
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Dottorato in Fisica - XXVIII ciclo

Tesi di dottorato

Statistical Mechanics Approach to Inverse Problems on
Networks

Alessandro Ingrosso

Relatore:
Prof. Riccardo Zecchina

Coordinatore:
Prof. Arianna Montorsi





A mamma e papá ∀ cosa.
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CHAPTER 1

Introduction

While the forward problem in Physics consists in predicting the outcome of an experiment given
a complete description of a system, inverse problems consist in using the result of some measurements
to infer the values of the parameters that characterize a system, or to build a model of a system
from a (generally limited) number of observations. At least in the context of deterministic models in
Physics, the forward problem has a unique solution. In inverse problems, there is in general no unique
solution, so that a probabilistic formulation has to be contemplated, where some extent of a priori
information on the parameters, together with the structure of the model itself, has to be incorporated
in the Bayesian prior. One then comes up with the hard problem of computing average quantities over
a complicated posterior probability distribution, which generally involves a large number of variables.

In this Thesis, I will concentrate on inverse problems that are defined on different kinds of networks,
and show how methods borrowed from the Statistical Physics of Disordered Systems, Spin Glasses in
particular, can be effectively used not just for the purpose of theoretical analysis, but also to construct
practical inference techniques based on suitable approximation schemes. The network structure is
strongly reflected in that of the corresponding probabilistic graphical model one builds for inference
purposes: simple variables interact with mutual local dependencies, emerging from the factorization
properties of the joint probability distribution. The effectiveness of Statistical Physics methods in
inference stems from the fact that most problems, when studied at equilibrium, can be formulated
in the framework of factor graphs, namely bipartite graphs composed of variable nodes connected
via factor nodes, that represent (physical) interactions. Hence, the analysis of large scale probabilistic
models poses similar problems as one encounters in Physics trying to analyze the equilibrium properties
of systems involving a large number of interacting particles.

The theory of Spin Glasses is a corpus of mathematical methods and concepts that tries to describe
the behavior of certain kinds of magnetic materials whose inner structure is characterized by disorder,
because of impurities in random locations. The relevance of the methods developed in the study of Spin
Glasses, such as Replica and Cavity methods [1] goes beyond the realm of purely physical applications.
One important example is the connection between the Bethe approximation and the development of
Message Passing algorithms that, together with their heuristic extensions, can be used to analyze
and solve hard problems which appears in error correcting codes, Bayesian inference in complicated
graphical models, Constraint Satisfaction Problems and much more, as I will extensively discuss in
this work.

Message Passing algorithms operate on messages that are associated with edges of the factor graph,
through recursive updates carried out only locally at the vertices of the graph [2]. I will focus on Belief
Propagation, a method that can be proven to compute the exact marginals of a probability distribution
associated to a tree-structured factor graph. It is very interesting to note that Belief Propagation was
found to perform very well on general loopy graphs as well, provided that the underlying graph is
locally a tree.
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8 1. INTRODUCTION

In this Thesis, I will deal with two main topics: the first section, composed of chapters 2, 4 and 5, is
devoted to the problem of learning in neural networks with discrete synaptic weights. Deep learning is,
without any doubt, the most interesting field in contemporary machine learning, and has experienced
a boost since the first effective learning methods have been developed in Deep Belief Nets [3]: deep
neural networks are now considered method of choice for a variety of hard classification tasks, especially
in the field of image recognition [4]. Nevertheless, a general theory of the generalization properties of
deep networks is still lacking, the nature of deep representations is debated and little is known about
the precise role of unsupervised pre-training, fine tuning, as well as optimality of Back Propagation in
a deep setting [3, 5, 6].

The study of the generalization abilities of neural networks has a long tradition in the history of
Statistical Mechanics: since physicists realized the usefulness of the Spin Glass formalism in neural
network models, methods in equilibrium and non-equilibrium Statistical Physics have been used to deal
with various problems, from the investigation of the memory capacity of the perceptron and simple
feed-forward neural networks [7, 8, 9], to the study of the dynamics of learning algorithms [10, 11].
On the other hand, the Physics of disordered magnetic materials has been the source of inspiration
for a variety of attractor neural network models of associative memory [12], all stemming from the
seminal work of J. Hopfield [13].

Here, I will focus on a slightly different perspective: the general learning problem in neural networks
can be framed as an inverse problem even in the supervised case, i.e. where a prescribed output (in
most cases a semantic category) is associated to each pattern. The problem of learning an input-output
association is clearly that of inferring a rule. There is a substantial literature about the generalization
ability of neural classifiers, the idea being that of identifying the rule that has to be discovered as a
given “teacher” network, which produces a set of input-output associations: the task for a “student”
network is to solve the inverse problem of discovering the rule from a given fixed set of example pairs.
When phrased as a Statistical Mechanics problem (in a way that will be more clear in chapter 4), the
interesting phenomenon of discontinuous learning emerges: in the thermodynamic limit, the teacher
eventually dominates the measure over all the possible student networks, so that it will be possible to
discover it perfectly with probability 1, provided the number of input-output examples exceeds a given
threshold, which is specific for each network structure [14].

The research program that motivated the first section of this Thesis is that of relating the known
analytical results about the learning and generalization properties of simple neural structures to those
of the actual solutions that can be found with the available learning methods. This program eventually
led to the study of the fine structure of the space of solutions of the Perceptron Learning Problem with
binary synapses, a know NP-hard problem for which no provably convergent algorithm is known, but
a handful of BP-inspired learning protocols exist, whose properties can be understood when learning
is formulated as a Physics problem. The practical relevance of Belief Propagation (and BP-inspired
methods) is deeply connected to the structure of the space of solutions: an apparent discrepancy arises
between algorithmic performance and the standard analysis of typical solutions. Standard equilibrium
Replica calculations describe a structure characterized by strongly isolated typical solutions, which
would be hard if not impossible to find by known BP-inspired algorithms. This issue was resolved
with the introduction of a Replica based large deviation analysis, finding that dense subdominant
clusters, namely regions in the solution space characterized by a high local density of solutions, are the
main targets of effective heuristic algorithms. The out of equilibrium analysis of subdominant states
correctly identifies the algorithmic critical capacity, the disappearance of such states in high dimension
being the main responsible for the transition that is observed in algorithmic performance. Moreover,
it interpolates between the typical single solution and the full Bayesian one.
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In an effort to construct an algorithmic counterpart of the theoretical analysis in the case of
the perceptron, a new Markov Chain Monte Carlo method was introduced which explicitly looks for
regions with a high density, or local entropy, of solutions. This entropy based scheme, which I will
elaborate on in chapter 5, can be shown to work well even in the completely different setting of random
K-satisfiability, a prototypical NP-complete Random Constraint Satisfaction Problem which has been
the subject of intense study in the Spin Glass community in recent years.

In the second section, composed of chapters 6, 7 and 8, I will switch to a completely different
problem, namely that of irreversible spreading processes on networks. In particular, I will first focus
on the problem of inferring the source of an epidemic spreading in a network from very limited ob-
servations, namely a single snapshot of the state of the network at a given time. There are a variety
of contexts where the underlying graph is known a priori with a fair extent of completeness, as for
networks of computers. Consider, for instance, the case of an artificial virus that spreads in such a
network, starting from a very limited number of initial nodes: even if it is in principle easy to track
the connections between nodes in the network, a user will typically be aware of the infection only at a
later time, and the actual spreading path will be unknown. The situation is similar in the case of the
spreading of a rumor on a social network. In order to discover the source of the infection, one has to
devise a suitable parametrization for the spreading dynamics, and then be able to trace over all the
possible paths which are compatible with some given observations.

Here, I consider the case of a single observation at a given time. My work has been focused
on the generalization of a previously developed Bayesian approach [15] to the scenario of uncertain
observations. As I will point out in the following, the inference machinery is quite general, and
the particular appeal of the method stems from the fact that the corresponding factor graph (which
incorporates the structure of the generative model for the dynamics and it’s at the basis of the Message-
Passing procedure) is an enriched dual version of the original graph: this implies that the proposed
method provides the exact Bayesian solution in the case of tree networks, and it will be shown to be very
effective in general graphs with loops, a notable property of the Belief Propagation approximation that
proved very useful in a variety of settings, both in inference and combinatorial optimization problems.

I will show how the inference technique can be extended so as to take into account a general
continuous time model for the spreading dynamics. More interestingly, a slight modification of the
method will be shown to be able to solve a way more general inverse problem, where the network
itself is unknown and its structure - together with the weights of each edge - has to be inferred from
a limited number of observations coming from different cascades of activation.

Outline of the Thesis

This thesis is organized as follows. In the first two chapters, I will introduce the main theoretical
tools, rooted in Statistical Mechanics, that will be used throughout the work, namely Spin Glass theory
and Belief Propagation.

The second chapter consists of a very concise introduction to the Replica method and its relation to
the theory of neural computation. The Replica method was originally introduced in the computation
of the self averaging free energy in the Sherrington-Kirkpatrick model [16]. The Spin glass formalism
has proven extremely fruitful since the seminal work by E. Gardner [17], who introduced the concept
of critical capacity in the study of the simplest neural classifier, the perceptron.

The third chapter reviews Belief Propagation, a complementary algorithmic approach which will
be used throughout the entire Thesis: the Bethe approximation will be discussed for trees and general
factor graphs together with some known results on its convergence properties.
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The fourth chapter is devoted to the analysis of the learning problem in perceptrons. The fine
structure of the space of solutions of the classification and generalization problem will be investigated,
in order to relate the typical case scenario described by standard Replica calculation to the actual
properties of BP-based learning algorithms. A new large deviation formalism will be introduced and
the analytical results will be supported by extensive simulations. Moreover, I will show that, when
used in conjunction with unsupervised pre-training, BP-inspired on-line algorithms can be adopted to
train feed-forward networks with binary synaptic weights that perform very well in the case of random
input-output associations as well as on benchmarks datasets.

In chapter 5 I will show how the analytical method introduced in the case of the perceptron can
be turned into a solver with the introduction of a Monte Carlo approach based solely on the local
entropy, namely an estimate of the number of zero energy configurations at a given distance from a
reference one.

Chapter 6 is devoted to the patient zero problem in epidemic spreading over networks, a hard
inference problem which consists in discovering the source of the spread of an epidemic from single
snaphots of the state of a network. I will describe a previously proposed inference method built on a
Belief Propagation approximation, that will be later generalized to take into account possible noise in
observations as well as ignorance of epidemic parameters. The method will be further generalized in
chapter 7 so as to deal with the more realistic continuous-time case.

In the eighth chapter I will give a brief account of a very recent extension of the method discussed
in chapter 6 to the problem of network reconstruction from dynamical data. It will be shown how,
in the presence of limited observations from a number of cascades of activation over an unknown
network, the formalism introduced for solving the patient zero problem can be used to reconstruct the
topological structure of the graph. Its effectiveness will be documented by means of simulations on
random graphs as well as real social networks.

Conclusions will be drawn in the ninth and last chapter.



CHAPTER 2

From Spin Glasses to Neural Networks

The Replica formalism, initially introduced in the context of Statistical Mechanics for the study of
Spin Glasses, proved very helpful in addressing the problem of learning capabilities of neural networks.
The first application of this Statistical Mechanics approach appeared in E. Gardner’s famous paper [17],
in which the Replica technique was used to compute the critical capacity of the perceptron with
continuous synaptic weights. From there on, various variants of one and multi-layer perceptrons have
been studied in the same way: I will briefly sketch the methods and results in a later section.

Very interestingly, it is also possible to construct a generalized Statistical Mechanics formulation
of the learning problem of a neural network [14], associating to each learning rule a particular Energy
function E(J), taking value in the weight space of the network: in all cases where E(J) has a unique
minimum, it is possible to follow a (relatively) simple algorithmic method for the analytical study of
the generalization properties of a given learning rule.

In the following sections, I will firstly give a brief introduction to the Replica Method, I will then
describe the main approach for the study of the perceptron and more complex network architectures.

2.1. Introduction to Spin Glasses and Replica Theory

A Spin Glass is a model of a disordered magnetic material, in which interactions among spins are
randomly distributed: frustration of interactions results in a variety of interesting features, from the
exponential number of metastable states to ergodicity breaking and ultrametricity [1]. The first model
of a Spin Glass was the Edwards-Anderson model [18], defined by a d-dimensional spin lattice and
nearest neighbors interactions with the following Hamiltonian:

(2.1.1) H = −
∑
〈ij〉

JijSiSj

This model can be analytically solved showing, for sufficiently low temperature, a so-called Glass
Phase, characterized by vanishing magnetization but non vanishing Edward-Anderson order parameter
q2 = 1

N

∑
i〈Si〉〈Si〉. The most important model in the development of the Replica method was the

Sherrington-Kirkpatrick model [16], introduced in 1975 and finally solved by Parisi in 1979 [19]. It is
a mean field model of a Spin Glass, with infinite range interaction prescribed by the Hamiltonian

(2.1.2) H = −
∑
i<j

JijSiSj

Clearly, the model is not completely defined until one has given the distribution of the couplings
Jij : it is common practice to take them independently distributed according to a gaussian distribution
(with a proper scaling for the variance).

11
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In the theory of Spin Glasses, one can distinguish between two different types of calculations of
the free energy:

• Annealed disorder

(2.1.3) −βNf = log〈〈Z〉〉
• Quenched disorder

(2.1.4) −βNf = 〈〈logZ〉〉
where 〈〈〉〉 stands for the average over the disorder. The Annealed calculation provides an upper
bound for the more correct Quenched calculation, in which the interaction disorder is kept fixed and
the thermal disorder, acting on a faster time scale, is averaged.

The Replica Method stems from an ad hoc trick for turning the average of logZ in the free energy
to a power of the partition function Z, by means of the simple relation:

(2.1.5) logZ = lim
n→0

Zn − 1

n

One can thus rewrite Eq. (2.1.4) as:

(2.1.6) −βNf = lim
n→0

〈〈Zn〉〉 − 1

n

and consider the nth power of the partition function as the product of partitions functions of n
non-interacting replicas of the same system: one has to be very careful in this approach, noting that
in principle it is not possible to perform the limit n → 0 with an integer number of Replicas! Let us
set the calculation for the Sherrington-Kirckpatrick free energy:

(2.1.7) 〈〈Zn〉〉 = 〈〈
∑
{Sai }

exp

β ∑
a,i<j

JijS
a
i S

a
j

〉〉
Without going into the details of the calculations, let us point out that the main advantage of

such form is the possibility to take first the average over the disorder, and then use an inverse gaussian
transformation (Hubbard-Stratonovich transformation) to uncouple the spin Sai and perform the sum
over the configurations: that naturally introduces a coupling of the replicas, that can be handled with
the introduction of overlap order parameters, defined as:

(2.1.8) qab =
1

N

∑
i

Sai S
b
i , a < b

These parameters measure the typical overlap among the configurations in a given state belonging
to different replicas, and will be very important in the following discussions. It is then possible to
write Eq. (2.1.7) as an integral over the overlap parameters as well as their conjugated fields:

(2.1.9) 〈〈Zn〉〉 =

ˆ ∏
a<b

dqabdq̂abe−NG(qab,q̂ab)

where the function in the exponent is defined as
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(2.1.10) G(qab, q̂ab) = −nβ
2

4
− β2

2

∑
a<b

qab + i
∑
a<b

qabq̂ab − log

∑
{Sa}

ei
∑
a<b q̂

abSaSb


This integral can be calculated by the Saddle Point Method: the main difficulty is then to solve

the saddle point equations with respect to all the relevant integration variables, finding an extremum
for Eq. (2.1.10). The Replica Symmetric Ansatz consists in choosing qab = q, q̂ab = q̂, thus restricting
oneself to a subspace of the order parameters. Unfortunately, one discovers that the free energy
obtained by the RS Ansatz is not a decreasing function of the temperature: this is because of the
instability of the RS saddle point, as implied by the eigenvalues of the Hessian Matrix of G(qab, q̂ab).

The first Replica Symmetry Breaking calculation was performed by G. Parisi in 1979 [19]: in
the general r-step RSB, it consists in dividing the n replicas into n/m groups of m replicas each,
and introducing a series of overlap parameters q0, q1, ...qr (the same is done for the q̂ab parameters).
Consider, for example, a 1-RSB calculation: one would have qab = q1 if a and b belong to the same
group and qab = q0 if a and b belong to different groups. The structure of the overlap matrix is
exemplified in figure 2.1.1.

Figure 2.1.1. Structure of the qab matrix with Replica Symmetry Breaking. Left :
1RSB. Right : 2RSB.

The overlap matrix encodes many interesting geometrical properties of the states of the systems:
overlaps between replicas can be directly linked to overlaps between states. Let us introduce the
distribution of overlaps for a given disordered system:

PJ(q) =
1

Z2

∑
s,τ

exp [−βHJ(s)− βHJ(τ )] δ

(∑
i

siτi − q
)

(2.1.11)

P (q) = 〈〈PJ(q)〉〉(2.1.12)

By means of a variant of the standard Replica Trick one can express the moments of the distribu-
tion (2.1.12) in terms of powers of quantities qab, leading to the general expression:

(2.1.13) P (q) = lim
n→0

1

[n(n− 1)/2]

∑
{a,b}

δ(qab − q)
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P (q) is nothing but the fraction of the elements qab taking the value q. This is extremely important
in view of a geometrical characterization of Replica Symmetry Breaking: the Ansatz is linked to the
unconnectedness and clustering of the states of the systems.

In the 1-RSB scheme, for example, one has P (q) = mδ(q − q0) + (1−m)δ(q − q1), where q1 is the
typical intra-cluster overlap, and q0 the typical inter-cluster overlap.

In the following discussion, the phenomenon of Replica Symmetry Breaking will play a major
role in the study of the solution space (also known as version space) for the learning problem in the
perceptron.

2.2. The Gardner Approach to the Storage Problem

Perceptron is the simplest kind of neural model and it serves, in its variants, as a building block
for multi-layered networks with complex topologies. Basically, it is a linear discriminator between
inputs: consider a set of pattern vectors ξµ ∈ RN and suppose you want to construct a function
that discriminates among them, associating to each one a binary output σµ, say for simplicity σµ ∈
{−1,+1}. Here, I will consider a perceptron defined by the vector of synaptic weights W ∈ RN and
a sign activation function, with an output oµ:

(2.2.1) oµ = sign (W · ξµ)

Many learning rules have been developed to deal with the perceptron learning problem, from the
classical Hebb and Rosenblatt Rule to Pseudo-Inverse and Adaline Rule [14]. Here, I will introduce a
method of analysis that is independent from a specific learning rule, and provides information on the
structure of the subspace of solutions to a given learning problem.

The Gardner approach is based on the calculation of the typical volume of the version space,
the subset of weight vectors W compatible with a given learning task, defined by random association
between input vectors and outputs, as prescribed by a given probability distribution. Consider then
p = αN input vectors independently chosen with probability:

(2.2.2) p (ξµ) =

N∏
i=1

[
1

2
δ (ξµi + 1) +

1

2
δ (ξµi − 1)

]
Analogously the outputs σµ will be chosen indipendently in the set {−1,+1} with equal probability.

Obviously ‖ξµ‖2 = N , and I will add a constraint on the length of the weight vectors, specifically
‖W‖2 = N , so that they are randomly chosen in the N sphere.

In order to get the desired associations oµ = σµ, the following conditions have to be fulfilled:

(2.2.3)
1√
N
σµW · ξµ > κ ∀µ = 1, ..., p

Note that the stability parameter κ > 0 is particularly important in the context of attractor neural
network [12], in which it is associated to the size of basins of attractions: the conditions of Eq. (2.2.3)
may indeed be used to study the retrieval properties of a fully connected Hopfield Model [20, 21].

Now, we can calculate the volume in the weight space by means of an integration of an indicator
function, in the following way:
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Ω (ξµ, σµ) =

ˆ
dµ(W )

p∏
µ=1

θ

(
σµ√
N
W · ξµ − κ

)
,(2.2.4)

dµ (W ) =

N∏
i=1

dWiδ
(
‖W‖2 −N

)
(2.2.5)

where I have introduced the measure of integration dµ (W ) according to the spherical constraint.
Eq. (2.2.4) is clearly a random quantity, depending on the random variables ξµ and σµ. In order to
obtain its typical value, one can rely on a standard Statistical Mechanics approach, considering the
quenched entropy :

(2.2.6) S =
1

N
〈〈ln Ω(ξµ, σµ)〉〉

where 〈〈〉〉 stands for the average with respect to the relevant random quantities.
The calculation of the integral can thus be performed in the thermodinamic limit N →∞ by the

Replica Method outlined in the previous section. One gets:

〈〈Ωn〉〉 =

ˆ ∏
a

dk̂a

4π

ˆ ∏
a<b

dqabdq̂ab

2π/N
exp

(
N

[
i

2

∑
a

k̂a + i
∑
a<b

qabq̂ab

+GS(k̂a, q̂ab) + αGE(qab)
])(2.2.7)

where GS(k̂a, q̂ab) and GE(qab) are some functions of the order parameters, called respectively
Entropic and Energetic part, in analogy to Statistical Mechanics. Assuming replica symmetry qab =

q, q̂ab = q̂, k̂a = k̂, and solving the two simple saddle point equation for q̂ and k̂, one gets a saddle point
equation involving q, α, κ. If one then lets q → 1, it is expected that the typical volume of solutions
in W space to shrink to a single point, and correspondingly α → αc, that will be taken as a critical
storage capacity. By an asymptotic expansion one gets the following equation for αc:

(2.2.8)
1

αc
=

ˆ κ

−∞

dt√
2π
e−t

2/2(κ− t)2

This equation can be solved numerically for κ > 0, yielding the behavior depicted in figure 2.2.1. For
κ = 0 one gets a critical capacity αc = 2. Note that the same result αc = 2 had already been obtained
by Cover [22] with a completely different approach, namely counting all the possible linear separations
(which he called dichotomies) of αN points in general positions in an N -dimensional space.

2.2.1. Discrete Perceptron and Replica Symmetry Breaking. As I pointed out in the
previous section, one of the main problems in the Replica method is the stability analysis of the saddle
point: it is a matter of fact that as soon as one switches to the analysis of the discrete perceptron, the
RS saddle point is not stable any longer.

Let us begin with the example of an Ising perceptron, obtained with the simple constraint Wi = ±1.
The Replica calculations are quite the same as for the continuous case, with the simple exception of
the integration measure replaced by a sum over the W configurations. The result obtained by the RS
Ansatz is αc = 4/π ∼= 1.27. This result is quite unrealistic from the informational point of view, since
an Ising perceptron with binary synapses can store no more than N bit: one then expects αc < 1.
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Figure 2.2.1. Storage capacity of the spherical perceptron as a function of the
stability parameterκ.

The reason for the incorrectness of the result is the instability of the RS Ansatz [23, 24]. The next
step is then to introduce a 1-RSB Ansatz, with the two parameters q1 for the intra-cluster overlap,
and q0 for inter-cluster overlap. In the saddle point equation it is then possible to asymptotically
expand for q1 → 1, implying that the volume of a given connected set of solutions shrinks to a single
point. It is particularly interesting that in this way one obtains the Zero Entropy condition within the
RS Ansatz:

(2.2.9) sRS(αc) = 0

The result obtained is then αc ∼= 0.83, in accordance with exact numerical calculations [25, 26]
and with a later analytical calculation by Gutfreund and Stein [8], who treated the general case of
local constraints on the synaptic weights as well as biased inputs.

2.2.2. Multi-layer Networks. The perceptron is a rather limited learning machine: it can only
realize linear separation of inputs in a certain N -dimensional space. From the logical point of view,
its computational abilities are then restricted to linearly separable Boolean functions.

Nevertheless, perceptrons are the basic elements of multi-layer neural networks, that are capable
of more general non-linear separations of inputs. I focus on feed-forward neural networks with a single
hidden layer and a single output unit. From the analytical perspective, it is well know that any function
can be approximated by this kind of network with a continuous activation function [27]. From the
logical perspective, it can be shown that any Boolean function can be implemented in such a network,
allowing a binary output [28].

Restricting ourselves to tree network structures with a binary output, as depicted in figure 2.2.2,
let us define the activation of one of the K hidden units as:

(2.2.10) τk = sign

(
Jk · S√
N

)
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Figure 2.2.2. Multi-layer Network with tree structure.

The vector of hidden units activations τ = {τ1, ..., τK} is called internal representation of a given
input S. The output of the network is given by:

(2.2.11) σ = sign

(
1√
K

K∑
k=1

Wkτk

)
It is generally assumed K � N , so that one can consider that the properties of the network for

very large N are not substantially influenced by the variation of the couplings Wk [29]. Consequently,
the two popular choices for the Boolean function σ = F (τ ) define two different types of architectures:

• Parity Machine

(2.2.12) F (τ1, ..., τK) =

K∏
k=1

τk

• Committee Machine

(2.2.13) F (τ1, ..., τK) = sign

(
1√
K

K∑
k=1

τk

)
2.2.2.1. Multi-layer networks and statistical bounds. It is possible to derive some interesting the-

oretical bounds for the critical capacity of committee machines from purely statistical considerations:
the method follows closely the standard approach introduced by Cover [22], which consists in counting
all the possible binary classifications of pN points in general positions in an N -dimensional space.

Let us call C(p,N) the number of maximal binary classifications of p patterns obtainable with a
perceptron. The standard result obtained by Cover was [22]:

(2.2.14) C(p,N) = 2

N−1∑
i=0

(
p− 1

i

)
Let us then consider the case of a network with a tree structure, made up of a layer of K units

(be it a parity or committee machine). Each of the K sub-perceptrons in the network will be able to
realize at most C(p,N/K) classifications. Let us then apply the following known bound [30] to the
quantity C(p,N/K):

(2.2.15)

d∑
l=0

(
p

l

)
≤ 1.5

pd

d!
≤
(ep
d

)d
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The main observation is that the number of internal representations of the network, which stand
for all the possible partitions of the p patterns realizable by the K units, has to be higher than the
number of possible binary classifications of p patterns. Therefore, using Eq. (2.2.15), one may write:

(2.2.16)
[C(p,N/K)]K

2p
≤ exp(N [1 + lnα+ lnK − α ln 2])

In the limit of large N one finds an upper bound αMD for the critical capacity αc, αc < αMD,
where αMD is implicitly defined as the value of α at which the ratio in 2.2.16 becomes negligible:

(2.2.17) 1 + lnαMD + lnK − αMD ln 2 = 0

The above discussion defines the so-called Mitchinson-Durbin (MD) bound [31], the above formula
being valid for a multilayer network with a tree structure. In the limit of a large number of hidden
units, one may perform an asymptotic expansion in K, thus obtaining:

(2.2.18) αc ≤ αMD ∼
lnK

ln 2

The MD upper bound is quite important as a consistency check of the RS calculation, which is
always the first step in the Replica approach.

More interestingly, in the particular case of the parity tree an annealed calculation [32] of the
volume Ω provides exactly the same lower bound αc ≥ lnK

ln 2 , indicating that for large K the asymptotic
behavior of αc is

(2.2.19) αc ∼
lnK

ln 2

2.2.2.2. Replica theory and multi-layer networks. The storage problem for multi-layer networks
has been attacked with a Replica approach, and what emerged was that Replica Symmetry Breaking
is an ubiquitous phenomenon when one deals with such networks, which are capable of constructing
mappings from input to output by means of different internal representations.

The RS Replica calculations of the volume Ω on the lines of Gardner’s integral (2.2.4) proved very
weak in providing the exact results for the critical capacity: expanding the corresponding expressions
for αc in the limit of large K one finds αc ∼ K2 for the parity tree and αc ∼

√
K for the committee

tree, both expressions violating the Mitchinson-Durbin bound of Eq. (2.2.18). This happens because
the RS saddle point is unstable for all values α > αAT , αAT < αc. For the parity tree, the results
obtained by 1-step RSB seem to be in agreement with the numerical findings, and yields the exact
asymptotics (2.2.19).

An interesting approach for the study of the more analitically involved problem of the committee
tree is the use of multifractal methods, originally introduced in the field of neural networks in the case
of the simple perceptron [33, 34]. In the following, I will give a very brief discussion of the methods
and the main results.

The starting point is the representation of the total volume of compatible vector in the J space as
a sum of volumes associated to each internal representation vector:

(2.2.20) Ω(ξµ, σµ) =
∑
τ

Ω(τ ; ξµ, σµ)
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with

(2.2.21) Ω(τ , ξµ, σµ) =

ˆ K∏
k=1

dµ(Jk)
∏
µ

θ (σµF (τ1, ..., τK))
∏
µk

θ

(
τµk

Jk · ξµk√
N/K

)
The idea is to measure the fractal dimension of every ’cell’ in J space, and then provide the

corresponding distribution, namely the so called multifractal spectrum. Consider then the quantity

(2.2.22) k(τ ) = − 1

N
ln Ω(τ )

and associate to it the spectrum

(2.2.23) c(k) =
1

N
ln N (k)

where N (k) is the number of cells with a given size k:

(2.2.24) N (k) =
∑
τ

δ(k − k(τ ))

The fractal spectrum carries many information about the geometrical structure of the subspace
of solutions of a given storage problem. The two most important (and simple) quantities that can be
extracted are the following:

(1) the size k0 of the typical, or most frequent, cell: it is defined as k0 = argmaxc(k)
(2) the size k1 of the largest cell, dominating the volume under consideration: it can be associated

to the maximum of the function c(k)− k, as one can write, for large N

(2.2.25) Ω =
∑
τ

Ω(τ ) =

ˆ
dkN (k)e−Nk =

ˆ
dke(N [c(k)−k])

The parameter k0 is very important to study the storage properties of the network: the limit k →∞
is indeed equivalent to q → 1 in the Gardner approach, because it signals that the typical cell size
tends to zero, and provides the critical value αc. The parameter k1 is on the other hand associated to
the generalization properties of the network.

The computation of the fractal spectrum can be accomplished by a variant of the so called ther-
modinamic formalism for multifractals. Indeed, from the Statistical Mechanics point of view, this
approach is simply based on the equivalence of the canonical and micro-canonical ensemble in the
thermodynamic limit. Defining then the canonical free energy

(2.2.26) f(β) = − 1

Nβ
〈〈ln

∑
τ

e−βk(τ )〉〉

one obtains the fractal spectrum by a Legendre Transform:

(2.2.27) c(k) = min
β

[βk − βf(β)]

Now, from Eq. (2.2.22) the free energy can be written in the form
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(2.2.28) f(β) = − 1

Nβ
〈〈ln

∑
τ

Ωβ(τ )〉〉

The previous expression is suitable for a kind of generalization of the Replica method, with the
introduction of two sets of replicas and two exponents, n and r, one of which is not necessairly tending
to zero. The calculation of f(β) is thus reduced to the Replica integral:

〈〈
(∑

τ

Ωβ(τ )

)n
〉〉 = 〈〈

∑
τa

ˆ K∏
k=1

n∏
a=1

β∏
r=1

dµ(Jark )
∏
µa

θ (σµF (τµa1 , ..., τµaK ))

∏
µkar

θ

(
τµak

Jark ξ
µ
k√

N/K

)
〉〉

(2.2.29)

Using this methods, Zecchina and Monasson [34] have succeeded in giving the correct expressions
for the critical capacity of the parity and committee machine for large K.

The result for the parity machine was the one that I gave previously in Eq. (2.2.19), as obtained
by a different method. For the committee machine the asymptotic result is

(2.2.30) αc =
16

π

√
lnK

It was further proved [35], by a stability analysis of the RS saddle point, that these results are
asymptotically correct in the limit K � 1.



CHAPTER 3

Introduction to Belief Propagation

In the previous section, I dealt with Replica theory and its applications in a seemingly distant field
such as neural networks. In this section I will elaborate on Belief Propagation, an important algorithmic
implication of the Cavity method, introduced in the context of Spin Glasses, that represents a method
complementary to Replicas, with the advantage of making all the assumption on the geometrical
structure of the equilibrium states completely explicit [1].

Belief Propagation (BP) is a powerful method for computing, at least approximately, the marginal
distribution of a variable xi from a general joint probability distribution p(x1, ..., xN ) of N variables.
This procedure has been discovered independently in different contexts: Statistical Physics (where it
is called ’Bethe-Peierls approximation’), Coding Theory (Sum-Product algorithm), Artificial Intelli-
gence (BP). Moreover, one can show that apparently different methods such as the forward-backward
algorithm, the Viterbi algorithm, the Kalman filter and the transfer matrix approach in Statistical
Physics are all special cases of the BP method.

3.1. BP on tree graphs

Consider a joint probability distribution p(x) ≡ p(x1, ..., xN ), with x1, ..., xN taking value in a
finite set χ, that can be written as a product of functions ψa of the set of variables x∂a:

(3.1.1) p(x) =
1

Z

M∏
a=1

ψa(x∂a)

It is intended that x∂a ≡ {xi|i ∈ ∂a} and the set ∂a, of size |∂a|, contains all the variables involved
in function a. I will call the functions ψa : χ|∂a| → R compatibility functions, or simply constraints.

It can be argued that the mutual dependencies between the variables can be factorized in a non-
trivial way, such that distinct variables interact only ’locally’. It is then very helpful to show such
inner structure of the probability distribution p(x) in a graphical way, by means of a so called Factor
Graph.

A factor graph is a bipartite graph that contains two types of nodes: N variable nodes, each one
associated with a variable xi (conventionally represented by circles), and M function nodes, each one
associated with a function ψa (represented by squares). A variable node i is connected by an edge to
a function node a if the variable xi is an argument of ψa(x∂a). The main feature of a factor graph
probability distribution is the so called Global Markov Property:

Proposition 1. Given three disjoint subsets of the variable nodes A,B, S ⊂ [N ], with xA, xB , xS
denoting the corresponding sets of variables, if there is no path on the factor graph joining a node of
A to a node of B without passing through S then:

P (xA, xB |xS) = P (xA|xS)P (xB |xS)

In such a case the variables xA, xB are conditionally independent.

21
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Suppose now that one has to compute the marginal distribution of the variable xi: the most
natural way would be summing over all the configurations of the variables {xj |j 6= i}, but from
the computational point of view this procedure is extremely time-wasting, due to its exponential
complexity O(χN ). The Belief Propagation methods stems from a clever way of organizing the sums

over the variables, introducing a couple of ’cavity messages’ ν
(t)
j→a, ν̂

(t)
a→j for each edge (ia) of the graph.

The messages are probability distributions defined on the χ space, so:

ν
(t)
j→a = {ν(t)

j→a(xj)|xj ∈ χ}, ν
(t)
j→a(xj) ≥ 0,

∑
xj

ν
(t)
j→a(xj) = 1

and analogous relations for the ν̂
(t)
a→j ’s. After initialization as uniform probability distributions on χ,

the messages are updated by local computation at any given node of the graph, in accordance to the
so called BP (or sum-product) update rules:

ν
(t+1)
j→a (xj) ∝

∏
b∈∂j\a

ν̂
(t)
b→j(xj),(3.1.2)

ν̂
(t)
a→j(xj) ∝

∑
x∂a\j

ψa(x∂a)
∏

k∈∂a\j

ν
(t)
k→a(xk)(3.1.3)

After t iterations, one obtains an estimate of the marginal distribution of the variable i using all
its incoming messages:

(3.1.4) ν
(t)
i (xi) ∝

∏
a∈∂i

ν̂
(t−1)
a→i (xi)

Moreover, one can interpret all the cavity messages as estimates of marginal distributions in some

modified graphs, specifically: ν
(t)
j→a estimates the marginal of xj in a graph not including the node a;

ν̂
(t)
a→j estimates the marginal of xj in a graph where one has erased all the factor nodes in ∂i except a.

Now, one can search for fixed points of update rules (3.1.2),(3.1.3): the corresponding equations
in term of the fixed point messages ν∗j→a, ν̂

∗
a→j are called BP equations. It is interesting to know

whether such equations have a unique solution which Belief Propagation could converge to. The
following fundamental theorem states the exactness of BP in factor graphs that have a tree structure:

Theorem 1. B.P. is exact on tree graphs. Consider a tree graphical models with diameter
t∗. Then:

(1) Irrespective of the initial conditions, the BP update converges after at most t∗ iterations, that

is for any edge (ia), and any t > t∗ ν̂
(t)
i→a = ν̂∗i→a, ν

(t)
i→a = ν∗i→a

(2) The fixed point messages provide the exact marginals, that is for any i and any t > t∗
ν

(t)
i (xi) = p(xi)

In tree graphs, the fixed point messages can be used to compute the marginal joint distribution of
any subset of variables. Consider for example a subset FR of factors and the corresponding adjacent
subset of variables VR, and denote ∂R the subset of function nodes not in FR but adjacent to a variable
node in VR. Given the tree structure, one can associate a unique i ∈ ∂a∩VR, denoted by i(a) to every
factor a ∈ ∂R. It is then easy to realize that:
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(3.1.5) p(xR) =
1

ZR

∏
a∈FR

ψa(x∂a)
∏
a∈∂R

ν̂∗a→i(a)(xi(a))

Applying equation (3.1.5) one can express the marginal distribution of the subset of variables
connected to a given factor node a in the following simple way:

(3.1.6) p(x∂a) =
1

Za
ψ(x∂a)

∏
j∈∂a

ν∗j→a(xj)

Expression (3.1.6) is particularly useful to express typical Statistical Mechanics quantities as func-
tions of local messages.

Let us begin with a natural definition of the Internal Energy, writing the compatibility functions
as ψa(x∂a) = e−βEa(x∂a). One defines the internal energy as the expectation value of the total energy
(from now on, I take for simplicity β = 1):

(3.1.7) U = −
∑
x

p(x)

M∑
a=1

logψa(x∂a)

By means of Eq. (3.1.6) one gets:

(3.1.8) U = −
M∑
a=1

1

Za

∑
x∂a

ψa(x∂a) logψa(x∂a)
∏
i∈∂a

ν∗i→a(xj)

In order to express Entropy and, consequently, Free Energy in terms of the messages, I introduce
an important result valid in the case of tree graphs:

Theorem 2. In a tree graphical model, the joint probability distribution p(x) of all the variables
can be written in terms of the marginals pa(x∂a) and pi(xi):

(3.1.9) p(x) =
∏
a∈F

pa(x∂a)
∏
i∈V

pi(xi)
1−|∂i|

From the classical definition of Entropy:

H[p] = −
∑
x

p(x) log p(x)

one gets, by Eq. (3.1.9), an expression in term of local quantities:

(3.1.10) H[p] = −
∑
a∈F

pa(x∂a) log pa(x∂a)−
∑
i∈V

(1− |∂i|)pi(xi) log pi(xi)

Analogously I define the Bethe free-entropy as Φ = logZ = H[p]− U [p] and obtain:

(3.1.11) F [p] = −
∑
a∈F

pa(x∂a) log

{
pa(x∂a)

ψa(x∂a)

}
−
∑
i∈V

(1− |∂i|)pi(xi) log pi(xi)

and, in term of local (fixed point) messages:
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(3.1.12) F∗(ν) =
∑
a∈F

Fa(ν) +
∑
i∈V

Fi(ν)−
∑

(ia)∈E

Fia(ν)

where E is the set of links in the graph, and

Fa(ν) = log

∑
x∂a

ψa(x∂a)
∏
j∈∂a

νj→a(xj)

 , Fi(ν) = log

∑
xj

∏
b∈∂j

ν̂b→j(xj)

 ,
Fia(ν) = log

∑
xj

νj→a(xj)ν̂a→j(xj)


The usefulness of Belief Propagation is not limited to the computation of marginals and free-entropy
(and so partition function): it can be used, for example, to sample from a given probability distribu-
tion [2], or to find the configuration x that maximizes the probability p(x), by a decimation procedure.

3.2. BP on general factor graphs

There is no general theory about Belief Propagation on factor graphs with loops. In principle, one
can use the formulas (3.1.8),(3.1.10),(3.1.12) as definitions for the BP estimates of the corresponding
quantities. One can, though, rely on a variational approach connecting Bethe free-entropy to BP
fixed points in general graphs. Indeed, free-entropy can be regarded as a function defined in the space
of the messages or, equivalently, on the space of all possible locally consistent marginals, also called
beliefs. More specifically, let us consider the distributions bi(xi) ≥ 0, ba(x∂a) ≥ 0 for each variable
and function node in a graph, satisfying the normalization conditions:∑

xi

bi(xi) = 1 ∀i ∈ V,
∑
x∂a

ba(x∂a) = 1 ∀a ∈ F

If they satisfy the following normalization conditions:

(3.2.1)
∑
x∂a\i

ba(x∂a) = bi(xi), ∀a ∈ F,∀i ∈ ∂a

they are a set of locally consistent marginals. One then build the Bethe free-energy of this set:

(3.2.2) F [b] = −
∑
a∈F

ba(x∂a) log

{
ba(x∂a)

ψa(x∂a)

}
−
∑
i∈V

(1− |∂i|)bi(xi) log bi(xi)

The following theorem marks an important connection between free-entropy and BP equations, anal-
ogous to the variational justification for the use of the standard mean field approximation [36].

Theorem 3. Assume ψ(x∂a) > 0 for each a ∈ F and for all x∂a ∈ χ|∂a|. Then the stationary
points of the Bethe free-entropy F [b] are in one-to-one correspondence with the fixed points of BP.

This result directly implies the existence of at least one BP fixed point in a factor graph with a
general structure. Moreover, one could argue that Belief Propagation represents a kind of generalization
of the mean field approximation, in which local binary interactions between variables are taken into
account.
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A general theory for the correctness of the BP equations is unfortunately lacking. Correctness
has been established for arbitrary topologies in a few particular cases in the zero temperature limit
[37, 38, 39] and in the case of gaussian potentials [40]. Regarding the problem at non-zero tempera-
ture, approximation bounds and correctness of the marginals and the free energy can be ensured (at
least in the infinite volume limit) for locally tree-like factor graphs with potentials leading to map
contractiveness of the BP equations or more general correlation decay conditions like De Dobrushin’s,
see e.g. Ref. [41].





CHAPTER 4

Perceptron Learning and subdominant states

In this chapter I will go through several aspects of the learning problem in perceptrons with discrete
synapses. There are a number of reasons why this particular case is interesting: recent experimental
evidence [42, 43] suggests that synapses have a limited precision, and are able to store up to a few
bits each (between 1 and 5); moreover, that of discrete (binary in particular) synaptic weights is the
natural scenario for neuromorphic applications, that aim at a hardware implementation of classification
devices, in principle able to modify their structure locally and autonomously.

Even in its simplest formulation, the problem of learning with discrete synapses is known to be
intractable in the worst-case [44]. In the typical case, the classical Statistical Mechanics description
of the model shows that it is dominated in the large N limit by an exponential number (in N) of local
minima [24, 45, 46, 47], which easily trap standard search strategies based on energy minimization,
e.g. Monte Carlo [48, 49] (a situation typical of spin glass phase, which is common to many hard
random optimization problems [50, 2, 51]). This description seems to be in contrast with a series
of algorithmic results [52, 53, 54] which show that nearly optimal performance can be achieved
by heuristic modifications of the original Belief Propagation approach: the striking ability of simple
learning algorithms raises the issue of what are the actual features of the particular solutions these
methods are able to find, and to what extent they correspond to the typical solutions which can be
found in the standard equilibrium Replica calculations.

This chapter is organized as follows: the first section will be devoted to the formal definition
of the problem with a survey of theoretical results, together with an introduction to the BP-derived
heuristic algorithms; in section 4.2, I will describe the problem of clustered solutions that motivated
the investigation of the relevance of subdominant states in the present problem. Section 4.3 is a very
brief account of a possibile extension of the learning algorithm for binary weights to a network with
one hidden layer, in the context of a multi-label classification task.

4.1. Learning in Perceptron

As I pointed out in section 2.2, the perceptron implements a binary classification of some patterns
ξ’s with a separating hyperplane orthogonal to a vector W , whose components are called weights,
or synapses, in a very rough analogy to the integration and thresholding operations that happen in
a post-synaptic neuron with respect to its presynaptic inputs. In particular, a binary perceptron

maps vectors of N inputs ξ ∈ {−1, 1}N to binary outputs τ (W, ξ) = sign (W · ξ) via a vector of

binary (Ising) synaptic weights W ∈ {−1, 1}N . Let us now consider the case of a number of patterns
that is proportional to dimension N , namely the perceptron is given αN input patterns ξµ with µ ∈
{1, . . . , αN}, the ξµi being random unbiased i.i.d. variables, together with their corresponding desired

outputs σµ ∈ {−1, 1}αN . The learning problem consists in finding a vector W which correctly classifies

the inputs ξµ. More formally, let us define an indicator function Xξ (W ) =
∏αN
µ=1 Θ (σµτ (W, ξµ)),

27
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Figure 4.1.1. The binary Perceptron classifies inputs ξ’s via a projection on a weight
vector W , producing the binary output σ; θ is an additional threshold parameter that
has to be defined in case the binary synaptic weights are chosen in the set {0, 1}.

where Θ (x) is the Heaviside step function: the learning problem consists in finding W such that
τ (W, ξµ) = σµ for all µ, i.e. such that Xξ (W ) = 1.

The two main instantiations of the learning problem which have been thoroughly studied are the
classification case, in which the outputs σµ are chosen independently at random, and the generalization
(or teacher-student) case, in which a “student” perceptron W has to learn a classification rule that
has been defined by another randomly chosen perceptron WT , which sets the outputs σµ. As I
briefly discussed in section 2.2, the classical Gardner approach consists in carrying a standard zero-
temperature equilibrium analysis of the model with the construction of a probability measure p (W ) =
Xξ (W ) /Zeq, with Zeq =

∑
{W}Xξ (W ) the partition function; the typical case is described by taking

the quenched average 〈log (Zeq)〉ξ over the realizations of the patterns. In the large N limit, both

the classification and the generalization case show a sharp transition at a well defined value of the
parameter α, called the capacity. In particular the typical classification problem has a solution with
probability 1 in the limit of large N up to αc = 0.833 [24], after which the probability of finding a
solution drops to zero. In the teacher-student scenario, the problem has exponentially many solutions
up to αTS = 1.245, after which there is a first-order transition and the only solution (the one that
minimizes the free energy of the system) is the teacher WT itself [45, 14]. Since the teacher is
known in advance, one generally measures the generalization error rate pe = 1

π arccos
(

1
NW ·WT

)
,

which is the probability that the student is able to correctly classify a previously unseen input ξ?, i.e.
τ (W, ξ?) = τ

(
WT , ξ?

)
. In the following sections, I will describe the Belief Propagation machinery

that can be used not only to compute the quantity log (Zeq) in the single instance of a learning problem,
but also, more importantly, to search for a solution W .

4.1.1. Learning by Belief Propagation. Suppose the network is given a set of p = αN input-
output associations {ξµ} → {σµ}. One will associate a factor graph to the learning problem set
by the distribution p (W ) ∝ Xξ (W ), which is composed of p copies of the basic structure depicted
in Fig. 4.1.2, each for one pattern to learn. Just for the sake of the argument, I introduced an
additional variable node s with an intermediate function node that implement the sum constraint

I
(∑

j ξ
µ
jWj = sµ

)
, where I is the characteristic function, whose output value is 1 if the constraint is

satisfied and 0 otherwise. Let us now consider a sum function node in the graph, as depicted in Fig.
(4.1.3): updating the cavity messages associated to its links is computationally very expensive, since
one needs to perform a trace that is exponential in N . The update equations for such a node are the
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Figure 4.1.2. The factor graph of the perceptron learning problem.

Figure 4.1.3. Pictorial representation of the messages to and from a sum node
(update equations (4.1.1), (4.1.2)) .

following:
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ν̂(t+1)
a→s (s) ∝

∑
{wj}

I

∑
j

ξjWj = s

∏
j

ν
(t)
j→a(Wj)(4.1.1)

ν̂
(t+1)
a→i (Wi) ∝

∑
s

ν(t)
s→a(s)

∑
{Wj |j 6=i}

I

 ∑
{j|j 6=i}

ξjWj + ξiWi = s

∏
j 6=i

ν
(t)
j→a(Wj)(4.1.2)

The sum on the configurations of all the variables Wj appearing in (4.1.1),(4.1.2), which can be
put in the form of a series of N − 1 convolutions between the messages νj→a, makes the update
a process with exponential complexity O(2N ), depending on which post-synaptic potential is under
consideration. Moreover, in a network with p patterns, there are αN sum nodes, and this makes the
update step of the algorithm very slow even for small values of N .

It is then useful to introduce a gaussian approximation, that stems from an application of the
Central Limit Theorem to the sum of the quantities ξjWj with the indipendent distributions of cavity
messages νj→a. In particular, one obtains:

ν̂(t+1)
a→s (s) ≈

ˆ
dzG(µa,σ2

a) (z) I (z = s)(4.1.3)

ν̂
(t+1)
a→i (Wi) ≈

∑
s

ν(t)
s→a (s)

ˆ
dzG(

µa\i,σ
2
a\i

) (z) I (z + ξiWi = s)(4.1.4)

In the previous approximated equations, the sum over the configurations has been replaced by an
integral over a gaussian distribution G whose mean and variance are determined by the corresponding
messages appearing in the BP updates:

µa =
∑
j

ξjEν(t)
j→a

(Wj) , σ2
a =

∑
j

VAR
ν
(t)
j→a

(Wj)(4.1.5)

µa\i =
∑
{j|j 6=i}

ξjEν(t)
j→a

(Wj) , σ2
a\i =

∑
{j|j 6=i}

VAR
ν
(t)
j→a

(Wj)(4.1.6)

As I said in Chapter 3, BP equations will eventually provide the marginals p (Wi) over the original
distribution, together with an estimate for the entropy or other average quantities of interest. Here,
I am mostly interested in the possibility of turning BP into an actual solver. In what follows, I will
use the term capacity also to define the maximum number of input-output associations that can be
successfully stored in a perceptron with a given algorithm in the limit of large N . Up to now, there are
only a handful of heuristic algorithms that are able to solve the classification problem and achieve a non-
zero capacity in the limit of large N in a sub-exponential running time: reinforced Belief Propagation
(R-BP) [52], reinforced Max-Sum (R-MS) [55], SBPI [53] and CP+R [54]. I will give a brief account
for each of them in the following section. In the classification case, they achieve capacities between
α ' 0.69 and α ' 0.75. They all share the property of being local and distributed, and have typical
solving times which scale almost linearly with the size of the input. SBPI and CP+R additionally have
extremely simple requirements (only employing finite discrete quantities and simple, local and on-line
update schemes), making them appealing for practical purposes and reasonably plausible candidates
for biological implementations. A qualitatively similar scenario holds in the generalization case, where
all these algorithms perform well except in a finite window 1 . α . 1.5 around αTS .
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4.1.2. Brief description of the heuristic algorithms. The R-BP algorithm is a variant of the
standard Belief Propagation (BP) algorithm. The BP algorithm can be turned into a heuristic solver
by adding a reinforcement term: this is a time-dependent external field which tends to progressively
polarize the probability distributions on a particular configuration, based on the approximate marginals
computed at preceeding steps of the iteration of the BP equations. The reinforcement can thus be
seen as a “soft decimation” process, in which the variables are progressively and collectively fixed until
they collapse onto a single configuration. This method seems to have an algorithmic capacity of at
least α ' 0.74.

The R-MS algorithm is analogous to the R-BP algorithm, using Max-Sum (MS) as the underlying
algorithm rather then BP. The MS algorithm can be derived as a particular zero-temperature limit of
the BP equations, or it can be seen as a heuristic extension of the dynamic programming approach
to loopy graphs. The reinforcement term acts in the same way as previously described for R-BP.
The resulting characteristics of R-MS are very similar to those of BP; extensive numerical tests give a
capacity of about α ' 0.75.

The SBPI algorithm was derived as a crude simplification of the R-BP algorithm, the underlying
idea being that of stripping R-BP of all features which would be completely unrealistic in a biolog-
ical context. This resulted in an on-line algorithm, in which patterns are presented one at a time,
and in which only information locally available to the synapses is used in the synaptic update rule.
Furthermore, the algorithm only uses a finite number of discrete internal states in each synapse, and
is remarkably robust to noise and degradation. Rather surprisingly, despite the drastic simplifica-
tions, the critical capacity of this algorithm is only slightly reduced with respect to the original R-BP
algorithm, and was measured at about α ' 0.69.

The CP+R algorithm was derived as a further simplification of the SBPI algorithm. It is equivalent
to the former in the context of the on-line generalization task, but requires some minor modifications
in the classification context. Its main difference from SBPI is that it substitutes an update rule which
was triggered by near-threshold events in SBPI with a generalized, stochastic, unsupervised synaptic
reinforcement process (the rate of application of this mechanism needs to be calibrated for optimal
results). The kind of reinforcement mentioned here is rather different from the reinforcement term of
R-BP or R-MS. The capacity of the CP+R algorithm can be made equal to that of SBPI, α ' 0.69.

4.2. Large deviation analysis

The striking effectiveness of the simple learning protocols that have been described in the previous
section is in contrast with the standard Replica analysis, in particular with a picture of a glassy energy
landscape in which solutions are isolated. The geometrical structure of the space of solutions has
been recently studied by Huang and Kabashima [49] by means of the Franz-Parisi potential [56], a
useful method in Spin Glass physics that allows to study the role of metastable states. The authors
performed a Replica calculation of the following expression:

(4.2.1) FFP (β, β′, γ) =

〈∑
W̃ e−β

′∑
µ θ(−σ

µ∑
j W̃jξ

µ
j )

Z
log

(∑
W

e−β
∑
µ θ(−σ

µ∑
jWjξ

µ
j )+γ

∑
j W̃jWj

)〉

Introducing the energy function E(W, {ξ}) =
∑
µ θ
(
−σµ∑jWjξ

µ
j

)
, one recognizes in expression

(4.2.1) a ’constrained’ free energy of a system with Hamiltonian E(W, {ξ}) at the inverse temperature

β which is coupled to another system E(W̃ , {ξ}) at inverse temperature β′ via a field γ
∑
j W̃jWj ,

controlled by the parameter γ. The main idea is that the second system acts on the first one as
a quenched disorder, so that γ effectively controls the distance between the reference W̃ and the
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Figure 4.2.1. Pictorial depiction of the structure of the space of solutions in the
storage problem based on the results of the Franz-Parisi analysis in the typical case.
The storage capacity is indicated by αs ≈ 0.833. Figure is taken from Ref. [49].

neighboring configurations W . In the zero temperature limit β = β′ → ∞, the quantity FFP (γ) is
dominated by the ground states of the systems, so that one studies the local structure of the space of
solutions.

The authors computed the Franz-Parisi potential via a Legendre transform SFP (S) = FFP (γ)−
γS, with S =

∑
j W̃jWj

N the overlap between the configurations of the two systems. The quantity
SFP (S) is logarithm of the number of solutions W which are at a certain distance d = (1− S) /2

from a reference solution W̃ . The main result of the calculation was that there exists a minimal
extensive distance between the zero energy configurations of the two systems, meaning that a typical
equilibrium solution W̃ has a sub-exponential number of neighboring solutions W , in a way that is
depicted in Fig. (4.2.1). Nevertheless, when one investigates this issue numerically, several evidence is
found that the solutions found by the algorithms are typically not isolated; rather, they belong (with
high probability at large N) to large connected clusters of solutions:

(1) if one starts a random walk process in a given solution W̃ , constraining neighboring configu-
rations to be solutions, one can reach distances of order N from the starting point;

(2) the number of solutions at a distance of order N from W̃ grows exponentially with N (this
can be estimated from the analysis of the recurrence relations on the average growth factor of
the number of solutions at varying distances, and using the random walk process for sampling
the local properties relevant to those relations) .

Belief Propagation can be used to investigate the local structure of the space of solution as well: once
a solution W̃ is found with, for instance, CP+R, it can be coupled to the BP variable nodes W as an
external field (I will be more precise in the following chapter, and provide a different but equivalent
form of equations 4.1.3 -4.1.4 in the Appendix A.3). This is the single instance BP equivalent of the
Franz-Parisi potential [56], in that it allows to analyze the neighboring solutions with respect to a

referenceW̃ .
What I found in the classification case was that the results do not match the predictions of the

equilibrium analysis in Ref. [49]: Fig. 4.2.2 shows, in fact, that there is a finite entropy of solutions up
to indefinitely high values of the Franz-Parisi coupling γ, corresponding to arbitrarily small distances
d of W from the reference W̃ .
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The same analysis in the teacher student case yielded very similar results: the teacher device is
isolated and indistinguishable from all other typical solutions except for the generalization error, so
that the estimates obtained from BP are consistent with the analytical calculation when using the
teacher as a reference point, but not when using a solution provided by a heuristic solver (see inset
in Fig. 4.2.2). Very interestingly, the generalization error for solutions found algorithmically is lower
than what would be expected for a typical solution (see Fig. 4.2.4).

The first tentative approach was then to extend the equilibrium analysis of Ref. [49] to the
teacher-student scenario, where we found that typical solutions are isolated for all values of α even
when adding a non-zero stability constraint, as in the classification case. These results indicate that
calculations performed at thermodynamic equilibrium are effectively blind to the solutions found by
the heuristic algorithms.

We were led to introduce a large-deviation description of this regime, which — according to the
numerical evidence — is characterized by regions with a high density of solutions. What we did was
then to modify the statistical weight of the individual solutions in a way that favors the ones which are
surrounded by a large number of other solutions. Therefore, we studied the following large-deviation
free energy density function:

(4.2.2) F (d, y) = − 1

Ny
log

∑
{W̃}

Xξ
(
W̃
)
N
(
W̃ , d

)y
where N

(
W̃ , d

)
=
∑
{W}Xξ (W ) δ

(
W · W̃ ,N (1− 2d)

)
counts the number of solutions W at normal-

ized Hamming distance d from a reference solution W̃ (δ is the Kronecker delta symbol), and y has
the role of an inverse temperature. This free energy describes a system in which each configuration

W̃ is constrained to be a solution, and has a formal energy density E
(
W̃
)

= − 1
N logN

(
W̃ , d

)
which

favors configurations surrounded by an exponential number of other solutions, with y controlling the
amount of reweighting. The regions of highest local density are then described in the regime of large
y and small d.

The relevant quantities are computed through the usual statistical physics tools. Of particular
importance is the entropy density of the surrounding solutions, the local entropy :

(4.2.3) SI (d, y) = −
〈
E
(
W̃
)〉

ξ,W̃
=

1

N

〈
logN

(
W̃ , d

)〉
ξ,W̃

.

which is simply given by SI (d, y) = ∂y (yF (d, y)). The existence of a dense and exponentially
large cluster of solutions will be signaled by a positive entropy SI (d, y) > 0 in a neighborhood of
d = 0. Another important quantity is the external entropy, i.e. the entropy of the reference solutions
SE (d, y) = −y (F (d, y) + SI (d, y)), which must also be non-negative. The special case y = 1 is
essentially equivalent to the computation of Ref. [46]; SI (d, y) reduces to the computation à la
Franz-Parisi of Ref. [49] in the limit y → 0.

We computed the action φ = −yF corresponding to the free energy F of Eq. 4.2.2 by the Replica
method, in the Replica symmetric Ansatz. The resulting expression, in the generalization case, is:

φ (S, y) = −1

2
(1− q̃) ˆ̃q − y

2
(1− q1) q̂1 −

y2

2
(q1q̂1 − q0q̂0) + yS̃ ˆ̃S − ySŜ − R̃ ˆ̃R− yRR̂+ GS + αGE(4.2.4)
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Figure 4.2.2. (Color online) Numerical evidence of the existence of clusters

of solutions. Entropy at a given distance from a reference solution W̃ , in the classi-
fication case at α = 0.4. From bottom to top: (magenta) theoretical prediction for a

typical W̃ ; (blue) numerical estimate based on a random walks on connected solutions
starting from one provided by SBPI, with N = 1001; (red) estimate from Belief Prop-
agation using a solution from SBPI, with N = 10001; (green) theoretical curve for the

optimal W̃ as computed from eq. (4.2.2); (dotted black) upper bound (α = 0 case, all
configurations are solutions). The random-walk points underestimate the number of
solutions since they only consider single-flip-connected clusters; the BP curve is lower
than the optimal because in the latter W̃ is optimized as a function of the distance,
while in the former it is fixed. Inset : comparison between a typical solution and one
found with SBPI, in the teacher-student case at α = 0.5 with N = 1001. Larger
potentials correspond to smaller distances. Top points (red): SBPI reference solution,
entropy computed by BP; bottom curve (magenta): theoretical prediction for a typical
solution; bottom points (purple): BP results using the teacher as reference.
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where we used the overlap S = 1− 2d as a control parameter instead of d, and

GS =

ˆ
Dz̃

ˆ
Dz0 log

∑
W̃=±1

exp
(
W̃ Ã (z̃, z0)

) ˆ
Dz1

(
2 cosh

(
A
(
z0, z1, W̃

)))y
GE = 2

ˆ
Dz̃

ˆ
Dz0H (η (z̃, z0)) log

ˆ
Dz1H

(
C̃ (z̃, z0, z1)

)
H(C (z0, z1)

y

Ã (z̃, z0) = z̃

√
ˆ̃q −

ˆ̃S2

q̂0
+ z0

ˆ̃S√
q̂0

+ ˆ̃R

A
(
z0, z1, W̃

)
= z1

√
q̂1 − q̂0 + z0

√
q̂0 + R̂+ W̃

(
Ŝ − ˆ̃S

)
η (z̃, z0) =

wRz0 +
(
q0R̃−RS̃

)
z̃

√
q0

√
w2 −

(
q̃R2 + q0R̃2 − 2RR̃S̃

)
w =

√
q̃q0 − S̃2

C (z0, z1) =
z1
√
q1 − q0 + z0

√
q0√

1− q1

C̃ (z̃, z0, z1) =

(
S − S̃

)
z1 +

√
q1−q0
q0

(
S̃z0 + wz̃

)
√

(q1 − q0) (1− q̃)−
(
S − S̃

)2

The order parameters q̃, q1, q0, S̃, R, R̃ and their conjugates (ˆ̃q, q̂1 etc. and Ŝ) must be determined
from the saddle point equations, i.e. by setting to zero the derivative of φ (S, y) with respect to each
parameter. This yields a system of 13 coupled equations, with α, y and S as control parameters. These
equations were solved by iteration.

The physical interpretation of the order parameters is as follows (here, the overlap between two
configurations X and Y is defined as 1

N (X · Y )):

q̃: overlap between two different reference solutions W̃
q1: overlap between two solutions W referred to the same W̃
q0: overlap between two solutions W referred to two different W̃
S: overlap between a solution W and its reference solution W̃
S̃: overlap between a solution W and an unrelated reference solution W̃
R: overlap between a solution W and the teacher WT

R̃: overlap between a reference solution W̃ and the teacher WT

Therefore, R̃ can be used to compute the typical generalization error of reference solutions W̃ , as
1
π arccos

(
R̃
)

. An analogous relation yields the generalization error of the solutions W as a function of

R. It is also worth noting that q̃ < 1 implies that the number of reference solutions W̃ is larger than
1. By setting to zero the order parameters R, R̃ and their conjugates, and thus reducing the system
of equations to the remaining 9 saddle point conditions, we obtain the classification scenario.

It can be noted that, although this solution was called Replica symmetric, the structure is highly
reminiscent of a 1-RSB solution. Indeed, it can be shown that, if the constraints on the configurations
W̃ are removed, and one solves for S̃ = 0 rather then fixing S, one obtains exactly the standard 1-RSB
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equations for the perceptron of [24] at zero temperature, with y taking the role of the Parisi parameter
m. However, 1-RSB solution of the standard equations shows no hint of the dense regions, even if one
relaxes the requirement 0 ≤ m ≤ 1 of [24]. This shows that the constraint on the distance is crucial
to explore these subdominant regions.

From Eq. (4.2.4) one can compute the internal and external entropies, as:

SI (S, y) =
∂φ

∂y
(S, y)(4.2.5)

SE (S, y) = φ (S, y)− y ∂φ
∂y

(S, y)(4.2.6)

What one finds is that, for all values of α and d, there is a value of y beyond which SE (d, y) < 0,
which signals a problem with the RS assumption. Therefore, we sought numerically for each α and
S (and correspondingly d) the value y? = y? (α, d) at which SE (d, y?) = 0, i.e. the highest value of
y for which the RS analytical results are consistent. Therefore, in all our results, the typical number
of reference solutions W̃ was sub-exponential in N ; however, we found that in all cases q̃ < 1, which
implies that the solutions W̃ are not unique.

Using the value of the temperature at which the (external) entropy vanishes is sufficient in this case
to derive results which are geometrically valid across most values of the control parameters α and S.
There are two exceptions to this observation, both occurring at high values of α and in specific regions
of the parameter S. Let us indicate with [SL, SR] these regions, with 0 < SL < SR < 1. The most
obvious kind of problem occurs occurs at α & 0.79, where SI (S, y) < 0 for S ∈ [SL, SR]. Another type
of transition occurs between α ' 0.77 and α ' 0.79, where the ∂

∂SSI (S, y) ≥ 0 in [SL, SR]. A closer
inspection of the order parameters reveals that, q1 ≥ S for S ∈ [SL,SR] . The transition points SL
and SR at which q1 = S are manifestly unphysical, because in that case any of the solutions W (which

are exponential in number, since SI > 0) could play the role of the reference solution W̃ , and yet the

number of W̃ should be sub-exponential, because SE = 0. This is a contradiction: those regions are
then inadequately described within the RS Ansatz.

As for the parts of the curves which are outside these problematic regions, the results obtained
under the RS assumption are reasonable, and in very good agreement with the numerical evidence. In
order to assess whether the RS equations are stable, further steps of RSB would be needed; unfortu-
nately, this would multiply the number of order parameters (and thus enlarge the system of equations)
and the number of nested integrals required for each of these equations. In conclusion, the results
described here suggest that the general picture is well captured by the RS assumption with the zero
external entropy requirement, and that quantitative adjustments due to further levels of RSB would
likely be small, and limited to the intermediate regions of S.

The solution to the system of equations stemming from the RS saddle point produces qualitatively
very similar results for both the classification (with α < αc) and the generalization (with α < αTS)
case. Some results in the classification case are sketched in Fig. 4.2.3. The main facts are described in
what follows:

(1) For all α < αc, there is a neighborhood of d = 0 where SI (d) > 0, implying the existence of
extensive clusters of solutions. Furthermore, for all α, the curves for SI (d) are all approxi-
mately equal around d = 0; in particular, they all approximate the case for α = 0 where all
points are solutions. This implies that the clusters of solutions are extremely dense at their
core. The size of this dense region shrinks with α and vanishes at αc.

(2) For large distances, as expected, SI (d) collapses with a second-order transition onto the
equilibrium entropy, i.e. this regime is dominated by the typical solutions.



4.2. LARGE DEVIATION ANALYSIS 37

0

0.02

0.04

0.06

0.08

0.1

0 0.005 0.01 0.015 0.02 0.025 0.03

e
n
tr

o
p
y
 �

I

distance from reference solution W

0 5⋅10⁻⁴ 1⋅10⁻³

0

1⋅10⁻³

2⋅10⁻³

3⋅10⁻³

4⋅10⁻³

e
n
tro

p
y

distance

=0.4

=0.6

=0.4

=0.6

=0.77

=0.78

=0.79

=0.77

=0.78

=0.79

=0
=0

Figure 4.2.3. (Color online) Large deviation analysis. Local entropy curves at

varying distance d from the reference solution W̃ for various α (classification case).
Black dotted curve: α = 0 case (upper bound). Red solid curves: RS results from

Eq. (4.2.2) (optimal W̃ ). Up to α = 0.77, the curves are monotonic. At α = 0.78, a
region incorrectly described within the RS Ansatz appears (dotted; geometric bounds
are violated at the boundaries of the part of the curve with negative derivative). At
α = 0.79, the solution is discontinuous (a gap appears in the curve), and parts of
the curve have negative entropy (dotted). Blue dashed curves: equilibrium analysis

(typical W̃ ) [49] (dotted parts are unphysical): the curves are never positive in a
neighborhood of d = 0. Inset : zoom of the region around d = 0 (notice the solution
for α = 0.79, followed by a gap).

(3) Up to a certain αU (where αU ' 0.77 in the classification case and αU ' 1.1 in the general-
ization case), the SI (d) curves are monotonic in d. Beyond αU , there is a transition in which
there appear regions of d (dotted in Fig. 4.2.3) which are not correctly described by the RS
Ansatz (as for the violation of geometric bounds). It is reasonable to think that this region
should be described with a higher level of Replica Symmetry Breaking (RSB). This transition
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Figure 4.2.4. (Color online) Generalization error (teacher-student scenario).

From top to bottom: (blue) typical solution; (red) optimal W̃ from eq. (4.2.2) at
d = 0.025 (this solution disappears after α ' 1.2); (black points) solutions from SBPI

at N = 10001, 100 samples per point; (magenta) optimal W̃ from eq. (4.2.2) at the
value of d for which SI is maximum (i.e. it equals the equilibrium entropy); (green)
bayesian case: error from the average over all solutions. At αTS = 1.245 is the first-
order transition to perfect learning; between αTS and α = 1.5 there is a meta-stable
regime; the dashed parts of the curves correspond to unphysical solutions of the RS
equations with negative entropy.

likely signals a change in the structure of the space of solutions: for α < αU , the densest cores
of solutions are immersed in huge connected structure; for α > αU , this structure fractures
and the dense cores become isolated and hard to find.

In the teacher-student scenario, the generalization properties of the optimal reference solutions W̃ are
generally much better than those of typical solutions. This is clearly shown in Fig. 4.2.4, where I also
show that the curve for small d is in striking agreement with that produced using solutions obtained
from the SBPI algorithm. The generalization error decreases monotonically when increasing d, and
it saturates to a plateau when SI (d) becomes equal to the entropy of the typical solutions (point 2
above).
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Figure 4.3.1. A representative subset of the MNIST training set. For each digit 15
examples are shown. The size of each image is 28x28 pixels. Each image is centered
and grey level intensity is normalized.

4.3. Multi-layer network

It would be very interesting to investigate the issues presented here when confronted with more
complex architectures, where single perceptrons are used to build multi-layer and multi-category classi-
fiers. We tested a heuristic extension of the CP+R algorithm to a multi-layer classifier with L possible
output labels, training these type of networks on the MNIST database benchmark [5], which consists
of 7 · 104 gray-scale images of hand-written digits (L = 10). A subset of the training set if show in
Fig. 4.3.1. In the standard benchmarking procedure, 104 of the images are reserved for assessing the
generalization performance, and another set of 104 is taken as a validation set (which we do not use).
The images were subject to standard unsupervised pre-processing by a Restricted Boltzmann Machine
(N = 501 output nodes) [3, 4], but this is not essential for training: the inputs could be used directly,
or be simply pre-processed by random projections, with only minor effects on the performance. Let us
consider a multi-layer classifiers with L possible output labels. The architecture we used (Fig. 4.3.2A)
consists of an array of K2 committee machines, each comprising K1 hidden units, whose outputs are
sent to L summation nodes, and from these to a readout node which performs an argmax operation.
This network therefore realizes the following map:

φ (ξ) = argmaxl∈{1,...,L}

(
K2∑
k2=1

Yk2l sign

(
K1∑
k1=1

τ
(
W k1k2 , ξi

)))
where Yk2l ∈ {−1, 1} are random binary weights, and W k1k2 ∈ {−1, 1}N are the synaptic weights.

The single-layer CP+R rule consists of two independent processes, a supervised one and a gen-
eralized, unsupervised one (see [54] for details). For the multi-layer case, we kept the unsupervised
process unaltered, and used a simple scheme to back-propagate the error signals to the individual per-
ceptron units, as follows: upon presentation of a pattern ξ whose required output is σ, in case of error
(φ (ξ) 6= σ), a signal is sent back to all committee machines which contributed to the error, i.e. all those

for which sign
(∑K1

k1=1 τ
(
W k1k2 , ξi

))
6= Yk2σ. Each of these in turn propagates back a signal to the
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Figure 4.3.2. (Color online) Multi-layer tests on MNIST. A. Network scheme.
B. results of a random walk over solutions to the training set (with K1 = 11, K2 = 30,
r = 0), starting from a solution found by CP+R. Moving away from this solution, the
generalization error (red, circles) increases, and the solution density (blue, squares)
decreases. The same qualitative behavior is observed with all network sizes, and
regardless of preprocessing.

hidden unit, among those which provided the wrong output (i.e. for which Yk2σ
∑N
i=1W

k1k2
i ξi < 0),

which is the easiest to fix, i.e. for which −Yk2σ
∑N
i=1W

k1k2
i ξi is minimum. Finally, the hidden units

receiving the error signal update their internal state according to the CP+R supervised rule. We
also added a “robustness” setting, such that an error signal is emitted also when φ (ξ) = σ, but the
difference between the maximum and the second maximum in the penultimate layer is smaller then
some threshold r. We observed that it is indeed very easy to learn the training set with zero error, and
that very good generalization errors can be reached despite the binary nature of the synapses and the
fact that we did not specialize the architecture for this particular dataset. Moreover, we didn’t observe
any overfitting: the generalization error does not degrade by reaching zero training error, or by using
larger networks. The smallest network which is able to perfectly learn the whole training dataset had
K1 = 11 and K2 = 30, with r = 0; its generalization error was about 2.4%. Larger networks achieve
better generalization error rates, e.g. 1.25% with K1 = 81, K2 = 200, r = 120.

As for the perceptron, we performed a random-walk process in the space of solutions, with similar
results: the simplified algorithm reaches a solution which is part of a dense, large connected cluster,
and the generalization properties of the starting solution are better than those of solutions found in
later stages of the random walk (Fig. 4.3.2B).

4.4. Summary

In this chapter I discussed the main theoretical understanding as well as the available Belief
Propagation machinery for effectively finding a solution in the perceptron learning problem. The
present analysis showed that the standard equilibrium analysis does not capture the features of the
types of solutions which are found by means of the BP-inspired learning protocols. The introduction
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of a novel large deviation analysis revealed the existence of a dense subdominant cluster of solutions,
which is the main responsible for the effectiveness of known learning algorithms, and controls their
algorithmic capacities. Our results have been presented in Ref. [57]. More recently, some of us found
that this analysis can be generalized to the case of multi-level synapses [58].

As I will discuss in the next chapter, these result motivated the introduction of a general Monte
Carlo optimization strategy, which is also effective in the random K-SAT problem.





CHAPTER 5

Entropy Driven Monte Carlo

In chapter 4 the existence of subdominant yet accessible states in the Perceptron Learning Problem
has been documented by means of analytical and computational methods. This findings inspired the
introduction of a novel Markov Chain Monte Carlo (MCMC) method which explicitly seeks for states
with high local entropy, and is constructed in a way that it leads the system inside a large dense cluster
of zero energy configurations. The starting point of the discussion is the observation that the results
obtained in last chapter are extremely robust even if one considers a slightly modified ensemble where
the reference configurations are not constrained to be solutions: this motivates the introduction of a
method which does not use the energy information and is guided only by the local entropy information.

It is then appealing to treat the local entropy as a pure objective function, and define a novel
MCMC, which we call Entropy-driven Monte Carlo (EdMC). When applied to the binary perceptron
learning problem, EdMC yields algorithmic results that are in very good agreement with the theoretical
computations, and by far outperform standard Simulated Annealing in a direct comparison.

EdMC has been tested in the general context of Random Constraint Satisfaction Problems (CSPs),
which offers an ideal framework for investigating the impact of the geometry of the space of solutions on
the performance of sampling algorithms, and solvers as well. In many random CSPs, the computational
hardness is associated to the existence of optimal and metastable states that are grouped into different
clusters of nearby solutions with different sizes and properties. Large deviation analysis allows to
describe in some detail the structure of such clusters, ranging from the dominant clusters (those in
which one would fall by choosing uniformly at random a solution) to the subdominant ones. One
possible way to search for a solution on a single instance of a random CSP is to use a Monte Carlo
approach: MCMC algorithms for combinatorial optimization problems are designed to converge to a
stationary distribution π that is a monotone decreasing function of the objective function one needs to
minimize. A fictitious temperature is usually introduced and a Simulated Annealing (SA) procedure
is employed, where this temperature is slowly decreased, to make the distribution more and more
focused on the optima. Depending on the form of the stationary distribution (i.e. on the temperature)
the sampling process can converge fast or it can get trapped in local minima. There is typically a
tradeoff between optimality of the sampled solutions and the form of π: smooth and close to uniform
distributions are the easiest to sample but the sampled configuration are most often far from optimal.
On the contrary hard to sample distributions are characterized by a glassy landscape where the number
of metastable minima that can trap the MCMC and break ergodicity are typically exponentially
numerous.

In contrast to standard Simulated Annealing procedures, the entropy based scheme does not suffer
from trapping in local minima, its smoother objective function enabling it to focus on a solution which
is at the center of a dense regions of solutions. Moreover, EdMC offers a method to validate the RS
calculation, and to understand better the properties of the heuristic BP-inspired algorithms that are
able to find a solution to hard optimization problems.

43
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This chapter is organized as follows: in Sec. 5.1 I introduce the unconstrained version of the RS
calculation of the previous chapter, which serves as a presentation of the novel EdMC algorithm;
in Sec. 5.2 EdMC is tested in two prototypical CSPs, the perceptron and random K-SAT, and its
performance is systematically compared to standard Simulated Annealing.

5.1. Subdominant clusters and Entropy-driven Monte Carlo

The main idea behind Entropy-driven Monte Carlo is that the local entropy could provide a
smoother landscape than the energy in a general Contraint Satisfaction Problem suffering from a
proliferation of local minima, and its dynamics could lead to solutions which have the property of
being surrounded by many other zero energy configurations. Computing the local entropy may be
more difficult than computing the energy, but the resulting landscape may be radically different. Let
us then introduce the general concept of a Constraint Satisfaction Problem and set the notation for
EdMC.

5.1.0.1. Out of equilibrium analysis of CSPs. A generic Constraint Satisfaction Problem (CSP) can
be defined in terms of N variables xi ∈ Xi, and M constraints ψµ : Dµ → {0, 1}. Each constraint µ in-
volves a subset ∂µ of the variables, which will be collectively represented as x∂µ = {xi : i ∈ ∂µ} ∈ Dµ,
and a compatibility function ψµ, where ψµ (x∂µ) = 1 if the constraint is satisfied, 0 otherwise. For
concreteness, let us focus on the case of binary spin variables Xi = X = {−1,+1}. The generaliza-
tion to multi-valued variables is straightforward, and will be presented in an upcoming work for the
perceptron case together with an analytical characterization [58]. It is costumary to define an energy
function of the system simply as the number of violated constraints, namely:

(5.1.1) H0 (x) =
∑
µ

Eµ (x∂µ) =
∑
µ

(1− ψµ (x∂µ))

In analogy to what has been discussed in Chapter 4, I will introduce a method that counts the
number of solution vectors x around a given planted vector x̃. To this end, local free entropy is defined
as follows:

(5.1.2) F (x̃, γ) =
1

N
logN (x̃, γ)

where

(5.1.3) N (x̃, γ) =
∑
x

∏
µ

ψµ (x∂µ) eγx·x̃

counts all solutions x of the CSP with a weight that depends on the distance from x̃. The parameter
γ controls the intensity of the coupling. Solving a CSP means to find a solution vector x̃? with zero
energy, i.e. H0 (x̃?) = 0. The alternative method which will be investigated here is to optimize the
function F (x̃, γ), trying to guide the system in a region with a high density of solutions. This amounts
in introducing a coupling term γx̃i, with x̃i ∈ {−1,+1} acting on in each variable xi, with γ ∈ R the
coupling strength, so that one has to consider the slightly different system described by the following
Hamiltonian:

(5.1.4) H (x; x̃) = H0 (x)− γ
∑

xix̃i

The directions of the external fields x̃i’s are considered as external control variables, and γ sets
the intensity of the external fields: in the large N limit it effectively fixes the Hamming distance d of
the solutions x from x̃. The local free entropy F (x̃, γ) is then obtained as the zero-temperature limit
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of the free energy of the system described by H (x; x̃), and can be computed by Belief Propagation
(see Sec. 5.1.0.2 and Appendix Sec. A.1).

The free energy of the new systems is then:

(5.1.5) F (γ, y) = − 1

Ny
log

(∑
x̃

eyF (x̃,γ)

)

where y has the role of an inverse temperature and −F (x̃, γ) is a formal energy. In the limit of large y,
this system is dominated by the ground states x̃? with maximum local entropy; if the number of such
ground states is not exponentially large in N , the local entropy can then be recovered by computing
the Legendre transform

(5.1.6) S (γ,∞) = −F (γ,∞)− γS

where S is the typical value of the overlap x·x̃?
N . The number of solutions at distance d = 1−S

2 from
the ground states x̃? will then be given by:

(5.1.7) eNS (γ,∞) =
∑
x

∏
µ

ψµ (x∂µ) δ (NS − x · x̃?)

For large γ (i.e. small distance d), one expects that x̃? will eventually be in the middle of a dense
cluster of solutions (provided such cluster exists) and that it is likely going to be a solution itself, a
case that is strictly guaranteed only for γ → ∞. The results discussed in the case of the perceptron
highlighted the relevance of the extremal points F (x̃?, γ) of the local free entropy, and showed that
solutions which happen to be inside a dense subdominant cluster have different statistical properties
with respect to the set of thermodynamically locally stable states.

5.1.0.2. EdMC: Local entropy optimization. Entropy-driven Monte Carlo is constructed as a simple
Metropolis procedure where Monte Carlo moves are controlled by the value of the local entropy. The
reason to follow this strategy instead of directly minimizing the energy H0 (x̃) of Eq. (5.1.1), is that
it turns out that the landscape of the two objective functions is radically different: while the energy
landscape can be dominated by local minima that trap local search algorithms, the local entropy
landscape is much smoother. Furthermore, the behavior of this algorithm can — at least in principle
— be described in the typical case with the tools of Statistical Mechanics, to the contrary of what
is currently possible for the other efficient solvers, which are all based on some kind of heuristics
(e.g. decimation, soft decimation a.k.a. reinforcement, etc.).

All in all, EdMC procedure is the following: x̃ is initialized at random; at each step F (x̃, γ) is
computed by the BP algorithm; random local updates (spin flips) of x̃ are accepted or rejected using
a standard Metropolis rule at fixed temperature y−1. In practice, we found that in many regimes
it suffices to use the simple greedy strategy of a zero temperature Monte Carlo (y = ∞). From a
practical point of view, it seems more important instead to start from a relatively low γ and increase it
gradually, as one would do in a classical annealing procedure. This ’scoping’ procedure progressively
narrows the focus of the local entropy computation to smaller and smaller regions, and will be clear
(at least in the case of the perceptron) in view of analytical results in the next section.

Bethe approximation is a natural way of computing the quantity F (x̃, γ). Since it is easier to
understand EdMC in terms of external fields x̃i, Appendix A.1 shows a different form of the Belief
Propagation equations where messages are parametrized by means of local fields, and provides the
corresponding expression for the free energy.
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5.2. EdMC results

EdMC has been tested in two cases, the first being the perceptron problem that originally inspired
its introduction. The second is an example of a diluted problem, the Random K-SAT, which has a
long tradition in the Statistical Mechanics of Optimization.

5.2.1. Perceptron. The first step was to repeat the RS computation of chapter 4 for the free
energy of eq. (5.1.5), where no constraint is imposed on the reference configurations x̃. An important
check of the plausibility of the RS results is the positivity of external entropy: in the unconstrained
case, one finds that as α increases the results become patently unphysical. For example, the RS
solution at y = y? yelds a positive local entropy even beyond the critical value αc. Therefore, the RS
assumption needs to be abandoned and at least a 1-step of Replica Symmetry Breaking (1-RSB) must
be studied.

There are a number of non equivalent way of breaking the Replica Symmetry, which could involve
the x or x̃ variables. It seemed reasonable to assume that RSB occurred at the level of the x̃ variables,
since it is expected that clusters are dense with no internal fragmentation. The details of the calculation
for y → ∞ are shown in Appendix A.2. The result is a system of 8 coupled equations, with α and
S as control parameters (using S as control parameter instead of its conjugate γ which was used in
Eq. 5.1.5 is advantageous for the theoretical analysis at high α, see below).

The external entropy which is obtained from the solutions of the equations is still negative for
all values of α and S, though some important caveats have to be considered: its magnitude is much
smaller than the one obtained with an RS Ansatz at y →∞; furthermore, its value goes to zero when
S → 1. All the other unphysical results of the RS solution were fixed at this step of RSB, and the
qualitative behavior of the solution is the same as for the constrained RS version of section 4.2. As one
can see in Fig. 5.2.1, the strong density at the core of the cluster is apparent also in the unconstrained
case: for all α below the critical value αc = 0.83, the local entropy in the region of S → 1 tends to
the α = 0 curve, implying that for small enough distances the region around the ground states x̃? is
extremely dense (almost all points are solutions). Analogously, there is a transition at αU ' 0.77 after
which the local entropy curves are no longer monotonic, the appearance of a gap in S with no solution
most likely signaling a regime with a large number of disconnected regions which originate from the
fragmentation of the original cluster.

Two additional results are worth noting about the properties of the reference configurations x̃:

(1) In the limit y → ∞, the local entropy takes exactly the same value as for the constrained
case in which the x̃ are required to be solutions, and the same is true for the parameters that
are common to both cases. The external entropy, however, is different. This is true both in
the RS and the 1-RSB scenario.

(2) For the unconstrained case, the probability that the reference configuration x̃ makes an
error on any one of the patterns is easily computed (see Fig. 5.2.2 and Appendix A.2.3).
This probability is a decreasing function of S (going exponentially to 0 as S → 1) and an
increasing function of α. For low values of α, this probability is extremely low, such that at
finite values of N the probability that x̃ is a solution to the full pattern set is almost 1.

Fig. 5.2.1B shows that up to α . 0.75 we can use γ as a control parameter to determine S, while
Fig. 5.2.2 shows that a solution to the learning problem could be found by maximizing the local free
entropy F (x̃, γ) (eq. (5.1.2)) as a function of x̃ at sufficiently large γ. This observation directly justifies
the use of a scoping procedure in EdMC.

EdMC was used to test the theoretical results by searching the optimum value of the free local
entropy F (x̃, γ) at each γ for different α. As an example, Fig. 5.2.3 shows a comparison between the
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Figure 5.2.1. A. Local entropy vs overlap S, at various values of α. All curves tend
to the α = 0 case for sufficiently high S. For α & 0.77, a gap appears, i.e. a region
of S where no solution to the saddle point equations exists. For α & 0.79, some parts
of the curve have negative entropy (dashed). B. Relationship between the overlap S
and its conjugate parameter, the external field γ. Up to α . 0.75, the relationship
is monotonic and the convexity does not change for all values of S; up to α . 0.77,
a solution exists for all S but the relationship is no longer monotonic, implying that
there are regions of S that can not be reached by using γ as an external control
parameter. The gap in the solutions that appears after α & 0.77 is clearly signaled
by the fact that γ reaches 0; below αc = 0.83, a second branch of the solution always
reappears at sufficiently high S, starting from γ = 0.
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Figure 5.2.2. A. Probability of a classification error by the optimal reference con-
figuration x̃, for various values of α, as a function of S. The dashed parts of the curves
correspond to the parts with negative local entropy (cf. Fig. 5.2.1); the curves have
a gap above α & 0.77. B. Same as panel A, but in logarithmic scale on the y axis,
which shows that all curves tend to zero errors for S → 1.

theoretical result and the values found by EdMC with the following procedure: EdMC was run on 2000
samples at N = 201 and α = 0.6, at various values of γ (we used γ = tanh−1 (p), varying p ∈ [0.4, 0.9]
in steps of 0.1), without stopping the algorithm when a solution was found. In addition to a greedy
procedure (y = ∞), a cooling procedure was used, in which y was initialized at 5 and increased by
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Figure 5.2.3. EdMC vs theoretical results. A. Probability of error on a pattern
(cf. Fig. 5.2.2) B. Local entropy (cf. Fig. 5.2.1A). For the version with cooling, 700
pattern sets were tested for each value of γ. For the y = ∞ version, 2000 samples
were used. Error bars represent standard deviation estimates of the mean values.

a factor of 1.01 for every 10 accepted moves. The search was stopped after 5N consecutive rejected
moves. For each sample and each polarization level, the value of the overlap S, of the local entropy
S (see eq. 5.1.6 above and eqs. (A.1.8) and (A.1.9) in the Appendix Sec. (A.1.1)) and of the error
probability per pattern were stored. Results were then binned over the values of S, using bins of width
0.005, and local entropy and error rate are averaged in each bin. EdMC results are in good agreement
with the theoretical curve: the qualitative behavior is the same (in particular: the error rate goes to
zero at S → 1 and the entropy is positive until S = 1, confirming the existence of dense clusters),
the cooling procedure version yielding results which are closer to the theoretical values. For all these
reasons, the 1-RSB solution seems to be a reasonable approximation to the correct solution at y →∞.

The remaining discrepancy could be ascribed to several factors: 1) finite size effects, since N is
rather small; 2) inaccuracy of the Monte Carlo sampling, which would be fixed by lowering the cooling
rate; 3) inaccuracy of the theoretical curve due to further steps of Replica Symmetry Breaking. Note
that, with these settings, the average number of errors per pattern set is almost always less than 2 for
all points plotted in Fig. 5.2.3A. Also note that, for all values of S, the mode and the median of the
error distribution is at 0, and that the average is computed from the tails of the distribution (which
explains the noise in the graphs). Finally note that, for all samples, points corresponding to 0 errors
were found during the Monte Carlo procedure.

5.2.1.1. EdMC vs Simulated Annealing. The most remarkable feature of EdMC is its ability to
retrieve a solution at zero temperature in a relative small number of steps, as opposed to standard
Simulated Annealing. Performing a systematic comparison between the two methods for different
values of α and different sized N , one finds that zero temperature MCMC immediately gets trapped in
local minima at zero temperature, even at small N . In order to find a solution with MCMC a simulated
annealing (SA) approach was used: inverse temperature was initially set to y0 = 1, and increased by
a factor fy for every 103 accepted moves. The cooling factor parameter fy was optimized on each
instance. Fig. 5.2.4 shows a comparison between a typical trajectory of SA versus EdMC on the very
same instance (EdMC is run at y =∞ with γ = tanh−1 (0.6)): at first glance, it exemplifies the typical
difference in the average number of steps required to reach a solution between SA and EdMC, which
is of 4 or 5 orders of magnitude for small N . Also note the smoothness of the EdMC trajectory in
contrast to SA: the local entropy landscape is far smoother and ensures a rapid convergence to the
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Figure 5.2.4. Perceptron Learning Problem, N = 801, α = 0.3. Typical trajectories
of standard Simulated Annealing (red curve, right) and Entropy-driven Monte Carlo
(blue curve, left). Notice the logarithmic scale in the x axis. EdMC is run at 0
temperature with fixed γ = tanh−1 (0.6), SA is started at y0 = 1 and run with a
cooling factor of fy = 1.001 for each 103 accepted moves, to ensure convergence to a
solution.

region with highest density of solutions. The scaling of the two algorithms was systematically studied
at α = 0.3 and α = 0.6, varying N between 201 and 1601 and measuring the number of iterations
needed to reach a solution to the learning problem.

For the SA tests, the following procedure was used: for each instance of the problem, one tries to
find a solution at some value of the cooling factor fy; after 105N consecutive rejected moves, a reduced
fy is introduced, and the procedure is repeated until a solution is eventually found. The values of fy
were {1.1 , 1.05, 1.02, 1.01, 1.005, 1.002, 1.001, 1.0005, 1.0001}. This allowed to measure the least
number of iterations required by SA to solve the problem (the shown scaling plots only report the
number of iterations for the last attempted value of fy). At α = 0.3, all tested instances were solved,
up to N = 1601. At α = 0.6, however, this procedure failed to achieve 100% success rate even for
N = 201 in reasonable times; at N = 401, the success rate was 0% even with fy = 1.0001; at N = 1601,
using fy = 1.0001 did not seem to yield better results than fy = 1.1. Therefore, no data is available
for SA at α = 0.6.

For the EdMC tests, the following procedure was used: the algorithm was started at γ = tanh−1 (p)
with p = 0.4, and the Monte Carlo procedure was run directly at y =∞; if a solution was not found,
p was increased by a step of 0.1 and continued from the last accepted configuration, up to p = 0.9 if
needed. This procedure converges to a solution in all cases.

The results are shown in Fig. 5.2.5, in log-log scale. For SA (panel A in the figure), the behavior is
clearly exponential at α = 0.3, and missing altogether for α = 0.6. For EdMC (panel B in the figure),
the data is well fit by polynomial curves, giving a scaling ∼ N1.23 for α = 0.3 and ∼ N1.74 for α = 0.6.
Also note the difference of several orders of magnitude in the ranges of the y axes in the two panels.
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Figure 5.2.5. Perceptron Learning Problem. Number of iterations required to reach
0 energy in log-log scale, as a function of the problem size N . A: Simulated Annealing
at α = 0.3, B: EdMC at α = 0.3 (bottom) and α = 0.6 (top). See text for the details
of the procedure. Notice the difference in the y axes scales. For both methods, 100
samples were tested for each value of N . Color shades reflect data density. Empty
circles and squares represent medians, error bars span the 5-th to 95-th percentile
interval. The dashed lines are fitted curves: the SA points are fitted by an exponential
curve exp (a+ bN) with a = 8.63 ± 0.06, b = (8.79± 0.08) · 10−3; the EdMC points
are fitted by two polynomial curves aN b with a = 0.54 ± 0.04, b = 1.23 ± 0.01 for
α = 0.3, and with a = 0.14± 0.02, b = 1.74± 0.02 for α = 0.6.

5.2.2. A different example: K-SAT. Random K-SAT has been central in the development of
the Statistical Mechanics approach to CSPs [50, 2]. Here I just want to point out that, when varying
the number of constraints per variable α, the problem undergoes a sequence of phase transitions,
related to the fragmentation of the phase space in a huge number of disconnected clusters of solutions.
This rich phenomenology, observed well below the UNSAT threshold (above which no solution typically
exists at large N), can be analyzed by the cavity method in the framework of 1-step Replica Symmetry
Breaking (1-RSB), and is reflected in the exponential slowing down of greedy algorithms as well as
sampling strategies.

The satisfiability problem, in its ‘random K-SAT’ instantiation, consists in finding an assignment
for N truth values that satisfies M = αN random logical clauses, each one involving exactly K different
variables. Let us then consider N Boolean variables {ti ∈ {0, 1}}, with the common identification
{0→ FALSE, 1→ TRUE}. A given clause µ is the logical OR of its variables, whose indices are
iµ1 , ..., i

µ
K , and which can appear negated. Let us work in a spin representation xi = 2ti − 1 and

introduce the couplings Jµir ∈ {−1,+1}, where Jµir = 1 if the variable xiµr appears negated in clause

µ, and Jµir = −1 otherwise. The graph structure is random, in that each clause involves K variables
extracted uniformly at random, and the couplings are also unbiased i.i.d. random binary variables.
With these definitions, the solutions to a K-SAT problem are the zero energy configurations of the
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Figure 5.2.6. Random 4-SAT, α = 8.0, EdMC results with y = ∞ and γ =
tanh−1 (0.3). A. Typical trajectories at different values of N , from 500 to 10000
(bottom to top), in log-log scale. B. Number of iterations to reach 0 energy, in log-
log scale, as a function of the problem size N . Color shades reflect data density.
Empty circles represent medians, error bars span the 5-th to 95-th percentile interval.
The data is well fitted by a polynomial curve aN b (blue line), with a = 1.94 ± 0.15,
b = 1.15± 0.01.

following Hamiltonian:

(5.2.1) HSAT = 2

M∑
µ=1

K∏
k=1

(
1 + Jµirxi

µ
r

2

)
which counts the number of violated clauses.

The results displayed so far for the Binary Perceptron rely on a general scheme that can be
applied in principle to other CSPs or optimization problems. The main bottleneck in implementing
such extensions resides in the possibility of computing the local entropy efficiently, e.g. by BP or some
other sampling technique. As proof of concept, EdMC was applied to the very well studied case of
random K-SAT [59, 60, 61] focusing on the non trivial case K = 4, at various N and α. Random
4-SAT is characterized by three different regimes[62, 63]: For α < αd = 9.38 the phase is RS and
the solution space is dominated by a connected cluster of solutions with vanishing correlations among
far apart variables. For αd < α < αc = 9.47 the dominant part of the solution space breaks into an
exponential number of clusters that have an extensive internal entropy. Long range correlations do
not vanish. For αc < α < αs = 9.931 the solution space is dominated by a sub-exponential number
of clusters. Eventually for α > αs the problem becomes unsatisfiable. The hard region for random
4-SAT is α ∈ [αd,αs], i.e. where long range correlations do not vanish. In such region SA are expected
to get stuck in glassy states and most of the heuristics are known to fail.

In the RS regime, EdMC succeeds in finding a solution in a small number of steps, confirming the
smooth nature of the objective function. Typical trajectories for different values of N are depicted in
Figure 5.2.6A. Figure 5.2.6B shows the scaling behavior with N , which is polynomial (∼ N1.15) as in
the case of the Perceptron. In the hard phase the method suffers from the lack of convergence of BP.
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Even if BP (technically the 1-RSB solution with m = 1) would converge up to the condensation point
αc, the addition of the external fields prevent BP from converging even below such point. Instead of
resorting to a 1-RSB cavity algorithm to compute the local entropy, a simple heuristic strategy was
adopted, just to show that the overall method is effective.

When BP does not converge, a good estimate for the free energy F is its average F̄ over a
sufficient number of BP iterations. While this trick typically leads to a solution of the problem, it has
the drawback of making the overall Monte Carlo procedure slow. It turns out, though, that there is
much more information in the BP cavity marginal which could effectively be used to choose the Monte
Carlo step to guide the system into a state of high local density of solutions. Eventually the heuristic
turns out to be extremely fast and capable of solving hard instances up to values of α close to the
SAT/UNSAT threshold. The same heuristic has also been tested in the Perceptron learning problem
with excellent results at high values of α.

The main step of the heuristic method consists in performing an extensive number of flipping steps
at each iteration in the direction of maximum free energy, choosing the variables to flip from the set of
xi’s whose cavity marginals in absence of the external field hi are not in agreement with the direction
x̃i of the field itself (a precise definition of the marginals hi is given in Appendix A.1). Let us call V
the set of such variables, in a ranked order with respect to the difference between the external and
the cavity fields, such that the ones with the largest difference come first. In the spirit of MCMCs, a
collective flip of all the V variables is proposed, and the new value of F is computed. The collective flip
is always accepted if there is an increase in free energy, otherwise it is accepted with probability ey∆F ,
where ∆F is the free energy difference. When a collective flip is accepted, a new set V is computed.
If, on the contrary, the flips are rejected, a new collective flip is proposed, simply eliminating the last
variable in the ranked set V , and the procedure is repeated until the set is empty. In the general case
this procedure quickly leads to a solution with zero energy. If all the collective flips in V are rejected,
the procedure is terminated, and a standard EdMC is started from the last accepted values of x̃i.

As it turns out, most of these collective moves are accepted immediately. The interpretation is
that these moves try to maximize, at each step, the local contributions Fi’s associated to each variable
xi in the Bethe free energy, in presence of an external field γx̃i. As for standard EdMC, an annealing
strategy in y can be used, as well as a ‘scoping’ strategy, i.e. a gradual increase of the external field γ
as well. The resulting algorithm is detailed in Appendix A.3. Scoping appears to be more fundamental
than annealing in y, and in many cases crucial to produce a quick solution: as γ is increased, smaller
regions are progressively observed, and this focus can eventually lead the search into a given compact
cluster of solutions, a region sufficiently dense so that Replica Symmetry locally holds. Indeed, in
the typical observed trajectory of this algorithm in the presence of the scoping dynamics, even when
BP suffers from convergence issues in the first steps, convergence is restored when the external fields
vector x̃ gets close to a region of high solution density. In Fig. 5.2.7 the performance of the heuristic
algorithm in the hard phase of K-SAT is exemplified by the probability of finding a solution at high
α (the scoping and annealing parameters have been properly tuned so as to optimize the probability
of success).

5.3. Summary

In Chapter 4 I dealt with an appropriate out-of-equilibrium measure in the theoretical analysis
of subdominant clusters in the perceptron. Motivated by the previous analysis, a novel method for
efficiently sampling over solutions in single instances of CSPs has been introduced.
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Figure 5.2.7. Probability of finding a solution for the faster (heuristic) EdMC algo-
rithm on random instances of the 4-SAT problem as a function of the clause density α.
Data points are obtained using Algorithm in A.3 (but without resorting to a standard
EdMC as the set V of variables to be flipped is empty; rather, the algorithm is stopped
and considered to have failed in this case) and averaging over 100 samples for each
value of α and each problem size. For simplicity, the parameters of the algorithm are
fixed once for all simulations, even though they could be fine-tuned to achieve better
performance: scoping coefficient fγ = 1.05, annealing coefficient fy = 1.1 and starting
values γ0 = 0.1, y0 = 10−2.

At variance with standard Monte Carlo methods, minimization of energy naturally emerges from
the maximization of local entropy, a quantity that can be easily estimated by means of Belief Prop-
agation and that effectively guides an MCMC straight into a region with a high density of solutions,
thus providing an efficient solver. The striking difference in performance between SA and EdMC can
be understood in terms of a smoother landscape of local entropy as opposed to the energy: if we
compare a zero temperature EdMC to an energy guided SA with low cooling rate, the former is orders
of magnitude faster in terms of attempted moves, and does not suffer from trapping in local minima.
The results described in this chapter have been recently accepted for publications [64].

Even if the use of Belief Propagation is necessary for the current implementation of EdMC, some
of us are currently testing a new method for constructing an estimate of the local entropy that is
based on a different Monte Carlo approach. Interestingly enough, this method also sheds light on the
intimate nature of the standard reinforcement procedure that is able to turn Belief Propagation in a
practical solver in single instances. A further discussion is beyond the scope of the present Thesis, and
will be treated elsewhere.





CHAPTER 6

Inverse Dynamics in epidemics: the SIR model

Identifying the origin of an epidemic outbreak is a challenging open problem in epidemiology,
which has gained a lot of attention in recent years [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 15, 75].
As I will briefly point out in the following, the so called patient zero problem represents a particularly
hard inverse problem even for simple stochastic epidemic models, such as the Susceptible-Infected (SI)
model and the more general Susceptible-Infected-Recovered (SIR) model.

Epidemic models provide a simple description of the mechanisms behind disease transmission
[76], and can be employed to investigate the sources of large epidemic outbreaks, as well as to analyze
the dynamical properties of disease spreading over networks. It is now feasible to obtain complete
data on true contacts between individuals in real time, and to construct reliable networks of effective
contacts. Moreover, SIR model has a broad spectrum of applications: apart from epidemiology, it
can be considered as a good model for the spreading of viruses over networks of computers, as well as
rumors over social network, and its use can thus be profitable in all those situations where the static
structure of a network is easily accessible.

In the next 3 chapters, I will deal with the Susceptible-Infected-Recovered (SIR) [77] model, which
is considered to provide a good description for those diseases in which the person contracting the disease
becomes immune to future infections after recovery, such as measles, rubella, chicken pox and generic
influenza. The same model can be applied to lethal diseases, such as HIV or Ebola, provided that the
recovered state is replaced by a removed state.

The patient zero problem on a network with a SIR dynamics can be cast as a maximum likelihood
estimation problem. In general, estimating the maximum of a properly defined likelihood function
corresponds to solve a (generally non-convex) optimization problem in the space of all possible epidemic
propagations that are compatible with the data. A maximum likelihood estimator was proposed by
Shah and Zaman [65, 67] for propagations with a unique source on regular trees, under the name of
rumor centrality (see also [71]) and later extended to probabilistic observations in Ref. [74]. On general
graphs, the number of propagation paths grows exponentially with the number of nodes, making the
exact inference infeasible in practice. Instead of evaluating the likelihood function, Zhu and Ying put
forward a method to select the path that most likely leads to the observed snapshot [73]. For general
graphs, other heuristic inference methods are based on centrality measures [66, 68], on the distance
between observed data and typical outcome of propagations for given initial conditions [70] or on the
assumption that the epidemic propagation follows a breadth-first search tree [69, 72]. Even fewer
results exist for epidemic inference with multiple sources [72].

Karrer and Newman [78] were the first to formulate a Message Passing approach to the forward
problem, i.e. the characterization of the probability distribution of the infection paths on a given
network. This approach was later used by the authors of Ref. [75], which constructed a maximum
likelihood procedure for the source detection, the so called Dynamic Message Passing (DMP). The
limit of their approach resides in the assumption of a likelihood function that is factorized over sites,
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which is not necessarily consistent with the more accurate underlying approximation introduced in
[78].

Our group recently proposed a Belief Propagation (BP) approach, described in detail in section
6.1, that does not make use of a mean field factorization assumption [15]. The main ingredient, which
will be at the heart of subsequent developments described in the following chapters, is that of building a
static model for the description of the stochastic dynamics. In a Bayesian framework, one is confronted
with the problem of evaluating the posterior distribution over the sources of infection, a task which can
be tackled with the use of Belief Propagation, provided some sparsity assumptions on the structure
of the original graph are satisfied. The BP approximation, which gives the exact maximum likelihood
solution on trees, turned out to work very well also on general graphs, outperforming other methods
on many graph topologies, in the presence of one or more sources, and also when observations are by
large extent incomplete.

My work has been focused on generalizing the inference method to take into account a setting in
which observations happen to be affected by some kind of noise, i.e. there is a non-zero probability of
observing each individual in a state which is different from its true one. This is a common problems
in epidemiology, given the considerable amount of false negatives and positives in the gathering of
epidemiological data [79, 80]. More generally, the present approach can easily incorporate the in-
teresting case in which recovered and susceptible individuals are not distinguishable: this case was
recently considered in Ref. [73], where the authors employ the most likely infection path method on
trees, and similar heuristics on general graphs.

In what follows, I will firstly introduce a representation of the stochastic epidemic dynamics in
terms of a graphical model. Belief propagation equations will be derived in section 3 (a useful efficient
implementation is discussed in Appendix B). In section 4 the Bayesian inference method is tested on
different random graphs. Section 5 is devoted to an extension of the original BP method that allows
to infer the epidemic parameters while performing the source identification task. I will elaborate more
on an interesting generalization of this two-step inference approach in chapter 8.

6.1. Graphical model representation of the epidemic process

Let us consider a graph G = (V,E) that stands for the contact network of a set V of individuals.
Each node i is attached to a time dependent state variable xti ∈ {S, I,R} so that at time t it can be
in one of three possible states: susceptible (S), infected (I), and recovered/removed (R). I will focus
on the discrete time version of the SIR model, which is a Markovian stochastic process. At each time
step (e.g. a day), if node i is infected it has a finite probability λij to spread the disease to each of
his neighbors j; at the same time, i can recover with probability µi. Once recovered, individuals do
not get sick anymore, and are unable to spread the disease further. Let us note that one recovers two
interesting well known models as special cases simply putting µi ≡ 1 (independent cascades model [81])
or µi ≡ 0 (SI model). The transition probabilities of the SIR process satisfy the simple factorization
relation P (xt+1|xt) =

∏
i P (xt+1

i |xt) where

P (xt+1
i = S|xt) = I[xti = S]

∏
j∈∂i

(1− λjiI[xtj = I])

P (xt+1
i = I|xt) = (1− µi)I[xti = I] + I[xti = S](1−

∏
j∈∂i

(1− λjiI[xtj = I]))

P (xt+1
i = R|xt) = µiI[xti = I] + I[xti = R].
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The inherent irreversibility of the SIR process can be exploited to find a simple parametrization of
spreading paths that turns out to be suitable for the sake of the inference procedure: let us call
ti = min{t : xti = I} the infection time of node i and gi = min{g : xti+g+1

i = R} his recovery time
(individual i recovers at time ti+gi): a realization of the stochastic process is fully specified by knowing
ti’s, gi’s for each individual, as well as all the transmission delay sij , i.e. the time that takes to node
i to trasmit his disease to j once he got infected.

For a given initial configuration {x0
i }, one first draws randomly the recovery time gi of each node

i and an infection transmission delay sij from node i to node j, for all pairs (ij). The recovery times
{gi} are independent geometrically distributed random variables

(6.1.1) Gi (gi) = µi (1− µi)gi ,
while the delays {sij} are extracted from the following truncated geometric distribution,

ωij (sij |gi) =

{
λij (1− λij)sij , sij ≤ gi∑
s>gi

λij (1− λij)s , sij =∞,
Note that the value sij =∞ contains the mass of the distribution beyond the hard cut-off gi imposed
by the recovery time. For fixed valued of gi and sij , the relationship between infection times is purely
deterministic, and can be expressed in N hard dynamical constraints with the following form

(6.1.2) ti = 1 + min
j∈∂i
{tj + sji}

Let us then write the conditional distribution of infection and recovery times for a given initial condi-
tion:

P
(
t,g|x0

)
=
∑
s

P (s|g)P
(
t|x0,g, s

)
P (g)

=
∑
s

∏
i,j

ωij (sij |gi)
∏
i

φi(ti, {tk, ski}k∈∂i)Gi(gi),(6.1.3)

where

(6.1.4) φi(ti, {tk, ski}k∈∂i) = δ(ti,I[x0
i 6= I](1 + min

k∈∂i
{tk + ski}))

is a characteristic function which imposes on each node i the dynamical constraint (6.1.2). Should
one have some prior knowledge on the density of network states at initial time t0, it can be easily
implemented in terms of a prior P

(
x0
)

=
∏
i γi
(
x0
i

)
factorized over sites, with

(6.1.5) γi(x
0
i ) = γδ(x0

i , I) + (1− γ)δ(x0
i , S)

and γ a small constant.
Let us now suppose that one has access to the whole state of the network at a given time T , and

is interested in the posterior probability of the initial states of each node. The posterior distibution
reads

P
(
x0|xT

)
∝

∑
t,g

P
(
xT |t,g

)
P
(
t,g|x0

)
P
(
x0
)

(6.1.6)

=
∑
t,g,s

∏
i,j

ωij
∏
i

φiGiγiζTi ζ0
i(6.1.7)

where xt is a deterministic function of the set of infection and recovery times (t,g), so that
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Figure 6.1.1. (a) Example of a loopy factor graph representations induced by con-
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{sij} is not considered.

P
(
xT |t,g

)
=

∏
i

ζTi
(
ti, gi, x

T
i

)
(6.1.8)

P
(
t,g|x0

)
∝

∏
i

ζ0
i

(
ti, gi, x

0
i

)
(6.1.9)

with

(6.1.10) ζti = I
[
xti = S, t < ti

]
+ I
[
xti = I, ti ≤ t < ti + gi

]
+ I
[
xti = R, ti + gi ≤ t

]
.

One is now confronted with a complicated generative model, the objective being that of computing
single site marginals P

(
x0
i |xT

)
from the posterior distribution in 6.1.7. The problem of computing the

marginals from (6.1.7) is in general intractable (NP-hard). The authors of [15] tackled this problem
by means of Belief Propagation: it thus provided the exact results to the maximum likelihood problem
on acyclic graphs, and it was shown to perform very well by means of simulations on random graphs
of various types and on real contact networks. The first step is to introduce a representation of (6.1.7)
in terms of a factor graph, with variable nodes represented by circles and factor nodes represented by
squares. If one observes (6.1.2), it is immediately apparent that a pair of variable nodes corresponding
to the infection times ti and tj of neighboring individuals are involved in the two factors φi and φj . If
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Figure 6.1.2. Factor graph representation of the graphical model associated with
the distribution (6.1.12).

one then follows the naive recipe for the construction of the factor graph, the resulting graph of (6.1.7)
has a huge number of short local loops (see Fig.6.1.1a). In a previous work [82, 83], it has been shown
that a good way of getting rid of short loops is to first group pairs of infection times (ti, tj) in the

same variable node as in Fig.6.1.1b, and then introduce a set of copies t
(j)
i of the infection time ti for

each edge (i, j). The latter will be forced to take the common value ti (see Fig.6.1.1c) by including

the constraint
∏
k∈∂i δ(t

(k)
i , ti) in the factor φi. For convenience, all variable nodes {ti} are kept in the

factor graph. One follows the same procedure for the gi’s variables, introducing the copies g
(j)
i and

g
(i)
j and imposing the constraint

∏
k∈∂i δ(g

(k)
i , gi) for each node i.

More importantly, the factors φi depend on infection times and transmission delays just through

the sums t
(j)
i + sij , so that one may naturally introduce the variables tij = t

(j)
i + sij , thus dropping

the sij explicit dependence. With the modified factor graph representation in mind, the posterior
distribution may be written as

(6.1.11) P
(
x0|xT

)
∝

∑
t,{tij},g

Q(g, t, {tij}, x0)

with

(6.1.12) Q(g, t, {tij}, x0) =
1

Z

∏
i<j

φij
∏
i

ψiGiγiζTi ζ0
i .

with the introduction of the new factors

(6.1.13) φij = ωij(tij − t(j)i |g
(i)
i )ωji(tji − t(i)j |g

(i)
j )

and

ψi = δ(ti, I[x0
i 6= I](1 + min

j∈∂i
{tji}))

∏
j∈∂i

δ(t
(j)
i , ti)δ(g

(j)
i , gi)

= φi(ti, {tji}j∈∂i)
∏
j∈∂i

δ(t
(j)
i , ti)δ(g

(j)
i , gi).(6.1.14)
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the observation models discussed in Section 6.3.

The factor graph representation of (6.1.12) is shown in Figure 6.1.2. The factor node grouping ξi, ζ
0
i , ζ

T
i

and Gi has in fact a more complex structure that is described in detail in Fig.6.1.3a: the functions
ζ0
i , ζ

T
i , defined in (6.1.10), connect the infection time ti with the states x0

i and xTi of the node i at the
initial and final times, γi is the prior on the initial state, while Gi(gi) is the recovery time distribution.

The factor graph now has the same topology of the original graph G: BP equations give the
exact solution if G is a tree, and can be also profitably used on general graphs with loops. Once
single posterior marginals P(x0

i |xT ) =
∑
{x0
j :j 6=i}

P(x0|xT ) are computed, one simply ranks nodes in

decreasing order of P(x0
i = I|xT ).

6.2. BP Equations

For the sake of convenience, let us recall the general form of the BP equations. For a factorized
probability measure on z = {zi},

(6.2.1) M(z) =
1

Z

∏
a

Fa(za)
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where za is the subvector of variables that Fa depends on, the general form of the equations is

pFa→i (zi) =
1

Zai

∑
{zj :j∈∂a\i}

Fa
(
{zi}i∈∂a

) ∏
j∈∂a\i

mj→Fa (zj)(6.2.2)

mi→Fa (zi) =
1

Zia

∏
b∈∂i\a

pFb→i (zi)(6.2.3)

mi (zi) =
1

Zi

∏
b∈∂i

pFb→i (zi)(6.2.4)

where Fa is a factor (i.e. ψi, φij , γi, ζ
0
i , ζ

t
i or Gi in our case), zi is a variable (i.e. (ti, gi), (t

(j)
i , g

(j)
i , tji),

x0
i or xTi in our case), ∂a is the subset of indices of variables in factor Fa and ∂i is the subset of factors

that depend on zi. Eq. (6.2.4) for variable x0
i directly gives the posterior estimation of the probability

of node i being in state I at time 0, i.e. being the patient-zero, and Eq. (6.2.4) for variable xTi gives
the posterior estimation on the real state of individual i at time T .

It is possible to devise an efficient strategy for computing pψi→j

(
t
(j)
i , tji, g

(j)
i

)
in equation (6.2.2)

for node factor ψi in (6.1.14), that can be computed in linear time in the degree of vertex i (Appen-
dix B.1).

Factor φij in Eq. (6.1.13) involves two (aggregated) variables: (t
(j)
i , g

(j)
i , tji) and (t

(i)
j , g

(i)
j , tij) (see

Fig. 6.1.2). Variables t
(j)
i , t

(i)
j , tij , tji have T + 2 states, whereas variables gi, gj take values in 0, . . . , G.

Given a distribution of recovery delays, it is sufficient to take G such that the weight of the tail of
the distribution

∑∞
g=G P (g) is small enough when compared to 1/N . In the case of the geometric

distribution of recovery delays, one can take e.g.
∑∞
g=G P (g) =

∑∞
g=G p(1 − p)g = (1 − p)G ∼ 1/N ,

i.e. G needs to grows only logarithmically with N , and can of course be truncated at T . A naive
implementation of the BP equations for factor φij takes thus O(T 4G2) operations, that can be still
too expensive in practical applications.

It is possibile to use a simpler representation for the messages, in which one just retains information

on the relative timing between infection time t
(j)
i for a node i and the infection propagation time tji

on its link with node j, introducing the variables

(6.2.5) σji = 1 + sign
(
tji −

(
t
(j)
i − 1

))
,

effectively reducing the complexity of messages from O(T 2G) to O(TG) real numbers. Appendix B.1
shows the computation of pφij→j (tj , σij , gj) from equation (6.2.2) for factor φij with this simplification

for the messages, bringing down the computation time from O(T 4G2) to O(TG2) operations. It also
shows how to compute efficiently the BP equation for factor ψi corresponding to the simplified version

of the messages pψi→j

(
t
(j)
i , σji, g

(j)
i

)
. The computation of all updates of each factor ψi takes O(TG|∂i|)

operations, amounting to O(TG|E|) operations for all ψ nodes per iteration. The update equations for
the remaining factors, γi in Eq. (6.1.5), ζ0

i , ζ
T
i in Eq. (6.1.10) and Gi in Eq. (6.1.1), can be computed

in a straightforward way from (6.2.2), as they involve a very small number of variable states each.
The overall needed computation time of the update is dominated by the updates of φij nodes,

and amounts to O(TG2|E|) operations per iteration, where |E| is the number of edges of the original
contact graph. To give a rough estimation, in a C++ implementation, in a graph with 1000 nodes
and 4000 contacts (edges), with T = G = 20, the computation takes about a minute per iteration
on a single cpu. The full computation needs a few hundred iterations, i.e. about three hours on a
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single cpu. Values of G smaller than T (within the estimation given above) can be used to reduce the
computation time for larger T . Regarding memory usage, the BP equations with simplified messages
need to store O(TG|E|) real numbers.

6.3. Dealing with noisy observations

As I pointed out in the first section, it is often assumed that the state of every node is known at
the observation time T with no uncertainty, that being the case also for the original work of Ref. [15]
that introduced the BP method described in section 6.1. It is though realistic to assume that each
observation carries some level of noise: every clinical test for determining the state of an individual
is affected by some amount of error, and this possibility has to be taken into account in the inference
method.

The major contribution of the work described in this chapter is the introduction of the general
concept of observation model for the inference problem, which is suitable to represent the different
cases of incomplete and noisy data using a common notation. Let us suppose, for simplicity, that noise
acts independently on each site. If at time T node i is in the state xi, it will have a certain finite
probability of being observed in any of the other states. Let us introduce a new variable yTi ∈ {S, I,R}
for the observed state of node i, and assume in the following that the noise level is known (as it is the
case for the majority of clinical tests). The simple modification of the original factor graph amounts
in the introduction of an additional evidence term reflecting the probability of the observed state yTi
given the true state xTi , set by the transition matrix ni

(
yTi |xTi

)
.

In the modified factor graph, the new observed-state variables yTi are fixed to their value given
by the experimental observation (by means of a delta function representing an infinite external field),
while BP traces over the configurations of the true-state variables xTi . More explicitly, the modified
factor graph shown in Fig. 6.1.3b shows a ζTi factor node attached to the true-state variable xTi , which
is linked to the observed state yTi (which is a constant) through the node ni

(
yTi |xTi

)
. The posterior

distribution now takes the form:

(6.3.1) P
(
x0|yT

)
∝

∑
xT ,t,tij ,g

Q′(xT ,g, t, tij , x0)

where

(6.3.2) Q′(xT ,g, t, tij , x0) =
1

Z

∏
i<j

φij
∏
i

ψiGiγiζini.

If one then introduces a map ρ(s) from indices i ∈ {1, 2, 3} into configurations of the x variables,
such that ρ(1) = S, ρ(2) = I, ρ(3) = R, one can define the observational transition matrix (OTM )

O
(i)
s,t whose elements are the transition probabilities:

(6.3.3) O
(i)
s,t = ni (ρ(s), ρ(t)) .

The case in which observations are complete and noiseless corresponds to an identity matrix O
(i)
s,t = δst.

In the following sections, I will cover some interesting examples of applications of this scheme to
confused and noisy observations. Note that, in this generalized scheme, the case of partial observations

corresponds to a totally uniform OTM O
(i)
s,t ≡ 1

3 for unobserved nodes.
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6.3.1. Inference of epidemic source from confused observations. In some situations, it
could be hard to distinguish between nodes that already recovered from a disease and nodes that did
not contract it at all [73]. Let us then allow only two types of observed states xTi ∈ {I,N}, where N
stands for Not-Infected: in this setting Susceptible and Recovered nodes are not distinguishable. This
corresponds to choosing the following OTM :

O(i) =

 1
2 0 1

2
0 1 0
1
2 0 1

2

 .

Firstly, I verified the performances of the BP algorithm on a uniform setting provided by random
regular graphs with identical infection parameters (λ, µ) for all nodes and links. All epidemic propaga-
tions were initiated from a unique source (the patient zero, or seed). For each node, the BP algorithm
provides an estimate of the posterior probability that the node got infected at a certain time, and thus
also the probability that the node was the origin of the epidemic. Nodes are then ranked in decreasing
order with respect to the estimated probability of being the origin of the observed epidemic: the po-
sition of the true origin in the ranking provided by the algorithm is a good measure of the efficacy of
the method. In what follows, the ranking of the true origin of the epidemic is indicated with i0, and
|G| is the number of nodes in the graph G.

Figure 6.3.1 displays the absolute rank of the true infected site i0, for a set of M = 1000 simulated
epidemic propagations with λ = 0.6 and µ = 1 on random regular graphs of size N = 1000 and degree
d = 4 (T = 10). The probability of perfect inference of the patient-zero is also reported. The quantities

of interest are plotted as functions of the normalized epidemic size NIR = |I|+|R|
|G| (i.e. the fraction

of infected or recovered sites), whose values are discretized with intervals of width equal to 0.05. In
all the following figures, the rare cases with very low epidemic size (NIR < 0.3 in Fig. 5, NIR < 0.2
elsewhere) have been discarded, since inference is practically infeasible when the number of infected
nodes is extremely low.

For each set of data, the symbols report the mean value obtained averaging over the samples
belonging to that interval and the error bars indicate the corresponding standard deviation. The
average fraction of Infected nodes and the fraction of samples in each bin are reported as a reference.
The algorithm is very effective in identifying the patient-zero for all values of the normalized epidemic
size.

The marginals of the infection time for each node provide a method to “correct” observations,
that can be exemplified as follows, considering the problem of discriminating between Susceptible
and Recovered nodes. Receiver Operating Characteristic (ROC ) curve, namely a plot of the ’true
positive rate’ against the ’false positive rate’, is a method for quantifying the accuracy of such a binary
classification problem. Constructing the ROC curve in the present case is very easy: after ranking the
N nodes on the base of their marginal P

(
ti =∞|x0

)
, one takes one step upward in the ROC whenever

a true positive case is encountered (yTi = xTi = S) or one step rightward in case of a false positive
(yTi 6= xTi ). I performed this discrimination analysis for each sample and then computed the average
value of the area under the ROC curve, that gives indication of the fraction of correctly classified
nodes. Figure 6.3.1 also shows the average ROC area, which reveals that the inference algorithm
allows a very good discrimination between S and R nodes.

The same analysis for a random graph with power-law degree distribution, obtained using the
Barabasi-Albert model [84], is reported in Fig.6.3.2. When the observation time T is sufficiently
small (T = 7 in Fig.6.3.2), the performance of the algorithm is high. When longer observation times
are considered, epidemics tend to cover the whole network and convergence issues emerge. In this



64 6. INVERSE DYNAMICS IN EPIDEMICS: THE SIR MODEL

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
IR

P
(r

an
k
 i

0
=

0
),

 F
ra

ct
io

n
 o

f 
I,

 R
O

C
 a

re
a

 

 

0

5

10

15

20

25

ra
n

k
 i

0

fraction of samples
P(rank i

0
=0)

|I| / |G|

ROC area
rank i

0

Figure 6.3.1. Probability of perfect inference of the patient-zero (blue solid line),
average absolute rank of the true patient-zero (violet solid line), average ROC area (red

solid line) and average fraction of Infected nodes |I||G| (green dotted line) as a function

of the rescaled epidemic size |I|+|R||G| . The fraction of the M samples belonging to each

bin of the rescaled epidemic size is also indicated. The realization of the epidemic
process is propagated for T = 10 steps with λ = 0.6 and µ = 1. Observations are
confused, i.e. xti ∈ {I,N}. Simulations were run over M = 1000 samples of random
regular graphs with N = 1000 nodes and degree d = 4.

regime, most of the infected nodes have already recovered at the observation time T (and thus they
cannot be distinguished from the susceptible ones anymore). This causes a rapid decay of the available
information content, that explains the performance degradation. A similar effect arises also on random
regular graphs, but at longer times, as we will see in Section 6.3.2.

In summary, even when supplied with confused observations, BP shows striking ability to dis-
criminate between Recovered and Susceptible nodes, provided that there is enough information at the
chosen observation time T .

6.3.2. Inference of the epidemic source with noisy observations. As a simple model for
observational noise, one may consider a totally symmetric setting where a node with a state x has
probability 1−ν of being correctly observed in state x, and probability ν of being observed incorrectly
in one of the two remaining states, distributed uniformly among the two. For example, node i could be
I (Infected) at the observation time T , and, for a given noise level ν, there will be an equal probability
ν
2 for node i to be observed in the R (Recovered) or S (Susceptible) state. This setting corresponds
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Figure 6.3.2. Probability of perfect inference of the patient-zero (blue solid line),
average absolute rank of the true patient-zero (violet solid line), average ROC area (red

solid line) and average fraction of Infected nodes |I||G| (green dotted line) as a function of

the rescaled epidemic size |I|+|R||G| . The fraction of the M samples belonging to each bin

of the rescaled epidemic size is also indicated. The realization of the epidemic process
is propagated up to the time step T = 7 with λ = 0.6 and µ = 0.5. Observations
are confused, i.e. xti ∈ {I,N}. Simulations were run over M = 1000 samples of

Barabasi-Albert graphs with N = 1000 nodes and average degree d̂ = 4.

to the following OTM :

(6.3.4) O(i) =

 1− ν ν
2

ν
2

ν
2 1− ν ν

2
ν
2

ν
2 1− ν

 .

Fig. 6.3.3 displays the average rank of the true origin of the epidemics (left) and the probability of
inferring the true patient-zero (right) for various levels of the observational noise up to ν = 0.4, in
a set of M = 1000 single-source epidemic propagations with λ = 0.6 and µ = 1 on random regular
graphs with N = 1000 nodes and degree d = 4. . The low values of the average rank obtained
demonstrate that the BP algorithm is able to perform extremely well up to very high levels of noise.
The corresponding ROC curves are plotted in Fig. 6.3.4. In Fig. 6.3.5 I show a representative situation
in random graphs (the picture is similar in scale-free graphs, as we argued in Section6.3.1) where the
observation time is systematically varied at various level of noise. It turns out that the ratio of infected
nodes to epidemic size is critical for inference: when observation time is too long so that the majority
of infected individuals have recovered, it is much more difficult to find the patient-zero in the noisy and
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Figure 6.3.3. Average normalized rank of the true patient-zero (left) and probability

of ranking it in the first place (right) as a function of epidemic size |I|+|R||G| for various

levels of noise ν in the observation (the error-bars indicate the standard deviation
computed on the sub-sample corresponding to a given epidemic size). Each curve
refers to M = 1000 samples of Random Regular graphs with N = 1000 nodes and
degree d = 4. Epidemics is propagated until T = 10 with λ = 0.6 and µ = 1.
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is propagated until T = 10 with λ = 0.6 and µ = 1.
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Figure 6.3.5. Normalized rank of the true patient-zero (solid lines), fraction of

Infected nodes |I||G| (green dotted line) and rescaled epidemic size |I|+|R||G| (dotted purple

line) as a function of observation time T for a single realization of the epidemic process,
propagated with λ = 0.6 and µ = 1, on a random regular graph with N = 1000 nodes
and degree d = 4. Observations are complete (black solid line, superimposed to x
axes), confused (blue solid line), and with noise 20% noise level (red solid line). Values
of the normalized rank greater than 0.5 are meaningless: they are the realization of a
random variable with average close to 0.5, and they are evidence that for large T the
inference algorithm is unable to identify the patient-zero with better precision than
pure chance.

confused case. As it can be seen in the figure, this sharp change of behaviour (manifested at T = 11)
is present even in single instances.

6.4. Inference of Epidemic Parameters

In what has been discussed so far, the epidemic parameters have been considered as additional
data in the problem at hand: it is certainly reasonable to assume that, for certain types of diseases, the
average rates of infection and recovery are known to a certain extent, and some information is available
regarding at least their range of variation. The additional problem of inferring the parameters can be
cast in a Bayesian framework with the introduction of the log-likelihood of the epidemic parameters for
the observation xT . The log-likelihood of the parameters −f(λ, µ) = logZ(λ, µ) equals logP

(
xT |λ, µ

)
and the latter can be computer by means of a sum over all the possible paths and the initial conditions
with a fixed observation:

(6.4.1) P
(
xT |λ, µ

)
=
∑

t,g,x0

P
(
xT |t,g

)
P
(
t,g|x0

)
P
(
x0
)

= Z (λ, µ) .



68 6. INVERSE DYNAMICS IN EPIDEMICS: THE SIR MODEL

λ = 0.4 µ = 0.5 λ = 0.5 µ = 0.5 λ = 0.6 µ = 0.5

0.2

0.4

0.6

0.8
In

fe
rr

e
d

 P
a
ra

m
e
te

rs

λ = 0.6 µ = 0.4 λ = 0.6 µ = 0.6 λ = 0.6 µ = 0.7

0.4

0.6

0.8

In
fe

rr
e
d

 P
a
ra

m
e
te

rs

True Parameters

Figure 6.4.1. Inferred epidemic parameters for six different configurations of true
(λ, µ) parameters. Forward epidemic is simulated until observation time T = 10. Each
pair of boxes refers to M = 1000 instances of Random Regular graphs with N = 1000
nodes and degree g = 4. Box edges signal the 25th and 75th percentiles, the central
red lines is the median. Whiskers extend to cover 99.3% of the data for a gaussian
distribution. Outliers are marked as red points outside the whiskers.

In the Bethe approximation, the log-likelihood is just the free energy of the system, and can be
expressed as a sum of local terms depending on the BP messages:

(6.4.2) −f =
∑
a

fa +
∑
i

fi −
∑
(ia)

f(ia)

where

fa = log

 ∑
{zi:i∈∂a}

Fa
(
{zi}i∈∂a

) ∏
i∈∂a

mi→a(zi)

(6.4.3)

f(ia) = log

(∑
zi

mi→a(zi)pFa→i(zi)

)
(6.4.4)

fi = log

(∑
zi

∏
b∈∂i

pFb→i(zi)

)
(6.4.5)

The most naive way of performing a log-likelihood maximization in the space of parameters would
be an exhaustive search. This was initially done in Ref. [15]. I worked on a generalization of this
procedure that would allow to infer both the patient-zero and the epidemic parameters at the same
time. The method discussed in this section resides on the simplifying assumption of homogeneity of
the epidemic parameters λij = λ and µi = µ. As I will show in chapter 8, the same method can be
used in the more general framework of network reconstruction.
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Figure 6.4.2. Inferred epidemic parameters for different observational noise rates
ν. Forward epidemic is simulated until observation time T = 10. Each box refers
to M = 1000 instances of Random Regular graphs with N = 1000 nodes and degree
g = 4. Box edges signal the 25th and 75th percentiles, the central red lines is the
median. Whiskers extend up to cover 99.3% of the data for a gaussian distribution.
Outliers are marked as red points outside the whiskers.

Once the free energy is expressed as a function of the parameters, its minimum (maximum of the
log-likelihood) may be searched with a simple gradient descent procedure, by means of the following
updates:

λ ← λ− ε∂f
∂λ

(6.4.6)

µ ← µ− ε∂f
∂µ

(6.4.7)

with ε a free convergence parameter (note that the minus sign comes from the definition of the free

energy). A detailed derivation of the expression of the derivatives ∂f
∂λ and ∂f

∂µ of the Bethe free energy

is reported in Appendix B.2. In principle, the expressions obtained using the Bethe free energy are
valid only at the BP fixed point, and one should let BP updates converge before making a step of
gradient descent. In practice, it is sufficient to interleave BP and gradient descent updates in order to
obtain equivalent results. In order to validate the method, I performed extensive simulations with a
wide range of parameters and found that, for reasonable fraction of infected nodes at the observation
time, this method simultaneously identifies the patient-zero perfectly and finds good estimates of the
epidemic parameters. Some examples of inferred parameters are shown in Fig. 6.4.1 for six different
configurations of (λ, µ) parameters, with each pair of box plots referring to M = 1000 samples.

The inference of parameters can be performed also in the presence of observational noise. Fig. 6.4.2
shows an example of inference for increasing levels of noise in the observation, as defined in section
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6.3. Also in this case the patient-zero is detected with probability 1 and the inferred parameters are
good estimators of the true values, even up to a significant fraction of noise.

In order to quantify the performance of the new method, I built a simple comparison with a
very simple procedure. Let us suppose that, given a graph, the distribution of number of infected
I(λ, µ) and recovered R(λ, µ) individuals is known for each value of λ and µ. When confronted with
a realization of the epidemic process, one may choose those λ, µ whose statistical features are closest
(in some sense to be defined) to the one observed. In practice, I run 1000 random epidemics for each
combination of values λ ∈ {0.05, 0.1, . . . , 0.95}, µ ∈ {0, 0.05, . . . , 1} and computed the mean of the
number of infected Imean(λ, µ) and recovered Rmean(λ, µ) individuals. Given an observation with I
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Figure 6.4.3. Comparison of inference of epidemic parameters for 200 random re-
alizations with λ = 0.6, µ = 0.5 between BP and the naive method consisting in
finding the couple (λ∗, µ∗) which is closest in terms of mean (resp. median) number
of infected and recovered individuals in euclidean distance. The distributions for the
inference with BP correspond to the fifth example reported in Fig.6.4.1 and the first
in Fig.6.4.2.

infected and R recovered individuals, the result of the inference is simply

(λ∗, µ∗) = arg min
λ,µ

(I − Imean(λ, µ))2 + (R−Rmean(λ, µ))2.

Fig. 6.4.3 shows the distributions of λ∗ and µ∗ found by the above procedure based on 200 epidemic
realizations with λ = 0.6 and µ = 0.5, along by the same distribution as found by the interleaved BP
gradient ascent of the likelihood function. The results show that the BP-based procedure is able to
infer the correct parameter λ = 0.6 and µ = 0.5 with much higher accuracy. The same procedure
using the median instead of the mean (and computing thus Imedian and Rmedian) yields very similar
results.
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6.5. Summary

In this Chapter, I discussed the problem of inferring the origin of an epidemic propagation on a
network from a single snapshot of its collective state, and described a generalization of a previously
developed inference scheme to the more realistic scenario of noisy observations. As I pointed out in
Section 6.3.2, the effectiveness of the proposed inference strategy is constrained by the amount of
information available in the snaphost, which is generally a function of the delay time and the noise
level.

Belief Propagation performs well even when observations are uncertain or completely confused,
such as the case where one is unable to distinguish between observed states. When coupled to a gradient
ascent procedure, BP equations provide a variational strategy for inferring epidemic parameters at the
same time. The method described in this chapter has been presented in Ref. [85].

In the presence of multiple epidemic cascades on a given graph, the present approach can be
extended to infer the infection probabilities of any putative link, providing an efficient method for
reconstructing the entire network: this will be the subject of chapter 8. In the next chapter, I will
discuss a further generalization of our inference method which is capable of dealing with real contact
data in continuous time, without resorting to a time discretization.





CHAPTER 7

Inverse dynamics in continuous-time contact networks

The inference method discussed in chapter 6 considered a discrete time stochastic SIR model on
a network: this means that, whenever precise temporal information is available about the contacts
between individuals, single contacts have to be binned in order to construct an effective network with
(in principle time dependent) infection probabilities λij on each link. This is also the case for any
known inference algorithm so far in the literature. For a specific continuous-time epidemic process, an
optimal estimator on general trees was put forward by Pinto et al. [69], but it is of limited use on
general graphs, and lacks a Bayesian foundation.

Most traced real networks [86, 87, 88] consist however of a list of timed quasi-instantaneous in-
teraction events (resolution is typically down to time intervals of the order of seconds). These contact
networks have been inaccessible for decades, but thanks to recent advances in technology miniatur-
ization (e.g. by means of RFID-endowed badges to signal the proximity between individuals) and the
popularization of the Internet (e.g. for the construction of databases of self-reported interactions), at
least in simple and controlled scenarios the interaction patterns of individual contacts can be almost
entirely reconstructed [88, 86]. Modern computational epidemiology can thus rely on accurate data
and on powerful computers to run large-scale simulations of stochastic compartment models on real
contact networks [89, 90].

Here I will discuss a recent development which was done in collaboration with Alfredo Braunstein,
namely a continuous-time inference framework which is able to deal with datasets without any dis-
cretization procedure [91]. In what follows, I will describe a continuous-time infection model, where
contacts are assumed to be instantaneous events during which the disease can be passed. The de-
velopment of the method is conceptually very similar to what has been introduced in the previous
chapter, in that it relies on the construction of a static graphical model representation for the infection
dynamics (section 7.1), on top of which an approximate inference method based on Belief Propaga-
tion is employed to compute in an efficient way the marginals over the posterior distribution of initial
spreaders (section 7.2). In section 7.3 the method is tested on two datasets of real contact networks,
and in section 7.4 its performance is compared to the corresponding discretized version of the model
on one of the two datasets.

7.1. Graphical model representation

Let us consider an evolving contact network composed of N nodes, and define the model as follows:
let time t ∈ R+ be continuous, and contagion events be instantaneous with probability λ. Let us denote
by ti ∈ R+ the infection time of node i. Each pair ij will be in contact in a discrete set of instants
Tij (0) < Tij (1) < · · · < Tij (nij) (ideally, given by the real network trace dataset). Let us also assume
Tij (r) =∞ for r > nij . As time t advances, contagion will happen with probability λ if i is infected,
j is susceptible and ∃r such that Tij (r) = t. Recovery of individuals will happen at a time ti + gi with
a given recovery probability distribution Gi (gi).
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Define rij ∈ N0 for ij ∈ E a set of i.i.d. variables with geometric distributionR (rij)= λ (1− λ)
rij−1

.
Suppose the recovery time gi of node i is distributed with continuous distribution G. Given {gk} and
{rki}, infection time ti satisfy deterministically:

ti = min
k∈∂i:T (rki+min{r:Tki(r)>tk})<tk+gk

Tki (rki + min {r : Tki (r) > tk}) ,(7.1.1)

because neighbor k will be infected in the time interval [tk, tk + gk] and will possibly transmit the
disease at some time Tki (r). Let us define

(7.1.2) tki =

{
Tki (rki + min {r : Tki (r) > tk}) if Tki (rki + min {r : Tki (r) > tk}) < tk + gk

∞ else

the “delayed” infection time. Then

(7.1.3) ti = min
k∈∂i

tki

Note that ti will take values in h0 < · · · < hn the set of all incoming contact times ∪k∈∂i,r=0,...nkiTki (r).
In terms of time indices sij , such that tij = Tij (sij), we have sij = Sij (mink∈∂i Tki (ski) , rij , gi) where

(7.1.4) Sij (ti, rij , gi)
def
=

{
rij + min {r : Tij (r) > ti} if Tij (rij + min {r : Tij (r) > ti}) < ti + gi

∞ else

In analogy to section 6.1, it is now possibile to write down the Boltzmann distribution of dynamical
trajectories in the following forms:

(7.1.5) P (t, s, r,g) ∝
∏
i

G (gi) δ

(
ti,min

k∈∂i
Tki (ski)

)∏
ij

R (rij) δ (sij , Sij (ti, {rki} , gi))

7.2. Belief Propagation Equations

The main observation behind the construction of an inference framework by means of a graphical
model representation is that, although the spreading process in defined in continuous time, the infection
times are constrained to be in the finite discrete set {Tij (k)}k=1...nij

. Once a conditional probability

distribution over all the possibile trajectories is defined, and the priors over the initial states are
inserted as in Eq. (6.1.5), the Bayesian approach is defined in exactly the same way as explained in
sections (6.1) and (6.2).

Once again, in order to perform inference, one needs to sum over all the dynamical trajectories
which are compatible with the observation, a problem that will be here tackled with the use of Belief
Propagation. In what follows, the observation is assumed to happen immediately after the last contact,
but other choices may be included in a straightforward manner.

By defining factors
(7.2.1)

ψi
(
ti, {ski, sik}k∈∂i , {rik}k∈∂i

)
= G (gi)R (rij)

∏
j∈∂i

δ (sij , Sij ({ski} , {rki} , gi)) δ
(
ti,min

k∈∂i
Tki (ski) ,

)
equation 7.1.5 can be simply recast as:

(7.2.2) P ∝
∏
i

ψi
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Figure 7.3.1. Average normalized rank r0
|I|+|R| of the true patient zero as a function

of NIR = |I|+|R|
|G| , the normalized epidemic size, for µ = 0.5/year and increasing values

of the infection probability λ in the network of sexual contacts. Each curve represents
a sample of M = 1000 random instances.

where a simple factorization over sites is apparent. There are only two types of BP message, namely
Pij (sij , sji) and Pi (ti), and the corresponding update equations are easily derived from 6.2.2 and
6.2.3. An efficient implementation of these equations together with estimates of the computational
complexity of each update is shown in Appendix C. Once Belief Propagation converges, and similarly to
the Bayesian approach in the discrete-time case, eq. (6.2.4) is used to compute the marginal probability
pi (ti = 0), which brings a posterior estimation of the probability for the node i to be active before the
first contact. Sites are then ranked with respect to their posterior probability.

In complete analogy with section 6.3, it is not difficult to extend the present model to account
for observations affected by some kind of uncertainty. One equivalently introduces the Observational
Transition Matrix ni

(
yik|xil

)
, containing the transition probabilities from the true state xil to the

observed state: in order to perform inference, the observed-state variables yi are fixed with an infinite
external field into their state, and the true-state variables xi are traced over in the compatibility
function ζi. The identity matrix ni

(
yik|xil

)
= δkl corresponds to the a case in which no noise enters

the observations.

7.3. Results on real networks

The new inference method was tested on two large evolving networks: a database of time-stamped
sexual interactions and a network of face-to-face contacts in a high school.

The first dataset comes from a database of sexual encounters between clients and escorts on a
Brazilian website, covering the beginning of the community, September 2002 through October 2008, and
composed of a total of E = 50185 contacts between between 6642 escorts and 10106 sex-buyers. This
kind of data are particularly relevant in the study of spreading of sexually transmitted infections (STI)
and have been previously used to model the diffusion of HIV by means of simple SI-SIR compartmental
models [87].
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Figure 7.3.2. Average absolute rank i0 as a function of |I|+ |R|, the total epidemic
size, in the network of face-to-face contacts in a high school for different values of the
threshold θint. Each curve is an average over M = 300 (θint = 250) or M = 1000
(θint = 245) random instances. The infection probability λ is scaled accordingly in
order to obtain epidemics with average dimension NIR.

I built a bipartite evolving network, focusing on the last two years of steady state operation of
the website (E = 29628 contacts, slightly over half of the dataset) in order to skip the initial period
where encounters are very sparse. For each value of λ, I simulated M = 1000 single source epidemic
propagations, with a recovery rate equal to µ = 0.5/year. In Fig. 7.3.1 I show the average rank
of the true first infected individual i0 divided by the epidemic size |I| + |R| as a function of the

normalized epidemic size NIR = |I|+|R|
|G| (i.e. the fraction of infected and recovered sites), whose values

are discretized in intervals of width equal to 0.1.
The second dataset consists of a collection of close proximity interactions (CPIs) obtained by means

of wireless sensor network technology (TelosB motes) [92]. Data were collected in a US high school
and provide an almost complete account of face-to-face interactions during a whole day at school.
All in all 798 individuals were monitored, corresponding to the 94% of the total school community,
and 2148991 unique close proximity records (CPR) were acquired. A single CPR consists of a close
proximity detection event between two motes (max. 3 meters). The authors of the study perform an
aggregation of the raw data in interactions, defined as continuous sequences of CPR between the same
two nodes. My choice was to go back to the raw data and investigate the spreading process at the level
of single CPR, using the intensity signal as a proxy for the closeness of a face-to-face contact (a detailed
account is presented in [92], SI). I constructed a set of evolving networks by setting a threshold θint for
the signal intensity of the motes, thus considering denser and denser networks as θint is decreased, and
weaker and weaker (and distant) contacts are taken into account. Three representative examples are
show in Fig. 7.3.2, which displays the average rank of the true first infected individual i0 for different
values of λ and threshold θint. Note that the infection probability λ has to be scaled down when θint
is decreased in order to obtain epidemics with the same dimension distribution.
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Figure 7.3.3. Inference performance with partial or noisy observations in the net-
work of sexual contacts. In each curve we show the average rank absolute rank over
M = 100 random instances of the true patient zero i0 as a function of the total epi-
demic size |I| + |R| forλ = 0.2, µ = 0.5. Left panel: rank i0 normalized over |G| vs
|I|+ |R| for different values of probability of observation pobs; broken curve is the case
with full observations. Right panel: normalized rank i0 vs |I|+ |R| for different noise
intensities ν; broken curve is the case with no noise.

7.3.1. Partial and noisy observations. In what follows, I will use the sexual encounters
dataset, mostly because of its epidemiological relevance. Let us first consider the case of partial
observations, i.e. the case in which only a subset of nodes are accessible for observation at time T :
this is the standard realistic scenario in practical applications, when a complete monitoring of a full
network is infeasible in the general case. I simulated a number of epidemic spreading in the contact
network and modeled the partial observability by a fixed probability pob of observing a node at time T .
Note that, in this generalized scheme, partial observability can be represented with a totally flat OTM

ni

(
o′
i
k|oil

)
= 1

3 for unobserved nodes. Results for decreasing values of pob in the network of sexual

contacts are shown in the left panel of Fig. 7.3.3 (the complete observation case pob = 1 is shown in
the dashed line for reference).

Turning to the problem of uncertain observations, I used the very same type of symmetric model
for observational noise introduced in 6.3, described by the OTM in eq. 6.3.4. The right panel of Fig.
7.3.3 shows how the BP algorithm is highly robust even to a significant amount of noise, up to 30%.

7.4. Limitations of time-discretization

The standard practice when one deals with evolving networks is the construction of an effective
network where the individual contacts are summed up and aggreggated in a link dependent infection
probability λij(t), with t in some small discrete set. This time discretization, which obviously leads
to a detriment both in the forward simulation and in inverse reconstruction, is essential because most
inference paradigms rely on a purely static network, where infection probability over links can possibly
vary in different (discrete) time-steps.

In the styudy that motivated the generalization discussed in chapter 6, the authors used the
discretization procedure to perform the inference of the patient zero in the network of sexual contacts
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Figure 7.4.1. Left: Comparison between the continuous time method and the dis-
cretized version in the network of sexual contacts for different values of the infection
probability λ and µ = 0.5/year. Each curve is the average normalized rank r0

|I|+|R|over

M = 500 samples of the patient zero as a function of epidemic size |I| + |R|. Full
curves: continuous time version. Broken curves: contacts have been aggregated in ef-
fective contacts so that final time of observation is T = 10. Right: A comparison of the
continuous time method versus the discretized version for λ = 0.4 and µ = 0.5/year
with an increasing number of time bins.

after aggregating the time-stamped contacts in effective interactions of size ∆T . I performed similar
numerical experiments, with the caveat that the forward simulations of the epidemic process were
performed directly at the level of real time contacts, before the aggregation procedure. I then used
the new continuous-time method on the same instances, in order to build a direct comparison. The
difference in performance is striking at all values of λ, as can be seen in Fig. 7.4.1.

7.5. Summary

In this chapter, I showed how the Belief Propagation approach introduced in chapter 6 can be
generalized to the case of interactions happening in continuous time. This makes possibile to use data
set of real time interactions between individuals to uncover the paths that led to the spreading of a
disease in an evolving network. The importance of this method is not purely methodological: in the
epidemiological context, it is appealing to consider the possibility of applying this technique when all
the interactions in a hospital or a relatively closed community are constantly monitored. Because of
the generality of SIR as a model of spreading of activation over graphs, this method is in principle
applicable in a variety of different situations, for example in the identification of the source of the
initial spreader of a computer virus in a network.



CHAPTER 8

Inference of contact networks from sparse observation of
cascades

The inference methods that I discussed in the last two chapters were centered on the problem
of identifying the source of an infection over a network which is assumed to be know perfectly in
advance. On the other hand, the problem of reconstructing propagation networks from observations is
a paramount fundamental inverse problem, which is crucial to understand and control the dynamics in
complex systems. The methods proposed so far in the literature heavily rely on the complete knowledge
of the dynamical trajectories of some spreading process. In certain cases, when information about the
time-series of the process is available, the problem can be, and has been, cast into relatively simple
terms, as a sequence of time-consecutive states of a pair of nodes gives direct information about the
potential interaction between them. In many cases, however, the set of available observations is much
sparser, possibly on a much slower timescale than that of the dynamics and often skipping the initial
stages of the propagation which would give precious information about the source. In particular, in a
single snapshot of the system there is no direct information about the interaction of nodes, as evidence
of interaction indeed comes from variation of the state of nodes in time.

Let us take the example of second messenger cascades in a cell, and suppose the experimenter
has access to the expression profile of a huge number of proteins in different cascades. Monitoring
the exact time course of the concentration of each protein is currently challenging, if not infeasible:
one observes a concerted up and down-regulation of a big number of proteins, which naturally follow
from a complex time course in a network of reciprocal protein-protein interactions. One is faced with
a similar information shortage in the context of epidemic spreading: the plague spreader is unknown,
and little is known about the underlying networks of contacts between individuals, which may even be
dynamically changing over time.

Reconstructing the connectivity structure of the network is then unavoidably coupled to that of
tracing back in time the entire time course of the spreading process so as to locate the source of
diffusion. In this chapter, I will give a short account of a work I’ve been doing in collaboration with
A. Braunstein, which led to the development of a Belief Propagation technique to accurately model
the posterior distribution of trajectories of the propagation process, and that allows to compute, and
then maximize, the likelihood of a given network structure and propagation probabilities [93]. We
called this method Inverse Dynamics Network Reconstruction (IDNR). Fig. 8.0.1 shows a cartoon
representation of the problem. The method is shown to work successfully on several synthetic and
real networks, inferring simultaneously the networks and the sources of infection based on sparse
observations, including single snapshots, even partial or noisy.

8.1. Method

Let us consider a weighted undirected graph G = (V,E,Λ) where Λ = {λij}ij∈E play the role of

edge-dependent infection probabilities in a SIR stochastic model defined on the network, which is also
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Figure 8.0.1. Cartoon representation of the Inverse Dynamics Network Reconstruc-
tion method. Each parallel strip stand for an independent cascade in an unknown
network, starting from a different source. For every cascade, only a single snapshot is
available. The goal is to reconstruct the structure of the network together with the
infection probabilities on each edge, and to discover the sources of each cascade as
well.

equipped with a set of site-dependent recovery probabilities µi. Let us then suppose that a number M
of independent realizations (or cascades) of the SIR dynamics are given but only a limited information
is available for each of them. Using the same terminology of chapter 6, each cascade is defined by the
set of vectors xt

n, where n = 1...M labels the cascade, and we assume that for each cascade the initial
state x0

n is composed of just one infected node in0 , with all the other node in the network being in the
Susceptible state. Let us then assume that we have access to the state of the nodes in the networks
only in Tn = T steps after the initiation of each cascades. It is not necessary to constraint a fixed
observation delay Tn = T , and Tn could be inferred as well for each cascade.

Let us then construct a graphical model representation of the process for each cascade, following
the lines of section 6.1, and write down the full posterior probability distributions over the set of

cascades. Introducing a weight ζn,Ti for each of the n observations, the full distribution is just the
product over all the single probability weights 6.1.7 for each cascade, because of the independence
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assumption, and takes the form

P
({

x0
n

}
|
{
xTn
})

∝
M∏
n=1

∑
tn,gn

P
(
xn

T |tn,gn

)
P
(
tn,gn|xn

0
)
P
(
x0
n

)
(8.1.1)

=

M∏
n=1

∑
tn,gn,sn

∏
ij

ωnij
∏
i

φni Gni γni ζn,Ti ζn,0i(8.1.2)

where all the factors have been labeled with an extra cascade index n.
There is, however, a remarkable difference with equation 6.1.7: since we have no a priori infor-

mation on the graph topology, the product in the term
∏
ij ω

n
ij runs over all the possibile pair i and

j in the set V , so that we always work in the setting of a fully connected network with weights λij .
The main idea of our new approach is that, if the number of cascades M is large enough to convey a
reasonable amount of information, the non zero elements of the matrix λij will signal the true links
in the original graph; in addition, their value will be informative of the heterogeneity of infection
probabilities.

Up to now, we are faced with the two-fold problem of inferring the initial source of the spreading
for each cascade n together with the unknown structure of the graph. The strategy is the same as
in section 6.4: once the log-likelihood L (λ, µ) = −f (λ, µ) = logP

({
xTn
}
| {λij} , {µi}

)
with respect

to the network parameters is defined, we can use the Bethe decomposition 6.4.2 and equations 6.4.3,
6.4.4 and 6.4.5 to efficiently compute an estimate which only depends upon cavity messages. We then
couple the BP updates for the distribution 8.1.1 to a Gradient Ascent (GA) procedure with respect to
each network parameter, with the simple equations

λij ← λij + ε
∂L

∂λij
(8.1.3)

µi ← µi + ε
∂L

∂µi
(8.1.4)

The resulting BP and GA equations take exactly the same form as in Appendix B.1 and B.2, respec-
tively. Once again, we found that it is not necessary to wait for convergence of the BP equations,
but a simple alternation suffices to provide good joint estimates for the patient zero in each cascade
together with a remarkably good reconstruction of the underlying network.

We can clearly use all the inference machinery that was introduced in section 6.3 to account
for noisy, incomplete or confused observations. In addition, the parametrization of the dynamical
trajectories is so general that it is possible to implement, with the use of simple evidence terms ζn,ti ,
any kind of observation paradigm: for instance, we can easily deal with a setting in which observations
are not constrained to be at a fixed time T but are sparsely distributed in a certain time period (t0, t1),
so that at each time step a small fraction of nodes in the network is observed.

As a final comment, I also note that, as in the previous sections, the strict condition of a single
infected source may be slightly relaxed with an adjustment of the factor γ in the prior P

(
x0
)

=∏
n

∏
i γi
(
x0
n,i

)
, so as to consider cases in which a small number of nodes are infected at time t = 0 in

each cascades. Moreover, the use of a fixed duration T for each cascade is not necessary, as one can
simply consider a small non zero probability of self infection, and set a maximum time range (0, Tmax),
letting the algorithm itself discover the time of self-infection of the source in any given cascade.

Keeping all these straightforward generalizations in mind, in what follows I will focus on the simple
setting of M independent snapshots of the entire network, each one being taken after T steps from the
initiation in each one of the M observed cascades.
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Figure 8.2.1. Area under the ROC curve for three different ensembles of random
graphs at an increasing number of cascades M . Each point is the average ROC area
over 30 instance of the random graph in a given ensemble. Epidemics are run for
T = 5 and with λ = 0.6, µ = 0.4. Blue: Random Regular graph with N = 50 nodes
and E = 100 edges. Yellow: Barabasi-Albert graph with N = 50, E ∼ 100. Red:
Erdos-Renyi graph with N = 50, E = 100.

8.2. Results

I start by investigating three basic random network structures, namely Random Regular (RR),
Erdos-Renyi (EI) and scale-free networks: an impressive level of accuracy may be reached with a small
number M of observations. As a first step, a random graph is constructed, and a set of M cascades
are simulated, each one being an independent realization of the stochastic SIR process with a random
initial source in0 . The IDNR algorithm is then run until the parameters λij and µi reach a stable value.
Since the goal of the inference is two-fold, I use two different measures of the inference performance.

To evaluate the reconstruction performance, I again make use of the Receiver Operating Char-
acteristic (ROC ) curve: the values of λij are ranked, and one step upward in the ROC is taken if
the link is present in the original graph or one step rightward if the link is non existent. Once again,
a ROC area close to 1 signals a good discrimination between true and non existent links, and it is
reported in Fig. 8.2.1. As an examples of the discrimination ability, I report in Fig. 8.2.2 (top)
the distribution of inferred weights λij for links that exist in the original graphs versus non-existent
links: the two are clearly very well separated, confirming the results from the area under the ROC
curve. The ability to identify the sources of the spreading is easily quantified by the rank of the true
patient zero in0 in each of the M cascade: an example is shown in Fig. 8.2.2 (bottom), where it is
evident that IDNR successfully recovers most of the true patient zero in each cascade. I also tested
the IDNR algorithm on several instances of real interaction networks. As an illustrative example, I
performed some experiments on the famous Zachary’s Karate Club network, a small social network
consisting of |G| = 34 nodes and |E| = 78 edges, documenting the pairwise interactions over the course



8.2. RESULTS 83

non existent existent

0

0.2

0.4

0.6

0.8

rank i
0

1 2 3 4 5 6 7 8

#
 o

f 
c
a

s
c
a

d
e

s

0

20

40

60

80

100
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Figure 8.2.3. Color plot of inferred values of λij in the Zachary’s Karate Club net-
work with an increasing number M of cascades (y axis), with epidemic parametersλ =
0.3 and µ = 0.4. Edges are arranged on the x axis so that the first 78 are on the far
left, separated from non existent edges by the read vertical line.
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Figure 8.2.4. Pictorial representation of the IDNR inference performance in
Zachary’s Karate Club network with an increasing number M of cascades, with epi-
demic parametersλ = 0.3 and µ = 0.4. An edge is thrown between node i and node
j if λij in non zero, the width of the edge being proportional to the valued λij . The
true links are colored in black, red links are not present in the original network.

of three years between members of a university-based karate club [94]. In this case, I simulated up
to M = 102 cascades and investigated the performance of the inference method with homogeneous
parameters λ = 0.3 and µ = 0.4 at increasing M .

The results are shown in Fig. 8.2.3: non existent links are clearly distinguished from the true ones
even for very small values of M . Fig. 8.2.4 shows a pictorial representation of the inference method as
the number of cascades increases, the black links being the ones actually present in the original graph,
whereas the red color signals non existent links (the links width is proportional to the inferred value
λij ). The method was tested on larger networks with similar results. Results will be presented in an
upcoming publications [93].

8.3. Summary

In this chapter, I gave a very brief account of a recent development of the Bayesian approach
which was introduced in the last two chapters, which is capable of solving a complex inverse problem
and to extract interesting functional and topological information, under a very limited amount of
static observations. The method is extremely effective in reconstructing the topology of the hidden
network even when the number of snaphots is very small. It can be used for inference from several
independent cascades with partial observations than can be also noisy. There are several advantages
of this approach over existing ones. The main one is that several inference problems can be treated
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under a unique formulation. I will speculate more on the possible extensions and applications of the
method in chapter 9.





CHAPTER 9

Conclusions

In this Thesis, a number of techniques from the Statistical Physics of Spin Glasses have been
used to deal with complicated inverse problems. The main focus has been on inference and learning
problems defined on complex network: all in all, they fall in the vast realm of inverse problems, that
can be tackled with methods able to deal with the analysis of complicated probability distributions
characterized by some kind of local factorization structure.

As I discussed extensively, analytical and computational methods borrowed from the Statistical
Mechanics of Disordered Systems can be profitably used non only to study analytically the typical
case, but also, more importantly, to construct solving algorithms that can tackle single instances. The
case of the perceptron learning in chapter 4 is a very good example of the power of the concurrent use
of Replica theory in the typical case and Belief Propagation (with a set of heuristic generalizations)
to solve a hard constraint satisfaction problem and to characterize the properties of the provided
solutions.

Subdominant states and EdMC. In the first part of the Thesis, the relevance of subdominant
states in the perceptron learning problem has been demonstrated, both in the classification and the
generalization case. A series of algorithmic results have been shown to be in contrast with the standard
picture of a glassy landscape of isolated solutions. A new method for analyzing the local structure of
the space of solutions has been presented: the analytical technique is built on an entropic re-weighting
term in the standard Replica calculation of the free energy. In chapter 4 it has been shown that the
properties of a number of algorithmic solvers can be understood in terms of a subdominant set of
solutions which are embedded in a large cluster, very dense at its core. The features of solutions inside
the cluster are peculiar, in that they show a remarkably smaller generalization error with respect to
the typical ones in the teacher-student scenario.

There are a number of important points that are currently addressed as interesting generalization
of the approach presented here:

• the generalization of the analytical calculation carried in the binary case to a more realistic
setting where synaptic weights can take a finite number of discrete states, as well as the
case where the patterns are sparse — preliminary results show that the qualitative picture is
almost identical [58];

• the search for on-line learning methods which can be proved to be fully described by the
out-of-equilibrium measure of section 4.2;

• finally, an investigation of the relevance of the subdominant cluster in the context of attractor
neural networks, which serve as simple neural models for associative memory.

In chapter 5 the ideas raised in the investigation of the perceptron learning problem have been used to
introduce a novel MCMC method which, at odds with standard Monte Carlo methods, is not guided
by the energy function, but uses the local entropy as a measure of local density of solutions. It has been
shown that local entropy provides a smoother landscape and the correspondent Entropy driven Monte
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Carlo (EdMC) has been shown to be immune from trapping in local minima, and have nice scaling
properties. In the particular case of the perceptron, the properties of solutions that EdMC is able
to find have been analyzed by means of a Replica calculation where, analogously to the algorithmic
procedure, no constraint on the reference configuration is imposed. The analytical results match very
well the behavior of the algorithm, then proving the capability of a simple entropy driven MCMC
approach to effectively guide the system in a state which is surrounded by a large number of zero
energy configurations. EdMC has been tested in a completely different dilute setting, the random
K-satisfiability problem, yielding good results even in the regions of parameters which are known to
be hard for standard algorithm.

At present, EdMC relies on a Bethe approximation for the local entropy, which means that for
each proposed move the Metropolis algorithm has to wait for Belief Propagation to converge, with
a set of external fields corresponding to the current state of the system. This could eventually be a
limiting factor when the method has to be scaled to problems with a very large number of variables.
In particular, the most interesting problem is how to devise efficient methods for inferring the local
entropy without resorting to a BP approach. This is the subject of current research.

Inverse dynamics in epidemics and network reconstruction. In chapter 6 a previously
introduced Bayesian method for inferring the patient zero in an SIR model of epidemic spreading over
networks has been generalized to accont for uncertainty in observations and epidemic parameters as
well. It has been shown that a good inference of the hidden epidemic parameters can be achieved if
one couples the Belief Propagation updates with a simple on-line likelihood maximization method.

In chapter 7 the inference machinery has been shown to be generalizable to the case of a continuous-
time model of SIR spreading, with a technique that is now capable to deal with real time measurements
of contacts inside a community.

In chapter 8 a very recent and promising generalization of the inference approach of chapter 6
has been presented. The method, called Inverse Dynamics Network Reconstruction (IDNR), is an
inference technique which couples the problem of identifying the source of the spreading in a series
of cascades to that of reconstructing the topological structure of a network. The inference method
relies solely on a single observation for each cascade, and its performance is striking even when the
algorithm is supplied with a very limited information on the dynamics. Owing to the generality of the
Bayesian method, the technique is applicable to a wide variety of irreversible spreading processes with
a stochastic dynamics. The method is effective on progressive propagation models like susceptible-
infected (SI), susceptible-infected-removed (SIR), independent cascades (IC) and variants, including
models with hidden variables (e.g. representing latency times). Moreover, there are a number of
interesting generalizations: the simplest extension would be the (random) Bootstrap Percolation case
where each node gets activated only when it receives inputs from a given (in general site-dependent)
number of neighbors. These models are used to describe the features of dynamical processes in neuronal
networks. Work is in progress in these directions.



APPENDIX A

EdMC: analytical details

In this section, I will present a different form of the BP equations, which will be written in a
different parametrization for the messages, I will define the quantities used by EdMC, and explicitly
write the relevant expressions for the cases of the Binary Perceptron and the K-SAT problems. I will
make use of the notation introduced in Sec. 5.1.

A.1. General BP scheme

The modified system defined by the Hamiltonian H (x; x̃) of eq. (5.1.4) introduces an additional
external field term in the BP equations (3.1.2,3.1.3), that read:

νi→µ (xi; x̃i) ∝ eγx̃ixi
∏

ν∈∂i\µ

ν̂ν→i (xi)(A.1.1)

νi (xi; x̃i) ∝ eγx̃ixi
∏
ν∈∂i

ν̂ν→i (xi)(A.1.2)

It will be helpful to give also the expression for the cavity magnetization fields in absence of the
external fields (in the case of binary spins xi = ±1):

(A.1.3) hi = tanh−1 (νi (1)− νi (−1))

These will be central in the heuristic version of EdMC presented in Sec. 5.2.2 (Algorithm A.3).
The local free entropy F (x̃, γ) of eq. (5.1.2) can be computed from the fixed point messages in the

zero-temperature limit β →∞ in terms of purely local contributions from variables, edges and factor
nodes:

(A.1.4) F (x̃, γ) =
∑
µ

Fµ (x̃, γ) +
∑
i∈∂µ

Fi→µ (x̃, γ)

−∑
i

(|∂i| − 1)Fi (x̃, γ)

where:

Fµ (x̃, γ) = log

 ∑
{x∂µ:E(x∂µ)=0}

∏
i∈∂µ

νi→µ (xi; x̃i)

(A.1.5)

Fi→µ (x̃, γ) = log

∑
xi

eγx̃ixi
∏

ν∈∂i\µ

ν̂ν→i (xi)

(A.1.6)

Fi (x̃, γ) = log

∑
xi

eγx̃ixi
∏
µ∈∂i

ν̂µ→i (xi)

(A.1.7)
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The overlap S (x̃, γ) = 1
N 〈x̃ · x〉 and the local entropy S (x̃, γ) can be computed as:

S (x̃, γ) =
1

N

∑
i

x̃i
∑
xi

xiνi (xi; x̃i)(A.1.8)

S (x̃, γ) = F (x̃, γ)− γS (x̃, γ)(A.1.9)

These expressions are used in Sec. 5.2.3, where F (x̃, γ) is optimized over x̃ and they are averaged over
many realizations of the patterns to compare them to the theoretical expression of eq. (5.1.6).

A.1.1. BP for the binary perceptron. The BP equations for a given instance (ξµ, σµ) , µ =
1...αN is most easily written in terms of cavity magnetizations mi→µ ∝ νi→µ (+1) − ui→µ (−1) and
m̂µ→i ∝ ν̂µ→i (+1)− ν̂µ→i (−1). It is always possible to set ∀µ : σµ = 1 without loss of generality, by
means of the simple gauge transformation ξµi → σµξµi . With these simplification, equations (3.1.2,3.1.3)
become:

mi→µ = tanh

∑
ν 6=µ

tanh−1 (m̂ν→i)

(A.1.10)

m̂µ→i =

∑N−1
s=−ξi Dµ→i (s)−∑N−1

s=ξi
Dµ→i (s)∑N−1

s=−ξi Dµ→i (s) +
∑N−1
s=ξi

Dµ→i (s)
(A.1.11)

where

(A.1.12) Dµ→i (s) =
∑
{xj}j 6=i

δ

s,∑
j

xjξj

∏
j 6=i

(1 + xjmj→µ)

2

is the convolution of the all cavity messages mj→µ impinging on the pattern node µ, except for
mi→µ: it is thus the (cavity) distribution of the total synaptic input for pattern µ, in absence of
the synapse i. The complexity of the second update is at most O

(
N2
)

with an appropriate pre-
computation of cavity convolutions. As I pointed out in section 4.1.1, when one deals with the case of
N � 1 and an extensive number of patterns, a common and simple strategy is to adopt a Gaussian

approximation D̃µ→i (s) = 1
bµ→i

G
(
s−aµ→i
bµ→i

)
for the distribution Dµ→i (s), where G (s) denotes the

normal distribution. It suffices then to compute the mean aµ→i and variance b2µ→i of the distribution

D̃µ→i (s), whose dependence on cavity messages mj→µ is easily determined from the central limit
theorem:

aµ→i =
∑
j 6=i

ξµjmj→µ(A.1.13)

b2µ→i =
∑
j 6=i

(
1−m2

j→µ
)

(A.1.14)

(analogous non-cavity quantities aµ and bµ are computed by summing over all indices j). By doing
so, equation (A.1.11) becomes:

m̂µ→i = ξi g (aµ→i, bµ→i)(A.1.15)

where

(A.1.16) g (a, b) =
H
(
a−1
b

)
−H

(
a+1
b

)
H
(
a−1
b

)
+H

(
a+1
b

)
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and we used the function H (x) = 1
2erfc

(
x√
2

)
.

The free-entropy Fperc can be easily obtained by eq. (A.1.4) putting γ = 0. In the Gaussian
approximation, the expression can be written as:

Fperc =
∑
µ

log

(
H

(
aµ
bµ

))
−
∑
i,µ

log (1 +mi→µm̂µ→i)

+
∑
i

log

[∏
µ

(1 + m̂µ→i) +
∏
µ

(1− m̂µ→i)

]
(A.1.17)

The total number of solutions for a given instance can be determined by means of the entropy:

Sperc =
∑
µ

log

(
H

(
aµ
bµ

))
−
∑
i,µ

[
1 +mi

2
log

(
1 +mi→µ

2

)
+

1−mi

2
log

(
1−mi→µ

2

)]

+ (M − 1)

[
1 +mi

2
log

(
1 +mi

2

)
+

1−mi

2
log

(
1−mi

2

)]
(A.1.18)

Consistently with the theoretical predictions, BP equations always converge for α < αc. Indeed,
Replica Symmetry holds with the identification of states as the dominant isolated configurations, this
being evident in the proportionality relation between RS and RSB free-energy [24], with an intra-state
overlap (RSB parameter) q1 equal to 1. The entropy decreases monotonically with α and, provided N
is high enough, it vanishes at the critical threshold αc ∼ 0.833 [24].

As I said in section 4.1.2, if one slightly modifies the original equations with the introduction
of a ‘reinforcement term’, much similar to a sort of smooth decimation procedure, BP becomes a
very efficient solver that is able to find a solution with probability 1 up to α ∼ 0.74 [52]. Further
simplifications of these equations lead to the SBPI [53] and CP+R [54] algorithms.

Introducing the external fields γx̃i of eq. (5.1.4) is very simple (cf. eqs. (A.1.1) and (A.1.2)).
Eq. (A.1.10) for the cavity magnetization is modified as:

(A.1.19) mi→µ = tanh

∑
ν 6=µ

tanh−1 (mν→i) + γx̃i


and similarly for the total magnetization: mi = tanh

(∑
µ tanh−1 (m̂µ→i) + γx̃i

)
. The local free

entropy is also simply given by the expression Fperc (x̃, γ) = Sperc (x̃, γ) +γS (x̃, γ) using eqs. (A.1.18)
and (A.1.8) with the modified magnetizations. The cavity magnetization fields in absence of the
external fields, eq. (A.1.3), are:

(A.1.20) hi =
∑
µ

tanh−1 (mµ→i)

A.1.2. BP for K-SAT. The Belief Propagation equations for the K-SAT problem are most
easily written with a parametrization of the BP messages{νi→µ, ν̂µ→i} in terms of the quantities
{ζi→µ, ηµ→i}, where ζi→µ is the probability that xi does not satisfy clause µ in absence of this clause,
and ηµ→i is the probability that all the variables in clause µ except i violate the clause. With this
choice, and calling V (µ) the set of variables in the constraint µ, equation (3.1.3) simply becomes:

(A.1.21) ηµ→i =
∏

j∈V (µ)\i

ζj→µ
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Equation (3.1.2) for the variable node update is slightly more involved:

(A.1.22) ζi→µ =

∏
ρ∈V sµ (i) (1− ηρ→i)∏

ρ∈V sµ (i) (1− ηρ→i) +
∏
ρ∈V uµ (i) (1− ηρ→i)

where V sµ (i) (resp. V uµ (i)) is the set of clauses ρ in which variable i is involved with a coupling Jρi 6= Jµi
(resp. Jρi = Jµi ).

As for the perceptron, the free-entropy is obtained from expression (A.1.4) at γ = 0:

FSAT =
∑
µ

log

1−
∏

i∈V (µ)

ζi→µ

−∑
i

∑
µ∈∂i

log
(
1− ζ2

i→µ
)

+

+
∑
i

log

 ∏
ρ∈V +(i)

(1− ηρ→i) +
∏

ρ∈V −(i)

(1− ηρ→i)

(A.1.23)

where V + (i) (resp. V − (i)) is the set of all clauses µ in which variable i is involved with Jµi = −1
(resp. Jµi = 1). Analogously, the entropy is obtained from the following expression, which only depends
upon the messages ηµ→i:

SSAT =
∑
µ

log

 ∏
i∈V (µ)

 ∏
ρ∈V sµ (i)

(1− ηρ→i) +
∏

ρ∈V uµ (i)

(1− ηρ→i)

− ∏
i∈V (µ)

 ∏
ρ∈V uµ (i)

(1− ηρ→i)


+
∑
i

(1− ni) log

 ∏
ρ∈V +(i)

(1− ηρ→i) +
∏

ρ∈V −(i)

(1− ηρ→i)

(A.1.24)

In the chosen parametrization, the external fields γx̃i may be easily introduced by means of
N additional single-variable ‘soft clauses’ C̃i, which send fixed cavity messages to their respective
variables, taking the value:

(A.1.25) ηC̃i→i =
2 tanh γ

1 + tanh γ

with the restriction that C̃i ∈ V + (i) (resp. C̃i ∈ V − (i)) if x̃i = +1 (resp. x̃i = −1).

Calling Ṽ + (i), Ṽ − (i) the new set of clauses, enlarged so as to contain the C̃i, the total magneti-
zation is given by:

(A.1.26) mi =

∏
ρ∈Ṽ −(i) (1− ηρ→i)−

∏
ρ∈Ṽ +(i) (1− ηρ→i)∏

ρ∈Ṽ −(i) (1− ηρ→i) +
∏
ρ∈Ṽ +(i) (1− ηρ→i)

The cavity magnetization fields in absence of the external fields, eq. (A.1.3), are simply given by:

(A.1.27) hi = tanh−1 (mi)− γx̃i
Convergence properties of equations (A.1.21,A.1.22) on single instances are deeply related to the

Replica Symmetry Breaking scenario. The onset of long range correlations in clustered RSB phase
prevents BP from converging.

While RSB limits the usefulness of BP (as well as reinforced BP) at high α, ideas from the 1-
RSB cavity method, when applied to the single case without the averaging process, have led to the
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introduction of a powerful heuristic algorithm, Survey Propagation (SP) [61, 95], which is able to
solve K-SAT instances in the hard phase, almost up to the UNSAT threshold.

A.2. Details of the out of equilibrium analysis for the binary Perceptron Learning
problem

In this section, I will provide all technical details of the analysis of the reweighted free energy
function of eq. (5.1.5) of Sec. 5.1 for the case of the Perceptron Learning problem with binary synapses
of section. 5.2.1.

A.2.1. Setting the problem and the notation. Patterns are generated drawing the inputs
as random i.i.d. variables ξi ∈ {−1,+1} with distribution P (ξi) = 1

2δ (ξi − 1) + 1
2δ (ξi + 1). Without

loss of generality, the desired output of all patterns is 1. The problem of correctly classifying a set
of αN patterns {ξµ} (where µ = 1, . . . , αN) is addressed defining, for any vector of synaptic weights
W = {Wi}i=1,...,N with Wi ∈ {−1,+1} the quantity

(A.2.1) Xξ (W ) =
∏
µ

Θ

(
1√
N

∑
i

Wiξ
µ
i

)
(with Θ the Heaviside step function: Θ (x) = 1 if x ≥ 0, 0 otherwise) such that the solutions of the
learning problem are described by Xξ (W ) = 1.

Throughout this section, I will use the index i for the synapses and µ for the patterns. In all sums

and products, the summation ranges are assumed implicitly, e.g.
∑
i ≡

∑N
i=1. Also, all integrals are

assumed to be taken over R unless otherwise specified. The letters a, b, c and d will be reserved for
replica indices (see below). Finally, when introducing the 1-RSB Ansatz, I will also use α, β, α′ and
β′ for the replica indices; it should be clear from the context that these do not refer to the capacity α
or the inverse temperature β in those cases.

The number of solutions is given as:

(A.2.2) Nξ =
∑
{W}

Xξ (W )

Let us then consider a set of reference configurations, each of which has an associated set of
solutions that are constrained to have a certain overlap S with it. The reference configurations will be
indicated by the vector W̃ , W are all the other solutions.

Let us define then:

(A.2.3) Nξ
(
W̃ , S

)
=
∑
{W}

Xξ (W ) δ

(∑
i

WiW̃i − SN
)

(where δ is the Dirac-delta distribution), i.e. the number of solutions W that have overlap S with (or

equivalently, distance 1−S
2 from) a reference configuration W̃ . The goal is to compute the following

quenched free energy:

(A.2.4) F (S, y) = − 1

Ny
〈log (Ω (S, y))〉{ξµ} = − 1

Ny

〈
log

∑
{W̃}

Nξ
(
W̃ , S

)y〉
{ξµ}
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where Ω (S, y) is the partition function and y has the role of an inverse temperature. This is the free

energy density of a system where the configuration is described by W̃ and the energy is given by minus
the entropy of the other solutions with overlap S from it.

Note that this expression is almost equivalent to eq. 5.1.5, except that the overlap S is used
as a control parameter instead of the coupling γ, by using a hard constraint (the delta distribution
in eq. A.2.3) rather than a soft constraint (the exponential in eq. 5.1.3). The two parameters are
conjugates. The main advantage of using γ is that it is easier to implement using the BP algorithm,
which is why it was used for the EdMC algorithm. The advantage of using S is that it provides a
more general description: while in large portions of the phase space the relationship between γ and S
is bijective (and thus the two systems are equivalent), some regions of the phase space at large α can
only be fully explored with by constraining S, and thus we have used this system for the theoretical
analysis.

The main goal is that of studying the ground states of the system, i.e. taking the limit of y →∞.
This limit makes possible to seek the reference configuration W̃ for which the number of solutions at

overlap S with it is maximal, and to derive an expression for the entropy S (S, y) =
〈

logNξ
(
W̃ , S

)〉
of the surrounding solutions, which was called local entropy. It will turn out that S (S,∞) is always
positive for α < αc when S → 1, indicating the presence of dense clusters of solutions.

In the remainder, I will generally use the customary notation
´
dµ (W ) or

´ ∏
i dµ (Wi) (instead

of
∑
W or

∑
{W}) to denote the integral over possible values of the weights; for binary weights, one

simply has:

dµ (W ) = (δ (W − 1) + δ (W + 1)) dW

A.2.2. Entropy and Complexity.
A.2.2.1. Replica trick. In order to compute the quantity of eq. (A.2.4), the replica trick will be

introduced. In what follows, the letter n will denote the number of replicas of the reference configura-
tions, and the letters c and d, with c, d ∈ {1, . . . , n}, will be their replica indices.

Let us then write N
(
W̃ , S

)y
as a product of y “local” replicas. There will be a different set of

local replicas for each replicated reference configuration, so that the local replicas are yn in total. The
indices a and b will be used to denote these local replicas (each of which will also have a reference
replica index c), i.e. a, b ∈ {1, . . . , y}.

Therefore, one needs to compute:

lim
n→0
〈Ω (S, y)

n〉{ξµ} =(A.2.5)

= lim
n→0

〈ˆ ∏
ic

dµ
(
W̃ c
i

)ˆ ∏
ica

dµ (W ca
i )
∏
ca

Xξ (W ca)
∏
ca

δ

(∑
i

W ca
i W̃ c

i − SN
)〉

{ξµ}

As a first step, let us substitute the arguments of the theta functions in the Xξ terms via Dirac-delta
functions:

(A.2.6)
∏
caµ

Θ

(
1√
N

∑
i

W ca
i ξµi

)
=

ˆ ∏
caµ

dλcaµ δ

(
λcaµ −

1√
N

∑
i

W ca
i ξµi

)∏
caµ

Θ
(
λcaµ
)

Then, the delta functions are expanded using their integral representation:

(A.2.7) δ

(
λcaµ −

1√
N

∑
i

W ca
i ξµi

)
=

ˆ
dλ̂caµ
2π

exp

(
iλ̂caµ λ

ca
µ − iλ̂caµ

1√
N

∑
i

W ca
i ξµi

)
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With these, the expression where the patterns are involved can be factorized, so as to compute the
averages over the patterns independently for each µ and for each i, and expand for large N :∏

i

ˆ
(P (ξµi ) dξµi ) exp

(
− i√

N
ξµi

(∑
ca

W ca
i λ̂caµ

))
=

' exp

− 1

2N

∑
i

(∑
ca

W ca
i λ̂caµ

)2


= exp

(
−1

2

(∑
cadb

λ̂caµ λ̂
db
µ

(
1

N

∑
i

W ca
i W db

i

)))
(A.2.8)

Next, the order parameters for the overlaps are introduced via delta functions (the one for the

overlaps 1
N

∑
W ca
i W̃ c

i , which must be equal to S, is already apparent in the expression). Using the
expressions (A.2.6), (A.2.7) and (A.2.8) in eq. (A.2.5), one gets:

〈Ω (S, y)
n〉{ξµ} =

ˆ ∏
ic

dµ
(
W̃ c
i

)ˆ ∏
ica

dµ (W ca
i )

ˆ ∏
caµ

dλcaµ dλ̂
ca
µ

2π

∏
µ

ei(
∑
ca λ

ca
µ λ̂

ca
µ ) ×

×
ˆ ∏

c,a>b

(
dqca,cbN

)
δ

(
Nqca,cb −

∑
i

W ca
i W cb

i

)
×

×
ˆ ∏

c>d,ab

(
dqca,dbN

)
δ

(
Nqca,db −

∑
i

W ca
i W db

i

)
×

×
∏
ca

δ

(
NS −

∑
i

W ca
i W̃ c

i

)∏
caµ

Θ
(
λcaµ
)∏
µ

exp

(
−1

2

∑
ca

(
λ̂caµ

)2
)
×

×
∏
µ

exp

(
−
∑
c

∑
a>b

λ̂caµ λ̂
cb
µ q

ca,cb −
∑
c>d

∑
ab

λ̂caµ λ̂
db
µ q

ca,db

)
(A.2.9)

The delta functions are again expanded in the usual way introducing conjugate parameters q̂ca,db and
Ŝca, and the integrals are rearranged such that the structure is factorizable over µ and over i . One
then obtains:

〈Ω (S, y)
n〉{ξµ} =

ˆ ∏
c,a>b

(
dqca,cbdq̂ca,cbN

2π

)ˆ ∏
c>d,ab

(
dqca,dbdq̂ca,dbN

2π

)ˆ ∏
ca

(
dŜcaN

2π

)
e−N(

∑
c

∑
a>b q

ca,cbq̂ca,cb+
∑
c>d

∑
ab q

ca,dbq̂ca,db+
∑
ca SŜ

ca)GNS G
αN
E(A.2.10)

where GS and GE are the entropic and the energetic terms, respectively:

GS =

ˆ ∏
c

dµ
(
W̃ c
)ˆ ∏

ca

dµ (W ca) exp

(∑
c

∑
a>b

q̂ca,cbW caW cb+(A.2.11)

+
∑
c>d

∑
ab

q̂ca,dbW caW db +
∑
ca

ŜcaW caW̃ c

)
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GE =

ˆ ∏
ca

dλcadλ̂ca

2π
ei(
∑
ca λ

caλ̂ca)
∏
ca

Θ (λca) exp

(
−1

2

∑
ca

(
λ̂ca
)2

+(A.2.12)

−
∑
c

∑
a>b

λ̂caλ̂cbqca,cb −
∑
c>d

∑
ab

λ̂caλ̂dbqca,db

)
A.2.2.2. The external 1-RSB Ansatz. As explained in section 5.2.1, a 1-RSB Ansatz for the planted

configurations is introduced. More specifically, the n replicas will be divided in n
m groups of m replicas

each, with m the Parisi 1-RSB parameter to subsequently optimize upon. Let us then introduce the
multi-index c = (α, β), where α ∈ {1, ..., n/m} labels a block of m replicas, and β ∈ {1, ...,m} is
the index of replicas inside the block. This induces the following structure for the overlap matrix
qαβ,a;α′β′,b ≡ qca,db:

(A.2.13) qαβ,a;α′β′,b =


1 ifα = α′, β = β′, a = b

q2 ifα = α′, β = β′, a 6= b

q1 ifα = α′, β 6= β′

q0 ifα 6= α′

The structure of the conjugated parameters matrix q̂ca,db is analogous. I will also assume Ŝca = Ŝ.
Note that Ŝ, being the conjugate of S, takes the role of the soft constraint parameter γ of eq. 5.1.3
that is used throughout the main text. In fact, as already noted, studying the soft-constrained system
of eq. 5.1.5 gives exactly the same results with Ŝ = γ, provided one makes an equivalent symmetric
Ansatz on the overlap S as it is done for Ŝ here.

A.2.2.3. Entropic term. Let us consider the entropic term in the 1-RSB Ansatz:

GS =

ˆ ∏
αβ

dµ
(
W̃αβ

)ˆ ∏
αβ,a

dµ
(
Wαβ,a

)
exp

− q̂2

2
ny +

(q̂2 − q̂1)

2

∑
αβ

(∑
a

Wαβ,a

)2
×

× exp

 (q̂1 − q̂0)

2

∑
α

∑
β,a

Wαβ,a

2

+
q̂0

2

∑
αβ,a

Wαβ,a

2

+ Ŝ
∑
αβ,a

W̃αβWαβ,a

(A.2.14)

By means of a Hubbard-Stratonovich transformation

exp

(
b

2
x2

)
=

ˆ
Dz exp

(
t
√
bz
)

on the quadratic term
(∑

αβ,aW
αβ,a

)2

, the expression factorizes over the replica index α, thus ob-

taining:

GS = e−
q̂2
2 ny

ˆ
Dz0

∏
β

dµ
(
W̃ β

) ˆ ∏
β,a

dµ
(
W β,a

)
exp

 (q̂2 − q̂1)

2

∑
β

(∑
a

W β,a

)2
×

× exp

 (q̂1 − q̂0)

2

∑
β,a

W β,a

2

+ z0

√
q̂0

∑
β,a

W β,a + Ŝ
∑
β,a

W̃ βW β,a



n
m

(A.2.15)
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Another transformation of the term
(∑

β,aW
αβ,a

)
allows to factorize over the index β:

GS = e−
q̂2
2 ny

ˆ
Dz0


ˆ
Dz1

ˆ dµ(W̃)ˆ ∏
a

dµ (W a) exp

 (q̂2 − q̂1)

2

(∑
a

W a

)2
×

× exp

(
z1

√
q̂1 − q̂0

∑
a

W a + z0

√
q̂0

∑
a

W a + Ŝ
∑
a

W̃W a

)]m} n
m

(A.2.16)

and again on the term (
∑
aW

a)
2
, with a final factorization over the index a:

GS = e−
q̂2
2 ny

ˆ
Dz0

{ˆ
Dz1

[ˆ
Dz2

ˆ
dµ
(
W̃
)(ˆ

dµ (W ) exp
(
z2

√
q̂2 − q̂1W

)
×

× exp
(
z1

√
q̂1 − q̂0W + z0

√
q̂0W + ŜW̃W

))y]m}m
n

(A.2.17)

Let us then consider the specific case of binary variables W, W̃ ∈ {−1,+1} and perform the sum over
W explicitly, thus obtaining:

(A.2.18) GS = e−
q̂2
2 ny

ˆ
Dz0


ˆ
Dz1

ˆ Dz2

∑
W̃=±1

(
2 cosh

(
Ã
(
z0, z1, z2; W̃

)))ym
n
m

where

(A.2.19) Ã
(
z0, z1, z2; W̃

)
= z2

√
q̂2 − q̂1 + z1

√
q̂1 − q̂0 + z0

√
q̂0 + ŜW̃

Performing the limit n→ 0 one obtains:

(A.2.20)
logGS
n

= − q̂2

2
y + GS

where

(A.2.21) GS =
1

m

ˆ
Dz0 log

ˆ Dz1

ˆ Dz2

∑
W̃=±1

(
2 cosh

(
Ã
(
z0, z1, z2; W̃

)))ym
A.2.2.4. Energetic term. Let us plug the 1-RSB Ansatz (A.2.13) in eq. (A.2.12) and get:

GE =

ˆ ∏
αβ,a

dλαβ,adλ̂αβ,a

2π

∏
αβ,a

θ
(
λαβ,a

)
exp

i∑
αβ,a

λαβ,aλ̂αβ,a − 1

2

∑
αβ,a

(
λ̂αβ,a

)2

×
× exp

−q2

∑
αβ

∑
a>b

λ̂αβ,aλ̂αβ,b − q1

∑
α,β>β′

∑
ab

λ̂αβ,aλ̂αβ
′,b

×
× exp

−q0

∑
α>α′,ββ′

∑
ab

λ̂αβ,aλ̂α
′β′,b

(A.2.22)
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With the use of the formula

∑
i>j

aiaj =
1

2

(∑
i

ai

)2

−
∑
i

a2
i


for the various quadratic terms in λ′s and λ̂′s in eq. (A.2.22), one obtains:

GE =

ˆ ∏
αβ,a

dλαβ,adλ̂αβ,a

2π

∏
αβ,a

θ
(
λαβ,a

)
exp

i∑
αβ,a

λαβ,aλ̂αβ,a − 1

2

∑
αβ,a

(
λ̂αβ,a

)2

×(A.2.23)

× exp

−q2

∑
αβ

(∑
a

λ̂αβ,a

)2

−
∑
a

(
λ̂αβ,a

)2

×
× exp

−q1

∑
α

∑
β,b

λ̂αβ,a

2

−
∑
β,b

(
λ̂αβ,a

)2


×

× exp

−q0


∑
αβ,a

λ̂αβ,a

2

−
∑
α

∑
β,a

λ̂αβ,a

2



Let us then linearize the term multiplying q0 by means of a Hubbard-Stratonovich transformation,
thereby factorizing over the replica index α:

GE =

ˆ
Dz0

∏ dλβ,adλ̂β,a

2π

∏
β,a

θ
(
λβ,a

)
exp

i∑
β,a

λβ,aλ̂β,a − (1− q2)

2

∑
β,a

(
λ̂β,a

)2

×
× exp

− (q2 − q1)

2

∑
β

(∑
a

λ̂β,a

)2

− (q1 − q0)

2

∑
β,a

λ̂β,a

2
×

× exp

−iz0
√
q0

∑
β,a

λ̂β,a

 n
m

(A.2.24)

Performing two more Hubbard-Stratonovich transformations allows to factorize over the relevant in-
dices β and a:

(A.2.25) GE =

ˆ
Dz0

{ˆ
Dz1

[ˆ
Dz2H (A (z0, z1, z2))

y

]m} n
m

where

(A.2.26) A (z0, z1, z2) =
z0
√
q0 + z1

√
q1 − q0 + z2

√
q2 − q1√

1− q2
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and the the gaussian integral over λ̂ has been performed, writing the definite gaussian integral over λ

as an H function, H (x) =
´ +∞
x

Dz. In the limit n→ 0 we get:

(A.2.27) GE =
logGE
n

=
1

m

ˆ
Dz0 log

(ˆ
Dz1

[ˆ
Dz2H (A (z0, z1, z2))

y

]m)
A.2.2.5. Final 1-RSB expression. Plugging eqs. (A.2.21) and (A.2.27) into eq. (A.2.10), one ob-

tains:

〈Ω (S, y)
n〉{ξµ} = exp (−NnyF (S, y))

so that the eq. (A.2.4) is:

(A.2.28) F (S, y) = −
(
y
m

2
q0q̂0 − y

(m− 1)

2
q1q̂1 −

(y − 1)

2
q2q̂2 −

q̂2

2
− SŜ +

1

y
GS +

α

y
GE
)

The order parameters are obtained by the saddle point equations. In order to study the zero-
temperature limit y →∞, it is convenient to rearrange the terms as:

(A.2.29) F (S, y) = −
(
my

2
(q0q̂0 − q1q̂1)− y

2
(q2q̂2 − q1q̂1)− q̂2

2
(1− q2)− SŜ +

1

y
GS +

α

y
GE
)

from which one sees that in this limit the parameters must scale as:

m → x

y

q2 → q1 +
δq

y

q̂2 → q̂1 +
δq̂

y

giving, to the leading order in y:

(A.2.30) F (S,∞) = −
(
x

2
(q0q̂0 − q1q̂1)− 1

2
(q1δq̂ + q̂1δq)−

q̂1

2
(1− q1)− SŜ + G∞S + αG∞E

)
where

G∞S =
1

x

ˆ
Dz0 log

(ˆ
Dz1 e

x B̃(z0,z1)

)
(A.2.31)

B̃ (z0, z1) = max
z2∈R,W̃=±1

(
Ã∞

(
z0, z1, z2; W̃

))
(A.2.32)

Ã∞
(
z0, z1, z2; W̃

)
= −z

2
2

2
+ log

(
2 cosh

(
z2

√
δq̂ + z1

√
q̂1 − q̂0 + z0

√
q̂0 + ŜW̃

))
(A.2.33)

G∞E =
1

x

ˆ
Dz0 log

(ˆ
Dz1 e

xB(z0,z1)

)
(A.2.34)

B (z0, z1) = max
z2

(A∞ (z0, z1, z2))(A.2.35)

A∞ (z0, z1, z2) = −z
2
2

2
+ log

(
H

(
z0
√
q0 + z1

√
q1 − q0 + z2

√
δq√

1− q1

))
(A.2.36)
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The expressions for G∞S and G∞E are obtained by the saddle point method, using y →∞. The resulting
saddle point equations for the order parameters are:

q̂0 =
α

x
√
δq

ˆ
Dz0

´
Dz1 e

xB(z0,z1)z?E (z0, z1)
(

z1√
q1−q0

− z0√
q0

)
´
Dz1 exB(z0,z1)

(A.2.37)

q̂1 =
α

δq

ˆ
Dz0

´
Dz1 e

xB(z0,z1) (z?E (z0, z1))
2´

Dz1 exB(z0,z1)
(A.2.38)

δq̂ = (1− x) q̂1 +
α√
δq

ˆ
Dz0

´
Dz1 e

xB(z0,z1)
(
z?E (z0, z1) z1√

q1−q0
+ b(z0,z1)√

δq

)
´
Dz1 exB(z0,z1)

(A.2.39)

q0 =
1

x
√
δq̂

ˆ
Dz0

´
Dz1 e

x B̃(z0,z1)z?S (z0, z1)
(

z1√
q̂1−q̂0

− z0√
q̂0

)
´
Dz1 ex B̃(z0,z1)

(A.2.40)

q1 =
1

δq̂

ˆ
Dz0

´
Dz1 e

x B̃(z0,z1) (z?S (z0, z1))
2

´
Dz1 ex B̃(z0,z1)

(A.2.41)

δq = (1− x) q1 − 1 +
1√
δq̂

ˆ
Dz0

´
Dz1 e

x B̃(z0,z1)z?S (z0, z1)
(

z1√
q̂1−q̂0

)
´
Dz1 ex B̃(z0,z1)

(A.2.42)

S =
1√
δq̂

ˆ
Dz0

´
Dz1 e

x B̃(z0,z1)z?S (z0, z1) sign
(
Ŝ
(
z1

√
q̂1 − q̂0 + z0

√
q̂0

))
´
Dz1 ex B̃(z0,z1)

(A.2.43)

where

z?S (z0, z1) = argmaxz2∈R

(
max
W̃=±1

(
Ã∞

(
z0, z1, z2; W̃

)))
(A.2.44)

z?E (z0, z1) = argmaxz2∈R (A∞ (z0, z1, z2))(A.2.45)

b (z0, z1) =
z?E (z0, z1)

√
δq

1− q1

(
z0
√
q0 + z1

√
q1 − q0 + z?E (z0, z1)

√
δq
)

(A.2.46)

The parameter x is implicitly set by the equation:

(A.2.47)
1

2
(q0q̂0 − q1q̂1) +

∂G∞S
∂x

+ α
∂G∞E
∂x

= 0

where

∂G∞S
∂x

=
1

x

ˆ
Dz0

´
Dz1 e

x B̃(z0,z1)B̃ (z0, z1)´
Dz1 ex B̃(z0,z1)

− G
∞
S

x
(A.2.48)

∂G∞E
∂x

=
1

x

ˆ
Dz0

´
Dz1 e

xB(z0,z1)B (z0, z1)´
Dz1 exB(z0,z1)

− G
∞
E

x
(A.2.49)

In this limit, and since the goal is to optimize over x, −F (S,∞) is equal to the local entropy SI ,
i.e. the entropy of the solutions W (which has formally the role of an energy in our model). This is

shown in Fig. 5.2.1. The external entropy, i.e. the entropy of the reference configurations W̃ , has two
components in the 1-RSB scenario. The first, usually called complexity, accounts for the number of
clusters of W̃ , and is set to zero by optimizing F over x (see above). The second is computed from a
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first-order expansion in y, since F (S, y) = −SI − 1
ySE , giving:

SE =
1

2
(−δq̂ − δqδq̂ + δq̂q1 + δqq̂1) + C∞S + αC∞E(A.2.50)

C∞S = −1

2

ˆ
Dz0

´
Dz1 e

x B̃(z0,z1) log
(

1− δq̂ + z?S (z0, z1)
2
)

´
Dz1 ex B̃(z0,z1)

(A.2.51)

C∞E = −1

2

ˆ
Dz0

´
Dz1 e

xB(z0,z1)
(

log
(

1 + z?E (z0, z1)
2

+ b (z0, z1)
)
− b (z0, z1)

)
´
Dz1 exB(z0,z1)

(A.2.52)

A.2.3. Reference configurations energy and constrained case.
A.2.3.1. Breaking the symmetry over reference configurations. The expression of eq. (A.2.28) does

not involve any overlaps relative to the reference configurations. However, in order to compute the
average energy associated with the reference configurations, it is necessary to obtain such quantities
(see below). To extract the order parameter this end, it is useful to introduce a modified free energy:

FC (S, y) = − 1

Ny
〈log (ΩC (S, y))〉{ξµ}(A.2.53)

= − 1

Ny

〈
f

(
1√
N

∑
i

W̃iξ
µ
i

)
log

∑
{W̃}

Nξ
(
W̃ , S

)y〉
{ξµ}

i.e. one in which an additional term f
(

1√
N

∑
i W̃iξ

µ
i

)
was included in the expression. Setting f (x) =

Θ (x) one recovers the case in which the reference solutions W̃ are also constrained to be solutions to
the classification problem (chapter 4); on the other hand, with the introduction of a parameter η such
that limη→0 f (x) = 1, the previous case is recovered in the limit η → 0, i.e. this amounts to introduce
a symmetry-breaking term and then making it vanish at the end of the computation.

The computation follows along the lines of the previous case, but requires the introduction of
some additional order parameters: q̃αβ;α′β′ = 1√

N
W̃αβ · W̃α′β′ for the overlaps between reference

configurations and Sα
′β′;αβa = 1√

N
W̃α′β′ ·Wαβ;a for the overlaps between reference configurations and

solutions. With the 1-RSB Ansatz, and including the constraint on the overlaps, the order parameters
take the form:

q̃αβ;α′β′ =


1 ifα = α′, β = β′

q̃1 ifα = α′, β 6= β′

q̃0 ifα 6= α′
(A.2.54)

Sα
′β′;αβa =


S ifα = α′, β = β′

S̃1 ifα = α′, β 6= β′

S̃0 ifα 6= α′
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and analogous expressions for the conjugate parameters. The final expression for the free energy is:

FC (S, y) = −
(
m

2y

(
q̃0

ˆ̃q0 − q̃1
ˆ̃q1

)
− 1

2y
ˆ̃q1 (1− q̃1) +

my

2
(q0q̂0 − q1q̂1) +

−y
2

(q2q̂2 − q1q̂1)− q̂2

2
(1− q2)−

(
SŜ − S̃1

ˆ̃S1

)
+

+m
(
S̃0

ˆ̃S0 − S̃1
ˆ̃S1

)
+

1

y
GCS +

α

y
GCE

)
(A.2.55)

where

GCS =
1

m

ˆ
Dz̃0

ˆ
Dz0 log

ˆ Dz̃1

ˆ
Dz1

 ∑
W̃=±1

eW̃ K(z̃0,z0,z̃1,z1) ×(A.2.56)

×
ˆ
Dz2

(
2 cosh

(
ÃC

(
z0, z1, z2; W̃

)))y]m)
ÃC

(
z0, z1, z2; W̃

)
= z2

√
q̂2 − q̂1 + z1

√
q̂1 − q̂0 + z0

√
q̂0 +

(
Ŝ − ˆ̃S1

)
W̃(A.2.57)

K (z̃0, z0, z̃1, z1) = z̃1

√√√√(
ˆ̃q1 − ˆ̃q0

)
−

(
ˆ̃S1 − ˆ̃S0

)2

q̂1 − q̂0
+ z1

ˆ̃S1 − ˆ̃S0√
q̂1 − q̂0

+(A.2.58)

+z̃0

√√√√
ˆ̃q0 −

(
ˆ̃S0

)2

q̂0
+ z0

ˆ̃S0√
q̂0

GCE =
1

m

ˆ
Dz̃0

ˆ
Dz0 log

(ˆ
Dz̃1

ˆ
Dz1

[ˆ
Dz2H (A (z0, z1, z2)

y
) ×(A.2.59)

× L (z̃0, z0, z̃1, z1, z2)]
m

)

L (z̃0, z0, z̃1, z1, z2) =

ˆ
Dλ̃ f

z2
S−S̃1√

1−q̃1
+ λ̃

√
(q2 − q1)− (S−S̃1)

2

1−q̃1√
q2 − q1

+ z1
S̃1 − S̃0√
q1 − q0

+

+z0
S̃0√
q0

+ z̃1

√√√√
(q̃1 − q̃0)−

(
S̃1 − S̃0

)2

q1 − q0
+ z̃0

√√√√
q̃0 −

(
S̃0

)2

q0

(A.2.60)

From these expression, one immediately notes that the dependency on the function f only enters the
equations through the expression of L in GCE . Also, this expression does not depend on y. This has
two consequences:

(1) In the case where limη→0 f (x) = 1, GCE → GE , i.e. the expression does not depend any more

on q̃1, q̃0, S̃1 or S̃0 and simplifies to the previous case, as expected. In turn, this implies that

the conjugated order parameters ˆ̃q1, ˆ̃q0, ˆ̃S1 and ˆ̃S0 all tend to 0, thus reducing the expression
of the free energy to the previous case eq. (A.2.28);

(2) In the limit y →∞ in the constrained case (f (x) = Θ (x)), one gets GCE → GE , since the term
with y in the exponent dominates the saddle point expansion. Again , the expression (A.2.28)



A.2. DETAILS OF THE OUT OF EQUILIBRIUM ANALYSIS FOR THE BINARY PERCEPTRON LEARNING PROBLEM103

is recovered for the free energy of the system, which means that the local entropy is unchanged
in the constrained case. This may suggest that, even in the unconstrained case, the reference
configuration W̃ is never “too far” from an actual solution to the problem (more precisely,
within a distance o (N) from a solution). Note, however, that — as one would expect — the
external entropy is different in this case, since it depends on the first order expansion in y,
which is affected by the L term.

Following observation 1, the expression for the order parameters q̃1, q̃0, S̃1 and S̃0 may be derived by

using the saddle point equations and by assuming that the conjugate parameters ˆ̃q1, ˆ̃q0, ˆ̃S1 and ˆ̃S0 are
of order η � 1 and taking the leading order in the resulting expression. The only results needed are
the one for S̃1 and S̃0, which turn out to be:

S̃1 =
S

1−m +
1

y (m− 1)
√
q̂1 − q̂0

ˆ
Dz0

Idz (z0)

Is (z0)
(A.2.61)

S̃0 =
1

my

(
1√

q̂1 − q̂0

ˆ
Dz0

Idz (z0)

Is (z0)
− 1√

q̂0

ˆ
Dz0 z0

Id (z0)

Is (z0)

)
(A.2.62)

Is (z0) =

ˆ
Dz1

ˆ Dz2

∑
W̃=±1

(
2 cosh

(
Ã
(
z0, z1, z2; W̃

)))ym(A.2.63)

Id (z0) =

ˆ
Dz1

ˆ Dz2

∑
W̃=±1

(
2 cosh

(
Ã
(
z0, z1, z2; W̃

)))ym−1

×(A.2.64)

×

ˆ Dz2

∑
W̃=±1

W̃
(

2 cosh
(
Ã
(
z0, z1, z2; W̃

)))y
Idz (z0) =

ˆ
Dz1 z1

ˆ Dz2

∑
W̃=±1

(
2 cosh

(
Ã
(
z0, z1, z2; W̃

)))ym−1

×(A.2.65)

×

ˆ Dz2

∑
W̃=±1

W̃
(

2 cosh
(
Ã
(
z0, z1, z2; W̃

)))y
In the limit y →∞, the following scaling holds:

S̃1 = S − δS

y

and finally the expressions:

δS =
1√

q̂1 − q̂0

ˆ
Dz0

´
Dz1 z1e

x B̃(z0,z1)W̃ ? (z0, z1)´
Dz1ex B̃(z0,z1)

− xS(A.2.66)

S̃0 =
1

x
√
q̂1 − q̂0

ˆ
Dz0

´
Dz1 z1e

x B̃(z0,z1)W̃ ? (z0, z1)´
Dz1ex B̃(z0,z1)

+(A.2.67)

− 1

x
√
q̂0

ˆ
Dz0 z0

´
Dz1 e

x B̃(z0,z1)W̃ ? (z0, z1)´
Dz1ex B̃(z0,z1)
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where

W̃ ? (z0, z1) = argmaxW̃=±1

(
max
z2∈R

(
Ã∞

(
z0, z1, z2; W̃

)))
(A.2.68)

A.2.3.2. Energy density. The typical energy density of the unconstrained reference configurations
W̃ gives the information related to the probability of classifying incorrectly a pattern ξ? drawn at
random from the training set. This probability can be obtained by calculating:

P (σ? 6= 1) =

〈
Θ

(
− 1√

N

∑
i

W̃iξ
?
i

)〉
W̃

(A.2.69)

where the average is defined over the weighted measure dµW

(
W̃
)

= dµ
(
W̃
)
Nξ
(
W̃ , S

)y
. Since:

〈∏
µ

Θ

(
− 1√

N

∑
i

W̃iξ
µ
i

)〉
W̃

=

´
dµW

(
W̃
)∏

µ Θ
(
− 1√

N

∑
i W̃iξ

µ
i

)
´
dµW

(
W̃
)(A.2.70)

this calculation can be carried out straightforwardly by exploiting the replica trick, i.e. by rewriting
the ratio in (A.2.70) as:

lim
n→0

ˆ
dµW

(
W̃
)

Θ

(
− 1√

N

∑
i

W̃iξ
?
i

)(ˆ
dµW

(
W̃
))n−1

=(A.2.71)

= lim
n→0

ˆ ∏
c

dµW

(
W̃ c
)

Θ

(
− 1√

N

∑
i

W̃ 1
i ξ

?
i

)

where one introduces n−1 unconstrained replicas of the reference solution, leaving out the replica
index 1 for the W̃ -replica coupled to the pattern ξ? by the constraint. In this way the quenched
disorder can be averaged out, and in the n→ 0 limit one recovers the initial expression.

As noted in the previous section, when one extracts the overlaps referred to the reference config-
urations by introducing vanishing constraints (i.e. when η → 0), the conjugate parameters related to
these overlaps tend to vanish as well.

Therefore, if one organizes the calculation similarly to the previous ones, it is easy to see that in
(A.2.71) the entropic terms cancel out and the only non-zero contribution to the average comes from
the energetic part G′E , where:
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G′E =

ˆ
dλ̃1d

ˆ̃
λ1

2π

∏
αβ,a

dλαβ,adλ̂αβ,a

2π
Θ
(
−λ̃1

) ∏
αβ,a

Θ
(
λαβ,a

)
×

× exp

i
λ̃1 ˆ̃

λ1 +
∑
αβ,a

λαβ,aλ̂αβ,a

− 1

2

(ˆ̃
λ1
)2

+
∑
αβ,a

(
λ̂αβ,a

)2

×
× exp

−q2

∑
αβ

∑
a>b

λ̂αβ,aλ̂αβ,b − q1

∑
α,β>β′

∑
ab

λ̂αβ,aλ̂αβ
′,b

×
× exp

−q0

∑
α>α′,ββ′

∑
ab

λ̂αβ,aλ̂α
′β′,b −

∑
a

ˆ̃
λ1λ̂11,a

(
S − S̃1

)×
× exp

−∑
β

∑
a

ˆ̃
λ1λ̂1β,a

(
S̃1 − S̃0

)
−
∑
aβ

∑
a

ˆ̃
λ1λ̂αβ,aS̃0

(A.2.72)

The final expression is the following:

P (σ? 6= 1) =(A.2.73)

=

ˆ
Dz0

´
Dz1

(´
Dz2H (A (z0, z1, z2))

y)m−1 ´
Dz2H (A (z0, z1, z2))

y
H (−C (z0, z1, z2))´

Dz1

(´
Dz2H (A (z0, z1, z2))

y)m
with the definition (A.2.26), and where:

C (z0, z1, z2) =
z0

S̃0√
q0

+ z1
S̃1−S̃0√
q1−q0

+ z2
S−S̃1√
q2−q1√

1− S̃2
0

q0
− (S̃1−S̃0)

2

q1−q0 − (S−S̃1)
2

q2−q1

In the limit y →∞, Eq. A.2.73 simplifies to:

P (σ? 6= 1) =

ˆ
Dz0

´
Dz1e

xB(z0,z1)H

− z0 S̃0√
q0

+z1
S̃1−S̃0√
q1−q0

+z2
δS√
δq√

1− S̃
2
0
q0
− (S̃1−S̃0)2

q1−q0


´
Dz1exB(z0,z1)

(A.2.74)

which is shown in Fig. 5.2.2.

A.3. Heuristic Algorithm
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Algorithm 1 Heuristic EdMC

Input: problem sample; parameters tmax, tstep, y, γ, fy and fγ
Randomly initialize x̃0

i

Alternatively, run BP with γ = 0 and set x̃0
i = sign(hi)

Run BP with external fields γx̃0
i

Compute free energy F 0 from BP fixed point (F̄ 0 if BP does not converge)
while t ≤ tmax do

Retrieve fields hti (h̄ti if BP did not converge)
for i = 1 to N do

∆i ← x̃ti (γx̃ti − hti)
end for
Collect V = {i | ∆i > 0} and sort it in descending order of ∆i

accepted← FALSE
while NOT accepted do

Propose a flip of the x̃ti for all i ∈ V , producing x̃t+1

Run BP with new proposed external fields γx̃t+1
i

Compute free energy F t+1 from BP fixed point (F̄ t+1 if BP does not converge)

with probability ey(F
t+1−F t) do accepted← TRUE

if NOT accepted then
Remove the last element from V
if |V | = 0 then

exit and run EdMC with x̃t as initial configuration
end if

end if
end while
t← t+ 1
Compute energy E of configuration x̃t

if E = 0 then
retrieve solution x̃∗ = x̃t and exit

end if
if t ≡ 0 (mod tstep) then

Annealing : y ← y × fy
Scoping : γ ← γ × fγ (run BP and update F t)

end if
end while



APPENDIX B

Inverse Dynamics: the patient zero problem

B.1. Efficient BP updates

An efficient form for the update equations of the ψi factor nodes is the following:

pψi→j

(
t
(j)
i , tji, g

(j)
i

)
∝

∑
gi,ti

∑
{
t
(k)
i ,tki,g

(k)
i

}mi→ψi (ti, gi)×

×
∏

k∈∂i\j

mk→ψi

(
t
(k)
i , tki, g

(k)
i

)
ψi

(
ti, gi,

{(
t
(k)
i , tki, g

(k)
i

)}
k∈∂i

)
∝ mi→ψi

(
t
(j)
i , g

(j)
i

)∑
tki

∏
k∈∂i\j

mk→ψi

(
t
(j)
i , tki, g

(j)
i

)
×(B.1.1)

×
[
δ
(
t
(j)
i , 0

)
+ δ

(
t
(j)
i ,

(
1 + min

k∈∂i
{tki}

))]
∝ δ

(
t
(j)
i , 0

)
mi→ψi

(
0, g

(j)
i

) ∏
k∈∂i\j

∑
tki

mk→ψi

(
0, tki, g

(j)
i

)
+(B.1.2)

+ mi→ψi

(
t
(j)
i , g

(j)
i

)
I
(
t
(j)
i ≤ tji + 1

) ∏
k∈∂i\j

∑
tki≥t(j)i −1

mk→ψi

(
t
(j)
i , tki, g

(j)
i

)
− mi→ψi

(
t
(j)
i , g

(j)
i

)
I
(
t
(j)
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) ∏
k∈∂i\j

∑
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(j)
i −1
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(
t
(j)
i , tki, g

(j)
i

)
where in (B.1.2) we use the fact that

δ

(
ti,

(
1 + min

j∈∂i
{tji}

))
=
∏
j∈∂i

I (ti ≤ tji + 1)−
∏
j∈∂i

I (ti < tji + 1) .

In order to switch to the simplified representation with σji, σij variables defined in (6.2.5) instead
of tji, tij ones, one proceeds as follows. In equation (B.1.2) the sums over different configurations

of
(
tki, t

(j)
i

)
may be easily grouped together so that:
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)
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)
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)
(B.1.3)
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Similarly, the outgoing message to the (ti, gi) variable node is:

pψi→i (ti, gi) ∝ δ (ti, 0)
∏
k∈∂i

∑
σki

mk→ψi (0, σki, gi) +(B.1.4)

+
∏
k∈∂i

∑
σki=1,2

mk→ψi (ti, σki, gi)

−
∏
k∈∂i

mk→ψi (ti, 2, gi)

In the simplified (t, σ, g) representation for the messages, the update equation for the φij nodes reads:

(B.1.5) pφij→j (tj , σij , gj) ∝
∑

ti,σji,gi

Ω (ti, tj , σij , σji, gi, gj)mi→φij (ti, σji, gi)

where:

(B.1.6) Ω (ti, tj , σij , σji, gi, gj) =



χ (ti, tj , σij , gi) : ti < tj , σji = 2, σij 6= 2

χ (ti, tj , σij , gi) + (1− λ)
gi+1

: ti < tj , σji = 2, σji = 2

χ (tj , ti, σji, gj) : tj < ti, σji = 2, σji 6= 2

χ (tj , ti, σji, gj) + (1− λ)
gj+1

: tj < ti, σij = 2, σji = 2

1 : ti = tj , σji = σij = 2

0 : otherwise

and

(B.1.7) χ (t1, t2, σ, g) =

t1+g∑
t=t1

δ (σ (t2, t) , σ)λ (1− λ)
t−t1

Simple algebra and pre-calculation of terms in (B.1.5)-(B.1.7) brings a significant optimization for
updates involving the factor node φij down to O(TG2) operations per update. A possible pseudo-code
implementation of this optimization is shown below in the Algorithm section.
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Algorithm 2 Update of factor φij . This routine computes the ouput message pφij→j(tj , σij , gj) from
the input message mi→φij (ti, σji, gi). For simplicity, the value t =∞ is stored in position Tinf = T +1
on the messages. This update can be used with a transimission probability λt than can eventually
depend on time.

for σi = 0 to 2 do
for gi = 0 to G do

for ti = 0 to Tinf do
H(ti, σi) += mi→φij (ti, σi, gi)

end for
end for
R(Tinf , σi)← H(Tinf , σi)
for t = T to 0 do

R(ti, σi) += H(ti, σi)
end for

end for
for gj = 0 to G do

for tj = 0 to Tinf do
tn ← min(tj + gj , T )
clear(g0, q0)
p← 1
for t = tj to tn do

q0(t)← p
g0(t)← g0(t− 1) + p · λt
p← p · (1− λt)

end for
q0(tn + 1)← p
for ti = tj + 1 to tn + 1 do

z0 ← g0(ti − 2)− g0(tj − 1)
z1 ← q0(ti − 1) · λti−1

z2 ← q0(tn + 1) + g0(tn)− g0(ti − 1)
pφij→j(tj , 2, gj) += z0 ·H(ti, 0) + z1 ·H(ti, 1) + z2 ·H(ti, 2)
U(ti, 0) += z0 ·mi→φij (tj , 2, gj)
U(ti, 1) += z1 ·mi→φij (tj , 2, gj)
U(ti, 2) += z2 ·mi→φij (tj , 2, gj)

end for
if tn + 2 ≤ Tinf then

z0 ← g0(tn)
z2 ← q0(tn + 1)
pφij→j(tj , 2, gj) += z0 ·R(tn + 2, 0) + z2 ·R(tn + 2, 2)
S(tn + 2, 0) += z0 ·mi→φij (tj , 2, gj)
S(tn + 2, 2) += z2 ·mi→φij (tj , 2, gj)

end if
end for

end for



110 B. INVERSE DYNAMICS: THE PATIENT ZERO PROBLEM

Algorithm 2 (continued)

for gj = 0 to G do
for σj = 0 to 2 do

τ ← 0
for tj = 0 to Tinf do

τ += S(tj , σj)
pφij→j(tj , σj , gj) += τ + U(tj , σj)

end for
end for

end for
for tj = 0 to Tinf do

for gj = 0 to G do
pφij→j(tj , 2, gj) += H(tj , 2)

end for
end for

B.2. GA method for the inference of the epidemic parameters

The computation of the gradient of the free energy deserves some special attention: being f a func-
tion of all the BP messages, one would argue that this messages depend on the model parameters too,
at every step in the BP algorithm. Actually, there is no need to consider this implicit (λ, µ) dependence
if BP has reached its fixed point, that is when BP equations are satisfied and the messages are nothing
else but Lagrange multipliers with respect to the constraint minimization of the Bethe free energy
functional [36]. In this scheme, the only explicit dependence of free energy on epidemic parameters
is in the factor node terms fa’s involving compatibility functions φij = ωij (tij − ti|gi)ωji (tji − tj |gj)
and Gi (gi) = µi (1− µi)gi , and the gradient can be computed very easily. For the φij nodes one has:

(B.2.1)
∂fφij
∂λ

=

∑
ti,tji,gi,tj ,tij ,gj

∂φij
∂λ (ti, tji, gi, tj , tij , gj)mi→φij (ti, tji, gi)mj→φij (tj , tij , gj)∑

ti,tji,gi,tj ,tij ,gj
φij (ti, tji, gi, tj , tij , gj)mi→φij (ti, tji, gi)mj→φij (tj , tij , gj)

where

(B.2.2)
∂φij
∂λ

=



1 ti < tj and ti = tij < ti + gi

− (gi − ti)λ (1− λ)
gi−ti−1

ti < tj and ti < tij = ti + gi

(1− λ)
tij−ti − (tij − ti)λ (1− λ)

tij−ti−1
ti < tj and ti < tij < ti + gi

1 tj < ti and tj = tj < tj + gj

− (gj − tj)λ (1− λ)
gj−tj−1

tj < ti and tj < tji = tj + gj

(1− λ)
tji−tj − (tji − tj)λ (1− λ)

tji−tj−1
tj < ti and tj < tji < tj + gj

0 else
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In the simplified (t, σ, g) representation for the messages, equation (B.2.2) takes the form:

(B.2.3)
∂φij
∂λ

=



χ (ti, tj , σij , gi) ti < tj , σji = 2, σij 6= 2

χ (ti, tj , σij , gi)− (gi + 1) (1− λ)
gi ti < tj , σji = 2, σij = 2

χ (tj , ti, σji, gj) tj < ti, σji = 2, σij 6= 2

χ (tj , ti, σji, gj)− (gj + 1) (1− λ)
gj tj < ti, σji = 2, σij = 2

0 otherwise

where:

(B.2.4) χ (t1, t2, σ, g) =

t1+g∑
t=t1

δ (σ (t2, t) , σ) (1− λ)
t−t1 − (t− t1)λ (1− λ)

t−t1−1

For the Gi nodes the gradient reads:

(B.2.5)
∂fGi
∂µ

=

∑
gi
G̃i(gi)mi→Gi(gi)∑

gi
Gi(gi)mi→Gi(gi)

where

(B.2.6) G̃i(gi) =

{
(1− µ)

gi − giµ (1− µ)
gi−1

: gi < G

G−G (1− µ)
G−1

: gi = G.





APPENDIX C

Inverse Dynamics in continuous time: efficient BP updates

C.1. Efficient BP updates for inference on SIR in continuous time contact networks

The BP equations for the factor node ψi are:

Pij (sij , sji) ∝
∑
ti

Pii (ti)

ˆ ∞
0

dgiG (gi)
∑
rij

R (rij) δ (sij , Sij (ti, rij , gi))×

×
∑
{ski}

δ

(
ti,min

k∈∂i
Tki (ski)

) ∏
k∈∂i\j

{∑
rik

Rik (rik)Pki (ski, Sik (ti, rik, gi))

}

=
∑

ti<Tji(sji)

Pii (ti)

ˆ ∞
0

dgiG (gi)
∑
rij

R (rij) δ (sij , Sij (ti, rij , gi))×

×
{ ∏
k∈∂i\j

∑
rik

Rik (rik)
∑

ski:Tki(ski)≥ti

Pki (ski, Sik (ti, rik, gi))−

−
∏

k∈∂i\j

∑
rik

Rik (rik)
∑

ski:Tki(ski)>ti

Pki (ski, Sik (ti, rik, gi))

}

+Pii (Tji (sji))

ˆ ∞
0

dgiG (gi)
∑
rij

R (rij) δ (sij , Sij (Tji (sji) , rij , gi))×

×
∏

k∈∂i\j

∑
rik

Rik (rik)
∑

ski:Tki(ski)≥ti

Pki (ski, Sik (Tji (sji) , rik, gi))(C.1.1)

and for

Pi (ti) ∝
ˆ
dgiG (gi)

{ ∏
k∈∂i

∑
rik

Rik (rik)
∑

ski:Tki(ski)≥ti

Pki (ski, Sik (ti, rik, gi))−

−
∏
k∈∂i

∑
rik

Rik (rik)
∑

ski:Tki(ski)>ti

Pki (ski, Sik (ti, rik, gi))

}
(C.1.2)

The definite integrals
´
dgiG (gi) over the probability distribution of the recovery times can be

pre-computed via the quantities Kr =
´ hr+1

hr
G (gi) dgi, and essentially proceed as if gi took only

discrete values 1
2 (hr + hr+1) with probabilities given by Kr. If node i has a total of n contacts, a

naive implementation of the resulting update has complexity O
(
n2d
)
.

All terms Q≥ki (ti, gi) =
∑
rik
Rik (rik)

∑
ski:Tki(ski)≥ti Pki (ski, Sik (ti, rik, gi)) and Q>ki (ti, gi) =∑

rik
Rik (rik)

∑
ski:Tki(ski)≥ti Pki (ski, Sik (ti, rik, gi)) can be simultaneously computed in time O

(
n2
)
.
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Then

Pi (ti) ∝
∑

ti<Tji(sji)

Pii (ti)

ˆ ∞
0

dgiG (gi)
∑
rij

R (rij)×

×δ (sij , Sij (ti, rij , gi))

 ∏
k∈∂i\j

Q≥ki (ti, gi)−
∏

k∈∂i\j

Q>ki (ti, gi)


can be computed on a single loop over the possible values of ti, gi.
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