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On tuning passive black-box macromodels of
LTI systems via adaptive weighting

Stefano Grivet-Talocia1, Andrea Ubolli1, Alessandro Chinea2, and Michelangelo
Bandinu2

Abstract This paper discusses various approaches for tuning the accuracy of ratio-
nal macromodels obtained via black-box identification or approximation of sampled
frequency responses of some unknown Linear and Time-Invariant system. Main em-
phasis is on embedding into the model extraction process some information on the
nominal terminations that will be connected to the model during normal operation,
so that the corresponding accuracy is optimized. This goal is achieved through an
optimization based on a suitably defined cost function, which embeds frequency-
dependent weights that are adaptively refined during the model construction. A sim-
ilar procedure is applied in a postprocessing step for enforcing model passivity. The
advantages of proposed algorithm are illustrated on a few application examples re-
lated to power distribution networks in electronic systems.

1 Introduction

Several engineering design flows are often based on a partial knowledge of the dy-
namic behavior of individual devices, components, or subsystems. This situation
arises when such components are measured with finite resolution, when the cor-
responding responses are obtained from finite-precision numerical simulation of
first-principle field equations, or even when these responses are available from a
component vendor. In order to use such components, suitable simulation models are
required, in order to verify full system performance since early design stages.
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In this work, we concentrate on electronics applications, for which reliable mod-
els of the Power Distribution Network (PDN) at chip, package, board and system
level are required [1–3]. The PDN can be regarded as a large-scale Linear and
Time-Invariant (LTI) dynamic system [4, 5]. A first-principle formulation would
lead to a state-space or descriptor formulation with billions of states and hundreds
of inputs/outputs. However, such detailed first-principle descriptions are usually not
available to the power ingegrity engineer, who is responsible for compliance veri-
fication at the system level. Moreover, even if such descriptions were available, the
resulting complexity of system-level verification would be overwhelming. Hence,
there is a strong need for accurate and broadband reduced-order models.

We concentrate here on the construction of state-space PDN macromodels in a
black-box setting, via identification from a finite set of frequency response sam-
ples. The main tool that we employ is frequency-domain rational approximation,
for which several good algorithms exist, such as Vector Fitting [6–10], followed
by a postprocessing step aimed at enforcing passivity [11–15]. Passivity is in fact
a fundamental requirement for ensuring model robustness and global stability of
successive system-level transient simulations.

The main problem that we address is the sensitivity of the state-space macro-
model to the termination networks to which the model will be connected during
normal operation. This sensitivity may be the root cause for major accuracy degra-
dation, so that a model that is very accurate in the input-output representation that
is adopted for its construction may result quite inaccurate during normal operation.
This degradation results from the feedback mechanisms that the terminations induce
on the model dynamics [16, 17].

We propose a simple algorithm to alleviate this accuracy degradation, based
on the definition of suitably and adaptively defined frequency-dependent weights,
which are used to construct an optimized cost function embedding information on
the nominal termination scheme for the model. Minimization of this cost function
during model identification and passivity enforcement leads to an effective compen-
sation of the model sensitivity, with resulting improved accuracy. Various examples
from real applications demonstrate the effectiveness of this approach.

2 Problem statement

Let us consider a P-port PDN system, known through a set of K frequency samples
of its P×P scattering matrix

Ŝk ≈ Ŝ(jωk), k = 1, . . . ,K. (1)

The scattering representation is such that b(jω) = Ŝ(jω)a(jω) where a,b are the
power waves that are incident into and reflected from the structure, respectively. This
representation is preferred here since it is guaranteed to exist for any LTI system.
We want to construct a regular state-space model
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ẋ(t) = Ax(t)+Ba(t)
b(t) = Cx(t)+Da(t)

(2)

with transfer (scattering) matrix

S(s) = C(sI−A)−1B+D , (3)

so that

• a cumulative least squares fitting error with respect to the original data (1)

E2
w =

K

∑
k=1

E2
w,k =

K

∑
k=1

w2
k‖S(jωk)− Ŝk‖2

F (4)

is minimized, where wk are appropriate frequency-dependent weights and F de-
notes the Frobenius norm;

• the model is passive, so that

σmax(S(jω)) = ‖S(jω)‖2 ≤ 1 , ∀ω ∈ R , (5)

where σmax denotes the maximum singular value of its matrix argument.

In standard applications, the weights in (4) are uniformly set to wk = 1, or at best
to wk = 1/ς2

k when the variance ς2
k of noise affecting raw data is known. Here, we

want to construct these weights such that a second objective is met. We assume that
the nominal termination scheme is fully known and characterized in the frequency-
domain as

a(s) = M(s)b(s)+N(s)u(s),
y(s) = P(s)b(s)+Q(s)u(s),

(6)

where u is a vector collecting independent sources embedded in the termination net-
work, y collects the output variables of interest, and M,N,P,Q are suitable transfer
matrices. Note that the port inputs b of the termination network (6) are the outputs
of the macromodel (2), and viceversa. Our objective is minimization of the error

∆
2 =

K

∑
k=1

∆
2
k =

K

∑
k=1
‖H(jωk)− Ĥk‖2

F , (7)

where H(jωk) and Ĥk are the transfer functions between input u and output y, based
on the model S(jωk) of (3) and on the raw data Ŝk of (1), respectively.

3 Iterative rational approximation via adaptive weighting

A simple first-order approximation of the relationship between the frequency-
dependent model error Ek and transfer function error ∆k leads to
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∆k ≈SkEk, (8)

where Sk can be interpreted as a sensitivity of H(jωk) with respect to perturbations
in the model responses S(jωk) under nominal termination conditions (6). Therefore,
if we set wk = Sk and we minimize (4) during model construction, we expect that
the resulting model will achieve an equivalent minimization of (7). As documented
in [16], this approach still leaves margins for improvement, in addition to requiring
the explicit computation of the sensitivity. We resort to a simpler and more effective
iterative approach, based on the following steps.

1. At the first iteration µ = 0, we initialize the weights as w(0)
k = 1 for all k.

2. For each iteration µ = 0,1, . . . , we compute a state-space macromodel (3) by
minimizing (4). This is obtained by a standard application of the Vector Fitting
(VF) algorithm [6–10].

3. Once the model is available, the corresponding frequency-dependent transfer
function error ∆

(µ)
k is computed. If ∆

(µ)
k < δ at all frequencies, where δ is the

desired target accuracy, the iteration is stopped.
4. Otherwise, a new frequency-dependent weight for next iteration is defined as

w(µ+1)
k = w(µ)

k ·F (∆
(µ)
k ), (9)

where F : R+ 7→ R+ denotes a non-decreasing function such that F (ξ ) = 1
for ξ ≤ δ . Then, the iteration index is increased µ ← µ + 1, and the scheme is
restarted from step 2.

The redefinition of the weights in (9) further emphasizes those frequencies for which
the transfer function error is significant, without affecting the other frequencies. The
result of this process is both the termination-tuned model S(s) and the corresponding
set of optimal weights wk. The convergence properties of this iteration are related to
the specific choice of F . A detailed convergence analysis is in progress and will be
documented in a future report.

4 Passivity enforcement

Once a state-space macromodel is available, its passivity should be verified. We per-
form this check by computing the set I including all purely imaginary eigenvalues
λi = jωi of the associated Hamiltonian matrix [12] (we assume ‖D‖2 ≤ 1)

M =

(
A+B(I−DTD)−1DTC B(I−DTD)−1BT

−CT(I−DDT)−1C −AT−CTD(I−DTD)−1BT

)
. (10)

If I is empty, the model is already passive and no other action is required.
Otherwise, the model needs to be corrected to eliminate local passivity viola-
tions, intended as violations of condition (5) within localized frequency bands
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Ωi = (ωi,ωi+1). The boundary points of each violation band Ωi correspond to the
imaginary part of some Hamiltonian eigenvalue in set I .

The passive model to be determined is parameterized by perturbing the state-
output map C̃ = C+∆C, corresponding to a model perturbation

S̃(s) = S(s)+∆S(s), ∆S(s) = ∆C(sI−A)−1B . (11)

A set of local passivity constraints is obtained by considering each individual sin-
gular value trajectory σr(jω) that exceeds one within a given violation band Ωi,
finding its local maximum σ̄i,r = σr(jω̄i,r) with ω̄i,r ∈ Ωi, and linearizing the rela-
tionship between this singular value and the decision variables ∆C. Imposing that
this linearized singular value falls below one gives the linear inequality constraints

zTi,rvec(∆C)≤ 1− σ̄i,r, ∀i,r , (12)

to be enforced concurrently while minimizing the model perturbation (11).
Most existing passivity enforcement schemes [11–15] aim at minimizing the L2

norm of the model perturbation, which can be characterized as

‖∆S‖2
2 =

1
2π

∫ +∞

−∞

‖∆S(jω)‖2
2 dω = tr

(
∆CGc∆CT

)
, (13)

where Gc is the controllability Gramian of the original model. Minimization of (13)
subject to (12) optimizes the model accuracy, but may degrade the accuracy of the
target transfer function H(s), since no weighting is considered. We propose two
different approaches to overcome this limitation.

The first approach is to consider a frequency-weighted controllability Gramian
Gw instead of Gc in (13). This Gramian is constructed based on an augmented state-
space system providing a realization of

∆Sw(s) = ∆S(s)F(s) , (14)

where F(s) is a minimum-phase transfer function such that |F(jωk)|2 ≈ w2
k , where

wk are the optimal weights from the fitting. More details can be found in [17].
A second and more straightforward approach is to construct a data-based cost

function. We consider the model deviation at frequency jωk, which we write as

E 2
k =

∥∥∥S̃(jωk)− Ŝk

∥∥∥2

F
=
∥∥∆CKk +S(jωk)− Ŝk

∥∥2
F , (15)

where Kk = (jωkI−A)−1B, and where Ŝk are the original frequency samples. Based
on this expression, we define a weighted cost function as

E 2 =
K

∑
k=1

w2
kE

2
k , (16)

to be minimized subject to the passivity constraints (12).
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Fig. 1 Magnitude (top) and phase (bottom) of the input impedance for different models of PDN
example 1, compared to the nominal impedance. See text for a detailed description.

5 Numerical examples

We apply the proposed passive model identification process to two different PDN
structures, whose scattering responses are available through a broadband electro-
magnetic simulation. In both cases, the nominal termination conditions are also
available in terms of current sources with an RC internal impedance to represent
on-chip loading, various decoupling capacitors of different sizes to be placed at the
package and board ports, and one Voltage Regulator Module (VRM). The transfer
function of interest is the input impedance observed from one of the on-chip ports,
subject to the above loading conditions at all other ports.

Figure 1 reports magnitude and phase of the reference (exact) PDN impedance
for the first structure (thin solid line), based on nominal terminations, and computed
using the raw scattering data. This response is compared to the non-passive model
obtained from the proposed iteratively reweighted rational approximation (dashed
line). We see that the accuracy of this initial model is excellent. The passive model
obtained by perturbation based on a standard cost function (13) is seriously de-
graded (dotted line), as can be justified by the (rescaled) sensitivity function, also
depicted in the top panel (dash-dotted line). The model obtained using a frequency-
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Fig. 2 As in Figure 1, but for PDN example 2.

weighted Gramian (plus markers) shows some improvement, but only using the pro-
posed data-based cost function we are able to match almost perfectly the reference
(black dot markers).

Similar conclusions can be drawn from a second application example, which
refers to a different PDN structure, with similar overall characteristics and nominal
termination scheme. The corresponding curves are depicted in Figure 2.

6 Conclusions

We have presented a simple approach for the identification of broadband black-box
macromodels of LTI systems subject to passivity constraints, and with an input-
output accuracy tuned to particular loading conditions. The proposed algorithm is
based on a set of adaptively defined frequency-dependent weigths, which are used in
both rational approximation and passivity enforcement stages of model identifica-
tion. Numerical results obtained for two chip-package power distribution networks
demonstrate the excellent performance of proposed technique.
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