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Abstract—The vast majority of existing secret key generation
protocols exploit the inherent randomness of the wireless channel
as a common source of randomness. However, independent
noise added at the receivers of the legitimate nodes affect the
reciprocity of the channel. In this paper, we propose a new simple
technique to generate the secret key that mitigates the effect of
noise. Specifically, we exploit the estimated channel to generate
a secondary random process (SRP) that is common between the
two legitimate nodes. We compare the estimated channel gain and
phase to a preset threshold. The moving differences between the
locations at which the estimated channel gain and phase exceed
the threshold are the realization of our SRP. We study the proper-
ties of our generated SRP and derive a closed form expression for
the probability mass function of the realizations of our SRP. We
simulate an orthogonal frequency division multiplexing (OFDM)
system and show that our proposed technique provides a drastic
improvement in the key bit mismatch rate (BMR) between the
legitimate nodes when compared to the techniques that exploit the
estimated channel gain or phase directly. In addition to that, the
secret key generated through our technique is longer than that
generated by conventional techniques. Moreover, we compute the
conditional probabilities used to estimate the secret key capacity.

Index Terms—hysical layer security; Secret key generation;
Bit mismatch rate; Channel estimation; OFDM systems.hysical
layer security; Secret key generation; Bit mismatch rate; Channel
estimation; OFDM systems.P

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
multi-carrier modulation scheme that has been widely adopted
in many wireless communication systems such as Long Term
Evolution (LTE) systems [1]. It provides many advantages over
the single-carrier modulation schemes, including: high data
rate, immunity to selective fading, resilience to inter-symbol
interference and higher spectrum efficiency [2].

As in any wireless communication system, security of
OFDM wireless system is a critical issue. Currently, security
relies on cryptographic techniques and protocols that lie at
the upper layers of the wireless network. One main draw-
back of these solutions is the necessity of a complex key
management scheme in the case of symmetric ciphers and
high computational complexity in the case of asymmetric
ciphers. On the other hand, physical layer security relies on
the randomness of the communication channel and has a much
lower computational complexity.

Unlike conventional cryptographic techniques, physical
layer security relies on a source of randomness that is common
between the legitimate communicating nodes and not shared
with malicious nodes. This common source of randomness
is typically a physical layer specific characteristic such as
channel estimates, which is the most commonly exploited
characteristic for secret key generation (SKG). The secret key
is then used to encrypt and decrypt the exchanged data. Chan-
nel based SKG techniques mainly rely on channel reciprocity
assumption. An identical signal that is exchanged between two
antennas across a linear and isotropic channel, will be the same
at the two receiving sides of the nodes. This is because of the
reciprocity of the radiating and receiving antenna pattern [3],
[4].

In [5]–[8], channel measurements were exploited to solve
the problem of SKG. In [5] the authors observed that the
maximum size of the generated secret key mainly depends on
the mutual information between the channel estimates at the
two legitimate nodes. They also derived an expression for the
mutual information for a general multipath channel. The most
popular feature of the fading channel characteristics, which
is used extensively in the literature, is channel gain, mainly
because of its ease of implementation [7], [9]. Others exploit
the channel phase to generate the secret key as in [10], [11].
Unlike channel gain, channel phase is uniformly distributed
in narrowband fading channels. The authors in [10] were
able to generate a long key as compared to the conventional
cryptographic techniques from the estimated channel phase,
while in [11], they extend their system to the use of relay
nodes. Exploiting the channel estimates to generate a secret
key has also been investigated under multiple antenna sce-
narios [12] and relaying scenarios [13]. Other physical layer
characteristics used to generate the secret key include distance
between the two legitimate users as in [14], [15] and angle of
arrival as in [16].

In [9], [17], the authors presented a popular technique to
extract a secret key that is based on level crossing of the
estimated channel gain. The main advantage of their level
crossing technique is that it achieves a low bit mismatch rate
(BMR) between the key generated at the legitimate nodes. The
authors studied the channel probing rate effect on the secret
key rate for different Doppler shifts. They found that secret
key rate increases as the probing rate increases and saturates



at 20 KHz probing rate for the worst case Doppler shift they
assumed. The smaller the Doppler shift the smaller the probing
rate required to saturate the secret key rate. In [7], the authors
observed that as the carrier frequency increases, the probing
rate should increase to achieve a suitable key rate. This is
mainly because the channel temporal variation increases at
higher carrier frequencies.

One main advantage of exploiting channel estimates to gen-
erate the secret key is its high key generation rate. However,
a major downside of using the channel reciprocity for SKG
is that the additive white Gaussian noise (AWGN) at both
receivers affects the reciprocity of the channel measurements
[18]. This drawback causes the BMR between the legitimate
nodes to rise, which affects the operation of SKG based on
channel estimates, particularly, at low and medium signal to
noise ratio (SNR) scenarios. This issue was stated as one of
the challenges of physical layer security in [19].

To address the latter drawback of physical layer security
techniques, we propose a robust SKG technique to mitigate
the effect of AWGN. We propose a SKG technique, which
we apply on the estimated channel gain only, channel phase
only and combined gain and phase, which enhances the perfor-
mance of the SKG system at low and medium SNR levels. In
our technique, the estimated channel is considered our primary
random process, from which we derive a secondary random
process (SRP) that is then used to generate the secret key.
The primary random process, which is either the estimated
channel gain or phase, is compared to a preset threshold.
The locations of the realizations at which the primary random
process exceeds the threshold are stored. The moving differ-
ences, which are the differences between each two adjacent
locations, are the realizations of our SRP. Those realizations
are then used to generate the secret key. We derive a closed
form expression for the probability mass function of those
realizations. Our proposed technique improves the BMR dras-
tically and achieves a longer key length than the conventional
techniques. The entropy rate achieved through our technique
is comparable to that achieved by conventional techniques. In
addition, we numerically compute the conditional probabilities
used in secret key capacity estimation.

The rest of this paper is organized as follows: In Section
II the system model is presented. Related existing techniques
are addressed in Section III. Our proposed channel SRP for
SKG technique is presented in Section IV. The properties of
our generated SRP are discussed in Section V. The capacity
of our SRP secret key is presented in Section VI. We evaluate
the performance of our solution in Section VII. The paper is
then concluded in Section VIII.

II. SYSTEM MODEL

We assume that there exist two legitimate nodes, named
Alice and Bob, trying to secure a communicating link, and
that each of them uses OFDM for transmission/reception.
In particular, consider an OFDM system where each OFDM
symbol consists of N orthogonal subcarriers. After modulating
the input serial data streams, a serial to parallel converter

converts serial data symbols to parallel streams. Nt pilots, de-
noted by xt, are then inserted for the measurement of channel
conditions. This results in a vector X[k] for k = 0, 1, ..., N−1.
X[k] is then used as input to an N -point Inverse Fast Fourier
Transform (IFFT). The time domain signal is now:

x[n] = IFFT {X[k]} n = 0, 1, 2, · · · , N − 1. (1)

A guard interval of length Nd, also known as cyclic prefix, is
appended according to:

xf [n] =

{
x[n+N ], n = −Nd,−Nd + 1, · · · ,−1,
x[n], n = 0, 1, · · · , N − 1.

(2)

xf [n] is then passed through a parallel to serial converter and
digital to analog converter, and it is then transmitted to the
other node. The received signal at Alice and Bob is given by:

yAf [n] = xBf [n]⊗ h[n] + wA[n], (3)

yBf [n] = xAf [n]⊗ h[n] + wB [n], (4)

where xBf is the transmitted signal from Bob to Alice, xAf
is the transmitted signal from Alice to Bob, h is a random
process that describes the wireless channel between Alice and
Bob and wA and wB are the additive white Gaussian noise
(AWGN) at Alice and Bob’s receivers, respectively. Note that
the pilots, also known as training signals or reference signal,
within xAf and xBf are identical. The guard interval is then
removed from the received signal yielding y[n] = yf [n] for
n = 0, 1, · · · , N − 1. y[n] is then passed through an N -point
FFT yielding the frequency domain signal Y [k] = FFT{y[n]}
k = 0, 1, ..., N − 1. The pilots, whose locations are already
known, are then extracted from Y [k] yielding Yt, where t =
1, · · · , Nt. Note that the signal exchange between Alice and
Bob is performed during the coherence time of the channel.

For simplicity, we estimate the channel through the least
squares (LS) estimator in the frequency domain. The LS
estimator minimizes the squared error as [20]:

Ĥ = arg min ||Yt −XtH||. (5)

The estimated channel at both Alice and Bob can be given by:

ĤA
LS = (Xt)

−1
Y A
t , (6)

ĤB
LS = (Xt)

−1
Y B
t , (7)

where Xt is the diagonal matrix defined as Xt =
diag(x1, · · · , xNt) and Yt has a dimension of Nt × 1. Since
the entries (x1, · · · , xNt) are non-zero, the matrix Xt is
invertible. The estimated channel at the pilot locations are then
interpolated to estimate the channel across the entire OFDM
symbol. The estimated channel gains at Alice and Bob |ĤA

LS |
and |ĤB

LS | as well as the phases, which are the angles of ĤA
LS

and ĤB
LS , are the common sources of randomness which are

typically used to generate the secret key and from which we
will derive our SRP.

In our adversary model, we assume that an eavesdropper
(Eve) can listen to all the exchanged signals between the two
legitimate communicating nodes (Alice) and (Bob). Moreover,



Eve can estimate the channel between itself and both Alice and
Bob. However, Eve can not be within a few wavelengths of
either of the two communicating nodes, Alice and Bob, which
ensures that her estimated channel between either of them is
independent of that between Alice and Bob. In addition, we
assume that Eve is a passive adversary, that is not interested
in active attacks.

III. REVIEW OF EXISTING TECHNIQUES

The most typical steps employed in SKG techniques are
presented in Figure 1. In the first step, Alice and Bob exchange
beacon signals, from which each estimates the physical layer
characteristics that are used as common sources of random-
ness. In our case, they estimate the channel gain and phase.
The channel measurements are then quantized and converted
into a stream of bits. This is followed by an information
reconciliation as well as a privacy amplification step to be
applied on the two streams of bits.

It is well known that the major advantage of uniform
quantization is its ease of implementation. However, increas-
ing the number of quantization bits dramatically degrades
the performance of the SKG technique. This is due to the
quantization error that increases as more quantization levels
are added. This leads to a higher BMR between Alice and
Bob. In [8], an encoding algorithm is proposed to address this
issue where each uniformly quantized value is encoded with
multiple values. It is worth noting that a lower BMR after the
quantization step leads to a longer key, which increases the
SKG technique’s efficiency.

Another popular technique to address the BMR is presented
in [9], [17]. Their solution is based on level crossing of the
estimated channel gain. They first use the statistics of the
estimated channel gain to compute two thresholds (C+ and
C−). Alice determines the locations of her estimated channel
gain, which is stored in a vector GA, that are above C+ or
below C− for a duration of m successive estimates. Alice
then sends those locations to Bob. Bob then compares his
estimated channel gain at the locations in GA to determine
GB at which the estimated channel gains are higher than C+

or below C− for a duration of m − 1 successive estimates.
Bob’s estimated locations GB , which is a subset of GA are
sent back to Alice. The channel estimates at the locations GB

at both Alice and Bob are then quantized and converted into
bitstreams. The main difference between the level crossing
technique and the traditional techniques is that the information
reconciliation step is performed before the quantization and the
bitstream generation. This leads to a much better BMR but at
the cost of much shorter key length. To address this drawback,
the authors of [9], [17] have proposed to increase the propping
rate of the channel.
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Fig. 1: Typical steps for SKG.

IV. PROPOSED SRP TECHNIQUE

We propose a simple SKG technique exploiting, indirectly,
the estimated channel. Our technique can be applied on the
channel gain only, phase only or a combination of the channel
gain and phase as we will show later. It is assumed that Alice
and Bob have exchanged signals within the coherence time
of the channel. They then have estimated the channel using
(6) and (7). They applied an interpolation technique on their
channel estimates at the pilot locations to estimate the channel
across the entire OFDM symbol. It is worth noting that our
technique is not exclusive to OFDM systems, rather it can
be applied on the estimated channel in presence of any other
system.

A. Creating a secondary random process

Due to the reciprocity of the channel, the channel estimates
at Alice and Bob, ĤA

LS and ĤB
LS , are supposed to be identical.

However, because of the AWGN added at the two receivers,
ĤA

LS and ĤB
LS are not identical. To address the BMR issue

explained earlier, we generate a secondary random process
from the channel estimates. This SRP is then used as common
source of randomness to generate the secret key. The steps,
which can be applied on the estimated channel gain or phase,
are reported below. The steps are reported for the channel gain
and apply similarly to the phase. For simplicity, we limit the



description below to the case in which they are applied to the
estimated channel gain. The steps to generate our SRP are:

1) Both Alice and Bob use their estimated channel gain to
estimate a threshold (γg) as:

γAg = E[|ĤA
LS |] + α std(|ĤA

LS |) (8)

γBg = E[|ĤB
LS |] + α std(|ĤB

LS |), (9)

where E[.] is the mean operation, std(.) is the standard
deviation operation and α is a design parameter ∈ [−1 :
1].

2) Both Alice and Bob compare their channel gain, recur-
sively to the preset thresholds γAg and γBg , respectively.

3) If the channel estimate is higher than the preset threshold,
the location, i.e, the index (x-axis) is stored in a vector
S initialized to all zeros. Alice and Bob estimate their
vectors as SA

g and SB
g .

4) Alice and Bob then estimate the moving difference of
their estimated locations JA

g and JB
g for channel gain,

which are computed as:

JA
g [i] = SA

g [i+ 1]− SA
g [i], i = 1, ..., N − 1, (10)

JB
g [i] = SB

g [i+ 1]− SB
g [i], i = 1, ..., N − 1. (11)

A flow chart of the SRP of the channel gain is presented in
Figure 2 for Alice. The realizations in the vectors JA

g and
JB
g constitute the entries of our secondary random process. In

other words, we have created two SRPs, one for the channel
gain and another for the channel phase. These SRPs are
considered our new common sources of randomness which
are then used by Alice and Bob to generate the secret key. In
Section VII, we provide an example of our SRP. Alice and
Bob can use SRP extracted from channel gain only, channel
phase only or a combination of the two for the SKG.

B. Quantization

Now that we have our secondary common source of ran-
domness estimated at both Alice and Bob, the following step
is to quantize it into a bit stream suitable for SKG. We use,
as stated earlier, the most popular technique for quantization,
which is the uniform quantization. In uniform quantization, the
spaces along the x-axis are equal. Similarly, the spaces along
the y-axis, which represents the estimated secondary common
source of randomness, are uniformly distributed. When using
nq bits as the number of quantization bits, there will exist
2nq levels to quantize the secondary common sources of
randomness. The quantized decimal valued are then converted
into bits.

C. Information Reconciliation and Privacy Amplification

The produced streams of bits at Alice and Bob will have
some discrepancy, particularly at low SNR levels. This is due
to several causes that include interference, AWGN, hardware
limitations and quantization error. An information reconcilia-
tion technique such as the one presented in [21] will be used to
reduce the discrepancy. Both Alice and Bob first permute their
bit streams in the same manner. Then they divide the permuted
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Fig. 2: Flow chart of SRP creation for channel gain at Alice.

bit stream into small blocks. Alice then sends permutations
and parities of each block to Bob. Bob compares the received
parity information with the ones he already processed. In case
of a parity mismatch, Bob changes his bits in this block to
match the received ones.

The information reconciliation step is designed in such a
way that minimizes the information leaked to the adversary.
However, some information about the secret key might be
leaked during the communication between Alice and Bob at
this stage. The eavesdropper can still use this leaked informa-
tion to guess the rest of the secret key. Privacy amplification
addresses this issue by reducing the length of the output bit
stream. The generated bit stream is shorter in length but higher
in entropy. To do so, both Alice and Bob apply a universal
hash function selected randomly from a set of hash functions
known by both Alice and Bob. Alice sends the number of



the selected hash function to Bob so that Bob can use the
same hash function. Further details on exploiting universal
hash function for privacy amplifcation is presented in [22].

Our SKG technique is summarized in Algorithm 1 for the
channel gain. It is assumed that Alice and Bob have already
estimated the channel. Same steps can be applied to the
channel phase.

Algorithm 1 SRP SKG Technique for Channel Gain
Step 1: Creating secondary random process
Alice and Bob estimate their thresholds using (8) and (9),
respectively.
Both Alice and Bob apply the following steps on |ĤA

LS | and
|ĤB

LS |.
for i = 1: length(|ĤA

LS |) do
if |ĤLS | > γg then
S[i] = i

else
S[i] = 0

end if
end for
Both Alice and Bob estimate JA

g = SA
g [i+ 1]− SA

g [i] and
JB
g = SB

g [i+ 1]− SB
g [i].

Step 2: Uniform Quantization
Alice and Bob use nq bits to quantize JA

g and JB
g .

Alice and Bob convert their quantized values into bit-
streams.
Step 3: Information Reconciliation
Alice and Bob permute the bit streams and divide them into
small blocks.
Alice sends the permutation and parities to Bob.
Bob compares the received parity information with his own.
In case of mismatch, Bob corrects his bits accordingly.
Step 4: Privacy Amplification
Alice sends the number of the hash function to Bob.
Alice and Bob apply the hash function to the bit stream.

V. PROPERTIES OF SRP
In this section, we study the characteristics of our generated

SRP. The first step in our SRP creation is to compare the esti-
mated channel gain or phase to a preset threshold. This process
can be considered as independent and identically distributed
Bernoulli trials. For the channel gain, the success is defined as
|ĤLS [i]| > γg and the failure defined as |ĤLS [i]| ≤ γg . The
probability of success for the channel gain, pg , is given by

pg = Pr(|ĤLS [i]| > γg)

= 1− qg
= 1− Pr(|ĤLS [i]| ≤ γg), (12)

where qg is the probability of failure. The channel gain fol-
lows a Rayleigh distribution with probability density function
defined as:

f(r) =
r

Ω2
exp

(
− r2

2Ω2

)
, for r ≥ 0 (13)

where r is the envelope amplitude of the received signal and
2Ω2 is the average power of multipath signal prior to envelope
detection. Hence,

pg = exp

(
−
γ2g

2Ω2

)
. (14)

Similarly, for channel phase, the success is defined as
∠ĤLS [i] > γph and the failure defined as ∠ĤLS [i] ≤ γph,
where γph is the threshold for the channel phase. The proba-
bility of success for the channel phase is

pph = Pr(∠ĤLS [i] > γph)

= 1− qph
= 1− Pr(∠ĤLS [i] ≤ γph), (15)

where qph is the probability of failure. The channel phase,
θ, follows a uniform distribution with probability density
function defined as:

f(θ) =
1

2π
, for 0 ≤ θ ≤ 2π (16)

Hence,

pph = 1− γph
2π

. (17)

Remember that the vectors Sg and Sph are initialized to all
zeros. We search for the locations at which the estimated
channel gain or phase exceeds the threshold. These locations
are the nonzero entries in Sg and Sph. They are estimated
as the number of trials, v, needed to achieve u successes.
Therefore, these locations, Vg , follow a negative binomial
(NB) distribution according to Vg ∼ NB (ug, pg) for the
channel gain and Vph ∼ NB (uph, pph) for the channel phase.
The probability mass function of Vg is given by:

lg(vg, ug) = Pr(Vg = vg)

=

(
vg − 1

ug − 1

)
(1− pg)vg−ugpug

g . (18)

lph(vph, uph) is defined similarly for the channel phase. Thus,
the probability of overwriting the initial zero in Sg is given by
(18) and the probability that it remains zero is l′g(vg, ug) =
1 − lg(vg, ug). Also l′ph(vph, uph) is described in the same
manner. The entries in the vectors Jg and Jph are the moving
differences between each two consecutive entries in Sg and
Sph, respectively. Hence, each entry in Jg and Jph has four
possibilities as follows. We present the cases for the channel
gain only. The four cases for the channel phase are similar with
the probabilities assigned to the channel phase vector entries.
• Case 1: the two consecutive entries in Sg are zeros.

Consequently, the entry in Jg is zero with probability
l′g(vg, ug) l′g(vg + 1, ug).

• Case 2: the two consecutive entries in Sg are the values of
the NB random variables (vg and vg + 1). Consequently,
the entry in Jg is 1 with probability lg(vg, ug) lg(vg +
1, ug + 1).

• Case 3: the first (out of the two producing Jg entry) entry
is zero and the second is a value of the NB random



variable. Consequently, the entry in Jg is the same
value of the NB random variable (vg) with probability
l′g(vg, ug) lg(vg + 1, ug + 1).

• Case 4: the first entry is a value of the NB random
variable and the second is zero. Consequently, the entry in
Jg is the negative of the value of the NB random variable
(−vg) with probability lg(vg, ug) l′g(vg + 1, ug).

To find a closed form expression for the probability mass func-
tion of each entry in Jg , which we denote by P (Jg[i] = jg),
we use the Lagrange interpolating polynomial formula [23].
Lagrange interpolating polynomial method finds the polyno-
mial of degree ≤ nlg − 1 which passes through nlg points
((xlg1

, ylg1
), (xlg2

, ylg2
), · · · , (xlgnlg

, ylgnlg
)). It is defined as

D(xlg) =

nlg∑
ilg=1

Tlg(xlg), (19)

with

Tlg(xlg) = ylgilg

nlg∏
klg=1

klg 6=ilg

xlg − xlgklg

xlgilg
− xlgklg

. (20)

Using the four cases explained above, the probability mass
function of each entry in Jg for jg ∈ {−vg, 0, 1, vg} can be
given by

P (Jg[i] = jg)

=
lg(vg, ug)lg(vg + 1, ug + 1)jg(vg + jg)(vg − jg)

(vg − 1)(vg + 1)

−
l′g(vg, ug)l′g(vg + 1, ug)(jg − 1)(vg + jg)(vg − jg)

v2g

+
lg(vg, ug)l′g(vg + 1, ug)jg(vg − jg)(jg − 1)

2v2g(vg + 1)

+
l′g(vg, ug)lg(vg + 1, ug + 1)jg(vg + jg) (jg − 1)

2v2g(vg − 1)
. (21)

The probability mass function of each entry in Jg is zero
otherwise. The mean, E[Jg[i]], is then:

E [Jg[i]] =
∑
jg

jg P (Jg[i] = jg)

= lg(vg, ug) lg(vg + 1, ug + 1)

+ vg l
′
g(vg, ug) lg(vg + 1, ug + 1)

− vg lg(vg, ug) l′g(vg + 1, ug), (22)

and

E
[
J2
g [i]
]

=
∑
jg

j2g P (Jg[i] = jg)

= lg(vg, ug) lg(vg + 1, ug + 1)

+ v2g l
′
g(vg, ug) lg(vg + 1, ug + 1)

+ v2g lg(vg, ug) l′g(vg + 1, ug). (23)

Hence, the variance of Jg[i] can be given by:

var [Jg[i]] = E
[
J2
g [i]
]
− [E [Jg[i]]]

2

= lg(vg, ug) lg(vg + 1, ug + 1)

+ v2g l
′
g(vg, ug) lg(vg + 1, ug + 1)

+ v2g lg(vg, ug) l′g(vg + 1, ug)

−
(
lg(vg, ug) lg(vg + 1, ug + 1)

+ vg l
′
g(vg, ug) lg(vg + 1, ug + 1)

− vg lg(vg, ug) l′g(vg + 1, ug)

)2

. (24)

The probability mass function for the channel phase,
P (Jph[i] = jph) is defined similarly.

VI. SECRET KEY CAPACITY

Since the entries in our generated SRPs are independent
and identically distributed (i.i.d.), our secret key rate after the
information reconciliation and privacy amplification exhibits
the same generic results presented in [24]. The upper and lower
bounds for the channel gain SRP are given by [24]:

RU
g (JA

g [i]; JB
g [i]||JE

g [i]) ≤ min

[
I(JA

g [i]; JB
g [i]),

I(JA
g [i]; JB

g [i]|JE
g [i])

]
, (25)

RL
g (JA

g [i]; JB
g [i]||JE

g [i]) ≥ max

[
I(JB

g [i]; JA
g [i])−

I(JE
g [i]; JA

g [i]), I(JA
g [i]; JB

g [i])

− I(JE
g [i]; JB

g [i])

]
,

(26)

where I(JA
g [i]; JB

g [i]) is the mutual information between JA
g [i]

and JB
g [i] and I(JA

g [i]; JB
g [i]|JE

g [i]) is the mutual information
between JA

g [i] and JB
g [i] given JE

g [i] for the eavesdropper,
Eve. The supremum of the secret key rate is considered the
secret key capacity Cg:

Cg = max
P (JA

g [i])
I(JA

g [i]; JB
g [i]||JE

g [i])

≤ min

[
max

P (JA
g [i])

I(JA
g [i]; JB

g [i]),

max
P (JA

g [i])
I(JA

g [i]; JB
g [i]|JE

g [i])

]
. (27)

However, in the definitions above, it was assumed that Eve has
access to the primary random process, i.e., channel estimates.
In order for Eve to collect correlated channel measurements,
she has to be within a half wavelength apart from either Alice
or Bob. In other words, Eve has to place herself within a
close proximity (typically a few centimeters) of either of them
to obtain useful channel estimates, which is very unlikely to
occur. Therefore, as in [25], we disregard the feasibility of



eavesdropping. Consequently, the secret key capacity for the
channel gain SRP can be given by

Cg = lim
N→∞

1

N
I
(
JA
g [i]; JB

g [i]
)
. (28)

The mutual information is defined as

I
(
JA
g [i]; JB

g [i]
)

=∑
jAg ∈[−vg,0,1,vg]

∑
jBg ∈[−vg,0,1,vg ]

[
P

(
JA
g [i] = jAg ,

JB
g [i] = jBg

)
log

(
P (JA

g [i] = jAg , J
B
g [i] = jBg )

P (JA
g [i] = jAg )P (JB

g [i] = jBg )

)]
, (29)

where P
(
JA
g [i] = jAg , J

B
g [i] = jBg

)
is the joint probability

mass function of JA
g [i] and JB

g [i], while P (JA
g [i] = jAg )

and P (JB
g [i] = jBg ) are the probability mass functions of

JA
g [i] and JB

g [i], respectively, which are defined by (21).
P
(
JA
g [i] = jAg , J

B
g [i] = jBg

)
can be given by

P
(
JA
g [i] = jAg , J

B
g [i] = jBg

)
=

P
(
JA
g [i] = jAg |JB

g [i] = jBg
)
P (JB

g [i] = jBg ). (30)

Since the two vectors JA
g [i] and JB

g [i] are highly correlated,
the probability that the entry at JB

g is identical to the entry
at JA

g is high. We denote this probability by pog . It is defined
as pog = P

(
JA
g [i] = jBg |JB

g [i] = jBg
)

1. The probability that
an error occurred, i.e., the entry at JB

g is different from the
entry JA

g is defined as peg = P
(
JA
g [i] 6= jBg |JB

g [i] = jBg
)
.

The error can happen in two cases. The first case occurs if
either one of the entries in SA

g , which are used to generate
the entry JA

g , is different from its counterpart in SB
g . We

denote this probability by pe1g . The second case occurs if
the two entries in SA

g are different from their counterparts in
SB
g . We denote this probability by pe2g . The relation between

the three probabilities follow pog > pe1g > pe2g at medium
and high SNR levels. Based on these probabilities, we define
P
(
JA
g [i] = jAg |JB

g [i] = jBg
)

for all possible values of jAg and
jBg in Table I. Similarly, the secret key capacity for the
channel phase, Cph, is defined in the same manner with the
probabilities poph, pe1ph and pe2ph. We compute the values of both
channel gain and phase probabilities in Section VII.

1Even if the two entries of SA
g and SB

g were different and resulted in
JA
g [i] = jBg |JB

g [i] = jBg , we still consider that as a success since jBg is
the value that will be used to generate the secret key and it should be equal
at both Alice and Bob. However, we would like to state that having the two
entries in SA

g and SB
g different and resulting in a success shall constitute a

very small percentage of pog because the two vectors SA
g and SB

g are highly
correlated.

TABLE I: P
(
JA
g [i] = jAg |JB

g [i] = jBg
)

PPPPPPPjAg

jBg −vg 0 1 vg

−vg pog pe1g pe1g pe2g

0 pe1g pog pe2g pe1g

1 pe1g pe2g pog pe1g

vg pe2g pe1g pe1g pog

VII. PERFORMANCE EVALUATION

To evaluate the performance of our technique, we simulate
an entire OFDM system and estimate the channel using the
LS estimator. Table II summarizes our simulation parameters
for the subsequent figures. We simulate the conventional
channel gain and phase techniques, level crossing technique,
and proposed SRP technique for channel gain only and for
channel phase only. Then we obtain the combined SRP by
concatenating bitstreams from channel gain and phase SRPs.
Our combined vectors are given by

JA
c = [JA

g [1], JA
p [1], JA

g [2], JA
p [2], · · · , JA

g [N ], JA
p [N ]],

(31)

JB
c = [JB

g [1], JB
p [1], JB

g [2], JB
p [2], · · · , JB

g [N ], JB
p [N ]].

(32)

We first present an example of our generated SRP. To show
the effect of our proposed SRP technique on the BMR, we
simulate all techniques up to the quantization and bitstream
generation step. For a fair comparison, the level crossing
technique is simulated without the information reconciliation
step. In other words, channel estimates at the locations GA

and GB are quantized and converted into bitstreams. We plot
the BMR for all techniques. We then compute the secret key
capacity probabilities for both channel gain and phase SRPs.
Afterwards, we estimate the entropy rate of the generated key
for our techniques versus existing techniques. The secret key
length is then presented.

TABLE II: Simulation parameters

Parameter Value

No. of subcarriers 1024

No. of FFT point 1024

Subcarrier spacing 15 KHz

Number of pilots 16.7%=171

Cyclic prefix length 25%=256

Modulation scheme QPSK

Channel type Rayleigh

Doppler shift 100 Hz

Chan. Estimation LS

Interpolation type Linear

α -0.2

m for Level crossing 4

nq 8 bits

Number of iterations 10000
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|ĤA
LS |

|ĤB
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Fig. 3: (a) Estimated channel gain at Alice and Bob with γAg
and γBg and (b) our estimated JA and JB .

A. SRP

In Figure 3-(a), we plot the estimated channel gain at both
Alice and Bob, for SNR = 20 dB and the thresholds estimated
from (8) and (9). We then follow the steps in Section IV-A
to estimate JA

g and JB
g and plot them in Figure 3-(b). The

estimated channel gain at Alice and Bob is almost identical
with some discrepancy in the value of the gain (y-axis) due
to the effect of the AWGN. Note that SNR = 20 dB can
be considered a moderately high SNR level. The effect of
AWGN at lower SNR levels is more severe. On the other
hand, since our SRP depends on the locations (x-axis), the
effect of AWGN on our channel gain SRP is tolerable. The
same conclusion is drawn for the channel phase SRP.

B. BMR

We plot the BMR between the secret keys generated at Alice
and Bob for all the techniques in Figure 4. Our proposed SRP
techniques drastically improve the BMR achieving a BMR
that is ranging from 10-15% at low and high SNR levels to
25% at medium SNR levels less than that of the conventional
channel gain and phase. In addition to that, our proposed SRP
is achieving a BMR that is ranging from 12% at low SNR
levels to 40% at medium and high SNR levels less than that of
the level crossing technique. It is worth noting that on average
the worst BMR achieved is 0.5 which is equivalent to random
guessing. The level crossing technique is performing the worst;
achieving the highest BMR, which indicates that the strength
of the level crossing algorithm comes from the information
reconciliation step. The combined SRP technique achieves a
BMR that is average between the SRP channel gain and phase.
Also, as expected, as the SNR increases, the BMR for all
techniques improves.

C. Probabilities for secret key capacity

We compute the probabilities, pog , pe1g and pe2g numerically
in Figure 5 for the channel gain SRP and poph, pe1ph and pe2ph
in Figure 6 for the channel phase SRP for SNR ranging from
0 to 40 dB. As expected, since JA

g [i] and JB
g [i] are highly
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Fig. 4: BMR as a function of SNR for our scheme vs. existing
techniques.
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Fig. 5: Probabilities for channel gain SRP.

correlated, pog is much higher than pe1g and pe2g , particularly at
medium and high SNR levels. As SNR increases, pog increases,
while pe1g and pe2g decrease. In addition, pe1g > pe2g at medium
and high SNR levels since it is more likely for one entry in
Sg to change rather than the two entries. The same result is
obtained for the channel phase. Note that pog + 2 pe1g + pe2g =
1. In addition poph > pog at low SNR levels, which suggests
exploiting the channel phase SRP over channel gain SRP at
low SNR levels should be preferred.

D. Entropy

Entropy is a measure of the level of randomness of the
generated key. For example, for our SRP channel gain, the
entropy of a secret key generated from Alice’s estimated
channel gain is defined as H(JA

g [i]) = log
(
1/P (JA

g [i])
)
. The

average entropy is then E[H(JA
g )]. As expected from Figure

3-(b), the average entropy of our SRP secret key will be less
than that of the channel gain. We plot the achieved entropy rate
of all techniques in Figure 7. Our entropy rate for the channel
gain is consistent with the results obtained in [26]. Our SRP
channel gain and phase exhibit less entropy than all other tech-
niques. To address this drawback, we proposed the combined
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Fig. 6: Probabilities for channel phase SRP.

channel gain and phase SRP algorithm, which improved the
entropy rate of the generated secret key. We sacrifice a bit of
entropy (15%) to greatly improve the BMR. Also, it is worth
nothing that the combined SRP technique does not increase the
complexity of the system since both channel gain and phase
can be calculated from the channel estimates. In addition to
that, it only requires a simple concatenation operation.

The reduction in entropy resulting from our method which
is associated with significant reduction in BMR has the
advantage that less exchange of messages is needed in the
subsequent phases of information reconciliation and privacy
amplifications. Knowing that more exchange of messages for
information reconciliation results in more side information
available to Eve, which in turn will mean less entropy of the
final key after privacy amplification [27], we can argue in a
qualitative manner that we achieve a performance very close to
classical key extraction methods in terms of final key entropy.
However, in this work we are not addressing the subsequent
phases mentioned above and we stop at showing that BMR is
reduced.

E. Key Length

Figure 8 shows the simulated key length of all techniques
normalized to the length of the secret key generated through
the conventional channel gain technique. Our proposed SRP
channel gain and phase is achieving approximately the same
key length as of that of the channel gain and phase techniques,
while SRP combined is achieving twice that length. On the
contrary, the level crossing technique is performing the worst
achieving a normalized key length of 30%. This implies that
for the level crossing rate technique to achieve a reasonable
key length, the frequency of channel propping should increase
which decreases the throughput of the system.
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Fig. 7: Entropy as a function of SNR for our scheme vs.
existing techniques.

0 5 10 15 20 25 30 35 40

SNR (dB)

20

40

60

80

100

120

140

160

180

200

N
or

m
al

iz
ed

 k
ey

 le
ng

th
 (

%
)

Channel gain
Channel phase
Level crossing
Prop. SRP Ch. gain
Prop. SRP Ch. phase
Prop. SRP combined

Fig. 8: Normalized key length as a function of SNR for our
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VIII. CONCLUSION

We proposed a simple yet robust technique to extract a
secret key from a secondary random process that is derived
from the channel estimates. Our SRP technique can be applied
on the channel gain only, channel phase only as well as a
combination of the two. We derived a closed form expression
for the probability mass function of an entry of the SRP vector
and simulated our technique using a complete OFDM system.
Compared to existing techniques, our SRP solution provided
a drastic improvement in the BMR, and achieved comparable
entropy and a much longer key length in the case of the
combined SRPs. We computed the conditional probabilities
used to estimate the secret key capacity for both the channel
gain and phase SRP. In addition, our SRP solution is easy to
implement and does not increase the complexity of the system.
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