capabilities of the nodes. Distributed methods are remarkable
as (a) they do not need the presence of a fusion center,
which in many situations is not available or can be expensive
to reach in terms of transmit power (sensor networks are
often deployed over impracticable territories for environment
monitoring purposes); (b) they are more robust to failures: if a
fusion center breaks down, the recovery process stops, while if
a distributed algorithm is run in-network, typically the failure
of some nodes is tolerated.

The development of distributed recovery algorithms for
JSM-2 is our purpose. The literature on this argument is very
recent. First attempts [14], [2, Section III.D] went in the
direction of decentralizing group Lasso techniques [15], but
no convergence guarantees were provided. Distributed greedy
algorithms were then studied: in [16], distributed versions of
subspace pursuit (SP) and orthogonal matching pursuit (OMP)
were developed, the second one (called DiOMP) being more
promising in terms of recovery performance. The support
recovery accuracy of DiOMP is comparable to that of DiT in
[17], which is the first distributed algorithm based on iterative
thresholding for JSM-2. Almost at the same time, in [18] DC-
OMP 1 was proposed, which is very similar to DiOMP, but
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more accurate in the support detection. A second algorithm
was proposed in [18], named DC-OMP 2, which recovers
the support much more accurately than DC-OMP 1, at the
price of a greater communication load. To the best of our
knowledge, DC-OMP 1 and DC-OMP 2 represent the state of
the art in the framework of distributed algorithms for JSM-
2 and will be considered as benchmark in this work; in the
following, we will describe them more in detail. The aim
of this paper is to present a new approach to the distributed
recovery of jointly sparse signals, based on concave penaliza-
tion and reweighted `1 minimization. More precisely, we will
develop a distributed soft thresholding in which the threshold
is iteratively updated, based on the support estimate. With our
method, communication can be strongly reduced with respect
to DC-OMP 2 (with no performance loss), being limited to
the local communication of the indices of the components
that have switched from non-zero to zero or vice versa. In
other terms, our algorithm will be efficient even under strict
communication constraints, due to the network technology or
for energy saving purposes. Our algorithm will be proved
to converge to a minimum of suitable cost functional, and
performance will be shown via numerical simulations.

The paper is organized as follows. In Section II, we will
describe the model, and in Section III we will establish our
optimization problem. In Section IV, we will present and
discuss our algorithm. In Section V-A we will prove the
numerical convergence and the stabilization of the support
estimate, while the convergence of the non-zero components
will be discussed in Section V-B. Numerical results will be
then shown in Section VI, along with an analysis of the
transmission costs. Finally, some conclusions will be drawn.

Before proceeding, we anticipate some notation that will be
used throughout the paper.

A. Notation

We denote by 1 the indicator function: for any integer
n ≥ 1, 1 : Rn 7→ Rn is given by [1(x)]i = 1 if xi 6= 0,
while [1(x)]i = 0 if xi = 0, i = 1, . . . , n. 1 indicates the
column vector whose components are all equal to 1. We define
the l0-norm of a vector x ∈ Rn as ‖x‖0 = ‖1(x)‖22, or
equivalently ‖x‖0 = 1T1(x), where T indicates the transpose.
I is the identity matrix. Moreover, we call weighted lp-norm
of x the quantity ‖Wx‖p where W is a weight matrix, namely
a diagonal matrix with diagonal entries Wi > 0, i = 1, . . . , n.
Given a graph G = (V, E), for any node v ∈ V , Nv := {w ∈
V s.t. (v, w) ∈ E} is the neighborhood of v. Let dv be the
degree of v, say the number of neighbors of v, included v
itself. Given any variable xv associated with v, we indicate
its local average with an overline: xv := 1

dv

∑
w∈Nw

xw (we
remark that := denotes “is defined as”).

II. NETWORK MODEL

In this section, we describe the acquisition and communi-
cation model of interest.

We consider a network composed of V nodes, whose
connectivity is described by the graph G = (V, E) with
|V| = V . Accordingly, the node v can communicate with v′

if and only if {v, v′} ∈ E or, in other words, if v′ belongs to
its neighborhood set Nv .

Following the CS paradigm, each node observes a com-
pressed version of a k-sparse signal {x?v}v∈V ∈ Rn through a
set of linear measurements, namely

yv = Avx
?
v, v ∈ V (1)

where Av ∈ Rm×n (with m < n) and the signals {xv}v∈V
have the same support Ω, that is, for all v ∈ V , Ωv :={
i ∈ {1, . . . , n}|x?v,i 6= 0

}
= Ω. In the next, we will equiv-

alently refer to the support of xv as the binary vector 1(xv).
A measurement noise term can be added in (1) to have

a more realistic setting. If we assume an additive white
Gaussian noise (a popular choice in a number of applications),
the formulation and the approach to the problem do not
change with respect to the noiseless case, as we consider
the least squares paradigm, which in both cases considers the
minimization of the residual.

The ultimate goal of each node v ∈ V is the reconstruction
of its observed signal xv . A fusion center is not envisaged in
our model, thus the reconstruction task has to be performed
in-network by the nodes themselves. Moreover, we assume
that no information about Av and yv can be shared, e.g., for
privacy reasons and to reduce the amount of transmitted data.
Since the transmission load is often a dramatic drawback in
distributed procedures, we impose a second constraint on the
communication protocol: messages must belong to a finite set
of integers, specifically {1, . . . , n}. This should adapt to our
purpose: since the support is the common quantity, it should
be sufficient to share information about the support of each
component, which is a binary message. In other terms, for
each component i a node would communicate its status, that
is, if in its current estimate i is in the support or not; assuming
that the other nodes can store such information, it is sufficient
to send the value i when the status has changed. For each sent
message, we then need only blog2 nc+1 bits, which generally
is significantly smaller than the number of bits used to transmit
a real number, even if coarsely quantized.

Let us summarize these communication constraints.

Assumption 1. The communication over the network is local,
and only messages in {1, . . . , n} can be transmitted by each
node to the neighbors.

It is well known that, in the CS context, the challenge is
the identification of the signal support; once this is done, the
estimate of the non-zero components could be readily per-
formed through the classical least squares estimation (assumed
the number of measurements is larger than the sparsity). For
this motivation, in the literature [16], [18] the detection of
the signal support is approached separately. Our proposed
method instead will envisage both support and non-zero values
recovery in the same algorithm.

III. OPTIMIZATION PROBLEM

Given the network model presented in Section II, we now
describe our recovery problem in terms of an optimization
problem, that takes into account the network constraints of
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Assumption 1. Our final purpose is the development of a
distributed recovery algorithm that leverages iterated sharing
of information about the support.

In the context of sparse recovery, the `1 convex mini-
mization problem, known as Lasso, is very popular for its
mathematical feasibility. The principle behind Lasso is that
`1 norm well approximates the `0 norm and allows to trans-
form the recovery problem into a convex problem. Further,
reweighted `1 minimization [19], [20], [21] has been proposed,
which iteratively retunes the weight of the `1 norm based
on the current signal’s estimate. In this way, each component
is weighted according to its expectation of belonging to the
support. Different reweighting rules have been investigated in
the literature, and will be discussed later.

The reweighting principle seems to be suitable for dis-
tributed support detection: intuitively we can think of an `1-
reweighting minimization at each node, in which the reweight-
ing rule depends on the individual current estimate and on the
support information shared in the network. In other terms, we
aim for a decentralization of reweighted `1 minimization.

The rest of the section is devoted to develop this idea.
We start with a review on (centralized) concave penalization,
which is the setting where the `1 reweighting techniques are
originated. Afterwards, we will illustrate how to decentralize
this method, taking into account our model constraints (As-
sumption 1).

A. From Lasso to concave penalization

As mentioned before, the problem of sparse signals’ recov-
ery can be conceived as an `1 convex minimization problem,
known as Lasso:

min
x∈Rn

1

2
‖y −Ax‖22 + λ‖x‖1, λ > 0 (2)

where A ∈ Rm×n, and λ is a parameter to set. As already said,
the `1 norm has been shown to well approximate the `0 norm,
and has the great advantage of transforming the problem from
combinatorial to convex. However, Lasso has some drawbacks,
namely its estimate is always biased (proportionally to λ), and
conditions to have the oracle property (i.e., the capability of
exactly recovering the support) are strict [22], [23], [24]. This
has motivated the studies on different penalization techniques.
In particular, much interest has been devoted to concave
penalization techniques:

min
x∈Rn

1

2
‖y −Ax‖22 + λ

n∑
i=1

g(|xi|)

g : R+ → R+ concave, nondecreasing in |xi|.
(3)

The rationale behind this is that concave functions approx-
imate the `0 norm better than `1, as one can appreciate in
Figure 1. Many contributions on concave penalization come
from the statistical community, see, e.g., [22], [25], [26], [27],
[28], [29], [30]. In such papers, different concave g’s have
been proposed, and conditions to have the oracle property and
to reduce the Lasso bias have been studied, mainly in the
asymptotic case n→∞ [22], [25]. Experimental and theoret-
ical results attest that usually concave penalization outperforms

0
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Figure 1: Examples of popular concave penalization functions,
that are closer to `0 than `1. In this work, we focus on MCP.

Lasso [22], [28], [29]. In the context of underdetermined linear
systems, some works [19], [31] apply the concave penalization
to CS and matrix rank minimization with success.

The concave penalization problem (3) is not mathematically
straightforward: non-convexity makes it difficult to find global
solutions. However, in many cases local minima are precise
enough, and can be reached via iterative methods based on
linear local approximation (LLA) of g [27], [19], [31]. Given
a point zi ∈ R+, the key idea of LLA is to substitute
g(|xi|) around zi by its linearization g(zi) + g′(zi)(|xi| − zi);
thanks to concavity, g is always below its linearization, which
suggests the following procedure. Assuming that z is the
current estimate, we locally minimize (3) substituting g with
its linearization. Removing the constant terms, we obtain:

min
x∈Rn

1

2
‖y −Ax‖22 + λ

n∑
i=1

g′(|zi|)|xi|. (4)

Let us suppose that an estimate z = x(t) is provided at current
time t ∈ N. Then, we can perform alternated minimization on
(4):

x(t+ 1) = min
x∈Rn

1

2
‖y −Ax‖22 + λ

n∑
i=1

wi(t)|xi|

wi(t+ 1) = g′(|xi(t+ 1)|).
(5)

This turns out to be is an iterative reweighted `1 minimization
procedure. Such method has been proved to reach a local min-
imum of the concave penalization functional, and in practice it
is more accurate than Lasso global solution [27], [19], [31]. We
remark that no general guarantee of convergence for xi(t) is
provided, but specific results hold for specific g’s. For example
in [21], convergence is proved for g(|xi|) = (|xi|+ ε)p, with
p ∈ (0, 1) and small ε > 0.

In the literature, a variety of concave penalization functions
have been investigated. In [19] much attention is focused on
the case g(|xi|) = log(|xi| + ε), with small ε > 0. SCAD
[22] and MCP [28] instead propose continuous quadratic
penalizations: MCP is of the form g(xi) = α|xi| − βx2

i , for
|xi| < α

2β , α, β > 0, and constant otherwise; SCAD is like
MCP plus a `1 penalization term λ|xi| for small |xi|. In the
cited works, in-depth analyses and comparisons between the
different g’s are proposed.
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In conclusion, concave penalization provides us (a) a sparse
recovery setting that outperforms Lasso, and (b) low complex
algorithms, based on LLA, to find a solution. The LLA
algorithms are nothing but reweighted `1 schemes.

B. Decentralization under communication constraints

Our aim is to decentralize the problem (3) and the algo-
rithm sketched by (4)-(5) under communication constraints
(Assumption 1). First of all, we notice that the natural way
to write the optimization problem over the network is the
summation of the individual functionals (3) for each node
v ∈ V . Second, we observe that the penalization is strictly
linked to the support: as explained in [19], in (4) we would
desire larger wi’s for the zero components, up to the ideal case
when wi → ∞ for zero components, and wi → 0 for non-
zero components. Since here signals have common support,
it makes sense to compute g over a common variable of the
network, and the simplest choice is the mean. Summing up,
we have:

min
xv∈Rn

∑
v∈V

{
1

2
‖yv −Avxv‖22 + λ

n∑
i=1

g

(
1

V

∑
v∈V
|xv,i|

)}
.

Nevertheless, this would require global communication to
update w in the procedure (5), which is in contrast with
Assumption 1 for non-complete graphs. We then use the best
local approximation that we can conceive, that is, we substitute
1
V

∑
v∈V |xv,i| with the local sum 1

|Nv|
∑
u∈Nv

|xu,i|. The
corresponding functional is

min
xv∈Rn

∑
v∈V

{
1

2
‖yv −Avxv‖22 + λ

n∑
i=1

g

(
1

|Nv|
∑
u∈Nv

|xu,i|

)}
.

In this way, each v ∈ V will have its own weight wv , which
will be reweighted using only local collaboration.

Finally, according to Assumption 1 the transmission of real
valued messages (such as |xu,i|) is undesired. Therefore, we
impose that each node v cannot access xu, u ∈ Nv \ {v},
but only their best “binary approximation”, say 1(xu,i(t)).
We then substitute |xu,i| by 1(xu,i), and obtain our ultimate
minimization problem: given X = (x1, . . . , xV ), we write

min
xv∈Rn

F(X) (6)

where

F(X) =
∑
v∈V

{
1

2
‖yv −Avxv‖22 + λ

n∑
i=1

g
(
α|xv,i|+ 1(xv,i)

)}

and 1(xv,i) = 1
|Nv\v|

∑
u∈Nv\v 1(xu,i)

1. α > 0 is a tuning
parameter: since we are summing quantities that are physically
different (a magnitude |xv,i| and binary information), it could
be useful to balance their contributions, e.g. based on prior
information on the energy of the signal. In practice, we
have noticed that if each v adds also 1(xv,i), performance
improves; therefore, in the following we will use 1(xv,i) =

1
|Nv|

∑
u∈Nv

(1(xu,i)).

1We remark that 1(xu,i) is a function of |xu,i|, which guarantees that the
current g = g

(
α|xv,i|+ 1(xv,i)

)
is still a function of the absolute values.

Summing up, the LLA procedure applied to F(X) origi-
nates the following decentralized reweighted `1 minimization
procedure:

xv(t+ 1) = min
xv∈Rn

Fw(X)

wv,i(t+ 1) = g′
(
α|xv,i(t+ 1)|+ 1(xv,i(t+ 1))

) (7)

where Fw(X) is F(X) with wv,i(t)
[
α|xv,i|+ 1(xv,i)

]
in-

stead of g
(
α|xv,i|+ 1(xv,i)

)
.

Assuming that each v can store n bits for each one of its
neighbors, the neighbors are just required to broadcast the
message i when the status (0 or 1) of the component i has
changed in the current estimation, which fulfills Assumption
1.

Concerning the update of xv in (7), three tricky points arise
and will be discussed in next section. The minimization of
Fw(X) over xv:

1) is not a classical Lasso minimization due to the presence
of the terms 1(xv);

2) requires the local communication of the wv’s, which is
still in contrast with Assumption 1;

3) is too fast for our networked problem: we observed
in fact that the whole procedure converges after few
iterations. This is undesirable because it does not allow
propagation of the information over the network. We
will then make the procedure slower by not computing
the minimum, but just decreasing F with respect to xv ,
via an iterative thresholding step.

Before proceeding, we specify that in this work we will
focus on the following concave penalization function g:

g(|z|) =

{
β|z| − 1

2z
2 if 0 ≤ z < β

1
2β

2 otherwise. z ∈ R, β > 0 (8)

This g belongs to the family of MCP penalization functions
[28], and has been recently exploited in applications such as
wavelets [32, Equation 2.8] and Gaussian Bayesian networks
[33]. As explained in [28], MCP is appreciated as it minimizes
the maximum concavity. In Figure 1 we compare g in (8) to
other classical choices. Notice that when |z| ≥ β, g is constant
and more penalization is applied, hence β is a penalization
threshold that can be tuned based on the problem. With (8),
in (7) we have:

wv,i(t) = [β − α|xv,i(t)| − 1(xv,i(t)]+ (9)

where [z]+ = max{0, z}, z ∈ R.
The motivation to focus on (8) is twofold: on one hand,

experimental results are satisfactory (see Section VI); on the
other hand, the mathematical simplicity of (8) allows us to
provide a complete convergence analysis of xv(t) (see Section
V-B). In the next section, we discuss the update of xv(t) using
this g, and we finally state our algorithm.

IV. PROPOSED ALGORITHM

Let us tackle points 1), 2), and 3) underlined in the previous
section, that complicate algorithm (7). First of all, let us notice
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that we can separate the terms of Fw(X) that depend on single
xv’s, and we indicate them by Fw(xv):

Fw(xv) =
1

2
‖y −Avxv‖22 + λ

n∑
i=1

wv,iα|xv,i|

+ λ

n∑
i=1

1(xv,i)
∑
u∈Nv

wv,i
|Nu|

.

(10)

This formula highlights that each v ∈ V has to solve a Lasso
with an extra term, i.e., a weighted `0 norm, as anticipated
in point 1), Section III. In other terms, Fw(xv) has both `1
and `0 penalizations. Moreover, point 2) is now evident: the
transmission of the neighboring wu’s is necessary to compute
1(xv,i)

∑
u∈Nv

wv,i

|Nu| . In the next, we will use the notation
wv,i = 1(xv,i)

∑
u∈Nv

wv,i

|Nu| .
In order to face point 3), we replace the minimization step

with a decreasing step, that slows down the algorithm’s con-
vergence. Given the shape of Fw(xv), iterative thresholding is
a suitable choice for this purpose. In [34, Section 4.1], the soft
thresholding algorithm has been proved to decrease the Lasso
functional [34, Lemma 4.3] by showing that it iteratively min-
imizes a properly augmented functional, known as surrogate
functional. A similar property has been proved also for the
hard thresholding algorithm in [35], which decreases the `0
penalized functional. Here, we use the same scheme based on
the surrogate functional to develop an iterative thresholding
algorithm that decreases F . Due to the presence of both `1
and `0 terms, such procedure will merge soft and hard features.
We refer the interested reader to [36], [37] and to [12] for a
deeper insight into hard and soft/hard thresholding techniques,
respectively.

We remark that efficient methods like the alternating di-
rection method of multipliers (ADMM), [38], [39] cannot be
directly implemented due to the non-convexity of F . This will
be further elaborated in Sections IV-A and VI-F. On the other
hand, in the literature algorithms for the minimization of non-
convex, non-smooth problems have been recently presented
[40], [41], [42], [43], which here cannot be applied due to the
non-continuity of F .

Let B = (b1, . . . , bV ) ∈ Rn×V . We define the surrogate
functional as follows (see [34, Section 4.1.1] and [35, Section
2.2]):

R(X,B):=F(X)+
1

2

∑
v∈V

[
1

τ
‖xv − bv‖22 − ‖Av(xv − bv)‖

2
2

]
.

By defining zv := bv+τAT
v (yv−Avbv), the following equality

can be readily proved ([34, Section 4.1.1]):

‖yv −Avxv‖22 +
1

τ
‖xv − bv‖22 − ‖Av(xv − bv)‖

2
2 =

=
1

τ
‖xv − zv‖22 + const

where const is a term not depending on xv . Hence, we can
write the surrogate of each Fw(xv) as:

Rw(xv,i) =
1

2τ
(xv,i − zv,i)2 + λ [αwv,i|xv,i|+ 1(xv,i)wv,i] .

(11)

Following the procedure in [34, Section 4.1.1], we minimize
Rw(xv,i) in (11) with respect to xv,i. We distinguish two
cases.

1) |zv,i| ≤ wv,i: argminR(xv,i) = 0.

In fact, if |zv,i| ≤ wv,i and xv,i 6= 0, the derivative of
Rw(xv,i) is xv,i − zv,i + sgn(xv,i)w, which is positive
for xv,i > 0, and symmetrically negative for xv,i < 0.
We then have the infimum points limxv,i→0+Rxv,i

=
1
2τ z

2
v,i + λwv,i ≥ 1

2τ z
2
v,i = Rw(0), which shows that

the global minimum is in zero, as depicted in Figure
2.(a).

2) |zv,i| > wv,i: if (|zv,i| − wv,i)
2 < 2τλwv,i,

argminR(xv,i) = zv,i − wv,isgn(xv,i); otherwise,

argminR(xv,i) = 0.

In fact, if |zv,i| > wv,i and xv,i 6= 0, the derivative
of Rw(xv,i) is zero (and we have a minimum) for
xv,i = zv,i − wv,isgn(xv,i), that is, xv,i = zv,i − wv,i
if zv,i > wv,i, and xv,i = zv,i + wv,i if zv,i < −wv,i.
This is not sufficient: this minimum has to be compared
with Rw(0), which, due to discontinuity, should be
lower (see Figure 2.(b)-(c)) This occurs for (|zv,i| −
wv,i)

2 < τλwv,i, since Rw(zv,i − wv,isgn(xv,i)) =
1
2τwv,i(2|zv,i| − wv,i) and Rw(0) = 1

2τ z
2
v,i.

We observe that, despite the discontinuity in zero, the case
|zv,i| ≤ wv,i is analogous to soft thresholding. That is, the
presence of the 1(xv) term does not change the position of
the minimum (Figure 2.(a)). However, when |zv,i| > wv,i
the term 1(xv) induces to choose zero more often than soft
thresholding.

Hence, our procedure to get the minimum of R(xv,i) is
given by the mixed soft/hard thresholding. operator Sw,a :
R 7→ R, defined as follows:

Sw,a(x) :=

{
0 if |x| ≤ w or (x− w)2 ≤ a
x− sgn(x)w otherwise.

(12)

This is a slight modification of the well-known soft threshold-
ing operator Sw : R 7→ R

Sw(x) :=

{
0 if |x| ≤ w
x− sgn(x)w otherwise.

(13)

Accordingly, we can write

x+
v,i = argmin

xv,i∈R
R(xv,i) = Swv,i,wv,i(zv,i)

which, if 1
τ > ‖Av‖22, implies that ([34, Section 4.1] for

details)

X = argmin
B∈Rn×V

R(X,B). (14)

Finally, we conclude that F decreases:

F(X) =R(X,X) ≥ R(X+, X) (15)
≥ R(X+, X+) = F(X+) (16)

where X+ = (x+
1 , . . . , x

+
V ). The inequality R(X,X) ≥

R(X+, X) is guaranteed by LLA [19], [31]. This will be used
in next section to prove the convergence.
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0

z2
v,i

R(xv,i)

(a) |zv,i| < wv,i

0 zv,i − wv,i

2zv,iwv,i − w2
v,i + wv,i

z2
v,i

(b) |zv,i| > wv,i, (zv,i − wv,i)
2 > wv,i

0 zv,i − wv,i

R(xv,i)

2zv,iwv,i − w2
v,i + wv,i

z2
v,i

(c) |zv,i| > wv,i, (zv,i − wv,i)
2 < wv,i

Figure 2: R(xv,i) (11) in the cases |zv,i| < wv,i (a) and |zv,i| > wv,i (b)-(c).

The procedure outlined above can be summarized as
follows: at each iteration step t, each node v computes
xv,i(t + 1) = Swv,i(t),wv,i(t)(zv,i(t)), for each i = 1, . . . , n,
where zv(t) = xv(t) + τAT

v

(
yv − Avxv(t)

)
; after that, if

1(xv,i(t+1)) 6= 1(xv,i(t)), then v transmits i to its neighbors.

In conclusion, this procedure solves points 1), 2) and 3)
in Section III by using iterative thresholding. However, we
observed that the soft/hard shrinkage operator Sw,a (12) tends
to oversupply sparsity, which affects the recovery accuracy.
To overcome this drawback, we propose to use (13) instead
of (12), that is, classical soft thresholding. As this may
increase Fw(X) (specifically, Fw(X(t + 1)) > Fw(X(t))
when xv,i(t) = 0, see Figure 3.(c)), we allow the switch from
zero to non-zero only for a finite number of times, thus keeping
the overall decreasing behavior. In other words, for a finite
transient, we perform soft thresholding; after this transient,
the zero components are forced to remain zero. In summary,
we update xv,i(t) as follows (see Figure 3):

• if xv,i(t) 6= 0, we apply soft thresholding: xv,i(t+ 1) =
σwv,i

(zv,t)(t). This does not guarantee to get the global
minimum of R(xv,i), but the global minimum or the
second minimum: in both cases, we always decrease R;

• if xv,i(t) = 0, xv,i(t + 1) = σwv,i(zv,t)(t) for a
finite number of times (during which R might increase);
afterwards, xv,i(t+ 1) = 0.

We remark again that this transient suboptimal modification
i) avoids the transmission of real values, ii) improves the
performance (see Section VI), and iii) does not affect the
convergence properties of the algorithm (see Section V-A).

Bearing all the above in mind, our distributed procedure for
the recovery of jointly sparse signals based on IST, DJ-IST in
short, is described in Algorithm 1.

It is worth noting that DJ-IST merely requires to transmit
information about the support, specifically, the indices of
the components that switched from zero to non-zero and
vice versa. Since the sensor signals xv’s are in Rn, DJ-IST
transmits blog2 nc+ 1 bits for each switched component.

Algorithm 1 DJ-IST

1: Initialize variables:
For all v ∈ V , xv(0) = AT

v yv; sv(0) = [1, 1, . . . , 1]T;
p ∈ N (finite); ε > 0, τ > 0, λ > 0, α > 0

2: t = 0
3: for all v ∈ V do
4: zv(t) = xv(t) + τAT

v

(
yv −Avxv(t)

)
5: for all i = 1, . . . , n do
6: Update threshold wv,i(t) = [β − α|xv,i(t)| −

1(xv,i(t)]+
7: Update signal estimate:

xv,i(t+ 1) = Sλαwv,i(t)(zv,i(t))
8: if xv,i(t) = 0 and cv,i(t) ≥ p then
9: xv,i(t+ 1) = 0

10: end if
11: if xv,i(t) = 0 and xv,i(t) 6= 0 then
12: cv,i(t+ 1) = cv,i(t) + 1
13: end if
14: if 1(xv,i(t+ 1)) 6= 1(xv,i(t)) then
15: Transmit index i to the neighbors
16: end if
17: end for
18: if ‖xv(t+ 1)− xv(t)‖2 < ε then
19: Node v stops
20: else
21: t←− t+ 1
22: end if
23: end for

A. Other iterative algorithms for Lasso

At the beginning of the section, the use of iterative thresh-
olding was naturally motivated by its adaptability to decrease
the non-convex functional F in (6), which presents `1 and `0
penalization terms.

In the literature, methods faster than iterative thresholding
have been proposed to solve convex problems as Lasso.
For example, the alternating direction method of multipliers
(ADMM, [38], [39]), and the fast iterative thresholding algo-
rithm (FISTA, [44]) have been shown to be very efficient. In
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xv,i(t+1) xv,i(t)

R(xv,i)

(a) |zv,i(t)| < wv,i(t)

xv,i(t)=0 xv,i(t+1) xv,i(t)6=0

R(xv,i)

(b) |zv,i(t)| > wv,i(t),
(zv,i(t)−wv,i(t))

2 > wv,i(t)

xv,i(t)=0 xv,i(t+1) xv,i(t)6=0

R(xv,i)

(c) |zv,i(t)| > wv,i(t),
(zv,i(t)−wv,i(t))

2 < wv,i(t)

Figure 3: Dynamics ofR(xv,i(t)) when xv,i(t+1) = Swv,i
(xv,i(t)). The arrows depict the movements of xv,i(t) andR(xv,i(t)).

In the case (c), if xv,i(t) = 0, R(xv,i(t)) < R(xv,i(t + 1)) (orange arrow). This increasing movement is allowed only for a
finite number of times, after which if xv,i(t) = 0, we fix xv,i(t+ 1) = 0. In this way, the definitive behavior of R(xv,i(t)) is
non-increasing.

principle, such methods cannot be applied to (6) due to the
non-convexity of F . Through this section, however, we have
reduced the step that updates X(t) to an IST step (with forced
stabilization of the null components after a finite transient),
which means that we simply decrease the Lasso part of F ,
and the role of `0 is only to stop the switches from zero to
non-zero.

From this perspective, we could consider again methods as
ADMM and FISTA to update X(t). However, we observed
that such methods are somehow too fast for our problem. In
fact, if the procedure is too fast, nodes tend to estimate their
signals support based on their local measurements, i.e., without
taking into account other nodes information. This causes some
transient instability in which many support switches occur,
which implies many more transmissions, thereby penalizing
the communication cost. In conclusion more conservative
methods ultimately reduce the number of transmissions, which
makes the slow IST more efficient. In order to illustrate these
observations, in Section VI-F we will show some numerical
simulations based on ADMM.

V. CONVERGENCE OF DJ-IST

In this section, we prove that DJ-IST converges. We first
show the the numerical convergence and the support stabiliza-
tion, and we then exploit them to prove the point convergence.

A. Numerical convergence

We now prove the numerical convergence (or asymptotic
regularity) of the sequence X(t) produced step by step by
Algorithm 1, namely

lim
t→+∞

‖X(t+ 1)−X(t)‖2F = 0

We remark that for the convergence analysis we do not take
into consideration the fact that for a finite number of steps,
increases of R are allowed, as they clearly have no effect on
the asymptotic properties of the algorithm. From now on, we

then consider t ≥ t0, where t0 is any fixed time step after the
finite transient.

Proposition 1. Given the sequence X(t) generated by DJ-IST
(Algorithm 1), {F(X(t))}t∈N for t ≥ t0 is non-increasing,
and admits the limit. Moreover, if τ < ‖Av‖−2

2 for all v ∈ V ,
X(t) is numerically convergent.

Proof. By (15) and following discussion, for any for t ≥ t0,
F(X(t)) ≥ F(X(t+ 1)), that is, F(X(t)) is non-increasing.
As it is lower bounded (F(X) ≥ 0 for any X ∈ Rn×V ), then
it admits the limit. Hence, F(X(t))−F(X(t+ 1))→ 0. On
the other hand,

F(X(t))−F(X(t+ 1))

= R(X(t), X(t))−R(X(t+ 1), X(t+ 1))

≥ R(X(t+ 1), X(t))−R(X(t+ 1), X(t+ 1))

≥
∑
v∈V

(xv(t+ 1)− xv(t))T(I − τAT
vAv)(xv(t+ 1)− xv(t))

≥ 0.

The last inequality is due to the positive definiteness of I −
τAT

vAv guaranteed by the hypothesis τ < ‖Av‖−2
2 . We thus

conclude that ‖xv(t+ 1)− xv(t)‖22 → 0 for any v ∈ V and
that limt→+∞ ‖X(t+ 1)−X(t)‖2F = 0.

Furthermore, we can easily observe that support stabilizes
at a finite time.

Theorem 1. There exists a time t1 ∈ N at which the sequence
1(X(t)) stabilizes, that is, 1(X(t)) is constant for any t ≥ t1.

Proof. After a finite number of allowed switches, no more
switches from zero to non-zero are possible for DJ-IST, say
xv,i(t) = 0, then xv,i(t + 1) = 0 , for any v ∈ V , 1 =
1, . . . , n. This is sufficient to state that the support stabilizes.
In particular, we call t1 the time at which all the components
of all the nodes have stabilized their status.
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Alternatively, this result could be easily deduced from
Proposition 1. Since X(t) numerically converge and the sup-
port stabilize, we notice that also W (t) numerically converge.

B. Point convergence

We now leverage numerical convergence and support stabi-
lization to prove rigorous point convergence.

Once the support estimation has stabilized, our main goal
should be considered achieved. No more communication is
necessary and the signal estimate (say, the estimate of the
non-zero values) could be performed by each node singularly
by a least squares method, as done in [18].

However, with DJ-IST it is not necessary to split the
recovery into two different procedures, one for the estimate of
the support and one for the estimate of the non-zero values.
Notice that splitting the recovery into two different procedures
is more critical when k is not known, as there is no secure
criterion to establish when the support has stabilized. We
now show that one can run DJ-IST also after the support
stabilization and get the convergence of X(t). In the previous
section, we have already proved the numerical convergence,
which provides a practical stopping criterion: at any t ∈ N,
each node should store xv(t) and xv(t−1) and stop when the
distance between the two iterates is below a fixed threshold
depending on the machine epsilon. In this section, we propose
a rigorous point convergence proof and give a description of
the convergence points.

Let us consider the system evolution after support sta-
bilization. First of all, we notice that the problem is no
more distributed: communications actually stop and each node
v ∈ V proceeds individually.

As the zeros are now fixed, let us now describe the evo-
lution of the non-zero components of each v. Let us call
Ω̂v ⊂ {1, . . . , n} the active set, i.e. the estimated support for
node v, which is constant after support stabilization. We define
the partition: Ω̂v = Ω̂v,1(t) ∪ Ω̂v,2(t) where

Ω̂v,1(t) := {i ∈ {1, . . . , n} s.t. wv,i(t) > 0}

and Ω̂v,2 := Ω̂v \ Ω̂v,1, that is,

Ω̂v,2(t) = {i ∈ {1, . . . , n} s.t. wv,i(t) = 0}.

First, we remark that the signs of the non-zero components
are definitely constant. To see this, suppose the sign changes
in the next iteration, e.g. xv,i(t) > 0 and xv,i(t + 1) < 0.
Given the numerical convergence, large deviations between
consecutive iterations are not possible, and thus we expect
xv,i(t) ∈ Ω̂v,1(t), so that xv,i(t) <

β−1(xv,i(t))
α . We have

then wv,i(t) > 0, and in particular the more xv,i(t) is
close to zero, the more wv,i(t) is large, then we can con-
sider wv,i(t) ≥ ε > 0. To switch the sign we must have
zv,i(t) > αwv,i(t) and zv,i(t + 1) < −αwv,i(t); however,
this is not possible as zv,i(t) numerically converges as well,
and after a finite time it cannot overstep an interval of length
2αwv,i(t) > 2ε > 0. Following this rationale, an intermediate
step in which |zv,i(t)| < αwv,i(t) is expected, which entangles
xv,i(t) into zero.

Bearing this in mind, the evolution of the non-zero compo-
nents can be expressed as follows. Let AΩ̂v

be Av limited to
the columns that belong to Ω̂v . We have

Γv :Rk̂v 7→ Rk̂v

Γv(x) = Mv(x)x+ cv(x)
(17)

where

Mv(x) ∈ Rk̂v×k̂v , Mv(x) = α2Dv(x) + Iv − τAT
Ω̂v
AΩ̂v

cv(x) ∈ Rk̂v , cv(x) = −Dv(x)αsgn(x)(β − 1̂v) + τAT
Ω̂v
yv

and Iv is the identity matrix of dimensions k̂v × k̂v; Dv(x) is
the binary diagonal matrix which has a 1 in position (i, i) if
xv,i ∈ Ω̂v,1, and zero otherwise; 1̂v,i = 1(xv,i(t1)), where t1
is the support stabilization time, then 1̂v is constant.
Mv(x) is positive definite for any x ∈ Rk̂v , and whenever

a component of xv is in Ω̂v,1, the transition matrix Mv(x)
is expansive if AT

Ω̂v
AΩ̂v

has not maximum rank. Iterating
Γv(x) = Mv(x)x + cv(x) we then expect that all the
components of xv will blow up at infinity, but actually this is
not the case because when |xv,i| > β−1̂v,i

α , we move to regime
Ω̂v,2, in which the system turns out to be a simple gradient
descent that converges to a minimum of ‖AΩ̂v

x − yv‖. This
proves the following Lemma.

Lemma 1. For any v ∈ V , t ∈ N, xv(t) is bounded.

The dynamical system of (17) is a switched linear system:
when xv,i(t) switches from Ω̂v,1 to Ω̂v,2, the entry (i, i) of
Dv switches from 1 to 0, and vice versa. Possible oscillations
between the two regions make the convergence proof more
complicated and technical. To simplify it, we do the following
realistic assumption.

Assumption 2. For any v ∈ V and t ∈ N, max |xv,i(t)| <
β−1̂v,i

α , that is, xv,i(t) ∈ Ω̂v,1.

This assumption is commonly fulfilled as generally we set
α much smaller than β. Therefore, |xv,i(t)| ≥ β−1̂v,i

α implies

F(X)(t) of the order of β−1̂v,i

α , which is very high. For
example, in our simulations (Section VI), we set α = 5 ·10−4

and β = 1.1, which implies F(X(t)) of order 106 for
|xv,i(t)| ≥ β−1̂v,i

α . Therefore, it suffices to set a reasonable
initial condition to have F(X(0)) smaller than such values:
since F(X(t)) is not increasing, this guarantees that |xv,i(t)
will never exceed β−1̂v,i

α .
Under Assumption 2, the evolution of our system is simply

linear:

Γv :Rk̂v 7→ Rk̂v

Γv(x) = Mvx+ cv
(18)

where

Mv = (α2 + 1)Iv − τAT
Ω̂v
AΩ̂v

∈ Rk̂v×k̂v

cv = αsgn(x)(β − 1̂v) + τAT
Ω̂v
yv ∈ Rk̂v

From previous observations, we know that xv,i(t) is
bounded, so such Mv cannot be expansive. We therefore
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conclude that AT
Ω̂v
AΩ̂v

must have maximum rank. Assuming
that the components of Av are randomly chosen according
a continuous distribution, AT

vAv has rank m; since AT
Ω̂v
AΩ̂v

has dimension k̂v , we conclude that it can have maximum rank
k̂v only if k̂v ≤ m. We observe that this makes sense, as this
is the case for iterative soft thresholding [45], which is the
basis for our algorithm. This condition is necessary but also
sufficient to have maximum rank, provided that τAT

Ω̂v
AΩ̂v

has
no eigenvalues equal to α2 (if Av is random, this occurs with
probability 0). Moreover, if α is sufficiently small, we have
‖Mv‖2 < 1

Finally, we have the following convergence theorem.

Theorem 2. For a sufficiently small α, the sequence X(t)
generated by DJ-IST (Algorithm 1) converges to a local
minimum of F(X). Moreover, for each v ∈ V , the non-zero
components of xv(t) converge to

[Iv−Mv]
−1cv = [τAT

Ω̂v
AΩ̂v
−α2Iv]

−1[αsv(β−1̂v)+τAT
Ω̂v
yv]

(19)
where sv = sgn(xv(t1)), t1 being the support stabilization
time.

Proof. For a sufficiently small α, ‖Mv‖2 < 1, that is, the map
(18) is contractive. Therefore, a fixed point exists and conver-
gence to it is guaranteed (no matter which is the initial point)
by the Banach fixed-point theorem. In particular, iterating the
map (18) we obtain a geometric series that converges to (19).

This concludes the convergence of the non-zero compo-
nents, which along with support stabilization proved in Theo-
rem 1 gives the convergence.

We remark that the point (19) turns out to be the unique
minimum of

τ
∥∥∥AΩ̂v

x− yv
∥∥∥+

n∑
i=1

2βα|xi| −
1

2
α2x2

i

and, as a consequence, a local minimum of F(X). In fact,
if we perturb the non null components we increase F due to
the last statement, while if we perturb the zero components,
the indicator function switch to 1 and cause a sure increase of
F .

Regarding the convergence point (19), we observe that this
coincides with the true value if x?v = 1

αsv(β−1̂v), otherwise a
bias is present. This was expected as `1 minimum is known to
be bias proportionally to the the `1 weight. In our reweighted
`1 setting, however an accurate choice of β and α could reduce
this bias. Such optimization will be focus of our future work.

VI. NUMERICAL RESULTS

In this section, we show the results of some numerical
simulations and compare the performance of DJ-IST with the
state-of-the-art algorithms DC-OMP 1 and DC-OMP 2 [18].

A. DC-OMP 1 and DC-OMP 2

The rationale behind DC-OMP 1 [18, Algorithm 3] is the
following: each node performs a step of OMP and computes an
index candidate (by evaluating the largest correlation between

residual and columns of the sensing matrix) to add to the
support; the candidates are then locally shared, and the candi-
dates with more than one occurrence are added to the support,
except for the case that those candidates do not change the
support (in this case, each node introduces its own candidate);
if all the candidates have one occurrence, each node adds
its own candidate. A slight modification is considered when
the communication is complete. Notice that DC-OMP 1 is
very similar to DiOMP [16], with some differences in the
voting procedure, which makes DC-OMP 1 more reliable.
In DC-OMP 2 [18, Algorithm 4], instead, each node locally
shares not only the index candidate, but all the correlations
between residual and columns of its sensing matrix. The index
candidate is then chosen fusing the correlations and then
transmitted to all the network via multi-hop communication.
In DC-OMP 2 more information is shared with respect to DC-
OMP 1, then better performance can be expected.

The goal of this section is to numerically prove that DJ-
IST is a good trade-off between DC-OMP 1 and DC - OMP
2, in terms of support reconstruction accuracy and use of the
communication links.

B. Simulations setting

For all our experiments, the original signals x?v have joint
support generated uniformly at random, and the non-zero
elements are drawn from a standard Gaussian distribution. The
entries of the sensing matrices are generated according to a
standard Gaussian distribution as well, and then normalized by√
m. Results are averaged over 250 different runs, obtained

by generating 50 different sets of x?v and trying 5 different
sensing matrices for each. We stop the algorithm at time
T = min{t ∈ N s.t. |xv,i(t + 1) − xv,i(t))| < ε = 10−5,
for all v ∈ V, i = 1, . . . , n}. The parameters λ, α, β and
τ have been empirically set; in all our simulations, λ = 1,
α = 5 × 10−4, β = 1.1, τ = 2e − 2. The parameter p is not
actually fixed, as naturally few switches from zero to non-zero
occur (in all our simulations, we observed at most 9 switches).

C. Support recovery performance

We evaluate two performance metrics for the support: the
average support error (ASE), defined as

ASE =
∑
v∈V

‖1(x?v)− ω̂v‖0
nV

(20)

and the probability of exact support recovery (PESR)

PESR =
∑
v∈V

I(1(x?v)− ω̂v)
V

(21)

where I(x) is the function from Rn to R that returns 1 when
the vector x = (0, 0, . . . , 0)T ∈ Rn and 0 otherwise. PESR
assesses how many sensors estimate the right support, while
ASE measures how large is the error in the support for each
sensor, on average.

In Figure 4, we show the ASE and the PESR for a network
of V = 10 nodes, varying of the number of measurements
per node m between 4 and 32. We show both the complete
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Figure 4: ASE (left) and PESR (right) as a function of m, V = 10, λ = 1, α = 5× 10−4, β = 1.1, τ = 2× 10−2.
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Figure 5: ASE (left) and PESR (right) as a function of V , m = 18, λ = 1, α = 5×10−4, β = 1.1; τ = 8×10−3 for complete
graphs, except for V ∈ 6, 8 where τ = 3× 10−3; τ = 2× 10−2 for 5-regular graphs, except for V ∈ 6, 8 where τ = 8× 10−3

graph case (indicated by the postfix ’-c’) and the regular case
with d = 5 (say, each node has 4 neighbors). The ASE is
shown in logarithmic scale: a vertical line indicates the m
beyond which the ASE is exactly zero. We immediately notice
that DJ-IST (in both complete and non complete regimes)
achieves null ASE with a smaller m than all the other methods.
Specifically, we observed that m = 22 is sufficient for DJ-IST
to have perfect support detection, while m = 24, 28, 30 are
necessary respectively for DC-OMP 2-c, DC-OMP 1-c, DC-
OMP 2. We further remark that DC-OMP 1 never gets zero
in the considered range.

We also notice that for any considered m DJ-IST performs
better than DC-OMP 1 and less worse than DC-OMP 2
(except for vary small m, where DJ-IST is the best). Recalling
that DC-OMP 2 always envisages a complete topology (as it
exploits global (multihop) communication in the non-complete
case), the fact that DJ-IST-c is very close to DC-OMP 2 is
remarkable. Analogous considerations can be done for the
PESR curve.

In Figure 5, we show the ASE and the PESR for fixed
m = 18 and varying V . Again, we appreciate that DJ-IST
outperforms DC-OMP 1, while the PESR of DJ-IST is better
than that of DC-OMP 2 in the non-complete regime, for large

networks.
We remark that for non-complete topologies, support agree-

ment among the nodes is not guaranteed; analytical conditions
to get consensus will be subject of future research. However,
if necessary, a consensus algorithm can be run after our
procedure to obtain the same support over all the network.

D. Signal estimation performance

In addition to the support recovery analysis, we report some
observations about the signal estimation accuracy of DJ-IST.
In fact, as already remarked, DJ-IST, as a difference from [16],
[18], performs both support and signal estimation.

In Figure 6 we depict the mean relative square error (RSE)
which we define as

RSE =

∑
v∈V ‖x?v − x̂v‖

2
2∑

v∈V ‖x?v‖
2
2

. (22)

The used parameters are the ones used in the experiments
presented in the previous paragraph, and RSE and ASE are
shown as functions of m (left) and V (right). As we are
adopting a logarithmic scale, we visualize a vertical line when
the ASE goes to zero. In these graphs, we can appreciate
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Figure 6: RSE and ASE as a function of m (left) and V (right).

that the RSE follows the behavior of the ASE. A small bias
occurs in the RSE when the ASE is null, which is expected
due to our Lasso approach. The reweighting method reduces
the Lasso bias, but does not totally remove it, even though
because of Assumption 2: shrinkage is reduced, but actually
never removed for non-zero coefficients.

E. Analysis of transmission efficiency

We now analyze the transmission efficiency of DJ-IST,
compared to DC-OMP 1 and 2 [18], in terms of number
of transmitted bits over each network link. The range of
transmitted bits can be analytically evaluated for all the three
algorithms, as we now show. Afterwards, we will present some
statistics from numerical simulations.

Let us consider the non-complete graph case, and for
simplicity let us assume a d-regular topology. In DJ-IST and
DC-OMP 1 only indices in {1, . . . , n} are transmitted, then
each index can be encoded with blog2 nc + 1 bits. In DC-
OMP 1, each node v ∈ V transmits to its d − 1 neighbors
its candidate for activation, namely, the coefficient it would
add to the support; afterwards, basically each coefficient with
more than two votes is added to the support. Therefore, at
each step a maximum a bd2c coefficient could be added, and
to complete the support the minimum possible number of step
is dk/bd2ce, while the maximum is k (one coefficient at each
step; we recall that k has to be exactly known in DC-OMP
approach, which is not required for DJ-IST). In conclusion, in
DJ-IST the total number of bits transmitted over a link is in
the range V (d− 1)(blog2 nc+ 1)

[
dk/bd2ce, k

]
.

In DC-OMP 2, the nodes share with neighbors the cor-
relation vector in Rn; assuming q bits for each real value,
this amounts to V (d − 1)qn bits per iteration. The nodes
use such information to choose their own candidate co-
efficient, and they broadcast it to all the network, which
amounts to V (V − 1)(blog2 nc + 1). The voting proce-
dure to build the support is analogous to DC-OMP 1.
Hence, the total number of transmitted bits is in the range
V [(d− 1)q + (V − 1)(blog2 nc+ 1)]

[
dk/bd2ce, k

]
.

Differently from DC-OMP strategies, in DJ-IST all the
coefficients start as active and then, hopefully, n− k of them

Table I: Transmitted bits: ranges for d-regular topologies (r =
blog2 nc+ 1)

Algorithms Min Max
DC-OMP 1 V (d− 1)rdk/b d

2
ce V (d− 1)rk

DC-OMP 2 V [(d− 1)q + (V − 1)r] dk/b d
2
ce V [(d− 1)q + (V − 1)r] k

DJ-IST 0 2pnV (d− 1)

Table II: Transmitted bits: statistics over all the simulations
with n = 100, k = 10, V = 10, m ∈ {4, 6, 8, . . . , 32})

Algorithms Min Max Mean
DC-OMP 1 2520 2800 2795
DC-OMP 2 193890 387780 298590
DJ-IST 29288 39508 32938

are switched to zero. Each v ∈ V communicates to neighbors
the switches for non-zero to zero, and vice versa. If all the
nodes remain non-zero, no communications occurs, while the
maximum is 2pnV (d− 1), where p is the maximum number
of switches from zero to non-zero discussed in Section IV2.

We sum up these ranges in Table I. Next, in Tables II
and III, we show transmission load statistics taken from our
simulations over regular graphs with degree d = 5 (250 runs).
Real values are assumed to be quantized over q = 16 bits.

22pn stands for the worst case in which all the coefficients oscillate as long
as can, and then switch off to zero.

Table III: Transmitted bits: statistics over all the simulations
with n = 100, k = 10, V ∈ {6, 20}, m = 18)

Algorithms V = 6 Min Max Mean
DC-OMP 1 1512 1680 1673
DC-OMP 2 193050 386100 328957
DJ-IST 16828 34552 21750
Algorithms V = 20 Min Max Mean
DC-OMP 1 4480 5600 5570
DC-OMP 2 261320 522640 373687
DJ-IST 61236 92624 69568



12

F. DJ-ADMM

In Section IV-A, we intuitively explained that replacing
the IST step in DJ-IST (Step 7 in Algorithm 1) with faster
Lasso decreasing algorithms is not expected to improve the
performance. We now show an example: we replace IST with
ADMM [38], The settings are as follows: λ = 1, α = 5×10−3.
For each v ∈ V , we consider the augmented Lagrangian

L(xv, zv;µv) =
1

2
‖yv −Avxv‖22 + λα

n∑
i=1

wv,i|zv,i|

+ ρµT
v (xv − zv) + ρ ‖xv − zv‖22

(23)

where ρ > 0 (here we fix ρ = 1), xv , zv , µv ∈ Rn.
Given d(µv) = minxv,zv L(xv, zv;µv), at each step, ADMM
decreases the functional L(xv, zv;µv)−2d(µv) [46, Theorem
3.1]. Specifically the ADMM step for Lasso is as follows (see
[38, Section 6.4]):

xv(t+ 1) = argmin
xv

L(xv, zv(t);µv(t))

= (AT
vAv + ρI)−1[AT

v yv + ρ(zv(t)− µv(t))]
zv(t+ 1) = argmin

zv

L(xv(t), zv;µv(t))

= Sλαwv(t)/ρ[xv(t+ 1) + µv(t)].

µv(t+ 1) = µv(t) + xv(t+ 1)− zv(t+ 1).

We name DJ-ADMM the algorithm that we obtain by replac-
ing IST with ADMM in DJ-IST, with the usual forced stopping
of the null components above a switch threshold p. In our
simulations, we observed that no more than 5 switches from
zero to non-zero occurred using DJ-ADMM, and as for DJ-
IST, in the practice we did not set p in advance.

In Figure 7 we compare DJ-IST and DJ-ADMM for varying
m, averaged over 250 runs. The setting is the one described
in Section VI-B, with regular topology with degree 5. First,
we show that the support reconstruction accuracy, evaluated
in terms of ASE, is very similar. When the support is exactly
recovered, the RSE of DJ-ADMM achieves 10−6, while DJ-
IST is around 10−5, due to the bias that can be evaluated from
(19).

We further observe that DJ-ADMM is much faster in terms
of number of iterations (second graph of Figure 7), but
requires a larger number of bit transmissions (third graph).
As already explained, this is expected as ADMM forces a
faster decrease of the Lasso, which may produce conflicts
with the information gathered from the network; the behavior
of the single node is then too aggressive, which causes more
switches, hence more transmissions, if compared to DJ-IST.
However, the number of transmissions of DJ-ADMM is still
of the order of DJ-IST. This makes DJ-ADMM suitable for
those cases in which velocity is desired.

Regarding the number of transmitted bits, we remark the
peak (for both DJ-IST and DJ-ADMM) for mid values of
m. The reason is that when few measurements are available,
each node has less information to communicate; on the other
hand, many measurements allow a faster convergence and less
transmissions. Thus, it is in the intermediate case that the
network has its most intense activity.

VII. CONCLUSION

In this paper, we have proposed DJ-IST, a distributed soft
thresholding algorithm to recover jointly sparse signals. The
shrinkage thresholds are reweighted at each step, based on
information on the support coming from the network. DJ-
IST estimates both the support and the non-zero values of
the unknown signals. DJ-IST is proved to converge to a
minimum of a suitable cost functional with concave penaliza-
tion. Interestingly, DJ-IST can be interpreted as a distributed
reweighted `1 minimization algorithm. In terms of support
recovery accuracy, DC-OMP 2 is the state-of-the-art method.
Numerical simulations show that DJ-IST has a performance
close to DC-OMP 2, but significantly outperforms it in terms
of transmission efficiency (namely, number of transmitted bits
per link). On the other hand, DC-OMP 1 is the state-of-the-art
method in terms of transmission efficiency, but its performance
is shown to be worse than DJ-IST. In conclusion, DJ-IST is
an optimal trade-off between recovery performance and energy
saving capability, which makes it more suitable than greedy
procedures.

The scheme of DJ-IST seems to be applicable to other
jointly sparse models, like JSM-1 and JSM-3 [8], that have
been recently tackled with distributed algorithms [47], [48].
Moreover, we remark that DJ-IST could be used in case
of recovery of a unique common signal [49] to improve
the transmission efficiency [50], [51]: sharing information
about the support instead of transmitting the whole signal’s
estimate may dramatically reduce the communication load.
These points will be subject of our future work.
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