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ON EMBEDDINGS OF ALMOST COMPLEX MANIFOLDS IN
ALMOST COMPLEX EUCLIDEAN SPACES

ANTONIO J. DI SCALA, NAOHIKO KASUYA AND DANIELE ZUDDAS

Abstract. We prove that any compact almost complex manifold (M2m, J) of real di-
mension 2m admits a pseudo-holomorphic embedding in (R4m+2, J̃) for a suitable posit-
ive almost complex structure J̃ . Moreover, we give a necessary and su�cient condition,
expressed in terms of the Segre class sm(M,J), for the existence of an embedding or an
immersion in (R4m, J̃). We also discuss the pseudo-holomorphic embeddings of an almost
complex 4-manifold in (R6, J̃).

1. Introduction

In this article we give some existence results of pseudo-holomorphic embeddings of
almost complex manifolds into almost complex Euclidean spaces. More precisely, we prove
that such an embedding exists if the dimension of the ambient Euclidean space is at least
4m+2, where 2m is the real dimension of the source manifold. We also give results about
pseudo-holomorphic immersions and embeddings into R4m under certain assumptions on
the Chern class. The Euclidean space is endowed with a suitable non-standard almost
complex structure, which is not integrable in general.

As a further result, we provide a condition for the existence of codimension-two pseudo-
holomorphic embeddings of almost-complex 4-manifolds.

We notice that Theorem 1 below represents a major improvement of the main result
of [6], where the pseudo-holomorphic embedding was in R6m. We reduce the dimension
of the ambient Euclidean space to 4m + 2. It is the best possible result, since there is an
obstruction for pseudo-holomorphic embeddings in R4m, as stated in Theorem 3. We also
fix a mistake in the proof of the main result of [6] that has to do with the homotopy type
of the space of linear complex structures on R2n. These spaces have been considered to be
(n� 1)-connected in [6], but this is false. In the present paper we prove a stronger result,
which is represented by Theorem 1 below.

The space of positive linear complex structures on R2n is homotopy equivalent to the
symmetric space �(n) = SO(2n)/U(n). If k 6 2n� 2, the homotopy groups ⇡k(�(n)) are
said to be stable. The stable homotopy groups of �(n) have been computed by Bott [2],
who showed that for k 6 2n� 2,

⇡k(�(n)) ⇠= ⇡k+1(SO(2n)) ⇠=

8><
>:

0 for k ⌘ 1, 3, 4, 5

Z for k ⌘ 2, 6

Z2 for k ⌘ 0, 7

(mod 8).

For the unstable homotopy groups of �(n), see [20], [13], [16] and [25].
Now we state our main results, which are the following.

Theorem 1. Any almost complex manifold (M2m, J) of real dimension 2m can be
pseudo-holomorphically embedded in (R4m+2, J̃) for a suitable positive almost complex
structure J̃ .

2010 Mathematics Subject Classification. 32Q60, 57R40, 57R42.
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2 ANTONIO J. DI SCALA, NAOHIKO KASUYA AND DANIELE ZUDDAS

Notice that the codimension 2m + 2 improves the 4m of [6, Theorem 1] for m > 1.
We denote by c(M,J) the total Chern class of (M,J), and by s(M,J) = c(M,J)�1

the total Segre class of (M,J). Let sk(M,J) 2 H2k(M) be the 2k-dimensional term of
s(M,J). We also define

I(M,J) = �1

2
hsm(M,J), [M ]i 2 Z.

Remark 2. I(M,J) is an integer because the normal Euler number of an immersion of
M2m in R4m is even by a theorem of Whitney [30]. Indeed, �2I(M,J) is going to be the
normal Euler number, see the proof of Theorem 3.

Theorem 3. An almost complex manifold (M2m, J) of real dimension 2m can be pseudo-
holomorphically immersed in (R4m, J̃) for a suitable positive almost complex structure J̃
if and only if I(M,J) > 0. In this case, there is a self-transverse pseudo-holomorphic
immersion (M,J) # (R4m, J̃) with exactly I(M,J) double points. Thus, (M,J) can be
pseudo-holomorphically embedded in (R4m, J̃), for some J̃ , if and only if I(M,J) = 0.

The first part of the following corollary is immediate because s1(S, J) = �c1(S, J),
hence I(S, J) = 1�g(S) for a closed Riemann surface (S, J), see also [5]. The second part
is a consequence of known facts, that is the existence of a torus fibration on S4, which
is due to Matsumoto [21]. However, we incorporate this result in the corollary because
this construction enlightens nicely and more concretely our results in the case of elliptic
curves as a family of pseudo-holomorphic curves in R4.

Corollary 4. (S, J) can be pseudo-holomorphically immersed in (R4, J̃), for some J̃ ,
if and only if S is either a torus or a sphere. Moreover, J̃ can be suitably chosen so that
(R4, J̃) admits a two-dimensional holomorphic singular foliation with the property that
the regular leaves but one are pseudo-holomorphically embedded tori, the other regular
leaf is a pseudo-holomorphically embedded cylinder S1 ⇥ R, and the singular leaf is a
pseudo-holomorphically immersed sphere with one node.

For a closed, oriented 4-manifold M , we denote the signature of M by �(M).

Theorem 5. Suppose that (M,J) is a closed almost complex 4-manifold such that
H2(M) has no 2-torsion. Then, (M,J) can be pseudo-holomorphically embedded in (R6, J̃),
for some J̃ , if and only if �(M) = �(M) = 0 and c1(M,J) = 0.

Remark 6. Our proof of Theorem 1 also shows the existence of an isometric and pseudo-
holomorphic embedding of an almost Hermitian manifold (M2m, J, g) into (R2qm, J̃ , g0),
where g0 is the flat standard metric, J̃ is a suitable almost complex structure compatible
with g0 and qm is a su�ciently large integer. Indeed, the proof of Theorem 1 starts with
the use of the well-known theorem of Whitney to embed M into R4m+2. If we start our
proof of Theorem 1 with an isometric embedding f of (M, g) into (R2qm, g0) where qm is
determined as in Nash’s theorem [24], then our proof shows the existence of the suitable
J̃ compatible with g0 such that f is also pseudo-holomorphic (for recent improvements of
qm see [12] and the references therein).

The paper is organized as follows. In Section 2 we address some preliminaries and fix
notations. In Section 3 we prove Theorems 1 and 3. The proofs make use of Proposition 11,
which is proved therein. In Section 4 we quickly recall basic facts about Lefschetz fibra-
tions, and prove the second part of Corollary 4. Section 5 addresses the four-dimensional
case, with the proof of Theorem 5. We conclude with some remarks in Section 6, providing
also the sketch of an alternative proof of Theorem 5.
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2. Preliminaries

Throughout this paper, manifolds are assumed to be connected, oriented, and smooth,
that is of class C1. Maps between manifolds are also assumed to be smooth, if not
di↵erently stated.

Let M be an even dimensional manifold. An automorphism J : TM ! TM satisfying
J2 = �id is called an almost complex structure on M . The pair (M,J) is called an almost
complex manifold. Equivalently, an almost complex structure is a complex structure on
the tangent bundle, where the multiplication by i on TpM corresponds to the action of
Jp. In particular, an almost complex structure determines a preferred orientation on M .
If M is already oriented, J is said to be positive if the given orientation coincides with
the one determined by J . Otherwise, J is said to be a negative almost complex structure.

The space e�(n) of positive linear complex structure on R2n, that is the set of matrices
which are conjugate to

Jn =
M

n


0 �1
1 0

�

by an element of GL+(R2n), is di↵eomorphic with the symmetric space GL+(R2n)/GL(Cn),
which in turn is homotopy equivalent to �(n). An almost complex structure on R2n can
be considered as a map J : R2n ! e�(n).

Definition 7. Let (M,J) and (N, J 0) be almost complex manifolds. A map f : M ! N
is said to be pseudo-holomorphic if Tf�J = J 0�Tf . Equivalently, f is pseudo-holomorphic
if and only if the tangent map is complex linear at each point.

Our results depend on well-known theorems of Whitney on the existence of immersions
and embeddings of smooth manifolds into Euclidean spaces [30, 31]. We also make use
of the Hirsch-Smale theory on the classification of immersions [15, 27]. We first quickly
recall Whitney’s theorems.

Theorem 8 (Whitney [30]). Any smooth m-manifold can be embedded in R2m.

Theorem 9 (Whitney [31]). For m > 1, any smooth m-manifold can be immersed in
R2m�1.

A key ingredient in the proof of Theorem 8 is the self-intersection number I(f) of an
immersion f : Mm ! R2m with normal crossings, that is an immersion f whose self-
intersections are all transverse double points.

When m is even and M is orientable, I(f) is the algebraic self-intersection of f (whereas
if m is odd or M is non-orientable, I(f) is defined only mod 2). By results of Whitney
for m > 3 and Hirsch (based on work of Smale) for m = 2, two immersions f and g of
Mm into R2m are regularly homotopic if and only if I(f) = I(g) and moreover any f is
regularly homotopic to an immersion with exactly |I(f)| singular points. In particular, f
is regularly homotopic to an embedding if and only if I(f) = 0.

Our proof of Theorem 3 is based on the following theorem of Hirsch [15] and Smale [27].
We denote by Imm(M,N) the space of immersions of M into N , and by Mon(TM, TN)
the space of bundle monomorphisms from TM to TN , endowed with the C1-topology,
with Mm and Nn manifolds of dimensions m < n.

Theorem 10. The tangent map T : Imm(M,N) ! Mon(TM, TN) is a weak homo-
topy equivalence. In particular, the tangent map induces a bijection ⇡0(Imm(M,N)) ⇠=
⇡0(Mon(TM, TN)).

In other words, the classification of immersions up to regular homotopy is reduced to
that of monomorphisms up to homotopy.



4 ANTONIO J. DI SCALA, NAOHIKO KASUYA AND DANIELE ZUDDAS

For N = Rn, homotopy classes of bundle monomorphisms TM ! TRn correspond to
homotopy classes of maps TM ! Rn which are linear and injective on each fiber, and in
turn these are sections of a bundle over M with fiber di↵eomorphic to the Stiefel manifold
Vm(Rn) of linear injective maps Rm ! Rn, that is the space of n⇥m matrices of rank m.
Notice that Vm(Rn) is homotopy equivalent to the homogeneous space SO(n)/ SO(n�m).

Now we focus on the immersions of a closed, oriented, connected manifold M2m into
R4m. By obstruction theory, the obstructions to homotopy between two sections of a
V2m(R4m)-bundle lie in the cohomology groups H i(M,⇡i(V2m(R4m))). Since V2m(R4m) is
(2m� 1)-connected, the only obstruction lies in

H2m(M ;⇡2m(V2m(R4m))) ⇠= ⇡2m(V2m(R4m)) ⇠= Z.

Hence, there are identifications

⇡0(Imm(M, R4m)) ⇠= ⇡0(Mon(TM, TR4m)) ⇠= ⇡2m(V2m(R4m)) ⇠= Z.

This is given exactly by the self-intersection I(f) for immersions with only normal cross-
ings.

Let ⌫f be the normal bundle of the immersion f . It is well known that the normal
Euler class e(⌫f) is given by �2I(f)[M ] (see [30], [19]). Hence, the normal Euler class also
classifies regular homotopy classes of immersions of M2m into R4m. We use this fact in
the proof of Theorem 3.

3. The proofs of theorems 1 and 3

First, we prove the following proposition. Let J1 be the standard complex structure on
Cn.

Proposition 11. (M2m, J) can be pseudo-holomorphically embedded in (R2n, J̃) for
a suitable positive almost complex structure J̃ , if and only if there is an embedding
f : M ! R2n such that the tangent map Tf : TM ! TR2n is homotopic to a complex
linear monomorphism (with respect to J and J1) through a homotopy of monomorphisms
covering f .

Proof. We begin with the ‘only if’ part. Take a pseudo-holomorphic embedding f : (M,
J) ! (R2n, J̃). We can assume that J̃ is equal to J1 outside of a su�ciently large ball
B2n(R) of radius R > 0 and centered at the origin. We take R such that f(M) ⇢
B2n(R/2).

Since J̃ and J1 are both positive almost complex structures on the contractible space
R2n, there exists a homotopy (Jt)t2[0,1] of almost complex structures between J0 = J̃ and
J1 whose support is in B2n(R).

In other words, we have a smooth map g : B2n(R) ⇥ [0, 1] ! e�(n), such that gt =
g(·, t) = Jt for all t 2 [0, 1]. Since g1 is a constant map, we have the trivial lift ḡ1 :
B2n(R) ! GL+(R2n), which is the constant map to the identity element. Hence, by the
homotopy lifting property, there exists a lift

ḡ : B2n(R)⇥ [0, 1] ! GL+(R2n)

of g with respect to the projection GL+(R2n) ! e�(n). By taking the columns of the
corresponding matrix, we obtain vector fields {e1(t), e2(t), . . . , e2n�1(t), e2n(t)} on R2n,
which depend smoothly on t 2 [0, 1], span pointwise the tangent bundle TR2n, and satisfy

Jt(e2k�1(t)) = e2k(t), e2k�1(1) =
@

@xk
, e2k(1) =

@

@yk
(k = 1, . . . , n),

where we denote by (x1, y1, . . . , xn, yn) the cartesian coordinates of R2n.



EMBEDDING ALMOST COMPLEX MANIFOLDS 5

Now, we have a homotopy  t : (TR2n, J0) ! (TR2n, Jt) of C-linear bundle isomorph-
isms over the identity map R2n ! R2n such that  t(ei(0)) = ei(t) for all i = 1, . . . , 2n.
Then, Ft =  t �Tf : TM ! TR2n is a homotopy of monomorphisms covering f such that
F0 = Tf and F1 is complex linear with respect to the standard structure J1.

Next, we prove the ‘if’ part. Let (Ft : TM ! TR2n)t2[0,1] be a homotopy of mono-
morphisms covering f between F0 = Tf and a C-linear monomorphism F1 : (TM, J) !
(TR2n, J1). Let ⌫t be the normal bundle of Ft.

The fiber of ⌫1 over p 2 M is the orthogonal complement of F1(TpM) in Tf(p)Cn, which
is a complex linear subspace. Therefore, ⌫1 admits a complex structure J 0. Since we have
a homotopy (⌫t)t2[0,1] of normal bundles, we can pull back J 0 to ⌫0, the normal bundle of
f . Thus, we get a complex structure J 00 = J � J 0 on the trivial bundle (TR2n)|M , which

is a map J 00 : f(M) ! e�(n). By construction, J 00 is null-homotopic. Hence, there is an
extension J̃ : R2n ! e�(n) of J 00, and this concludes the proof. ⇤

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. We take an embedding f : M2m ! R4m+2. By Proposition 11, it is
enough to show the existence of a complex linear monomorphism which is homotopic
to the tangent map Tf via a homotopy of monomorphisms covering f . A complex linear
monomorphism covering f corresponds to a section of a Vm(C2m+1)-bundle over M , where
we denote by Vm(Cn) ' U(n)/U(n �m) the complex Stiefel manifold of complex linear
injective maps Cm ! Cn. Notice that the identification Cn ⇠= R2n induces a canonical
inclusion Vm(Cn) ⇢ V2m(R2n).

Since Vm(C2m+1) is (2m+2)-connected, a section uniquely exists up to homotopy. Since
V2m(R4m+2) is (2m + 1)-connected, the homotopy type of monomorphisms covering f is
also unique. Hence, a pseudo-holomorphic monomorphism exists and it is homotopic to
the tangent map Tf via a homotopy of monomorphisms covering f . ⇤

Proof of Theorem 3. We begin with the proof of the ‘only if’ part. Let f : (M2m, J) !
(R4m, J̃) be a self-transverse pseudo-holomorphic immersion. Then the complex bundle
TM � ⌫f is trivial. This implies that the total Chern class satisfies c(M,J) c(⌫f) = 1.
The Euler class is given by e(⌫f) = cm(⌫f) and coincides with the 2m-dimensional term
of c(M,J)�1 = s(M,J). By Whitney’s formula stated at the end of previous Section,
h�e(⌫f), [M ]i = 2I(f), which in our complex case must be non-negative. Hence, I(M,J) >
0. Moreover, if f is an embedding, we get I(M,J) = 0.

Next prove the ‘if’ part. Since Vm(C2m) is 2m-connected, there is a complex linear
monomorphism F : TM ! TC2m. By Theorem 10 there is an immersion f 0 : M ! R4m,
with normal crossings, such that Tf 0 is homotopic to F as a real monomorphism.

In particular, the normal bundle ⌫f 0 admits a complex structure J 0. Notice that the
Whitney sum TM � ⌫f 0 is a trivial complex vector bundle because, by construction, it is
equivalent to the pullback (f 0)⇤(TC2m). Therefore, we have c(⌫f 0) = c(M,J)�1.

It follows that �2I(M,J) = he(⌫f 0), [M ]i. Hence, I(M,J) is the algebraic self-intersec-
tion of f 0 [30]. This implies that f 0 is regularly homotopic to an immersion f : M ! R4m

with exactly I(M,J) double points, which are necessarily all positive. Notice that the
normal bundle ⌫f , being isomorphic to ⌫f 0 , inherits a complex structure which we still
denote by J 0.

If I(M,J) = 0, f is an embedding and the complex bundle TM�⌫f over M gives a map

g : f(M) ! e�(2m) which is homotopic to a constant, since Tf : TM ! TR4m is homotopic
to a complex linear monomorphism by a homotopy of linear monomorphisms. Therefore, g
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can be extended to an almost complex structure J̃ on R4m such that f : (M,J) ! (R4m, J̃)
is a pseudo-holomorphic embedding.

Next consider the case I(M,J) > 0. First, isotope f so that the two tangent spaces
at the self-intersection points of f(M) are orthogonal. We regard (TxM)? as a linear
subspace of Tf(x)R4m, endowed with the complex structure J 0x. By means of the linear
monomorphism Txf : TxM ! Tf(x)R4m, we can also identify TxM with a linear subspace
of Tf(x)R4m, for all x 2 M .

Let p, q 2 M be two distinct points such that f(p) = f(q) = r. By the connectedness ofe�(m), we can homotope J 0 in a neighborhood of p and q so that J 0p = Jq and J 0q = Jp (up
to the above identification). Indeed, this can be achieved by changing J 0 inside disjoint
balls around such points p and q.

After performing this homotopy on all such pairs of points, we get an almost complex
structure J � J 0 on R4m which is well-defined along the immersed manifold f(M), that is
a map g : f(M) ! e�(2m).

The composition g�f : M ! e�(2m) is null-homotopic because, by construction, (⌫f , J 0)
is homotopic to ⌫F , and so g � f is homotopic to the pullback of TC2m by F , which is a
constant map.

The space f(M) is obtained from M by identifying finitely many pairs of points. So,
f(M) is homotopy equivalent to the wedge sum of M with n copies of S1, that is f(M) '
M _ (_nS1), where n is the number of the double points of f . In order to show that g
is homotopic to a constant, we can assume that g is defined on this wedge sum (up to
composing g with a suitable homotopy equivalence).

Since e�(2m) is simply-connected, the map g can be homotoped to a constant on the
circles S1 in the wedge sum. So, g factorizes by a map g0 : M ! e�(2m) which is homotopic
to g � f , hence to a constant. Therefore, g is homotopic to a constant. This means that
g can be extended to a map J̃ : R4m ! e�(2m), which is the desired almost complex
structure. ⇤

Remark 12. In the case where M2m is open, any almost complex manifold (M2m, J) can
be pseudo-holomorphically embedded in (R4m, J̃) for a suitable positive almost complex
structure J̃ . Since the open manifold M2m is isotopic to a neighborhood of the (2m� 1)-
skeleton and V2m(R4m) is (2m � 1)-connected, the space Mon(TM2m, TR4m) is path-
connected.

4. A pseudo-holomorphic foliation of (R4, J̃) and the proof of
Corollary 4

We first recall the notion of Lefschetz fibration. For further details and general facts
about Lefschetz fibrations, see for example [10] or [1, Section 6].

Let M be a closed 4-manifold, and let S be a closed surface. A Lefschetz fibration
on M is a map f : M ! S such that at the critical points, f is locally equivalent to
the complex non-degenerate quadratic form (z1, z2) 7! z1z2 (positive critical point), or
to (z1, z2) 7! z1z̄2 (negative critical point), with respect to suitably chosen local complex
coordinates that are compatible with the given orientations. It follows that a Lefschetz
fibration is an open map. We assume that f is injective on the critical set, which is a
finite set.

Away from the critical image Crit(f) ⇢ S, f is a surface bundle over S �Crit(f), with
fiber a closed, oriented surface F (the regular fiber of f). If g is the genus of F , we say
that f is a genus-g Lefschetz fibration.
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A singular fiber Fa = f�1(a), a 2 Crit(f), is an immersed surface with one node
singularity. Notice that this node can be positive or negative, accordingly with its sign
as a critical point of f . We denote by Crit+(f) ⇢ S the set of positive critical values
of f , and by Crit�(f) ⇢ S the set of negative critical values. Hence, we have Crit(f) =
Crit+(f) t Crit�(f). By looking at the local model, one can show that there is a simple
curve ca ⇢ F , which is called a vanishing cycle, such that Fa

⇠= F/ca. The monodromy of
a small loop around a in S is a Dehn twist about the curve ca. The vanishing cycles are
not uniquely determined, depending on the choice of generators for ⇡1(S � Crit(f)).

Given a Lefschetz fibration f : M ! S, it is a known fact that there are almost complex
structures J̃ on M+ = M�Crit�(f) and J on S such that f| : (M+, J̃) ! (S, J) is pseudo-
holomorphic. In particular the fibers of f|M+ are pseudo-holomorphic (possibly immersed)
curves, which define a pseudo-holomorphic singular foliation. For the sake of completeness,
we give the construction of such almost complex structures.

For any positive critical point a of f , take a local complex chart (Ua,'a) around a and a
local complex chart (Va, a) around f(a) such that ( a �f �'�1

a )(z1, z2) = z1z2. Moreover,
we assume that Va = f(Ua) and Cl(Va) \ Cl(Va0) = 6O for all a 6= a0. Take also a smaller
compact neighborhood U 0

a ⇢ Ua of a.
Next, we endow M with a Riemannian metric g such that 'a is an isometry in a

neighborhood of U 0
a, for all a 2 Crit+(f), where C2 is endowed with the Euclidean metric.

Also, endow S with a complex structure J . Since the space e�(1) is contractible, up to
deforming J in a neighborhood of f(U 0

a), we can assume that  a : (Int(f(U 0
a)), J) ! C is

complex analytic for all a.
Next, define an almost complex structure J̃ on M+ � Crit+(f) such that J̃ is a 90�-

rotation in the counterclockwise direction (with respect the the given orientation) on
any tangent plane TpFp to a fiber Fp = f�1(f(p)) for p 2 M+ � Crit+(f), while on
its orthogonal complement (TpFp)?, J̃ is the pullback of J through the isomorphism
(Tpf)| : (TpFp)? ! Tf(p)S.

It follows that J̃ coincides in U 0
a�{a} with the integrable complex structure determined

by the local chart 'a, hence J̃ extends over Crit+(f).
By construction, f : (M+, J̃) ! (S, J) is pseudo-holomorphic, hence the fibers are

pseudo-holomorphic curves.

Matsumoto’s fibration on S4. In [21] Matsumoto constructed a genus-1 Lefschetz fibration
f : S4 ! S2 with two critical points {a+, a�} of opposite signs (see also [10, Example 8.4.7]
for a description in terms of Kirby diagrams).

We sketch this construction here. We begin with the Hopf fibration h : S3 ! S2, which
is the projectivization C2 � {0} ! CP1 ⇠= S2 restricted to S3 ⇢ C2, which is defined by
the equation |z1|2 + |z2|2 = 1. Then make the suspension ⌃h : S4 ! S3. The map f can
be described topologically as a perturbation of f1 = h �⌃h. It is worth noting that both
f1 and f are nice maps that represent the generator of ⇡4(S2) ⇠= Z2.

The construction of f goes as follows. Recall that the Hopf fibration is given by

h(z1, z2) = (2z1z̄2, |z1|2 � |z2|2),

where we consider S2 ⇢ C⇥ R to be defined by the equation |z|2 + x2 = 1.
The suspension can be represented by

⌃h(z1, z2, x) = (2z1z̄2, |z1|2 � |z2|2 + ix
p

2� x2),

where S4 ⇢ C2 ⇥ R has equation |z1|2 + |z2|2 + x2 = 1.
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After some straightforward simplifications, we get that f1 = h � ⌃h can be expressed
by the formula

f1(z1, z2, x) = (4z1z̄2(|z1|2 � |z2|2 � ix
p

2� x2), 8|z1|2|z2|2 � 1).

It can be proved that f1 is a genus-1 Lefschetz fibration with two critical points a± =
(0, 0,±1) 2 S4 of opposite signs. The problem is that f1(a+) = f1(a�), so the singular
fiber is a sphere with two opposite nodes. This is due to the fact that ⌃h(a+) = (0, i)
and ⌃h(a�) = (0,�i) belong to the same fiber of h. We handle this issue by taking an
orientation-preserving di↵eomorphism k : S3 ! S3 such that k(0, i) and k(0,�i) belong
to di↵erent fibers of h. Finally put

f = h � k �⌃f.

It follows that f is a genus-1 Lefschetz fibration with two critical points a± such that
f(a+) 6= f(a�).

The singular fibers of f are two immersed spheres ⌃± = f�1(f(a±)), each one with one
positive or negative node singularity. Notice that ⌃± � {a±} ⇠= S1 ⇥ R.

By the above construction, we get an almost complex structure J̃ on S4 � {a�} ⇠=
R4, such that f| : (R4, J̃) ! S2 is pseudo-holomorphic, and this concludes the proof of
Corollary 4.

Remark 13. In [4] we show by di↵erent methods that J̃ can be taken integrable.

5. Almost complex 4-manifolds in R6

In this section we prove Theorem 5. We will make use of the following theorem.

Theorem 14 (Cappell-Shaneson [3, 26]). A closed, orientable, smooth 4-manifold M
embeds in R6 if and only if w2(M) = 0 and �(M) = 0.

Proof of Theorem 5. We begin with the ‘only if’ part. Take a pseudo-holomorphic embed-
ding f : (M,J) ! (R6, J̃). Since f is a codimension-2 embedding in a Euclidean space,
the normal complex line bundle ⌫f is trivial (see for example [18, Sec. 8, Theorem 2]), so

c(M,J) = c(M,J) c(⌫f) = f⇤(c(R6, J̃)) = 1.

Therefore, c1(M,J) = 0 and �(M) = hc2(M,J), [M ]i = 0. Moreover, w2(M) = 0 and
�(M) = 0 by Theorem 14.

Next, we prove the ‘if’ part. Since �(M) = 0 and w2(M) ⌘ c1(M,J) (mod 2) is zero,
there is an embedding f : M ! R6 by Theorem 14. The normal bundle ⌫f is trivial [18].
Let J 0 be a complex structure on ⌫f such that J 0 is compatible with the normal orientation
induced by the embedding f .

Thus, we get an almost complex structure J � J 0 on (TR6)|M ⇠= TM � ⌫f , that is a

map g : M ! e�(3). Now we show that g is null-homotopic. Take a cell decomposition
M (0) ⇢ M (1) ⇢ M (2) ⇢ M (3) ⇢ M (4) = M , where M (i) is the i-skeleton of M .

Recall that

⇡i(e�(3)) = ⇡i(�(3)) =

(
0 for i = 1, 3, 4

Z for i = 2.

Therefore, the only obstruction ⌦(g) for g to be null-homotopic lies in

H2(M ;⇡2(�(3))) = H2(M).

In other words, g is homotopic to a constant map over the 2-skeleton M (2) if and only if
the element ⌦(g) 2 H2(M) is zero. Moreover, once g has been homotoped to a constant on
M (2), we can extend this homotopy over higher skeleta because ⇡3(�(3)) = ⇡4(�(3)) = 0.
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Since c1(M,J) = 0 and since H2(M) has no 2-torsion, the following lemma implies that
⌦(g) = 0, and this concludes the proof. ⇤

Lemma 15. 2⌦(g) = c1(M,J).

Proof. For a topological group G, we denote by BG the classifying space of G, so that
there is a natural bijection between the set of equivalence classes of principal G-bundles
over any CW-complex X, and the set of homotopy classes of maps [X,BG], see [22, 23].

The inclusion U(3) ! SO(6) induces a fibration BU(3) ! BSO(6) with fiber �(3) [28,
p. 680]. Let ◆ : �(3) ! BU(3) be the inclusion. Then the composition ◆ � g : M ! BU(3)
is the classifying map of the complex vector bundle TM � ⌫f .

The homotopy exact sequence for the fibration �(3) ! BU(3) ! BSO(6), that is

⇡3(BSO(6)) ! ⇡2(�(3)) ! ⇡2(BU(3)) ! ⇡2(BSO(6)) ! ⇡1(�(3))

is given by 0 ! Z ! Z ! Z2 ! 0. Hence, the map ◆⇤ : ⇡2(�(3)) ! ⇡2(BU(3)) is the
double map in Z. Thus, ⌦ is mapped to

2⌦ 2 H2(M ;⇡2(BU(3))) = H2(M),

which is the obstruction for ◆ � g to be null-homotopic over M (2).
On the other hand, (◆ � g)|M(2) determines the class (◆ � g)⇤c1, where c1 is a generator

of H2(BU(3)) ⇠= Z. Hence, 2⌦(g) is equal to the first Chern class of the complex vector
bundle TM � ⌫f . Therefore, we obtain 2⌦(g) = c1(M,J � J 0) = c1(M,J). We note that
a similar argument can be found in the proof of Theorem 8.18 in [11] and in Section 8.1
of [8]. ⇤

6. Final remarks

(1) In the proofs of Theorems 1 and 5 we actually showed that any given embedding
f of M into the ambient Euclidean space can be made pseudo-holomorphic with
respect to a suitable almost complex structure on the ambient space (that is, R4m+2

or R6). The same holds for a given immersion into R4m in the proof of Theorem 3
with minimal self-intersection, provided it is self-orthogonal at the self-intersection
points.

(2) By a theorem of Dold and Whitney [7] and by Hirzebruch’s signature formula [14],
we have that w2(M) = 0 and �(M) = �(M) = 0 if and only if M is parallelizable.

In general, if M2m has trivial Euler characteristic and embeds in R2m+2, then
M2m is parallelizable. This follows from Kervaire’s theorem about the generalized
curvatura integra [17]. We quickly sketch this proof.

Let Mn ⇢ Rn+k, k > 1, be a framed submanifold, that is an embedded sub-
manifold M along with a trivialization of the normal bundle, which is essentially
a map G : M ! Vk(Rn+k) (the generalized Gauss map). Since Vk(Rn+k) is (n�1)-
connected, the element

G⇤([M ]) 2 Hn(Vk(Rn+k)) ⇠= ⇡n(Vk(Rn+k)) ⇠=
(

Z n even

Z2 n odd,

which is called the generalized curvatura integra, is the only obstruction for G to
be null-homotopic.

In [17], Kervaire expressed G⇤([M ]) in terms of the Hopf invariant of the framed
submanifold M , the Euler characteristic �(M), and the Kervaire semi-characteristic
of M . In particular, for n = 2m, G⇤([M ]) = 1

2(�(M)).
Therefore, for a real oriented codimension-2 submanifold M2m ⇢ Cm+1 with

�(M) = 0, we have that the generalized curvatura integra G⇤([M ]) is zero for
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any trivialization of the normal bundle. This implies that G : M ! V2(R2m+2) is
homotopic to the constant map given by the complex vector field @/@zm+1, where
(z1, . . . , zm+1) 2 Cm+1 are the standard coordinates. Hence, TM is homotopic, as
a subbundle of TCm+1, to the trivial bundle M ⇥Cm. Therefore, M2m is parallel-
izable.

These considerations lead to an alternative proof of Theorem 5. Let (M,J) be
an almost complex 4-manifold which satisfies the hypotheses of Theorem 5. So, we
can consider M as a real submanifold of C3, having trivial curvatura integra.

It follows that a trivialization of the normal bundle is homotopic to the vector
field @/@z3, and the tangent bundle is homotopic to M ⇥ C2 in (TC3)|M = M ⇥
C3. This way, M inherits another almost complex structure J1 induced by the
identification TM ⇠= M ⇥ C2.

The assumption that H2(M) has no 2-torsion is equivalent to the condition
that spinc structures on M are classified by the first Chern class (see for example
Theorem 2.4.9 in [10]). A spinc structure on M can be identified with the homotopy
class of a complex structure over the 2-skeleton M (2) that extends over the 3-
skeleton M (3) [9].

It follows that the two almost complex structure J and J1 on M are homotopic
over M (2) because both of them have trivial first Chern class.

Let J 0 be a complex structure on the normal bundle of M . We have that the
standard complex structure on the bundle (TC3)|M is homotopic, over M (2), with
the Whitney sum J � J 0. Therefore, the obstruction ⌦(g) defined in the previous
Section is trivial, implying that the map g : M ! e�(3) is null-homotopic.
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