
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Using semantics to automatically generate speech interfaces for wearable virtual and augmented reality applications /
Lamberti, Fabrizio; Manuri, Federico; Paravati, Gianluca; Piumatti, Giovanni; Sanna, Andrea. - In: IEEE
TRANSACTIONS ON HUMAN-MACHINE SYSTEMS. - ISSN 2168-2291. - STAMPA. - 47:1:(2017), pp. 152-164.
[10.1109/THMS.2016.2573830]

Original

Using semantics to automatically generate speech interfaces for wearable virtual and augmented reality
applications

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/THMS.2016.2573830

Terms of use:

Publisher copyright

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2641286 since: 2020-07-09T10:39:45Z

IEEE

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXX XXX 1

Using Semantics to Automatically Generate
Speech Interfaces for Wearable Virtual and

Augmented Reality Applications
Fabrizio Lamberti, Senior Member, IEEE, Federico Manuri, Gianluca Paravati, Member, IEEE,

Giovanni Piumatti, and Andrea Sanna

Abstract—This paper presents a framework for automatically
generating speech-based interfaces for controlling virtual and
augmented reality applications on wearable devices. Starting
from a set of natural language descriptions of application
functionalities and a catalog of general-purpose icons, annotated
with possible implied meanings, the framework creates both
vocabulary and grammar for the speech recognizer, as well
as a graphic interface for the target application, where icons
are expected to be capable of evoking available commands. To
minimize user’s cognitive load during interaction, a semantics-
based optimization mechanism was used to find the best mapping
between icons and functionalities and to expand the set of valid
commands. The framework was evaluated by using it with see-
through glasses for AR-based maintenance and repair operations.
A set of experimental tests were designed to objectively and
subjectively assess first-time user experience of the automatically-
generated interface in relation to that of a fully personalized
interface. Moreover, intuitiveness of the automatically-generated
interface was studied by analyzing the results obtained through
trained users on the same interface. Objective measurements
(in terms of false positives, false negatives, task completion rate
and average number of attempts for activating functionalities)
and subjective measurements (about system response accuracy,
likeability, cognitive demand, annoyance, habitability and speed)
reveal that the results obtained by the first-time users and
experienced users with the proposed framework’s interface are
very similar and their performances are comparable to those of
both the considered references.

Index Terms—Virtual reality, augmented reality, wearable
devices, automatic user interface generation, speech, semantics.

I. INTRODUCTION

RECENT years witnessed tremendous developments of
technology for virtual and augmented realities (VR and

AR), with an ever increasing number of big IT players entering
the market in different ways. Some companies developed
their own all-in-one devices, such as Epson with its Move-
rio1 glasses, or Microsoft with its HoloLens2 project. Other
companies adopted a kind of integration strategy by designing
products that need to be paired with users’ smartphones, such
as the Gear VR3 by Samsung or the Cardboard4 by Google.

Authors are with the Dipartimento di Automatica e Informatica, Politecnico
di Torino, 10129 Torino, Italy. E-mails: {fabrizio.lamberti, federico.manuri,
gianluca.paravati, giovanni.piumatti, andrea.sanna}@polito.it

Manuscript received Xxxx XX, XXXX; revised Xxxx XX, XXXX.
1http://www.epson.com/moverio
2https://www.microsoft.com/microsoft-hololens/
3http://www.samsung.com/eg/gearvr
4https://www.google.com/get/cardboard/

There are also companies that acquired enabling technology
developers, such as Apple that acquired Metaio5, or Facebook
that recently bought Oculus6.

To date, VR and AR have already been exploited in a wide
variety of fields, encompassing entertainment [1], health [2],
engineering [3], manufacturing [4], logistics [5], and trans-
portation [6], to name a few and new successful use cases are
advertised every day. With the continuous expansion of related
technologies at the consumer level, it is not difficult to foresee
an explosion of opportunities for VR and AR in the near
future, leading to the creation of even more powerful solutions
and their application in a growing number of domains.

Despite such huge potential, a lot remains to be done to let
users properly interact with virtual and augmented contents
in all possible usage scenarios. Interesting reviews of existing
user interfaces (UIs) for VR and AR are available [7], [8],
where interfaces are generally categorized into the following
main groups: text-based, tangible, haptic and tactile, gaze-
based, visual (e.g., relying upon gesture recognition), and aural
(e.g., using speech recognition). It is worth noting that such
reviews did not consider other UIs that are currently being
experimented, e.g., the UIs based on brain or other biological
signals.

The extreme heterogeneity of envisioned application sce-
narios does not allow any specific category of UIs to be
identified as the dominant one. As a consequence, the last
few years have witnessed an incredible proliferation of UIS
implemented on ad-hoc basis, which renders reusability of
results extremely hard to pursue. Although a number of
guidelines have been developed [9], [10], often derived from
general human-computer interaction design principles, turnkey
solutions for developing UIs comparable to those available
for developed UIs, e.g., for creating graphic UIs, are still
scarce. A conventional approach is to provide the developers
with APIs implementing basic functionalities (e.g., for gesture
recognition, eye tracking, etc.) and then leave them with the
burden of building the UI.

Moving from the above considerations, this paper aims at
presenting the design of a framework that renders creation
of interfaces for controlling VR and AR applications easy.
Given the growing demand for mobile and wearable solutions,

5https://www.metaio.com/
6https://www.oculus.com

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXX XXX 2

it was decided to focus the research on speech UIs, which are
applicable to both the contexts.

Speech interaction is natural [11] and can be combined with
other interaction modes to devise multi-modal UIs. It also al-
lows users to handle hands-free tasks, which might be essential
in a number of application fields, like maintenance, medical
practice, vehicles operation, etc. [12]. However, speech inter-
face has its own drawbacks [13] relating mainly to response
time (given the serial nature of voice commands), recognition
of errors (due to ambient noise or conflicting audio patterns)
and cognitive load (as the user needs to learn and recall correct
vocabulary and grammar). Some of these drawbacks can be
addressed by technological advances, but others only by an
appropriate design methodology [14]. The commands should
be so chosen as to be close to the intended meaning, and the
functionality should be the same for more than one command.
Moreover, the commands should be accompanied by graphical
representations that can leverage on the user’s visual memory
[15]. Unfortunately, the developers are provided with only the
basic tools in the above steps [16], [17].

To effectively meet the developers’ needs, the proposed
framework was so designed that it can support the creation
of speech interfaces where application functionalities can be
activated by a flexible set of voice commands, which can
also be represented visually in a concrete graphic interface.
The developers were asked to provide a description of the
interface and its functionalities by means of short phrases.
The symbols to be used in the graphic interface were selected
from a library containing icons and associated meanings. The
library was developed from a publicly-available set of icons,
and by asking the users, who were unaware of the final goal,
to provide a description of their content or functionality by
way of responding to an online questionnaire.

Functionality and icon descriptions were processed by a
semantic-based optimization mechanism, which selected the
icons with the highest probability of evoking a given func-
tionality and simultaneously minimized the use of icons with
implied meanings, shared by other icons, besides preserving
visual consistency throughout the interface. The phrases as-
sociated with the selected icons and the corresponding func-
tionalities were then syntactically and semantically expanded
(to enhance flexibility in recognition) and their ambiguities
removed (to enforce a one-to-one command in functionality
mapping). The results were then considered as valid com-
mands for the speech recognizer.

The framework was designed to work independent of the
application to be controlled and the technology used. The
effectiveness of the framework was evaluated by using it in
an ongoing investigation of the European Project EASE-R37.
The designed framework was exploited particularly to auto-
matically generate a speech interface for a wearable-based
AR application running on the Epson Moverio BT-2008 smart
glasses, used in maintenance and repair of machine tools
[18]. The quality of the automatically-generated interface was
assessed by comparing it with a user-generated interface, in

7http://www.easer3.eu/
8http://www.epson.com/cgi-bin/Store/jsp/Product.do?sku=V11H560020

terms of the impact of visual cues and semantic processing,
and by evaluating the first-time user experience (FTUE).

The remaining part of this paper is organized as follows:
Section II provides a review of related work; Section III
presents the overall architecture of the designed framework,
and Section IV discusses the experimental observations. Fi-
nally, Section V sums up the conclusions drawn from this
study, followed by suggestions for future research.

II. RELATED WORK

Literature relevant to the current work encompasses various
research areas, ranging from interaction with VR and AR ap-
plications, through speech interfaces, and finally to automatic
interface generation techniques.

A. Interaction with VR and AR Applications
Spread of VR and AR remained stifled for a long time by

technological constraints, but recent developments in mobile
and wearable technologies significantly boosted the creation of
VR and AR solutions. Today, affordable, head-mounted and
see-through displays are available for many consumer-oriented
purposes, like gaming, tourism, education, etc. [19], [20], [21].

While opening up enormous possibilities, the technological
evolution also brought to the fore significant challenges re-
garding human- machine interaction. In fact, many paradigms
used in traditional settings are no more applicable to mobile
and wearable devices. Hence, researchers are experimenting
with different modalities, often combining some of them into
mixed interfaces and performing comprehensive user studies
to determine their applicability in relevant scenarios [22].

Multi-modal interfaces proved their viability in supporting
complex interaction tasks [23]. It is well known that, in
dealing with these tasks, if the design is accurate, it can
benefit from the advantage of a specific interaction modality,
besides simultaneously limiting the impact of its drawbacks.
For instance, mouse and gestural commands can be effectively
exploited for direct object manipulation (e.g., for positioning
virtual elements using 2D or 3D coordinates), while voice
can be used at the same time for descriptive tasks (e.g.,
for choosing what to work with). Thus, for instance, Irawati
et al. used speech and hand gestures for interacting with
virtual furniture in a wearable-based AR application in [24].
A similar approach was adopted by Koelsch et al., who used
voice commands in combination with a hand-held trackball to
interact with AR contents during maintenance and emergency
rescue tasks [25].

On the other hand, uni-modal interfaces are generally ex-
ploited in simpler interaction scenarios. Common uni-modal
approaches for interacting with large-scale VR solutions ex-
ploit speech, wands, laser pointers, as well as hand and
body gestures, whereas AR applications on mobile devices
are often managed by means of native touch controls and
voice commands [26], [27]. The foregoing modalities are not
always applicable to setups based on wearable devices. In fact,
some situations require only hands-free operations, e.g., when
executing maintenance, medical or other hazardous tasks [14]
or improving service productivity and efficiency [28]. In these
situations, generally speech interaction is considered.

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXX XXX 3

B. Speech Interfaces

Speech interfaces can be exploited to design two broad
classes of applications, namely dictation and command &
control [29]. Applications relevant to the current work be-
long to the second class. The spectrum on command &
control interfaces ranges from simple prompt and response
interfaces to full sentence conversational agents, which have
been experimented in a wide range of application scenarios
encompassing air traffic control [30], medical practice [31],
military operations [32], etc.

Independent of the targeted application, using a speech
interface has to address several challenges, such as convert-
ing the acoustic voice signal into a sequence of words and
translating voice strings into a format that is understandable
to machines. Besides such technological challenges, which are
beyond the scope of this work, a key conceptual issue is cited
as one of the major causes for poor user experience of those
who use speech interfaces: “How to make the users aware
of what they can say?” [14]. This problem is the same as
the problem one faces in passing commands from command-
line to graphic interfaces. In command-line interfaces, the
boundaries of what can and what cannot be done, i.e., the
functionalities available become evident only on knowing
the overall set of issuable commands [29]. Hence, graphic
interfaces were designed with the goal of visually displaying
such functionalities to the user through evocative graphic
signs.

In many speech-only applications, like automatic interactive
voice response systems, the above problem is tackled by
helping the users in the interaction with available commands,
using the so-called vocal prompts [33]. But, this approach
has a limitation: the speech output is slow, and the users
might, therefore, find it difficult to remember all the available
commands [34].

When a speech interface is used in combination with a
display, cues about available commands may, actually should,
be provided. The cues can leverage on the user’s visual
memory, thus reducing the cognitive load and limiting, at the
same time, interference with the verbal composition processes.
This principle is ignored in what is often referred to as a “voice
command bar” [15], where text labels are used to display
valid commands. The bar acts both as a reminder and as an
education tool, making the learning curve smoother and the
commands easier to remember. Effectiveness of this paradigm,
first introduced by Kurzweil Applied Intelligence9 and known
as “say what you see”, has been demonstrated in different
scenarios [35], [36]. Building on the importance of providing
a visual representation for voice commands, Danis et al. argue
that, for creating a successful speech interface, the commands
must be made mentally available in the easiest way, not only
by always displaying the words on the screen, but also by
showing to the user more examples of what can be said [37].
This approach has been successfully adopted in the context of
AR also [14].

As the number of commands increases, implementing a
text-based voice command bar becomes harder. Hence, text

9http://www.kurzweiltech.com/kai.html

labels have to be replaced by icons [38], assuming that each
icon is suggestive of one or more voice commands. However,
even after using visual cues, mapping the issued commands
to the expected functionalities is not a straightforward task.
With this perspective, Shriver and Rosenfeld created the so-
called universal speech interface by statistically analyzing
users’ preferences of the commands to be used for activating
common functionalities [39].

C. Automatic Interface Generation Techniques

Associating an icon with one or more voice commands
is a rather common practice on desktop computers, where
accessibility features are available in major operating systems.
A similar consideration applies to the mobile world, where
popular speech recognition-based personal assistants let the
users control their devices using voice commands. However,
although voice commands (with some exceptions) can be
exploited in principle to control any application functionalities,
their use is often limited to native applications, because third-
party developers need to code all the interactions explicitly
[40]. Addressing the above limitations, several approaches
have been developed to automatically create a speech interface
by interpreting what is displayed on screen [41], [40].

Automatic generation of UIs is pursued not just for acces-
sibility purposes or only in the context of speech interfaces.
In fact, the focus has been more on graphic UIs, with the aim
of reducing development costs [42], enhancing usability [43],
maximizing performance [44], supporting personalization [45]
and fostering portability on heterogeneous devices [46].

Although, in most cases, the techniques for automatic
interface generation have been designed to arrange graphic
elements in a suitable layout or to let the user choose the
best widget for a given interaction task, there are several
works operating at the level of individual graphic elements
and, more specifically, of icons. Icons play, today, a key role
in the graphic interface, as they can convey, in a condensed
form, the meanings of the functionalities they represent. Icons
are especially important for novice users who use interactive
systems only infrequently and are assumed to be capable of
transcending language barriers [47].

However, drawing or selecting icons for an interface is not
a trivial task. Ideally, icons should be capable of activating
proper mental models in the users, but this is not always the
case, mainly because of the phenomenon known as icon “am-
biguity”: different individuals may interpret the same icon in
different ways, thus associating it with different functionalities.
In fact, icon interpretation depends both on the actual user’s
mental model and on other factors, such as context, culture
and experience.

A common approach adopted in selecting or drawing icons
is to ensure that the “articolatory distance” between the
physical form and the implied meaning is minimal [48]. For in-
stance, the icon that shows a person discarding trash will have
a small articolatory distance, because the iconic object is self-
explanatory. On the contrary, for an icon with a power button,
the distance has to be much higher, because the graphic symbol
is rather abstract and its effect on the controlled application

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXX XXX 4

Fig. 1. High-level architecture and interactions between client and server.

needs to be learned or discovered. The steps that need to be
taken for minimizing this distance and for making the criteria
for an icon to be effective, include, among others, legibility,
distinctiveness, comprehension, memorability, familiarity, and
reaction time [49], [50]. The strategies proposed for assessing
icons date back to 1960’s and include appropriateness, prefer-
ence rating, naming and matching, comprehension, recognition
and recall as well as intuitiveness tests [51], [52], [53].

Given the complexity of design and selection tasks, the
research efforts have been devoted to finding a way to auto-
mate the process. For instance, Morioka proposes an approach
to automatically generate complex icons by combining basic
graphic patterns [54]. Keogh et al. develops a methodology
for replacing the icons of a file system with automatically-
created icons that reflect the actual content of files [55]. Oda
and Itoh propose a somewhat similar strategy to automatically
generate icons for music files by matching tunes with images
[56]. Setlur and Mackinlay designs a method to automatically
generate large icon libraries for use in the visualization of
categorical data [57], whereas Pickering addresses the problem
of icon selection, with the aim of enforcing consistency in the
usage of graphic signs within, as well as across, applications,
and enhancing text expressiveness [58].

III. PROPOSED FRAMEWORK

The proposed framework was structured on the lines of
client/server architecture, as shown in Fig. 1. The server is
responsible for generating the target application interface, in-
cluding the vocabulary and grammar for the speech recognizer,
as well as the corresponding icon-based visual cues. This off-
line process can be performed only once per each application.
At run-time, the server manages the speech recognition engine
and communicates to the client the functionalities to be
activated, based on the commands issued. The client reacts by
activating the specific functionality and notifying the server
about interface changes. The design strategy adopted here
significantly reduces the dependence on the client, thus allow-
ing the target application to be implemented using different
technologies and/or programming languages.

A. Server Architecture

The off-line interface generation process, on the server side,
receives as input a description of functionalities of the target
application together with data about the available icons. Its
output is a mapping that associates each icon (to be displayed
on the application interface) to a specific functionality and a
set of implied speech commands (each expected to be evoked
by the corresponding icon).

Application functionalities are described by the developer,
using short phrases of one or more words. Icon data comes
from an annotated catalog, which was created by interviewing
generic subjects and collecting short descriptions of their
possible meanings. Application and icon descriptions are
semantically analyzed to measure the correlation between
functionalities and icons (defining the extent to which their
meanings are related), as well as the distance among icons
(defining the extent to which their meanings are unrelated).
The mapping is determined by an optimization method, which
considers the outcome of the semantic analysis to maximize
interface flexibility and robustness, while preserving visual
consistency. Finally, voice commands are generated by lex-
ically and semantically expanding phrases associated with
the functionalities and icons included in the mapping. In the
following pages, the modules and methodologies developed for
realizing the above process are described in detail. To facilitate
easy understanding, the presentation will often refer to the case
study of AR maintenance, introduced in Section I.

1) Application Description: The developer is expected to
provide a description of all client application functionalities
using a state machine model. The state machine was assumed
to represent the flow of application interface, indicating which
functionalities would be available at any given moment and
how they affect the interface when activated. Fig. 2 is a graph-
ical representation of the state machine for the application
considered in the case study.

The state machine is described using an extension of the
W3C’s State Chart XML (SCXML) notation10. Fig. ?? is an
excerpt of the SCXML description that could be provided
by the developer for the considered application. Function-
alities are described as events (attribute event) that acti-
vate transitions (tag <transition>) between states (tag
<state>). For each functionality, one or more phrases are
provided using the <phrase> tag. Moreover, the developer
may specify relationships among functionalities by defining
the so-called affinity groups with the <affinity-group>
tag. For instance, “next step” and “previous step” in Fig. 2
are two affine functionalities, as they are complementary.
Similarly, “play video”, “pause video” and “stop video” are
affine, because they are all related to video control.

2) Icon Data Collection: The proposed methodology re-
quires a catalog of icons, annotated with implied func-
tionalities. The catalog should, in principle, be sufficiently
comprehensive to include all the icons required to create
the interfaces of various applications. Indeed, a number of
icon sets exist in which each icon is assigned one or more
significant names. However, what the proposed method needs

10http://www.w3.org/TR/scxml/

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXX XXX 5

Fig. 2. State chart representing the interface of the application for AR maintenance considered in the used case (see Section I).

!"#$%&'()(*(+&,-%+()'%.)/-'+00,-123+()*.)+)#.-4'
''!"*+*.'(5,-067#.5/6.'"*.0'*6+#8()9-4'
''''!*6+)"(*(7)'.:.)*,-06.:(7/";"*.0-'*+69.*,-067#.5/6.'"*.0-<4'
''''!*6+)"(*(7)'.:.)*,-).$*;"*.0-'*+69.*,-067#.5/6.'"*.0-<4'
''''!*6+)"(*(7)'.:.)*,-+""("*+)#.-'*+69.*,-+""("*+)#.'5(+&79-<4'
''''!*6+)"(*(7)'.:.)*,-:(5.7-'*+69.*,-:(5.7-<4'
''''!*6+)"(*(7)'.:.)*,-.$(*-'*+69.*,-.$(*'5(+&79-<4'
''''''==='
''!<"*+*.4'
''==='
''!.:.)*')+%.,-).$*;"*.0-4'
''''!0>6+".':+&/.,-+:+)*(-<4'
''''!0>6+".':+&/.,-0+""7'"/##.""(:7-<4'
''!<.:.)*4'
''==='
''!+??()(*@A967/0'*@0.,-%7:.'"*+*.-4'
''''!.:.)*':+&/.,-06.:(7/";"*.0-<4'
''''!.:.)*':+&/.,-).$*;"*.0-<4'
''!<+??()(*@A967/04'
!<"#$%&4'
!

Fig. 3. Developer-provided state machine for the interface in Fig. 2 showing
the functionalities (and text-based descriptions) and relations among them.

is a collection of meanings, each expressed as a phrase
of one or more words, including frequency statistics. Such
an annotated catalog was created by using approaches that
are rather common in usability tests of graphic interfaces
[53], where one or more sets of alternative visual signs are
evaluated through questionnaires and user studies. Instead of
having the icons drawn from scratch by a graphic designer or
assembling them from multiple sources on the Web, a publicly-
available set named Clear Icons11, comprising 50 general-
purpose icons, was used. Then, an online questionnaire was
designed, presenting the icons in a random order. Participants
(selected among university students) were asked to provide,
for each icon, one or more phrases describing the functionality
that could be possibly activated in a generic device, application
or appliance. The questionnaire was returned by 28 subjects
and each icon received, on average, 41 descriptions12.

3) Semantic Analysis: The process of semantic analysis
exploits information from the MultiWordNet 1.5.0 lexical
database [59], an Italian version of the well-known WordNet

11http://appzgear.com/products/clear-icons.htm
12http://intelligenthci.altervista.org/questionario/

thesaurus [60]. As has been mentioned, the goal was to
calculate the functionality for icon correlation and the icon
to icon distance measure for exploitation in the optimization
module. Phrases associated to every icon and functionality
were processed to remove stop words. Then, the remaining
words were linked to lemmas in the lexical database by
applying stemming and lemmatization mechanisms. For each
word, the part of speech was recorded, together with the
details about how the lemma was obtained (e.g., word found as
is, conjugated verb, etc.). With such information, correlation
wcorr

ij between icon gi and functionality fj was computed as
follows. First, considering the lemmas, all the synonyms and
antonyms were extracted. Then, a similarity index sim(ps, pt)
for two generic phrases ps and pt composed of NW

s and NW
t

words was defined by considering the number of matching
lemmas (nLst), synonyms (nSst) and antonyms (nAst), for each
word in the two phrases. If nAst > 0, then sim(ps, pt) = 0.
When nAst = 0 and nLst = NW

s , then sim(ps, pt) = 1.
Otherwise, if min(nLst+n

S
st, N

W
s) = NW

s , then sim(ps, pt) =
(nLst + 0.5 · nSst)/(nLst + nSst); if nLst + nSst 6= 0, then
sim(ps, pt) = (nLst+0.75·nSst)/[(nLst+nSst)·max(NW

s , NW
t)].

The weights in the above equations were empirically defined
to account for the fact that synonyms could include meanings
that are far from those of the original word. Moreover, consid-
ering the fact that the number of words in the two sentences
could be different, they also took into account the possible
meaning of missing information. Finally, the correlation was
obtained as

wcorr
ij =

1

NP
i ·NP

j

NP
i∑

u=1

NP
j∑

v=1

sim(piu, p
j
v) (1)

where piu is the u-th phrase of icon gi, whereas pjv is the v-th
phrase of functionality fj . NP

i and NP
j are the total number of

phrases associated to icon gi and functionality fj , respectively.
Distance wdist

i1i2
between icons gi1 and gi2 was computed

similarly, as 1 minus the icon-to-icon correlation value.

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXX XXX 6

4) Optimization: The mapping process between icons and
functionalities was formulated as an optimization problem. To
define the problem, application description was considered as
having been composed by NS states and NF functionalities.
By defining NG as the overall number of available icons, a
binary decision variable xij ∈ [0, 1] was introduced so that

xij =

{
1, if icon gi is associated to functionality fj
0, otherwise (2)

The following constraints were enforced

NG∑
i=1

xij = 1 ∀j = 1, 2, . . . NF

NF∑
j=1

xij ≤ 1 ∀i = 1, 2, . . . NG

(3)

ensuring that each functionality was mapped exactly to one
icon, and the same icon was not associated to more than one
functionality. Two helper functions were also defined as

qsol(i) =

NF∑
j=1

xij

qstate(i, s) =
∑

j∈{j|aj∈Ss}

xij

(4)

where qsol(i) = 1 if icon gi is in the solution (i.e., associated
to a functionality) and qstate(i, s) = 1 if icon gi is present in
state Ss (i.e., mapped to a functionality in that state).

The solution needs to maximize the correlation between
functionality and associated icon, the icon-to-icon distance in
a given state, and the so-called icon affinity (defined later in
this Section).

The metrics for correlation and distance were derived in the
semantic analysis step (see Section III-A3). Cost functions for
correlation and distance are defined as

objcorr = max

NG∑
i=1

NF∑
j=1

wcorr
ij xij

objdist = max

NS∑
s=1

NG∑
i1=1

NG∑
i2=1
i1 6=i2

wdist
i1i2 qstate(i1, s)qstate(i2, s)

(5)
Overall correlation is the sum of the wcorr

ij coefficients of
all the functionality-icon pairs. Distance was calculated for
every state, considering the distance coefficient wdist

i1i2
for each

pair of icons gi1 and gi2 appearing in that state. Icon affinity
is related to the visual aspect of icons. In fact, the icons’
styles should be mutually consistent, especially when they
are associated to related functionalities. For example, if the
functionality “next step” is associated to a “right arrow” icon,
then the “previous step” functionality, if present, should be
associated to a “left arrow” icon with the same style. As for
functionalities, icons can be associated to one or more affinity
groups.

Affinity waff
i1i2

between two icons gi1 and gi2 is calculated
as the ratio between the number of affinity groups shared and

the total number of groups defined for icons. By referring to
F aff
i as the i-th functionality affinity group and to NA as

the total number of groups specified for functionalities, the
following cost functions can be defined

objoverall
aff = max

NG∑
i1=1

NG∑
i2=1
i1 6=i2

waff
i1i2

qsol(i1)qsol(i2)

objaff = max

NA∑
k=1

NG∑
i1=1

NG∑
i2=1
i1 6=i2

∑
j1,j2∈{j|fj∈F aff

k }
j1 6=j2

waff
i1i2

xi1j1xi2j2

(6)
The first function represents the affinity of all icons belonging
to the solution, and the second one the affinity among icons
associated to functionalities of a particular affinity group.
Although the overall affinity is already being maximized by
the first function, the second one helps to speed up algorithm
convergence by avoiding icons that do not match with affine
functionalities.

The problem was solved by using a multi-objective meta-
heuristic optimization approach to provide scalability in terms
of number of available icons and number of functionalities,
because solution space has a size of NG!/(NG −NF)!.
Implementation was created by using the jMetal [61] frame-
work. The solution was represented by an array of integers,
indicating icon indexes, whereas position in the array is
associated to the functionality. The NSGA-II genetic algorithm
was used with a polynomial mutation and a SBX crossover
operator. The algorithm can obtain high-quality solutions,
though convergence speed can still be improved, e.g., by
adopting a different strategy for representing the solution.

5) Command Expansion: Once the optimal mapping was
found, the last step in the generation of the interface consists
in building the vocabulary and grammar to handle commands
by the speech recognition engine. As conflicts can arise among
commands, they were confined to a single state, and expansion
was performed separately for each state. For each state and
for each functionality-icon pair in that state, the algorithm
considered all the phrases associated to both functionalities
and icons. Lemmas linked to each word were expanded
into synonyms and the verbs were conjugated to imperative
form. Expanded terms were combined into new phrases by
computing meaningful combinations. Phrases were weighted
to account for their frequency and length by considering the
way they were generated. Finally, the phrases were converted
into commands by replacing some words (e.g., articles such
as “a”, “the”, etc.) with wildcards that match any word the
user pronounces, thus increasing flexibility during recognition.
Once all the functionality-icon pairs in a state were processed,
the associated commands were filtered, based on their weight.
Potential overlaps among commands were solved so that, at
the end of the process, each functionality would be associated
to an independent set of commands.

6) Speech Recognition: This module was developed using
the Microsoft Speech Platform13, which presently supports 26

13https://msdn.microsoft.com/en-us/library/jj127858.aspx

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXX XXX 7

languages. Implementation for this study operated in Italian
language to limit recognition errors possibly caused by mis-
pronunciation.

B. Client Architecture

The client side of the system was implemented by a library
that manages the user interface and the communications with
the server. The target application adopted in the considered
case [18] was developed, using the Metaio SDK [62] AR
framework. Specifically, it was built using the AREL tech-
nology, which lets the user create the interface as an HTML
page with the logic defined in JavaScript. Hence, the client
library was implemented in Javascript. Nonetheless, it can be
easily implemented by using different programming languages
and in different environments, thus allowing the deployment of
the devised interface generation mechanism on heterogeneous
platforms.

Initially, the application configures the client library with
the state machine of its interface (see Fig. 2, for the case
selected to use). It also sets up hooks between interface
functionalities and the codes that actually implement them.
Once the application is started, the Javascript library connects
to the server, requests the functionality to icon mapping, and
creates the user interface. Finally, it moves to the first state of
the interface (displaying the corresponding icons) and notifies
the server.

When a state update is received, the server loads the associ-
ated vocabulary and grammar and starts the speech recognition
engine. Every time a command is recognized with enough
confidence, the client is informed of invoking the matching
functionality, triggering its activation.

Fig. 4 depicts a screenshot of the client application (obtained
by disabling see-through mode). Maintenance operations are
carried out in stereoscopic mode, which allows the user to
focus both on the object to be maintained and the 3D assets
used as AR hints. However, it was discovered that most users
find it difficult to focus the icons shown in that mode, because
they lie on a virtual plane at distances different than those of
both virtual and real contents. Therefore, by adopting the same
approach as the one pursued for native icons of the Moverio
glasses, stereoscopy was disabled for icons. Icons are rendered
on the sides, in such a way that, for instance, the icons on the
left can be seen only with the left eye.

IV. EXPERIMENTAL RESULTS

The following Section assesses the effectiveness of the
proposed framework in supporting the selected case in terms
of wearable AR-based maintenance and repair operations.

Assessment encompassed three experimental tests. The first
test has been designed to evaluate framework ability to create
an interface where icons used are capable to evoke voice
commands that, when issued by the user, will be recognized
and will activate the expected functionality. The second test
was carried out to measure the first-time user experience of the
automatically-generated interface. In this case, intuitiveness
and usability were evaluated through a set of performance
indicators by comparing the first-time use of the application

Fig. 4. Client application interface in the “procedure step tracking” state.

with a trained/experienced use. The third test was carried out
to compare the FTUE of the interface created by the proposed
framework with that of a sub-optimal fully-personalized one.
In this case, the users were allowed to freely decide the set
of icons to be used for building the graphic interface, as
also the mapping between voice commands and application
functionalities. To ensure fairness in comparison, expansion
techniques were applied to both the command sets.

The hypothesis to be verified is that the first-time user
performance of the interface generated with the devised frame-
work is comparable to the trained user performance that can
be achieved on the same interface, by using the sub-optimal
interface.

A. Setup

For this study, 45 participants (24% female, 76% male) of
an average age of 25 years (σ = 4.8) were selected among
university students and equally distributed among the three
tests. Less than half (44%) of the participants had prior expe-
rience with speech recognition systems (mainly on smartphone
devices and gaming consoles) and a few of them (11%) with
AR applications and/or wearable devices. Considering this in-
formation, the participants were evenly distributed among the
three tests. None of them had any experience in maintenance
and repair of machine tools. Though all the participants were
native Italian speakers and the Italian language was adopted
for the speech recognizer, the rate of command recognition
could still be influenced by other factors, such as the difference
between the backgrounds and origins of some participants.
However, these participants were evenly distributed among the
three tests. As a consequence, it was assumed that these dif-
ferences in speech recognition performance did not influence
the overall considerations. The setup for each test is described
in detail below.

1) First Test: This test included a preparatory phase, in
which the users were driven by an instructor into exploring
the automatically-generated icon-based interface. The icons
were indicated to the user, in a pre-defined order, with the
aim of activating all the functionalities in the state machine
(see Fig. 2). The user was asked to activate the functionality
associated to each icon by choosing commands that he or she
feels are evoked by the icon. In the following, this phase will
be referred to as T1(prep)autom, where superscript (prep) refers

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXX XXX 8

to the preparatory nature, and subscript autom to automatic
creation of the interface.

The core of the first test was actually represented by the
second phase in which, after the above training, the user
was asked to complete the whole maintenance procedure
without any direct supervision. In particular, the task consisted
in performing regular maintenance of a high-precision laser
meter. The task requires the user to follow a sequence of
steps, from unscrewing and removing some parts of the tool
to cleaning the internal lens. The user was shown a video that
visually explains the operation14. Since the users already got
acquainted with the interface during the first phase of the test,
they could be considered as experienced users for the second
phase. Hence, in the test that follows, this phase is referred to
as T1expautom, where exp stands for experienced users.

2) Second Test: In this test, the users were verbally intro-
duced to all the available functionalities, but they were not
apprised about the available icons or about how to activate
the associated functionalities (i.e., which are the commands
recognized). After such introduction, they were asked to wear
the AR glasses and to autonomously complete the above
mentioned maintenance procedure by looking at the icons in
the automatically-generated interface, deducing the associated
functionalities, activating them and performing the operations
suggested by the AR hints. Because there was no training on
the interface, as in the first test, this test is referred to as
T2ftautom, where superscript ft refers to first-time users.

3) Third Test: In the preliminary step of this test, the
users were asked to manually create their preferred interface.
To this end, the users were presented with a description of
all the application functionalities, and then asked to select,
for each functionality, an evocative icon and a list of voice
commands. The commands were lexically and semantically
expanded. Afterwards, the users were asked to complete the
same maintenance procedure as that of the previous tests
by using the customized interface in an autonomous way.
Hence, this test is referred to as T3ftcustom. The ft superscript
indicates that, as in the previous test, first-time users are
considered, whereas the subscript custom refers to the use
of the customized interface.

B. Assessment Strategy

For each test, both objective and subjective measures were
collected during interaction with the AR application, as well
as after the execution of the maintenance procedure.

During the test, a report on system behavior was produced
for each participant by logging the data about system be-
havior and recording the associated audio tracks containing
the commands issued. A cross-analysis between data logs and
audio tracks was carried out to extract quantitative information
about user interaction and performance of the speech recogni-
tion module, including false positive and false negative error
rates. Additional objective measurements made during the test
include the average number of total attempts for activating
a given functionality and the task completion rate. For the
supervised phase in Test 1, a task was considered completed

14https://youtu.be/xAL0w4LgiIo

if all the functionalities corresponding to the icons indicated
to the user were correctly activated. For this purpose, the
maximum number of attempts per functionality was defined.
When the system was used autonomously to carry out the
designed task (i.e., in the second phase of Test 1, and in
Tests 2 and 3), the task was considered completed if the
participant succeeded in reaching the last step of the procedure
without any help from the supervisor, say when he or she
failed to activate a critical functionality, using no more than the
finite number of attempts. A functionality is considered critical
when, if not activated, it would not be possible to complete
the task (in Fig. 2, critical functionalities are “procedures”,
“confirm”, “start procedure”, “next step” and “exit”).

After the test, each participant was asked to evaluate the
usability of the speech interface through a subjective ques-
tionnaire, based on SASSI methodology [63]. The question-
naire had 34 statements to be evaluated on a 7-point Likert
scale. The statements refer to six usability factors: System
Response Accuracy (SRA), Likeability (LIKE), Cognitive De-
mand (CD), Annoyance (AN), Habitability (HAB) and Speed
(SPE).

C. Evaluation Metrics

The tests were aimed at evaluating the number of recognized
functionalities. A functionality is considered recognized when-
ever a participant succeeds in activating it. However, during
the activation, several possible situations may occur, such as
true positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN). In the following paragraphs, each
situation is defined considering the perspectives of both the
user and the system, which, in some cases, may differ. The user
perspective considers the expected system behavior when a
command is issued, whereas the system perspective considers
the behavior of speech recognition.

A true positive (TP) occurs when a functionality is activated
and, in fact, this is the one the user wanted to activate.
This indicated that the system worked properly and the user
perceived it as the correct behavior. This is the case, for
instance, of a user who wanted to disable the vocal user
interface. He or she saw an icon with a banned microphone
and said “spegni il microfono” (“turn off the microphone”).
The utterance was correctly recognized (correct behavior of the
system) and mapped on the corresponding command, which
activated the right functionality.

False detections (both positive and negative) can be divided
into two categories based on the causes of their occurrence.
When, because of a failure in the command expansion, the
system activates the wrong functionality, the false detection is
attributed to a semantic cause (SC). False detection can also
be attributed to a technological cause (TC) when, for instance,
noise or possible configuration issues negatively affect the
performance of the speech recognizer.

A false positive (FP), or command switch, occurs when
the activated functionality is not what the user expected.
This kind of error occurs in two situations. The user might
have pronounced the command that is actually mapped to
the intended functionality but, for some reason, the system

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXX XXX 9

TABLE I
PERFORMANCE OF AUTOMATICALLY-GENERATED INTERFACE MEASURED

AS THE ABILITY OF THE SYSTEM TO SELECT ICONS THAT CAN EVOKE
PROPER MAPPING WITH RECOGNIZED COMMANDS AND EXPECTED

FUNCTIONALITIES, EXPRESSED IN TERMS OF CORRECT BEHAVIOR (TP),
ERRORS (FP AND FN), COMPLETION RATE (CR) AND AVERAGE

NUMBER OF ATTEMPTS PER FUNCTIONALITY (na).

Test TP FPs FPt FNs FNt CR na

T1
(prep)
autom 69,1% 2,3% 0,6% 14,8% 13,1% 73% 1.50

recognized a different command, mapped to another function-
ality (FPt). This may happen because of ambient noise or
poor performance of the voice recognition module. Command
switches also occur when the user pronounces a command
that is not associated to the intended functionality (FPs). For
instance, to disable the voice interface, the user might say
“volume” (“volume”), to which the system would respond by
changing the headset volume.

A false negative (FN) occurs when the user tries to ac-
tivate a functionality in the correct way (i.e., a command
that should have been recognized the way it was issued),
but the system fails to recognize it and, at the same time,
the command it recognized, if any, has not been routed to
activate another existing functionality. False negatives can be
due to a technological reason (FNt), e.g., when recognition
confidence is too low. They could also occur when the speech
recognizer returns a result that does not correspond to the
user’s command. For instance, the user might say “video”
(“video”), but because of assonance, the system recognizes the
command as “vedova” (“widow”), which is not mapped to any
functionality. On the other hand, the reason for false negatives
could be semantic (FNs) when the utterance is not associated
to any valid command. For instance, the user might want to
start reproducing a video by saying “riproduci” (“reproduce”),
but command to be used is “play video”.

Finally, a true negative (TN) occurs when the system does
not map the command issued to any functionality. The recog-
nition is not successful, because the pronounced command is
not valid. The icon is probably not appropriate, although the
system worked properly. This could be the case, for instance,
when the user sees an icon with a plus sign, which is actually
mapped to the functionality to increase the headset volume,
but the user says “zoom” (“zoom”). However, from the user’s
point of view, a true negative cannot exist, since every time
he or she issues a command associated to a given icon, he or
she expects the system to activate the corresponding function-
ality. Therefore, in the user’s perspective, a true negative is
considered a false negative with a semantic cause (FNs).

D. Objective Evaluation

To facilitate easy understanding and comparison, the ob-
jective data gathered during the tests is summarized in two
separate Tables. Table I presents the results of the preparatory
phase of Test 1 (T1(prep)autom), which can be analyzed to assess
system’s ability to create an interface with evocative icons
by observing user’s operations in supervised conditions. The
data in this Table cannot be compared with the data pertaining

TABLE II
PERFORMANCE OF THE AUTOMATICALLY-GENERATED INTERFACE,

CONSIDERING BOTH FIRST-TIME AND EXPERIENCED USERS, IN TERMS OF
CORRECT BEHAVIOR (TP), ERRORS (FP AND FN), COMPLETION RATE
(CR) AND AVERAGE NUMBER OF ATTEMPTS PER FUNCTIONALITY (na),

REFERRED TO THE EXECUTION OF THE MAINTENANCE PROCEDURE.

Test TP FPs FPt FNs FNt CR na

T1expautom 83,8% 1,5% 1,0% 2,5% 11,1% 86% 1.18
T2ftautom 71,9% 0,9% 0,3% 15,7% 11,1% 85% 1.42
T3ftcustom 63,4% 2,5% 0,4% 30,6% 3,1% 60% 1.61

to the second phase of Test 1 or with the data collected in
Test 2 and Test 3, where the users were asked to interact
with the system in an autonomous way. The data relating
to autonomous interaction is presented in Table II. In this
case, the data describes the execution of the same maintenance
procedure under three different conditions, i.e., by experienced
(T1expautom) or first-time users (T2ftautom and T3ftcustom), using
the automatically-generated (subscript autom) or by the cus-
tomized (subscript custom) interface.

In executing the tests, each interaction was manually anno-
tated to keep track of the errors and correct behaviors, which
were classified, based on the user’s perspective as defined
in Section IV-C. For each test, columns 2–6, in both the
Tables, give the number of true positives (TP), semantic
and technological false positives (FPs and FPt), and false
negatives (FNs and FNt), whereas columns 7 and 8 present
the average task completion rate CR and the average number
of attempts na required for activating each functionality.

During the preparatory phase of Test 1 (Table I), the
task completion rate was 73%, indicating that, on average,
three users out of four were successful in activating all the
functionalities in the automatically-generated interface. The
participants committed errors mainly during the last phase
of the task, and the errors belong to the false negative cate-
gory, i.e., the participants were not successful in immediately
activating a given functionality, consequent to which their
commands were ignored by the system. This kind of error
was equally distributed between the semantic (FNs) and
technological (FNt) false negatives. Semantic false negatives
occurred, for instance, when the user completed a particular
step of the maintenance procedure and wanted to proceed
further by activating the “next step” functionality, but said
“fatto” (“done”), but the command was ignored by the system.
Technological false negative occurred, for instance, when the
user tried to open the settings panel by using the command
“proprietà” (“properties”), which was falsely recognized by
the system as “attività” (“activities”).

In this case, false positives were scarce (2.9% of the total
number of attempts) and this holds good for other scenarios
too. In general, 2.3% of the command switches were FPs

errors. These errors occurred mainly in two practical situa-
tions: (i) When some participants used the command “opzioni”
(“options”) to activate the functionality for displaying the list
of available procedures, and the system reacted by opening
the settings menu, rather than the expected list; (ii) When the
participants used the command “parti”, in Italian, to activate
the maintenance procedure, which means either “start” or

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXX XXX 10

“leave”, depending on the context to which the system re-
sponded by erroneously activating the functionality for exiting
from the current state. Technological errors FPt constituted
only the 0.6% of the total number of attempts. An example of
misunderstanding by the speech recognizer is distortion of a
command like “ripeti” (“repeat”) into an existing command
like “parti” (“leave”) and again forcing the exit from the
current state.

Intuitiveness of the proposed user interface can be evaluated
by comparing the results obtained by first-time users operating
with the automatically-generated interface in T2ftautom with
those obtained by the two control groups represented by the
users involved in T1expautom and T3ftcustom.

In T2ftautom, the participants were asked to execute the main-
tenance procedure without prior training. The participants,
belonging to the control group T1expautom, were considered
experienced users because of their learning in T1(prep)autom. This
was confirmed by the fact that, as expected, the number of
true positives largely increased between the first (T1(prep)autom)
and the second (T1expautom) phases of the first test. This trend
was confirmed by the number of semantic false negatives
(FNs), which decreased drastically in the second phase of
the test indicating that the number of failures in functionality
activation attempts was low.

First-time users of the automatically-generated interface
achieved performance comparable to that of trained users.
This is confirmed by the average completion rate, which is
almost the same in T2ftautom and T1expautom (85% vs. 86%),
attained at the cost of a higher average number of attempts
per functionality due to a higher number of semantic false
positives (1.42 vs. 1.18, on average). The participants had to
try several commands to activate a given functionality but, in
the end, they completed the maintenance procedure just as
experienced users.

During the test T3ftcustom, the users built their own person-
alized interface by selecting icons and commands for each
functionality. Even then, the completion rate was higher when
the automatically-generated interface was used in T2ftautom
(85% vs. 60%). This is reflected by the lower number of
user attempts for activating a functionality (1.42 vs. 1.61, on
average), which means that, on average, the users had to issue
fewer commands to complete the task with the automatically-
generated interfaces than with the personalized one. Similar
inferences can be drawn by looking at error percentages. The
most common problems in T3ftautom were due to the fact that
the participants forgot the commands and tried to use the
commands associated to other functionalities, disregarding the
importance of visual cues.

E. Subjective Evaluation
Subjective usability scores collected with the SASSI ques-

tionnaire [63] were mapped on a better-to-worse scale (7-to-1)
and averaged per factor. The results obtained show that the
user experience was not the same during the three tests (see
Fig. 5).

Considering the aggregated scores (bars labeled with
TOT.AVG. in the plot), two considerations could be made
intuitively.

!"#!"#!"#!"#

$"#$"#$"#$"#

%"#%"#%"#%"#

&"#&"#&"#

!
"
#
$
%

&"#

!
"
#
$
%

'(

!
"
#
$
%

'(

!
"
#
$
%

'(

)"#

!
"
#
$
%

'(

)"#

!
"
#
$
%

'*
)"#

'*
)"#

'*'*

"# ')"# ')*"# ')*"# ')

("#("#("#

#"##"##"##"#

+,- ./01 23 -4 5-6 +71 '8'9-:;+,- ./01 23 -4 5-6 +71 '8'9-:;+,- ./01 23 -4 5-6 +71 '8'9-:;+,- ./01 23 -4 5-6 +71 '8'9-:;

!&!!'()*"+#$!&!!'()*"+#$!&!!'()*"+#$!&!!'()*"+#$

Fig. 5. Results of subjective evaluation based on SASSI methodology [63].

First, the system apparently performed better in Test 1
than in Test 2. This could be because, during Test 1, the
participants had the chance to get acquainted with the system
before using it autonomously. Second, in Test 3 (i.e., with
the control group that used the personalized interface), the
usability was lower than that in Tests 1 and 2 (i.e., when the
automatically-generated interface was used). In fact, although
participants were allowed to choose their preferred icons and
commands, their satisfaction was low. The system failed to
adequately expand the commands, and the manually-selected
icons could not evoke the selected command. Consequently,
only a subset of the commands issued were actually recognized
by the system.

To confirm the statistical significance of the foregoing
results, a one-way repeated measures ANOVA test was carried
out. The null-hypothesis H0 : µT1 = µT2 = µT3 was that
the users had the same overall experience during the three
tests. The mean square between evaluations is MSB = 1.298
and that within evaluations MSW = 0.221. Therefore, the
F statistic is F = MSB/MSW = 5.88. The results reveal
that the average scores are significant at α < 0.05 level,
F (2, 42) = 5.14, p = 0.01. Since the p-value obtained
from the F -distribution is lower than the significance level
α = 0.05, the null hypothesis was rejected, concluding that the
three tests did not have the same mean preference. A post-hoc
analysis was performed by applying the Tukey HSD (Honestly
Significant Difference) test to determine which of the three
means are statistically different. The results of the critical val-
ues for the Studentized range statistic Q, q(0.05, 3, 45) = 3.43,
reveal that only the difference between the results of Tests 1
and 3 are significant in the 95% confidence interval.

In summary, it can be concluded that the average subjective
evaluations of Tests 1 and 3 are unequal, and this confirms
the second intuitive observation. A preference for Test 1 w.r.t.
Test 2, or for Test 2 w.r.t. Test 3, could not be found from
the analysis of variance, and this confirms the hypothesis that
first-time users of the automatically-generated interface (Test
2) had a user experience, comparable to the experience of both
the experienced participants (Test 1) and the subjects using
the personalized interface (Test 3), which is considered a sub-
optimal case.

In Table III, disaggregated results are presented to enable
a more in-depth analysis of individual factors and related
statements. For each test, the mean and the variance of SASSI

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXX XXX 11

TABLE III
SUBJECTIVE RESULTS COLLECTED THROUGH SASSI METHODOLOGY [63] IN A BETTER-TO-WORSE (7-TO-1) SCALE.

Test 1 Test 2 Test 3
Statement Smean σ2 Smean σ2 Smean σ2

System Response Accuracy (SAR)
1. The system is accurate. 5.60 0.97 5.62 0.42 5.27 0.92
2. The system is unreliable. 6.47 0.70 6.58 0.27 6.33 0.67
3. The interaction with the system is unpredictable. 5.87 0.84 6.17 0.52 5.87 0.84
4. The system didn’t always do what I wanted. 5.33 2.81 4.58 1.72 5.67 2.52
5. The system didn’t always do what I expected. 5.20 3.46 5.25 2.02 5.80 1.74
6. The system is dependable. 5.87 0.98 5.92 0.63 5.40 0.40
7. The system makes few errors. 6.07 0.92 5.42 2.27 4.93 2.78
8. The interaction with the system is consistent. 6.13 1.12 5.67 1.15 5.40 0.40
9. The interaction with the system is efficient. 5.60 1.97 5.69 1.06 5.80 0.60

5.79 1.58 5.65 1.12 5.61 1.29
Likeability (LIKE)
10. The system is useful. 6.33 0.38 6.42 2.08 6.13 1.12
11. The system is pleasant. 5.93 0.92 5.50 3.36 5.20 1.46
12. The system is friendly. 5.87 1.12 5.64 1.45 5.27 0.64
13. I was able to recover easily from errors. 6.13 0.84 5.67 1.52 4.60 1.69
14. I enjoyed using the system. 6.27 0.35 6.08 2.08 6.00 0.86
15. It is clear how to speak to the system. 6.33 0.38 5.33 1.15 5.33 0.52
16. It is easy to learn to use the system. 6.73 0.35 6.00 1.09 5.27 1.64
17. I would use this system. 5.80 1.17 6.25 2.20 5.60 2.11
18. I felt in control of the interaction with the system. 6.00 1.14 6.00 0.91 5.40 1.97

6.16 0.77 5.82 1.67 5.42 1.44
Cognitive Demand (CD)
19. I felt confident using the system. 6.13 1.27 5.42 1.72 4.87 1.41
20. I felt tense using the system. 5.53 2.12 5.00 2.36 4.33 2.10
21. I felt calm using the system. 5.47 2.84 5.50 2.09 4.53 1.70
22. A high level of concentration is required when using the system. 4.60 2.40 3.83 2.33 3.87 0.70
23. The system is easy to use. 6.20 1.03 5.62 0.76 4.80 0.74

5.59 2.16 5.07 1.82 4.48 1.39
Annoyance (AN)
24. The interaction with the system is repetitive. 4.27 2.64 4.38 3.59 4.53 1.84
25. The interaction with the system is boring. 5.67 2.10 5.25 2.93 5.53 1.41
26. The interaction with the system is irritating. 6.00 1.57 6.17 0.88 5.87 1.41
27. The interaction with the system is frustrating. 6.33 0.81 6.25 0.93 5.80 2.03
28. The system is too inflexible. 5.93 2.07 5.00 2.36 4.93 1.78

5.64 2.26 5.47 1.98 5.33 1.87
Habitability (HAB)
29. I sometimes wondered if I was using the right word. 3.47 3.27 3.08 2.24 1.87 1.55
30. I always knew what to say to the system. 4.47 2.70 3.75 0.93 2.93 2.21
31. I was not always sure what the system was doing. 5.67 2.10 5.17 1.97 5.27 2.21
32. It is easy to lose track of where you are in an interaction with the system. 5.93 1.64 5.67 2.24 6.07 0.50

4.88 3.29 4.38 2.57 4.03 4.47
Speed (SPE)
33. The interaction with the system is fast. 5.73 1.21 5.15 1.64 4.80 1.46
34. The system responds too slowly. 5.73 1.21 5.58 1.54 5.40 1.69

5.73 1.17 5.37 1.31 5.10 1.61

scores were calculated. Considering System Response Accu-
racy (answers 1 to 9), it can be observed that the participants
perceived the automatically-generated interface (Tests 1 and
2) as slightly more accurate and reliable than the personalized
interface. Likeability (answers 10 to 18) of the personalized
interface was affected by the difficulty involved in remember-
ing the chosen commands, thus rendering the automatically-
generated interface to be more appealing. The users found
that the automatically-generated interface is more effective for
recovering from errors, besides being easier to interact with.
This is confirmed by Cognitive Demand (answers 19 to 23)
and, in particular, by the 23th statement that the automatically-
generated interface is easier to use than the personalized one.
Concerning Annoyance (answers 24 to 28), the users perceived
the automatically-generated interface as more flexible than
the personalized one. As regards Habitability (answers 29 to
32), the participants felt uncomfortable with the personalized

interface, because they often wondered if they were using the
right words. Finally, as regards speed (answers 33 and 34), the
users perceived the automatically-generated interface as faster
than the personalized one.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented the design and implementation of a
framework that supports automatic generation of speech inter-
faces for controlling VR and AR applications. The generated
interfaces include icon-based representations of application
functionalities, which are expected to be capable of evoking
the relevant commands, thus reducing the cognitive load for
the user. The framework includes visual cues that are auto-
matically selected by means of a semantics-based optimiza-
tion strategy, which aims at maximizing the match between
application functionality and icon description, while limiting

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXX XXX 12

possible overlaps between meanings implied by different icons
and fostering consistency in terms of graphic style.

The automatically-generated interface was tested by first-
time users in a case study concerning maintenance of the ma-
chine tool, using a wearable AR application. The performance
obtained by using this configuration was compared to that
achieved in two different scenarios where, in one scenario,
the same interface was used by experienced users and, in
the other, a personalized interface was manually created by
the users. Objective data, in terms of task completion rate
and average number of attempts for activating functionalities,
shows that first-time user experience with the automatically
generated interface is comparable to that measured with the
two reference scenarios. This is confirmed by subjective evalu-
ation. Overall, the automatically-generated interface proved to
be more usable and intuitive for first-time users, thanks to the
lower cognitive load of activating application functionalities.
In the case of personalized interface, intuitiveness of the
automatically-generated interface was confirmed by its higher
task completion rate and fewer activation attempts. Concerning
usability, the interface generated by the proposed framework
has the advantage of reducing the number of errors (in terms
of false negatives) in activating functionalities.

Future research work will be aimed at testing the proposed
methodology and the tools developed in different scenarios
with new applications and with richer icon sets. Moreover,
to improve the quality of semantic mapping and enhance the
performance of the speech recognizer, novel strategies will
be evolved for extracting context information from icon and
functionality descriptions and for expanding the valid voice
commands set, preserving the framework’s robustness and
consistency.

ACKNOWLEDGMENT

This work was partially funded by the EASE-R3 project:
Integrated framework for a cost-effective and ease of Repair,
Renovation and Re-use of machine tools within modern fac-
tory, FP7, FoF.NMP.2013-8, Grant agreement no: 608771.

REFERENCES

[1] M.R. Mine, J. van Baar, A. Grundhofer, D. Rose, and Y. Bei, “Projection-
based Augmented Reality in Disney Theme Parks,” IEEE Computer, vol.
45, no. 7, pp. 32-40, 2012.

[2] C. A. Linte, J. White, R. Easgleson, G.M. Guiraudon, and T.M. Peters,
“Virtual and Augmented Medical Imaging Environments: Enabling Tech-
nology for Minimally Invasive Cardiac Interventional Guidance,” IEEE
Reviews in Biomedical Engineering, vol. 3, pp. 25-47, 2010.

[3] S. Zollmann, C. Hoppe, S. Kluckner, C. Poglitsch, H. Bischof, and
G. Reitmayr, “Augmented Reality for Construction Site Monitoring and
Documentation,” Proc. of the IEEE, vol. 102, no. 2, pp. 137-154, 2014.

[4] V. Raghavan, J. Molineros, and R. Sharma, “Interactive evaluation of
assembly sequences using augmented reality,” IEEE Transactions on
Robotics and Automation, vol. 15, no. 3, pp. 435-449, 1999.

[5] M. Ehmann, “Evaluating Customer Expectance of Mixed Reality Appli-
cations in Order Picking,” in Proc. ACM Conference on Pervasive and
Ubiquitous Computing, pp. 1475-1478, 2013.

[6] K.F. Hussain, E. Radwan, and G.S. Moussa, “Augmented Reality Ex-
periment: Drivers’ Behavior at an Unsignalized Intersection,” IEEE
Transactions on Intelligent Transportation Systems, vol. 14, no. 2, pp.
608-617, 2013.

[7] P. Ducher, “Interaction with Augmented Reality,” Advances in Embedded
Interactive Systems, vol. 2, no. 4, pp. 23-29, 2014.

[8] J. Jankowski, and M. Hachet, “A Survey of Interaction Techniques for
Interactive 3D Environments,” in Proc. 34th Annual Conference of the
European Association for Computer Graphics, pp. 65-93, 2013.

[9] A. Duenser, R. Grasset, H. Seichter, and M. Billinghurst, “Applying HCI
Principles in AR Systems Design,” in Proc. 2nd Int. Workshop on Mixed
Reality User Interfaces: Specification, Authoring, Adaptation, 2007.

[10] R. Teather, and W. Stuerzlinger, The Challenge of 3D Interaction:
Guidelines for Intuitive 3D Manipulation Techniques, Presentation at
Interacting with Immersive Worlds, 2007.

[11] A. W. Stedmon, H. Patel, S. C. Sharples, and J. R. Wilson, “Developing
Speech Input for Virtual Reality Applications: A Reality Based Interaction
Approach,” Developing Speech Input for Virtual Reality Applications: A
Reality Based Interaction Approach, vol. 69, no. 1-2, pp. 3-8, 2011.

[12] A. W. Stedmon, “Developing Virtual Environments Using Speech as a
Input Device”, Human Computer Interaction, Theory and Practice, pp.
1193-1197, 2003.

[13] N. Yankelovich, G.A. Levow, and M. Marx, “Designing SpeechActs:
Issues in Speech User Interfaces,” in Proc. SIGCHI Conf. on Human
Factors in Comp. Sys., pp. 369-376, 1995.

[14] S. Goose, S. Sudarsky, Z. Xiang, and N. Navab, “Speech-enabled
Augmented Reality Supporting Mobile Industrial Maintenance,” IEEE
Pervasive Computing, vol. 2, no. 1, pp. 65-70, 2003.

[15] D, Newman, “Speech Interfaces that Require Less Human Memory,”
AVIOS Proc. of the Speech Technology and App. Expo, pp. 65-69, 2000.

[16] A. K. Sinha, S. R. Klemmer, J. Chen, J. A. Landay, and C. Chen,
“SUEDE: Iterative, Informal Prototyping for Speech Interfaces,” in Proc.
Ext. Abs. on Human Factors in Computing Systems, pp. 203-204, 2001.

[17] Voice Command Checklist, Guidelines for Defining
Commands to be Used in Glass Applications. [Online]
https://developers.google.com/glass/distribute/voice-checklist

[18] A. Sanna, F. Manuri, G. Piumatti, G. Paravati, F. Lamberti, and P. Pez-
zolla, “A Flexible AR-based Training System for Industrial Maintenance,”
in Proc. of the 2nd Int. Conf. on Augmented and Virtual Reality, 2015.

[19] M. Billinghurst, and A. Duenser, “Augmented Reality in the Classroom,”
IEEE Computer, vol. 45, no. 7, pp. 56-63, 2012.

[20] W. Broll, I. Lindt, I. Herbst, J. Ohlenburg, A.K. Braun, and R. Wetzel,
“Toward Next-gen Mobile AR Games”, IEEE Computer Graphics and
Applications, vol.28, no. 4, pp. 40-48, 2008.

[21] L. Baraldi, F. Paci, G. Serra, L. Benini, and R. Cucchiara, “Gesture
Recognition Using Wearable Vision Sensors to Enhance Visitors’ Mu-
seum Experiences,” IEEE Sensors Journal, vol. 15, pp. 2705-2714, 2015.

[22] M. Billinghurst, H. Kato, and S. Myojin, “Advanced Interaction Tech-
niques for Augmented Reality Applications,” in Proc. 3rd International
Conference Virtual and Mixed Reality, pp. 13-21, 2009.

[23] P. Kay, “Speech-driven Graphics: A User Interface,” Journal of Micro-
computer Applications, vol. 16, pp. 223-231, 1993.

[24] S. Irawati, S. Green, M. Billinghurst, A. Duenser, and H. Ko, “An
Evaluation of an Augmented Reality Multimodal Interface Using Speech
and Paddle Gestures,” in Proc. 16th International Conference on Artificial
Reality and Tele-existence, pp. 272-283, 2006.

[25] M. Koelsch, R. Bane, T. Hoellerer, and M. Turk, “Multimodal Interaction
with a Wearable Augmented Reality System,” IEEE Computer Graphics
and Applications, vol. 26, no. 3, pp. 62-71, 2006.

[26] R. W. Lindeman, J. L. Sibert, and J. K. Hahn, “Towards Usable VR: An
Empirical Study of User Interfaces for Immersive Virtual Environments,”
in Proc. SIGCHI Conf. on Human Factors in Comp. Sys., pp. 64-71, 1999.

[27] G. Serra, M. Camurri, L. Baraldi, M. Benedetti, and R. Cucchiara, “Hand
Segmentation for Gesture Recognition in EGO-vision,” in Proc. 3rd ACM
International Workshop on Interactive Multimedia on Mobile & Portable
Devices, pp. 31-36, 2013.

[28] SAP SE, Improving Field Service Performance with Augmented Reality
Software and Smart Glasses. Walldorf, Germany, 2014.

[29] S. R. Klemmer, A. K. Sinha, J. Chen, J. A. Landay, N. Aboobaker, and
A. Wang, “SUEDE: A Wizard of Oz Prototyping Tool for Speech User
Interfaces,” in Proc. 13th Annual ACM Symposium on User Interface
Software and Technology, pp. 1-10, 2000.

[30] J. Ferreirosa, J.M. Pardo, R. de Crdoba, J. Macias-Guarasa, J.M.
Montero, F. Fernndez, V. Samac, L.F. Haro, and G. Gonzlez, “A Speech
Interface for Air Traffic Control Terminals,” Aerospace Science and
Technology, vol. 21, no. 1, pp. 7-15, 2012.

[31] D. Sonntag, S. Zillner, C. Schulz, M. Weber, T. Toyama, “Towards Medi-
cal Cyber-physical Systems: Multimodal Augmented Reality for Doctors
and Knowledge Discovery about Patients,” in Proc. 2nd International
Conference, Design, User Experience, and Usability, pp. 401-410, 2013.

[32] J. Woodard, and E. Cupples, “Selected Military Applications of Au-
tomatic Speech Recognition Technology,” IEEE Communications Maga-
zine, vol. 21, no. 9, pp. 35-41, 1983.

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXX XXX 13

[33] J. White, and M. Duggirala, “Speech-Interface Prompt Design: Lessons
from the Field,” in Proc. 7th International Conference on Information
and Communication Technologies and Development, art. 66, 2015.

[34] N. Yankelovich, “How Do Users Know What to Say,” ACM Interactions,
vol. 3, no. 6, pp. 33-43,1996.

[35] M. Yin, and S. Zhai, “The Benefits of Augmenting Telephone Voice
Menu Navigation with Visual Browsing and Search”, in Proc. SIGCHI
Conference on Human Factors in Computing Systems, pp. 319-328, 2006.

[36] S. Gamm, and R. Haeb-Umback, “User Interface Design of Voice
Controlled Consumer Electronics,” Philips Journal of Research, vol. 49,
no. 4, pp. 439-454, 1995.

[37] C. Danis, L. Comerford, E. Janke, K. Davies, J. DeVries, and A. Bertran,
“Storywriter: A speech oriented editor,” in Proc. Conference Companion
on Human Factors in Computing Systems, pp. 277-278, 1994.

[38] M. J. Payne, R. Coelho, and M. H. Hawash, “Color as a Visual Cue in
Speech Enabled Applications,” Patent Appl. US20040030559, 2004.

[39] S. Shriver, and R. Rosenfeld, “Keywords for a Universal Speech In-
terface,” in Proc. Extended Abstracts on Human Factors in Computing
Systems, pp. 726-727, 2002.

[40] Y. Zhong, T.V. Raman, C. Burkhardt, F. Biasdsy, and J. P. Bigham,
“JustSpeak: Enabling Universal Voice Control on Android,” in Proc. 11th
Web for All Conference, art. 36, 2014.

[41] J. P. Bigham, C. M. Prince, and R. E. Ladner, “WebAnywhere: Enabling
a Screen Reading Interface for the Web on Any Computer,” in Proc. 17th
international conference on World Wide Web, pp. 1159-1160, 2008.

[42] L. Xudong, and W. Jiancheng, “User Interface Design Model”, in Proc.
8th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed, pp. 538-543, 2007.

[43] T. Mori, T. Nonaka, and T. Hase, “Automatic GUI Generation on AV
Remote Control using Genetic Algorithm,” in Proc. IEEE International
Symposium on Consumer Electronics, pp. 1-3, 2010.

[44] A. Sears, “Layout Appropriateness: A Metric for Evaluating User
Interface Widget Layout,” Software engineering, vol. 19, no. 7, pp. 707-
719, 1993.

[45] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld, “Automatically Generating
User Interfaces Adapted to Users’ Motor and Vision Capabilities,” in
Proc. 20th Annual ACM Symposium on User Interface Software and
Technology, pp. 231-240, 2007.

[46] F. Lamberti, and A. Sanna, “Extensible GUIs for Remote Application
Control on Mobile Devices,” IEEE Computer Graphics and Applications,
vol. 28, no. 4, pp. 50-57, 2008.

[47] S. Caplin, “Icon Design: Graphics Icons in Computer Interface Design,”
Watson-Guptill Publications, Inc. New York, NY, USA, 2001.

[48] D. Norman, and S. Draper, “User Centered System Design: New
Perspectives on Human-Computer Interaction,” CRC Press, 1986.

[49] S. Blackenberger, and K. Hain, “Effects of Icons on Human-Computer
Interaction,” Int. Journal of Man-Machine St., vol. 35, pp. 363-377, 1991.

[50] B. Schneidreman, “Designing the User Interface: Strategies for effective
Human Computer Interaction,” Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA, USA, 1997.

[51] W. Howell, and A, Fuchs, “Population stereotypy in code design,”
Organizational Behav. and Human Perf., vol. 3, no. 3, pp. 310-339, 1968.

[52] E. Heard, “Symbol Study - 1972,” SAE Technical Paper 740304, 1974.
[53] D. P. T. Piamonte, J. D. A. Abeysekera, and K. Ohlsson, “Understanding

Small Graphical Symbols: A Cross-cultural Study”, International Journal
of Industrial Ergonomics, vol. 27, no. 6, pp. 399404, 2001.

[54] M. Morioka, “Automatic Icon Generation System,” Patent, US5367626
A, 1994.

[55] E. Keogh, L. Wei, X. Xi, S. Lonardi, J. Shieh, and S. Sirowy, “Intelligent
Icons: Integrating Lite-Weight Data Mining and Visualization into GUI
Operating Systems,” in Proc. 13th International Conference on Data
Mining, pp. 912-916, 2013.

[56] M. Oda, T. Itoh, “MIST: A Music Icon Selection Technique Using
Neural Network”, in Proc. NICOGRAPH International, 2007.

[57] V. Setlur, and J. D. Mackinlay, “Automatic Generation of Semantic Icon
Encodings for Visualizations,” in Proc. SIGCHI Conference on Human
Factors in Computing Systems, pp. 541-550, 2014.

[58] H. Pickering, Auticons. [Online] http://heydonworks.com/auticons-icon-
font/

[59] E. Pianta, L. Bentivogli, and C. Girardi, “MultiWordNet: Developing and
Aligned Multilingual Database,” in Proc. 1st International Conference on
Global WordNet, pp. 293-302, 2002.

[60] G. A. Miller “WordNet: A Lexical Database for English,” Communica-
tions of the ACM, vol. 38, no. 11, pp. 39-41, 1995.

[61] J. J. Durillo and A. J. Nebro, “jmetal: A Java Framework for Multiob-
jective Optimization,” Advances in Engineering Software, vol. 42, no. 10,
pp. 760771, 2011.

[62] Metaio, the Augmented Reality Company. [Online]. http://metaio.com/
[63] K.S. Hone, and R. Graham, “Towards a Tool for the Subjective Assess-

ment of Speech System Interfaces,” Natural Language Engineering, vol.
6, no. 3-4, pp. 287-303, 2000.

Fabrizio Lamberti (M’02-SM’14) is an Associate
Professor at Politecnico di Torino, Italy, from where
he received his M.Sc. and the Ph.D. degrees in
computer engineering in 2000 and 2005, respec-
tively. His main research interests are in the areas
of computational intelligence, semantic processing,
human-computer interaction, computer graphics, and
visualization. He serves as an Associate Editor for
IEEE Transactions on Emerging Topics in Comput-
ing and for IEEE Consumer Electronics Magazine.

Federico Manuri received his B.Sc. and M.Sc.
degrees in computer engineering from Politecnico
di Torino, Italy, in 2008 and 2011, respectively. He
is currently a Ph.D. student at the Dipartimento di
Automatica e Informatica of Politecnico di Torino,
Italy. His research interests include human machine
interaction, computer graphics and augmented real-
ity.

Gianluca Paravati (M’14) is an Assistant Professor
at Politecnico di Torino, from where he received his
B.Sc. and M.Sc. degrees in electronic engineering
and Ph.D. degree in computer engineering in 2005,
2007, and 2011, respectively. His research interests
include real-time image processing, collaborative
virtual environments, human-machine interaction,
remote visualization, and distributed systems.

Giovanni Piumatti received his M. Sc. degree in
computer engineering from Politecnico di Torino,
Italy, in 2014. He is currently a Ph.D. student
at the Dipartimento di Automatica e Informatica
of Politecnico di Torino, Italy. His research inter-
ests are on robotic and phygital gaming, human-
computer/human-robot interaction and augmented
reality.

Andrea Sanna received his Ph.D. degree in com-
puter engineering from Politecnico di Torino, Italy,
where he now serves as an Associate Professor. His
research interests include computer graphics, virtual
reality, parallel and distributed computing, scientific
visualization, and computational geometry. He is a
senior member of ACM. He has been the General
Chair of the 7th International Conference on In-
telligent Technologies for Interactive Entertainment
2015.

