Passive Macromodeling: Theory and Applications

Original

Availability:
This version is available at: 11583/2642831 since: 2016-05-24T09:46Z

Publisher:
Wiley

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
CONTENTS

Preface xix

1 Introduction 1
 1.1 Why Macromodeling?, 1
 1.2 Scope, 4
 1.3 Macromodeling Flows, 6
 1.3.1 Macromodeling via Model Order Reduction, 6
 1.3.2 Macromodeling from Field Solver Data, 7
 1.3.3 Macromodeling from Measured Responses, 8
 1.4 Rational Macromodeling, 9
 1.5 Physical Consistency Requirements, 11
 1.6 Time-Domain Implementation, 15
 1.7 An Example, 16
 1.8 What Can Go Wrong?, 17

2 Linear Time-Invariant Circuits and Systems 23
 2.1 Basic Definitions, 24
 2.1.1 Linearity, 24
 2.1.2 Memory and Causality, 26
 2.1.3 Time Invariance, 26
 2.1.4 Stability, 27
 2.1.5 Passivity, 28
 2.2 Linear Time-Invariant Systems, 28
 2.2.1 Impulse Response, 29
 2.2.2 Properties of LTI Systems, 32
CONTENTS

2.3 Frequency-Domain Characterizations, 33
2.4 Laplace and Fourier Transforms, 34
 2.4.1 Bilateral Laplace Transform and Transfer Matrices, 34
 2.4.2 Causal LTI Systems and the Unilateral Laplace Transform, 36
 2.4.3 Fourier Transform, 36
2.5 Signal and System Norms*, 37
 2.5.1 Signal Norms, 38
 2.5.2 System Norms, 41
2.6 Multiport Representations, 44
 2.6.1 Ports and Terminals, 44
 2.6.2 Immittance Representations, 45
 2.6.3 Scattering Representations, 46
 2.6.4 Reciprocity, 48
2.7 Passivity, 49
 2.7.1 Power and Energy, 50
 2.7.2 Passivity and Causality, 51
 2.7.3 The Static Case, 52
 2.7.4 The Dynamic Case, 53
 2.7.5 Positive Realness, Bounded Realness, and Passivity, 54
 2.7.6 Some Examples, 56
2.8 Stability and Causality, 59
 2.8.1 Laplace-Domain Conditions for Causality, 61
 2.8.2 Laplace-Domain Conditions for BIBO Stability, 62
 2.8.3 Causality and Stability, 62
2.9 Boundary Values and Dispersion Relations*, 64
 2.9.1 Assumptions, 64
 2.9.2 Reconstruction of \(H(s) \) for \(s \in \mathbb{C}_+ \), 65
 2.9.3 Reconstruction of \(H(s) \) for \(s \in \mathbb{j} \mathbb{R} \), 65
 2.9.4 Causality and Dispersion Relations, 67
 2.9.5 Generalizations, 68
2.10 Passivity Conditions on the Imaginary Axis*, 70
 Problems, 71

3 Lumped LTI Systems

3.1 An Example from Circuit Theory, 74
 3.1.1 Variation on a Theme, 76
 3.1.2 Driving-Point Impedance, 77
3.2 State-Space and Descriptor Forms, 77
 3.2.1 Singular Descriptor Forms, 77
 3.2.2 Internal Representations of Lumped LTI Systems, 79
3.3 The Zero-Input Response, 80
3.4 Internal Stability, 81
 3.4.1 Lyapunov Stability, 81
 3.4.2 Internal Stability of LTI Systems, 83
3.5 The Lyapunov Equation, 84
3.6 The Zero-State Response, 87
 3.6.1 Impulse Response, 88
3.7 Operations on State-Space Systems, 89
 3.7.1 Interconnections, 90
 3.7.2 Inversion, 91
 3.7.3 Similarity Transformations, 91
3.8 Gramians, 91
 3.8.1 Observability, 92
 3.8.2 Controllability, 93
 3.8.3 Minimal Realizations, 95
3.9 Reciprocal State-Space Systems, 95
3.10 Norms, 97
 3.10.1 L_2 Norm, 98
 3.10.2 H_∞ Norm, 99
Problems, 100

4 Distributed LTI Systems 103

4.1 One-Dimensional Distributed Circuits, 104
 4.1.1 The Discrete-Space Case, 104
 4.1.2 The Continuous-Space Case, 106
 4.1.3 Discussion, 109
4.2 Two-Dimensional Distributed Circuits*, 111
 4.2.1 The Discrete-Space Case, 112
 4.2.2 The Continuous-Space Case, 114
 4.2.3 A Closed-Form Solution, 116
 4.2.4 Spatial Discretization, 118
 4.2.5 Discussion, 120
4.3 General Electromagnetic Characterization, 123
 4.3.1 3D Electromagnetic Modeling, 126
 4.3.2 Summary and Outlook, 130
Problems, 131

5 Macromodeling Via Model Order Reduction 135

5.1 Model Order Reduction, 135
5.2 Moment Matching, 136
 5.2.1 Moments, 136
 5.2.2 Padé Approximation and AWE, 138
 5.2.3 Complex Frequency Hopping, 139
5.3 Reduction by Projection, 140
 5.3.1 Krylov Subspaces, 141
 5.3.2 Implicit Moment Matching: The Orthogonal Case, 142
 5.3.3 The Arnoldi Process, 143
 5.3.4 PRIMA, 145
 5.3.5 Multipoint Moment Matching, 147
 5.3.6 An Example, 148
CONTENTS

5.3.7 Implicit Moment Matching: The Biorthogonal Case, 151
5.3.8 Padé Via Lanczos (PVL), 154
5.4 Reduction by Truncation, 155
5.4.1 Balancing, 156
5.4.2 Balanced Truncation, 158
5.5 Advanced Model Order Reduction∗, 159
5.5.1 Passivity-Preserving Balanced Truncation, 159
5.5.2 Balanced Truncation of Descriptor Systems, 160
5.5.3 Reducing Large-Scale Systems, 161
Problems, 166

6 Black-Box Macromodeling and Curve Fitting 169

6.1 Basic Curve Fitting, 171
6.1.1 Linear Least Squares, 172
6.1.2 Maximum Likelihood Estimation, 174
6.1.3 Polynomial Fitting, 176
6.2 Direct Rational Fitting, 182
6.2.1 Polynomial Ratio Form, 183
6.2.2 Pole–Zero Form, 183
6.2.3 Partial Fraction Form, 184
6.2.4 Partial Fraction Form with Fixed Poles, 184
6.2.5 Nonlinear Least Squares, 185
6.3 Linearization via Weighting, 187
6.4 Asymptotic Pole–Zero Placement, 191
6.5 ARMA Modeling, 193
6.5.1 Modeling from Time-Domain Responses, 195
6.5.2 Modeling from Frequency Domain Responses, 197
6.5.3 Conversion of ARMA Models, 201
6.6 Prony’s Method, 203
6.7 Subspace-Based Identification∗, 204
6.7.1 Discrete-Time State-Space Systems, 204
6.7.2 Macromodeling from Impulse Response Samples, 205
6.7.3 Macromodeling from Input–Output Samples, 207
6.7.4 From Discrete-Time to Continuous-Time State-Space Models, 210
6.7.5 Frequency-Domain Subspace Identification, 211
6.7.6 Generalized Pencil-of-Function Methods, 212
6.7.7 Examples, 214
6.8 Loewner Matrix Interpolation∗, 215
6.8.1 The Scalar Case, 216
6.8.2 The Multiport Case, 218
Problems, 222

7 The Vector Fitting Algorithm 225

7.1 The Sanathanan–Koerner Iteration, 226
7.1.1 The Steiglitz–McBride Iteration, 229
7.2 The Generalized Sanathanan–Koerner Iteration, 231
7.2.1 General Basis Functions, 231
7.2.2 The Partial Fraction Basis, 233
7.3 Frequency-Domain Vector Fitting, 234
7.3.1 A Simple Model Transformation, 234
7.3.2 Computing the New Poles, 236
7.3.3 The Vector Fitting Iteration, 237
7.3.4 From GSK to VF, 239
7.4 Consistency And Convergence, 241
7.4.1 Consistency, 241
7.4.2 Convergence, 242
7.4.3 Formal Convergence Analysis, 245
7.5 Practical VF Implementation, 247
7.5.1 Causality, Stability, and Realness, 247
7.5.2 Order Selection and Initialization, 253
7.5.3 Improving Numerical Robustness, 254
7.6 Relaxed Vector Fitting, 256
7.6.1 Weight Normalization, Noise, and Convergence, 256
7.6.2 Relaxed Vector Fitting, 259
7.7 Tuning VF, 264
7.7.1 Weighting and Error Control, 264
7.7.2 High-Frequency Behavior, 266
7.7.3 High-Frequency Constraints, 268
7.7.4 DC Point Enforcement, 269
7.7.5 Simultaneous Constraints, 271
7.8 Time-Domain Vector Fitting, 273
7.9 z-Domain Vector Fitting, 278
7.10 Orthonormal Vector Fitting, 281
7.10.1 Orthonormal Rational Basis Functions, 281
7.10.2 The OVF Iteration, 284
7.10.3 The OVF Pole Relocation Step, 285
7.10.4 Finding Residues, 286
7.11 Other Variants, 288
7.11.1 Magnitude Vector Fitting, 288
7.11.2 Vector Fitting with L_1 Norm Minimization, 291
7.11.3 Dealing with Higher Pole Multiplicities, 293
7.11.4 Including Higher Order Derivatives, 294
7.11.5 Hard Relocation of Poles, 295
7.12 Notes on Overfitting and Ill-Conditioning, 296
7.12.1 Exact Model Identification, 296
7.12.2 Curve Fitting, 297
7.13 Application Examples, 299
7.13.1 Surface Acoustic Wave Filter, 299
7.13.2 Subnetwork Equivalent, 301
7.13.3 Transformer Modeling from Time-Domain Measurements, 303
Problems, 303
8 Advanced Vector Fitting for Multiport Problems

8.1 Introduction, 307
8.2 Adapting VF to Multiple Responses, 308
 8.2.1 Pole Identification, 308
 8.2.2 Fast Vector Fitting, 310
 8.2.3 Residue Identification, 311
8.3 Multiport Formulations, 312
 8.3.1 Single-Element Modeling: Multi-SISO Structure, 314
 8.3.2 Single-Column Modeling: Multi-SIMO Structure, 316
 8.3.3 Matrix Modeling: MIMO Structure, 317
 8.3.4 Matrix Modeling: Minimal Realizations, 318
 8.3.5 Sparsity Considerations, 322
8.4 Enforcing Reciprocity, 322
 8.4.1 External Reciprocity, 324
 8.4.2 Internal Reciprocity*, 325
8.5 Compressed Macromodeling, 329
 8.5.1 Data Compression, 329
 8.5.2 Compressed Rational Approximation, 330
 8.5.3 An Application Example, 331
8.6 Accuracy Considerations, 333
 8.6.1 Noninteracting Models, 333
 8.6.2 Interacting Models, Scalar Case, 334
 8.6.3 Error Magnification in Multiport Systems, 338
8.7 Overcoming Error Magnification, 340
 8.7.1 Elementwise Inverse Weighting, 340
 8.7.2 Diagonalization, 342
 8.7.3 Mode-Revealing Transformations, 347
 8.7.4 Modal Vector Fitting, 356
 8.7.5 External and Internal Ports, 358
 Problems, 363

9 Passivity Characterization of Lumped LTI Systems

9.1 Internal Characterization of Passivity, 365
 9.1.1 A First Order Example, 365
 9.1.2 The Dissipation Inequality, 367
 9.1.3 Lumped LTI Systems, 368
9.2 Passivity of Lumped Immittance Systems, 368
 9.2.1 Rational Positive Real Matrices, 369
 9.2.2 Extracting Purely Imaginary Poles, 372
 9.2.3 The Positive Real Lemma, 376
 9.2.4 Positive Real Functions Revisited, 378
 9.2.5 Popov Functions and Spectral Factorizations, 379
 9.2.6 Hamiltonian Matrices, 381
 9.2.7 Passivity Characterization via Hamiltonian Matrices, 385
 9.2.8 Determination of Local Passivity Violations, 387
9.2 Properties of Passivity

- 9.2.9 Quantification of Passivity Violations via Bisection, 390
- 9.2.10 Quantification of Passivity Violations via Sampling, 393
- 9.2.11 Frequency Transformations, 394
- 9.2.12 Extended Hamiltonian Pencils, 396
- 9.2.13 Generalized Hamiltonian Pencils, 398
- 9.2.14 Positive Real Lemma for Descriptor Systems, 399

9.3 Passivity of Lumped Scattering Systems, 402

- 9.3.1 Rational Bounded Real Matrices, 402
- 9.3.2 The Bounded Real Lemma, 406
- 9.3.3 Bounded Real Functions Revisited, 408
- 9.3.4 Popov Functions, Spectral Factorizations, and Hamiltonian Matrices, 409
- 9.3.5 Passivity Characterization via Hamiltonian Matrices, 410
- 9.3.6 Determination of Local Passivity Violations, 413
- 9.3.7 Quantification of Passivity Violations via Bisection, 416
- 9.3.8 Quantification of Passivity Violations via Sampling, 420
- 9.3.9 Extended Hamiltonian Pencils, 421
- 9.3.10 Generalized Hamiltonian Pencils, 422
- 9.3.11 Bounded Real Lemma for Descriptor Systems, 423

9.4 Advanced Passivity Characterization, 426

- 9.4.1 On the Computation of Imaginary Hamiltonian Eigenvalues, 426
- 9.4.2 Large-Scale Hamiltonian Eigenvalue Problems*, 427
- 9.4.3 Half-Size Passivity Test Matrices, 430

10 Passivity Enforcement of Lumped LTI Systems, 437

- 10.1 Passivity Constraints for Lumped LTI Systems, 437
 - 10.1.1 Passive State-Space Immittance Systems, 438
 - 10.1.2 Passive State-Space Scattering Systems, 439
- 10.2 State-Space Perturbation, 440
 - 10.2.1 Asymptotic Perturbation, 441
 - 10.2.2 Dynamic Perturbation, 441
 - 10.2.3 Input-State Perturbation, 442
 - 10.2.4 State-Output Perturbation, 443
 - 10.2.5 A Perturbation Strategy for Passivity Enforcement, 444
- 10.3 Asymptotic Passivity Enforcement, 445
 - 10.3.1 Immittance Systems, 445
 - 10.3.2 Scattering Systems, 446
- 10.4 Imaginary Poles of Immittance Systems, 447
- 10.5 Local Passivity Enforcement, 448
 - 10.5.1 Local Passivity Constraints, 449
 - 10.5.2 Enforcing Local Passivity Constraints, 454
- 10.6 Passivity Enforcement Via Hamiltonian Perturbation, 460
 - 10.6.1 Hamiltonian Perturbation of Immittance Systems, 462
10.6.2 Hamiltonian Perturbation of Scattering Systems, 464
10.6.3 Hamiltonian Perturbation Strategies, 465
10.6.4 Slopes, 468
10.6.5 Global Passivity Enforcement via Hamiltonian Perturbation, 471
10.7 Linear Matrix Inequalities, 474
10.9 Advanced Accuracy Control, 478
10.9.1 Frequency-Selective Norms, 478
10.9.2 Individual Response Weighting, 480
10.9.3 Bandlimited Norms, 481
10.9.4 Relative Norms, 484
10.9.5 Data-Based Cost Functions, 486
10.10 Least-Squares Residue Perturbation, 487
10.10.1 Basic Residue Perturbation (RP), 487
10.10.2 Spectral Residue Perturbation (SRP), 492
10.10.3 Mode-Revealing Transformations, 493
10.10.4 Modal Perturbation (MP), 494
10.10.5 Robust Iterations, 495
10.11 Alternative Formulations, 496
10.11.1 Passivity Constraints Based on \mathcal{H}_∞ norm*, 496
10.11.2 Iterative Update by Fitting Passivity Violations, 503
10.11.3 Pole Perturbation Approaches, 505
10.11.4 Parameterization via Positive Fractions, 506
10.12 Descriptor Systems*, 508
10.12.1 Perturbation of Generalized Hamiltonian Pencils, 508
10.12.2 Handling Singular Direct CouplingTerms, 509
10.12.3 Proper Part Extraction, 510
10.12.4 Handling Impulsive Terms, 511
10.12.5 Accuracy Control, 512
Problems, 512

11 Time-Domain Simulation

11.1 Discretization of ODE Systems, 518
11.2 Interconnection of Macromodels, 520
11.3 Direct Convolution, 522
11.4 Interfacing State-Space Macromodels, 528
11.5 Interfacing Pole-Residue Macromodels, 533
11.6.1 Scalar Single-Pole System, 533
11.6.2 General Multiport High-Order Systems, 535
11.6.3 Discussion, 537
11.6 Equivalent Circuit Synthesis, 537
11.6.1 Direct Admittance Synthesis, 538
11.6.2 Direct State-Space Synthesis, 541
11.6.3 Sparse Synthesis, 543
11.6.4 Classical RLCT Synthesis*, 545
Problems, 559

12 Transmission Lines and Distributed Systems 563

12.1 Introduction, 563
12.2 Multiconductor Transmission Lines, 564
12.2.1 Per-Unit-Length Matrices, 564
12.2.2 Frequency-Domain Solution via Modal Decomposition, 566
12.2.3 Frequency-Domain Solution in the Physical Domain, 570
12.3 Direct Macromodeling Approaches, 573
12.3.1 Folded Line Equivalent Models, 573
12.4 Lumped Segmentation Approaches, 577
12.4.1 Segmenting, 577
12.4.2 Topology-Based Methods, 578
12.5 Matrix Rational Approximations, 582
12.5.1 Padé Matrix Rational Approximations, 583
12.5.2 Series Expansion into Eigenfunctions, 586
12.6 Traveling Wave Formulations, 590
12.6.1 Voltage Waves, 591
12.6.2 Current Waves, 592
12.6.3 Thévenin and Norton Equivalents, 593
12.6.4 Terminal Admittance from Traveling Wave Model, 593
12.6.5 Modal Traveling Waves, 594
12.7 Lossless Traveling Wave Modeling, 595
12.7.1 Delay Extraction for Lossless MTL, 597
12.8 Traveling Wave Modeling of Scalar Lossy Transmission Lines, 599
12.9 Representations Based on Multiple Reflections, 601
12.9.1 The Delayed Vector Fitting Scheme, 604
12.10 Basic Delay Extraction for Lossy MTL, 606
12.11 Frequency-Dependent Traveling Wave Modeling, 607
12.11.1 Modal Domain, 608
12.11.2 Physical Domain, 613
12.11.3 Delay Extraction and Optimization*, 625
12.12 General Delayed-Rational Macromodeling, 626
12.12.1 Delay Estimation, 629
12.12.2 Passivity Enforcement, 631
12.12.3 Equivalent Circuit Synthesis, 637
12.13 Passivity of Traveling Wave Models*, 638
12.14 Time-Domain Implementation for Traveling Wave Models, 641
12.14.1 The Scalar Lossless Line, 641
12.14.2 The Scalar Lossy Line, 643
CONTENTS

12.14.3 Lossy Multiconductor Transmission Lines, 648
12.14.4 Examples, 652
12.15 Discussion, 657
Problems, 658

13 Applications 663

13.1 Modeling for Signal and Power Integrity, 663
13.1.1 Prelayout Analysis of Backplane Interconnects, 664
13.1.2 Full Package Analysis, 667
13.1.3 Full Board Analysis and Simulation, 672
13.1.4 High-Speed Channel Modeling and Simulation, 681
13.1.5 Model Extraction from Measurements, 687

13.2 Computational Electromagnetics, 691
13.2.1 Dynamic Subcell Models in Time-Domain Solvers, 691
13.2.2 Automatic Stopping Criteria for Time-Domain Solvers, 695
13.2.3 VF-Based Adaptive Frequency Sampling, 698

13.3 Small-Signal Macromodels for RF and AMS Applications, 701

13.4 Modeling for High-Voltage Power Systems, 704
13.4.1 Subnetwork Equivalencing, 705
13.4.2 Power Transformer Modeling from Frequency Sweep Measurements, 708
13.4.3 Power Transformer Modeling from Manufacturer’s White-Box Model, 715

13.5 Fluid Transmission Lines, 720

13.6 Mechanical Systems, 726

13.7 Ship Motion in Irregular Seas, 728

13.8 Summary, 733

14 Summary and Outlook 735

14.1 Parameterized Macromodels, 735
14.1.1 Parameterized Macromodels with Fixed Poles, 736
14.1.2 Fully Parameterized Macromodels, 738
14.1.3 Higher Dimensional Parameter Spaces, 742

14.2 Open Issues, 743
14.2.1 Optimal Passivity Enforcement, 743
14.2.2 Systems with Many Ports, 744
14.2.3 White-Box Model Identification and Tuning, 744
14.2.4 Transmission Line Models, 745
14.2.5 Delay Systems, 746
14.2.6 Extension to NL Systems, 749
14.2.7 Integration with other solvers, 749

Appendix A Notation 751
Appendix B Acronyms 757
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix C Linear Algebra</td>
<td>761</td>
</tr>
<tr>
<td>Appendix D Optimization Templates</td>
<td>781</td>
</tr>
<tr>
<td>Appendix E Signals and Transforms</td>
<td>805</td>
</tr>
<tr>
<td>Bibliography</td>
<td>839</td>
</tr>
<tr>
<td>Index</td>
<td>863</td>
</tr>
</tbody>
</table>