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Abstract—Unveiling network and service performance issues
in complex and highly decentralized systems such as the In-
ternet is a major challenge. Indeed, the Internet is based on
decentralization and diversity. However, its distributed nature
leads to operational brittleness and difficulty in identifying the
root causes of performance degradation. In such a context,
network measurements are a fundamental pillar to shed light
and to unveil design and implementation defects. To tackle
this fragmentation and visibility problem, we have recently
conceived mPlane, a distributed measurement platform which
runs, collects and analyses traffic measurements to study the
operation and functioning of the Internet. In this paper, we show
the potentiality of the mPlane approach to unveil network and
service degradation issues in live, operational networks, involving
both fixed-line and cellular networks. In particular, we combine
active and passive measurements to troubleshoot problems in
end-customer Internet access connections, or to automatically
detect and diagnose anomalies in Internet-scale services (e.g.,
YouTube) which impact a large number of end-users.

Index Terms—mPlane; Distributed Measurements; Internet
Monitoring; Automatic Troubleshooting Support; Anomaly De-
tection.

I. INTRODUCTION

Since the early days of the Internet, network measurements
have always constituted a pillar to understand the behavior
of the network, specially when something goes wrong. To
address this issue we have recently conceived mPlane, a large-
scale network measurement and analysis framework. mPlane
is a distributed measurement architecture to coordinate traffic
measurements, with built-in support for iterative measurement
and, most of all, automated and advanced analysis. Probes,
which perform measurements, Repositories, which store, ag-
gregate, correlate, and analyze them, and a Supervisor which
orchestrates components, are the basic of mPlabe. Reasoners
are intelligent building blocks that extract knowledge, and
offer support to network administrators.

The complete mPlane architecture has been previously
presented in [1], where only some simple examples of ap-
plications have been discussed. In this paper, we briefly recall
the mPlane architecture – see Sec.II. Then we fully develop
use cases, which focus on highlighting and troubleshooting
on end-customer Internet issues. In particular, we show how
to use mPlane to detect and diagnose network and service
performance degradation events in operational ISP (Internet
Service Provider) networks, exploiting the richness of the
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Figure 1. The distributed measurement platform following the mPlane
architecture for ISP network troubleshooting, and its workflow. Green arrows
correspond to both active and passive measurements. Black arrows correspond
to measurement data that are exported from probes to repositories. Red arrows
correspond to anomaly notification reports. Blue arrows depict the requests
made by the Supervisor to trigger deeper data analysis, using for example
external distributed measurement frameworks such as RIPE Atlas.

measurements mPlane probes perform, and the analysis ca-
pabilities in terms of anomaly detection. We focus on three
different case studies: (i) diagnosis of performance degradation
in end-customer Internet access connections using hybrid mea-
surements, (ii) detection and diagnosis of service availability
issues in cellular networks, and (iii) detection and diagnosis of
QoE (Quality of Experience)-relevant issues in YouTube. We
additionally present a fourth analysis scenario in which we
implement a proximity location service to analyze inter-AS
paths between selected servers (e.g., YouTube serves, Face-
book severs, etc.), based on distributed active measurements
through RIPE Atlas.

After briefly summarizing related platforms in Sec. II, Sec.
III gives an overview of the mPlane architecture. Sec. IV
provides details on the operational ISPs considered in the case
studies and details traffic datasets. The results obtained in the
application of the deployed mPlane framework are presented
in Sec. V. Finally, Sec. VI concludes the paper.

II. RELATED PLATFORMS

Many measurement platforms have been proposed in the
past, such as iPlane [2], PerfSONAR [3], or RIPE Atlas1.
Each of them targets specific needs, and focuses mostly on
the monitoring of the network layer, relying exclusively on

1https://atlas.ripe.net/.
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active measurements. For instance, iPlane focuses on network
topology discovery via traceroute measurements to build a
predictive model of path latency; PerfSONAR and RIPE
Atlas offer active measurements from a distributed platform
(throughput, ping, traceroute, etc.), to again monitor network
paths. They offer limited processing capabilities or algorithm
for advanced diagnose, even if it is possible to run (custom)
algorithms on the top of collected measurements. For instance,
Calyam proposed an anomaly detection system specifically
designed to be integrated on the top of PerfSONAR measure-
ments [4].

mPlane platform is instead specifically designed to integrate
existing and new measurement probes. Indeed, mPlane already
integrates RIPE Atlas so that it is possible to instrument
RIPE measurements from a mPlane Reasoner. In addition,
mPlane offers support for passive and hybrid measurements.
For instance, in this paper we leverage passive measure-
ments collected by Tstat [5] to compare with active test (see
Sec. V-A) and to feed the anomaly detection algorithms with
rich information about the status of complex platforms, as the
YouTube infrastructure (see Sec. V-B). Note that capturing and
processing passive measurements at operational networks such
as those analyzed in this paper pose a much more complex
problem in terms of volume and analysis techniques than
relying on pure active measurements.

Besides coordinating probes, mPlane offers storage capabil-
ities, where data can be collected and processed by analytic
components, which, for instance, integrate methodologies to
identify anomalies. Furthermore, mPlane does not target the
monitoring of network layer only. For instance, we show its
ability to monitor Content Delivery Networks, and their direct
impact on end-user QoE. In summary, mPlane is the first
flexible, open and intelligent platform that aims at providing
monitoring and analysis capabilities for Internet services at
large, and not only of pure network layer problems.

Considering anomaly detection algorithms, many proposals
are present in the literature – see for instance the survey of
Chandola [7]. Most of them could be easily integrated into
mPlane. The most innovative part offered by mPlane is the
ability to design complete workflows, where actions can be
triggered as a consequence of alarms, and domain knowledge
can be easily integrated. This goes in the same directions as the
one proposed by Kanuparthy in [8], [9], where the Pythia sys-
tem is introduced; still, different from mPlane, Pythia focuses
mainly on network path troubleshooting, relying exclusively
on active measurements.

III. SYSTEM DESCRIPTION, COMPONENTS AND
APPROACH

The proposed distributed platform is an instance of the
more generic mPlane architecture. The mPlane monitoring
system is composed of four different entities, namely Probes,
Repositories, Supervisor and Reasoners. They inter-operate
thanks to a standard protocol, and are logically organized into
three layers in Fig. 1:

The Measurement Layer: consists of probes located at
vantage points within the monitored networks, which typically

generate large amounts of measurement data. The system
supports active measurements, e.g., ping or traceroute,
passive measurements, e.g., the analysis of traffic flowing on
a link, and hybrid measurements, e.g., the passive observation
of active probing traffic. Measurement campaigns may be
triggered on demand, with results returned as soon as the mea-
surement is completed; Or be run continuously, with results
periodically exported into a mPlane repository to limit the
storage utilization at the probe. For this specific instantiation
of mPlane, the measurement layer includes the RIPE Atlas
active platform using the so-called mPlane proxies [1].

The Analysis Layer: consists of repositories which collect
and aggregate data generated by the probes. Apart from the
storage capacity, the Analysis Layer is provided with a set
of analysis modules which process the data imported from
the probes. Such processing may involve filtering, grouping,
aggregation of the raw data imported from the probes, or more
complex analytics such as anomaly detection. The results are
a higher level of aggregation and visibility on the monitored
network, and can be directly accessed through a standard
queryable SQL-like interface.

The Coordination Layer:
consists of the the Supervisor and the Reasoner. The first

orchestrates probes and repositories. The latter receives output
of analysis modules, and may trigger alarms, or initiate addi-
tional operations in a reactive fashion, e.g., perform additional
on-demand measurements to investigate the anomaly.

As indicated in Fig. 1, the measurement layer is decomposed
in three different measurement approaches: hybrid measure-
ments combine active and passive measurements, and are used
in the analysis of end-customer Internet access connections;
passive measurements are instrumented by deploying sniffers
at Points of Presence (PoPs) aggregating a large number of
customers; finally, active measurements are performed through
both the RIPE Atlas and the IQM platforms.

A. Measurement Components

In more details, the passive probe used in all fixed-line
scenarios is Tstat [5]. Tstat is an open source packet analyzer
capable of monitoring links up to several Gb/s speed using
commodity hardware. It extracts information about both TCP
and UDP traffic flows at all the layers of the protocol stack,
from simple flow size, or RTT average and standard devia-
tion [6], up to layer 7 data (i.e., application-related). When
considering cellular networks, we rely on the METAWIN
passive monitoring probe [12], which is capable of handling
the complete 3GPP protocol stack.

We use two different active platforms: RIPE Atlas probes
and IQM (Internet QoS Measurement) probes2. Both probes
are capable of RTT and path measurements using ping
and traceroute tools; in addition, the IQM offers more
complex measurements, e.g., speed-tests and HTTP/HTTPS
performance metrics. RIPE Atlas probes are maneuvered

2IQM probes are directly deployed by the ISP
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through a custom interface3 which launch measurements and
retrieve results automatically.

As repository, we use DBStream [10]. DBStream is a data
stream warehouse tailored for large-scale traffic monitoring ap-
plications. It continuously analyzes the measurements obtained
by the probes. In particular, multiple instances of an Anomaly
Detection Analysis Module (ADAM from now on) run in
parallel on top of DBStream, flagging anomalous behaviors
in different traffic features. We briefly describe ADAM next.

Finally, the mPlane Supervisor is the standard one, provided
by the mPlane RI4 - Reference Implementation. The Reasoner
is a custom set of python code that, interacting with the
Supervisor, collects the output of the analysis module, and
eventually starts measurement for further investigations.

B. Anomaly Detection and Diagnosis

ADAM [13] is a mPlane analysis module which detects
unusual deviations in the probability distribution of a moni-
tored feature over time. In short, the ADAM base algorithm
detects anomalies based on the degree of similarity between
the distribution of a feature as currently observed, and a
set of distributions describing the normal behavior of the
monitored feature, i.e., a baseline. The latter is build through
a progressive refinement heuristic, which takes into account
the structural characteristics of traffic such as time of day
variations, presence of pseudo-cyclic weekly patterns, and long
term variations. The baseline thus evolves in time to adapt to
the dynamics of the system. The similarity between distri-
butions is computed on the basis of a symmetric extension
to the well-known Kullback-Leibler divergence. When the
difference is bigger than an (adaptive) confidence threshold,
ADAM raises an alarm. More details on ADAM can be found
in [13], where we apply the same base algorithms to detect
anomalies in Content Delivery Network (CDN) services.

Multiple instances of ADAM run in parallel, each analyz-
ing multiple traffic features at the same time. We split the
monitored features in two groups referred to as symptomatic
and diagnostic features. Symptomatic features are defined such
that their abrupt change directly correlates to the presence of
abnormal and potentially harmful events. Diagnostic features
shall provide contextual details of the anomalies, pointing to
their root causes. In a nutshell, by locating those diagnostic
signals which show a change at the same time or same
temporal scope to the detected anomaly, one gets a more
targeted and specific indication of which features might be
causing the anomaly.

C. Analysis Workflow

The detection and diagnosis of anomalies runs as a contin-
uous process. The Supervisor instructs passive probes to run
continuously, measuring and exporting the obtained data to the
DBStream repository. When an alarm is triggered, the Rea-
soner can instruct active probes to run further measurements.
The measurement and analysis workflow depends on the

3https://github.com/pierdom/atlas-toolbox
4https://github.com/fp7mplane/protocol-ri

specific case study, but apart from particular instrumentation
details, all the scenarios follow the same base-steps, described
in Fig. 1:
Step 1 - passive traffic monitoring: passive probes are
deployed at vantage points. In the case of large-scale ser-
vice monitoring, probes are deployed at PoPs aggregating a
large number of customers and their real traffic is captured,
discarding all privacy-sensitive information. 5 In the case of
end-customer access monitoring, Tstat is installed at the same
server which instantiates active measurements (a simple FTP
server used for speed-tests), resulting in the aforementioned
hybrid measurement approach.
Step 2 - active probing: active probes scattered in the ISP
(five per region) continuously perform speed-tests to measure
the available bandwidth on the network paths reaching the
ISP customers, periodically downloading (uploading) files
from (to) the FTP server. Active probes log the achieved
application layer throughput, transferring the results to the
same DBStream repository.
Step 3 - detection of anomalies: multiple instances of ADAM
run on top of DBStream, analyzing a set of features. As soon
as an abrupt change is detected in a symptomatic feature, an
alarm is raised to the Reasoner.
Step 4 - correlating multi-source measurement data: when
alarms suggesting unexpected performance degradation are
detected, the Reasoner runs correlation analysis (e.g., Factor
Analysis) to investigate which features show a similar abrupt
change. Correlated features are then compared against a cata-
log of known anomaly patterns or signatures, and if a match is
found, the most probable cause(s) are reported to the network
operator.

IV. DEPLOYMENT AND DATASETS

For the sake of end-customer connections monitoring, we
deployed active probes in more than 30 locations scattered
in the operational country-wide network of the ISP. As reg-
ular customers, active probes connects to the network using
an ADSL or an FTTH access technology; The FTP server
is installed in the ISP datacenter. This ISP offers three
configurations for ADSL connections (U-1Mbps/D-16Mbps,
U-1Mbps/D-12Mbps and U-0.5Mbps/D-8Mbps) and one for
FTTH (U-10Mbps/D-10Mbps). Each probe periodically runs a
speed-test by uploading (downloading) files of predefined size,
measuring the application layer throughput. Tstat runs on the
same server where the FTP is, and logs each TCP flow related
by the active tests. We ran the system for more than three
months (February the 1st till April the 30th, 2014), observing
the time series of application-layer throughput. Speed-tests are
scheduled every 4 minutes, resulting in a total dataset of 1.2
million speed-test reports produced by the active probes, and
as many TCP entries in the log generated by Tstat.6

5The deployment and the information collected for this has been approved
by the ISP security and ethic boards.

6Access lines for experiments are devoted to test only, with no actual
customer using those. As such, the testing traffic has minimal interference
with customers? traffic that cross the same path to the FTP server. Similarly,
no privacy issues are raised.
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Figure 2. Evolution of time of the throughput measured by one active
probe (top), the number retransmitted segments (center), and the coefficient
of variation of the RTT (bottom). U-1Mbps/D-16Mbps ADSL probe.

For the analysis of cellular network traffic and service
availability, i.e., the possibility for a client to obtain a response
from servers of given service, we deployed the METAWIN
passive probe at the core of a cellular ISP network in EU.
Traffic flows were captured at the well-known Gn interface for
two consecutive days by mid 2014. In this case study, we only
consider Domain Name System (DNS) traffic. The DNS is the
core component of the Internet, providing a flexible decoupling
of a service’s domain name and the hosting IP addresses.
Anomalies in Internet-scale services are likely to change the
normal DNS usage patterns. For example, users accessing a
temporary unreachable service would generate a new query
at every connection retry. For that reason, we extract features
derived from the DNS, e.g., frequency of DNS requests, error
codes, etc.

Finally, the QoE-based service performance analysis is
performed again using Tstat that passively monitor traffic from
a PoP where 30.000 residential customers are. We focus on
the analysis of YouTube traffic, that we extract using Tstat
classification modules. The complete dataset corresponds to
4 weeks of YouTube video traffic flows, captured during the
second quarter of 2013.

V. RESULTS AND DISCUSSION

In this section we report some of the results obtained with
the deployed mPlane framework in the aforementioned case
studies. Due to lack of space we do not provide a fully
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Figure 3. Evolution over time of the throughput measured by one active
probe (top), the number of retransmitted segments (center), the coefficient of
variation of the RTT (bottom). U-1Mbps/D-12Mbps ADSL probe.

detailed description on the complete diagnosis process for the
presented scenarios, but refer the interested reader to https:
//www.ict-mplane.eu/public/public-deliverables (reports D4.1-
4) for further details.

A. Combining Active and Passive Measurements

For the sake of brevity, we report here two examples of
anomalies that could be present in ADSL access links: low
SNR in ADSL channels and path congestion.

Low SNR in ADSL lines: Fig. 2 (top) reports the evolution
over time of the throughput measured by an active probe
accessing the ISP network through a U-1Mbps/D-16Mbps
ADSL interface for two days.7 Observe that the download
throughput curve appears to be noisy during the first day,
while after midnight, the ADSL line was re-calibrated to U-
1Mbps/D-8Mbps. Since then, speed-test measures are much
more stable over time. By correlating such output with the
statistics provided by Tstat, we could notice a fairly large
fraction of retransmitted segments during the first day (center),
and a constant coefficient of variation of the RTT (bottom).
The absence of evident day-night patterns let us exclude that
this situation might be due to network congestion, since this
typically emerges only during peak periods.

7The throughput reported in the plots is below the nominal bandwidth since
it is measured at application level.
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The most probable cause for this anomaly is the occurrence
of low signal-to-noise ratio (SNR) events at the physical link,
which can lead to large bit error rate (BER).8 Losses due
to noise cause TCP congestion control to (randomly) slow
down the download. The confirmation of this hypothesis is
given by the second half of the plots in Fig. 2, when the
ADSL modem automatically reduces the downlink capacity to
improve the SNR, i.e., negotiating 8Mb/s instead of 16Mb/s,
thus considerably reducing the packet loss rate, and making
RTT measurements more stable.

Congestion in the Network: Fig. 3 (top) reports the evo-
lution over time of the throughput measured by second active
probe (U-1Mbps/D-12Mbps ADSL). During both days, a clear
degradation in throughput is detected, with stable values dur-
ing the night, i.e., when the network is typically lightly loaded.
Conversely, available capacity highly decreases during peak
time. This suggests that congestion may appear in the path
toward the FTP server. By inspecting the statistics provided by
Tstat at the server side, we could confirm this intuition. Indeed,
notice how the RTT coefficient of variation (bottom) and the
rate of retransmitted packets (center) considerably increase
during the peak utilization period. Verification with the ISP,
such probe accesses the Internet through a bottlenecked Virtual
Leased Line, whose available bandwidth is out of the control
of the operator.

B. Detecting and Diagnosing Availability Issues

We present now a case study based on the detection and
diagnosis of a large scale anomaly occurred in the aforemen-
tioned cellular network. A significant and anomalous increase
in the number of DNS requests is observed between 9:00
and 10:00 of the second day. Conversations with the Network
Operations team revealed that the anomaly caused heavy stress
in specific parts of the network. Fig. 4(a) depicts the output of
ADAM when applied to the distribution of DNS requests per
device, which is defined as the symptomatic feature. ADAM
systematically generates anomaly warnings during the one
hour duration of the anomaly.

To find out the root causes of the detected anomaly, we
define a set of diagnostic features related to the class of
problems we target, based on expert know how. In particular,
we consider the following set of features: anonymized Mobile
Device Identifier (MSID), contacted DNS server IP, Radio
Access Technology (RAT), Access Point Name (APN), Type
Allocation Code (TAC), DNS requested Full Qualified Domain
Name (FQDN), device manufacturer, device Operating System
(OS), and error code of the DNS response (DNS rcode). The
first step of the diagnosis consists of identifying which of
these features present a significant change in their probability
distribution, simultaneously to the alarms generated by running
ADAM on the symptomatic feature.

Figs. 4(b) and 4(c) provide a closer look into the anomaly,
comparing the output of ADAM when applied to two of the
diagnostic features: the distribution requested FQDNs, and the
distribution of devices OS type. Both ADAM outputs also flag

8SNR and BER can be read from SNMP measurements as defined by RFC
2662.
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(c) ADAM output for the diagnostic feature OS type.

Figure 4. Output of the distribution-based detector for (a) the symptomatic
features (DNS query count per device) and two diagnostic features (b – FQDN
and c – OS type). All the plotted features exhibit distribution changes during
the anomalous event.

anomalies in these two features exactly at the same time of the
main anomaly trigger, suggesting that the issue might be due
to specific devices (OS) querying for certain services (FQDN).

The next step of the diagnosis is to drill down each of
the dimensions that are highly correlated with the anomaly.
This can be achieved, e.g., by comparing the heavy hitters
before and during the anomaly. For the specific case of the
FQDN diagnostic feature, we observed that, while some of the
top elements present a stable behavior (*.facebook.com and
*.google.com), the FQDNs *.apple.com.akadns.net, *.push-
apple.com.akadns.net, and xy-courier.push.apple.com show a
significant increase, pointing to a problem in the availability
of the push notification service deployed by Apple.

C. Detecting and Diagnosing QoE-relevant Anomalies

The last case study consists of the detection and diagnosis
of a major YouTube anomaly impacting the QoE of a large
number of customers during several days at peak-load times.
As the issue was caused by an unexpected caches selection
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(d) Anomalies in the video flows average download throughput across YouTube users.

Figure 5. Detecting a QoE-relevant anomaly in a real ISP. There is a clear
drop in the download flow throughput from Wednesday till Friday at peak-
load hours, between 20hs and 23hs. The additional drop in the QoE-based
KPI β reveals a significant QoE degradation. The anomalies are flagged by
ADAM in the selected symptomatic and diagnostic features.

done by Google (at least according to our diagnosis analysis),
the ISP internal RCA did not identify any problems inside
its boundaries. As reported by the ISP operations team, the
anomaly occurs on Wednesday the 8th of May, 2013. We
therefore focus the analysis on the week spanning the anomaly,
from Tuesday the 7th till Sunday the 12th. In the following
analysis, we generally use 50% percentile values instead of
averages, to filter out outliers.

Figs. 5(a) and 5(b) plot the time series of two different
symptomatic features related to the YouTube download perfor-
mance and to the end-user QoE. Fig. 5(a) depicts the median
across all YouTube flows of the download flow throughput
during the complete week. There is a normal reduction of the
throughput on Tuesday at peak-load time, between 20hs and
23hs. However, from Wednesday on, this drop is significantly
higher, and drops way below a predefined bad QoE threshold

of 400 kbps, as we found in [14].
To better monitor the QoE of YouTube videos from flow-

level passive measurements, we introduced in [15] a novel
QoE-based KPI defined as the ratio between the average down-
load throughput (ADT) and the corresponding video bit rate
(VBR), β = ADT/VBR. Intuitively, when β is lower than 1, the
player buffer becomes gradually empty, ultimately leading to
the stalling of the playback, which is the most relevant impact
on QoE [14]. In [15] we found that no stallings are observed
for β > 1.25. Based on this observation, Fig. 5(b) actually
confirms that the throughput drops are heavily affecting the
users experience, as the time series of the KPI β falls well
into the video stalling region, i.e., β < 1.25.

To conclude, we report in Figs. 5(c) and 5(d) the output
of ADAM for two selected features. Fig. 5(c) considers the
per /24 YouTube subnetwork served volume as the monitored
feature. From Wednesday the 8th of May onward ADAM rises
alarms from 15:00 to 00:00, which correspond to a different
selection of YouTube servers done by Google to serve the
monitored customers. Fig. 5(d) reports the ADAM output for
the average video flows download rate. In this case, ADAM
detects the anomalies only between peak hours (21:00-23:00)
from the 8th onward, coherently with the observations drawn
from Fig. 5(a). Comparing the changes on the served traffic
volume distribution against those on the video flows download
rate distribution, we observe that the server selection policy
used by Google resulted in a QoE degradation only during
the peak hours on the high load days. This suggests that
either the selected servers were not correctly dimensioned to
handle traffic load peaks, or that there is some heavy network
congestion at peak time in the paths from the selected Google
servers to the customers.

To unveil such kind of Internet-paths performance issues
within mPlane, we propose next a technique to perform direct
traceroute measurements in the downlink direction, from
the Google servers to the customers, i.e., a reverse tracer-
oute. Our techniques avoids relying on IP spoofing (normally
blocked by many ISPs), as done in previous work [16].

D. Distributed Active Measurements for Path Analysis

To analyze the performance of server-to-costumers Internet
paths in the most general scenario using mPlane, we rely on
the RIPE Atlas distributed active measurements framework.
We developed DisNETPerf, a Distributed Internet Paths Per-
formance Analyzer to perform direct traceroute measurements,
in the downlink direction. In a nutshell, given a certain source
server IP address IPs, and a destination customer IP address
IPd, DisNETPerf locates the closest RIPE Atlas IPDNP
probe to IPs, and periodically launches traceroutes from
IPDNP to IPd, collecting different path performance statistics
such as RTT per hop, end-to-end RTT, losses, etc.

Fig. 6(top) depicts the overall idea behind DisNETPerf.
DisNETPerf uses a combined topological and geographical-
based distance, as probes are located first by AS, BGP routing
proximity, and then by propagation delay. The selection of
IPDNP works as follows: given IPs, we select all the probes
in the same AS (or neighbor ASes, in case no local probes
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are found) and launch standard ping measurements towards
IPs. We consider the probe with the smallest minimum RTT
as IPDNP .

We say that the probe selected by DisNETPerf is a good
probe w.r.t. IPs and IPd if the network path from IPDNP to
IPd is highly similar to the path from IPs to IPd. Similar to
[11], we define path similarity as the fraction of common links
among both paths. Formally, we use the index RSIM (Route
Similarity), defined as:

RSIM(IPDNP , IPs, IPd) =
2 × common links(IPDNP , IPs, IPd)

total links(IPDNP , IPs, IPd)
(1)

where common links refer to the links shared in common
by both paths, and total links to the total number of links
for both paths. Note that links can be defined at multiple
granularities; in particular, for these evaluations we consider
links at the AS level, at the PoP level, and the router-interface
(IP) level. IPs to ASes mapping is done through the IP-to-
ASN service provided by Team Cymru9, whereas IPs to PoPs
mapping is achieved through the datasets made available by
iPlane [2].

In Fig. 6(bottom) we present evaluation results showing
the applicability of DisNETPerf in terms of path similarity.
The goal of the evaluation is to investigate whether the
probe selection approach used by DistNETPerf obtains probes
which present the most similar path to the one we want to
actually monitor. We use RIPE Atlas probes as source and
destination (i.e., IPs and IPd) so as to compute the real path
(i.e., the ground-truth) between source and destination. In the
evaluation, we randomly select 100 RIPE Atlas source probes
IPsi , i = 1..100, and consider a single fixed destination probe
IPd. For each of the sources IPsi we run DisNETPerf to
locate the 100 closest probes IPDNPi , obtain both the ground
truth path going from IPsi to IPd and the DisNETPerf path
going from IPDNPi

to IPd, and compute the RSIM index
RSIM(IPDNPi

, IPsi , IPd), i = 1..100. We compute RSIM
for AS level, PoP level, and IP level, and plot the CDFs for
the three cases. Results are reported for two different groups,
the former in which RSIM(IPDNPi) and IPsi are located
in the same AS (black dotted lines), and the latter in which
RSIM(IPDNPi

) is located in a neighbor AS (red solid lines).
When considering paths at the AS level, there is a significant
difference between the groups, and the case of same AS
co-location results in near optimal results. Nevertheless, we
observe that about 60% of the tests yield a RSIM index >
0.5. Finally, we observed that probes selected by DisNETPerf
generally correspond to paths with the highest similarity to the
ground-truth ones. Indeed, in more than 84% of the performed
tests, RSIM(IPDNPi

) results in the highest RSIM index
among all the selected candidates.

9http://www.team-cymru.org/IP-ASN-mapping.html
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Figure 6. DisNETPerf approach. DisNETPerf achieves almost perfect path
similarity at the AS level when IPDNP is located in the same AS of IPs,
and path similarity above 50% for most of the cases, also at the PoP and
interface level.

VI. CONCLUDING REMARKS

Unveiling network and service performance issues in com-
plex and highly decentralized systems such as the Internet is a
major challenge. mPlane provides a distributed measurement
platform which, among other applicators, can be used to shed
light in such performance issues. By deploying mPlane in
both fixed-line and cellular operational ISP networks, we have
shown how to use this powerful and novel framework to au-
tomatically detect and diagnose performance issues with very
different root causes in different scenarios. Finally, note that all
the software tools used in this paper are publicly available at
the mPlane project website (https://www.ict-mplane.eu/). We
refer the interested reader to https://www.ict-mplane.eu/public/
use-cases for more details on how mPlane is applied to many
other relevant use cases.
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to both active and passive measurements. Black arrows correspond to measurement data that are exported from probes to repositories. Red arrows correspond
to anomaly notification reports. Blue arrows depict the requests made by the Supervisor to trigger deeper data analysis, using for example external distributed
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Figure 2. Evolution of time of the throughput measured by one active probe (top), the number retransmitted segments (center), and the coefficient of variation
of the RTT (bottom). U-1Mbps/D-16Mbps ADSL probe.
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Figure 3. Evolution over time of the throughput measured by one active probe (top), the number of retransmitted segments (center), the coefficient of variation
of the RTT (bottom). U-1Mbps/D-12Mbps ADSL probe.
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(a) ADAM output for the symptomatic feature.
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(b) ADAM output for the diagnostic feature FQDN.
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(c) ADAM output for the diagnostic feature OS type.
Figure 4. Output of the distribution-based detector for (a) the symptomatic features (DNS query count per device) and two diagnostic features (b – FQDN
and c – OS type). All the plotted features exhibit distribution changes during the anomalous event.
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(a) Median of the flow download throughput per hour for all YouTube flows.
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(c) Anomalies in traffic volume served by YouTube /24 subnets.
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(d) Anomalies in the video flows average download throughput across YouTube users.
Figure 5. Detecting a QoE-relevant anomaly in a real ISP. There is a clear drop in the download flow throughput from Wednesday till Friday at peak-load
hours, between 20hs and 23hs. The additional drop in the QoE-based KPI β reveals a significant QoE degradation. The anomalies are flagged by ADAM in
the selected symptomatic and diagnostic features.
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Figure 6. DisNETPerf approach. DisNETPerf achieves almost perfect path similarity at the AS level when IPDNP is located in the same AS of IPs, and
path similarity above 50% for most of the cases, also at the PoP and interface level.


