
POLITECNICO DI TORINO

SCUOLA INTERPOLITECNICA DI DOTTORATO

Doctoral Program in Computer and Control Engineering

Final Dissertation

Enhancing Real-time Embedded

Image Processing Robustness on

Reconfigurable Devices for Critical

Applications

Pascal TROTTA

Tutor Co-ordinator of the Research Doctorate Course

prof. Paolo PRINETTO prof. Matteo SONZA REORDA

 04/04/2016

ACKNOWLEDGEMENTS

This thesis represents the result of three years of work. Throughout this period I had the

opportunity to interact with many people that gave me suggestions and encouraged

me.

First of all, it is a great pleasure to thank my advisor Prof. Paolo Prinetto, from Politecnico

di Torino, that guided me during these three years (and more) with his always precious hints

and guidelines. His suggestions led me to grow both from the technical and, most important,

personal point of views. I also wish to thank Prof. Stefano Di Carlo, from Politecnico di Torino,

that helped me with his valuable experience.

The work that has been carried out during the last three years relied on the collaboration

with industrial partners. In particular, I would like to thank Ing. Andrea Martelli, Ing. Antonio

Tramutola, and Ing. Piergiorgio Lanza from Thales Alenia Space Italy for our fruitful meetings and

their very helpful guidelines. Moreover, during the PhD period I had the opportunity to spend

one year in Sweden, working in Cobham Gaisler AB. It is a pleasure to thank the whole Cobham

Gaisler team, and in particular Jan Andersson for his immense patience in tutoring me during the

entire visiting period, in which I had the opportunity to greatly improve my technical knowledge.

Also, I would like to thank all my colleagues that have worked, or are still working, with me

in the laboratory of the Control and Computer Engineering Department at Politecnico di Torino.

They made this research period much more enjoyable. In particular, many thanks go to Giulio

and Daniele (or Daniele and Giulio) for the great working and non-working time spent together.

Last, but not least, I would like to thank my family that supported and tolerated me during

these years.

i

CONTENTS

List of Figures vi

List of Tables x

1 Introduction 1

1.1 Thesis Organization . 3

2 Digital Image Processing for Mission-critical Applications 7

2.1 History of Digital Image Processing . 9

2.2 Image Processing in mission-critical applications . 10

2.3 Imaging sensors and related issues . 17

2.3.1 Mathematical model . 22

3 Reconfigurable Devices for Mission-critical Applications: architectures and issues 25

3.1 History and Evolution of Programmable Logic Devices: from Programmable Logic

Arrays to modern FPGAs . 29

3.2 Field Programmable Gate Arrays architectures . 33

3.2.1 One-time programmable FPGAs . 34

3.2.2 Reconfigurable FPGAs . 36

3.2.2.1 Flash-based FPGAs . 36

3.2.2.2 SRAM-based FPGAs . 37

3.3 FPGAs for mission-critical applications . 41

3.4 Dynamic Partial Reconfiguration . 45

3.4.1 Configuration Details and Bitstream Composition 48

3.5 Dependability issues in modern reconfigurable FPGAs 50

3.5.1 Dependability issues in dynamically reconfigurable systems 54

4 Building Robust Hardware Accelerators and systems for real-time embedded image

processing on reconfigurable FPGAs 59

4.1 ABLUR: an FPGA-based adaptive deblurring core for real-time applications 60

4.1.1 Deblurring Algorithms Overview . 61

4.1.2 ABLUR Architecture . 62

4.1.2.1 Input Image Fast Fourier Transform module (FFT(y)) 64

4.1.2.2 Gradient calculator . 65

iii

4.1.2.3 α estimator . 66

4.1.2.4 Reconfiguration Manager . 68

4.1.2.5 w calculator . 68

4.1.2.6 w Fast Fourier Transform module (FFT(w)) 69

4.1.2.7 Formula Solver . 70

4.1.2.8 Control Unit . 70

4.1.3 Experimental results . 70

4.2 SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Par-

tially Reconfigurable FPGAs for Space Applications 76

4.2.1 Related Works . 76

4.2.2 SA-FEMIP Architecture . 77

4.2.2.1 Reconfigurable Gaussian Filter . 78

4.2.2.2 Adaptive Harris Feature Extractor 84

4.2.2.3 Features Matcher . 89

4.2.2.4 SA-FEMIP timing diagram . 92

4.2.2.5 Experimental Results . 93

5 On Enhancing Dependability of Dynamic Partial Reconfiguration 101

5.1 Dependability issues in Dynamic Partial Reconfiguration (DPR) 101

5.2 Dependable DPR with minimal area and time overheads 102

5.2.1 Proposed Methodology and Design Rules . 104

5.2.1.1 Partial bitstream file splitting . 105

5.2.1.2 Critical links protection . 107

5.2.1.3 Critical modules protection . 108

5.2.2 Experimental results . 108

5.2.2.1 Reference solution implementation 109

5.2.2.2 Proposed approach implementation 109

5.2.2.3 Comparison . 109

5.3 A portable open-source controller for safe Dynamic Partial Reconfiguration 113

5.3.1 Related Works . 114

5.3.2 Proposed architecture . 115

5.3.2.1 Synchronous/Asynchronous DPR 115

5.3.2.2 Dependable DPR (D2PR) . 119

5.3.2.3 Dependable DPR with Cyclic Redundancy Check (D2PR-CRC) . . 119

5.3.2.4 Dependable DPR (D2PR) with Error Correcting Code (D2PR-EDAC)121

5.3.3 Experimental Results . 123

iv

6 Evaluating system’s robustness through error injection 129

6.1 Related Works . 130

6.2 Proposed Methodology and Infrastructure . 132

6.2.1 Fault Generator . 133

6.2.2 System Input Controller . 137

6.2.3 System Clock Controller . 137

6.2.4 System Output Collector and Fault Classifier 137

6.3 Experimental Results . 138

A List of symbols and acronyms 145

Bibliography 149

v

LIST OF FIGURES

2.1 Representation of a generic image processing flow. 8

2.2 Digital image processing pyramid [14]. 9

2.3 First image of the Moon taken by Ranger 7 [158]. 10

2.4 Examples of vehicle camera-based systems tasks [222]. 11

2.5 Block diagram of an automotive Advanced Driver Assistance Systems (ADAS) system

[222]. 11

2.6 Curiosity rover. 12

2.7 Picture of the Curiosity’s heatshield taken by MARDI [164]. 13

2.8 Representation of the Curiosity’s landing ellipse on the Martian surface[201]. 14

2.9 Representation of the Curiosity’s EDL [159]. 15

2.10 Representation of the Curiosity’s EDL [122]. 15

2.11 DIMES descent scenario [109]. 16

2.12 Charge-Coupled Device (CCD) imaging sensor high level block diagram [130]. 17

2.13 CMOS imaging sensor high level block diagram [130]. 18

2.14 CMOS passive pixel sensor [80]. 18

2.15 CMOS active pixel sensor [80]. 19

2.16 Example of an image affected by noise. 20

2.17 Example of the blur effect. 20

3.1 Simplified FPGA design flow. 26

3.2 Simplified ASIC design flow. 27

3.3 FPGAs versus ASICs project cost analysis. 28

3.4 Programmable Logic Devices taxonomy. 29

3.5 Programmable Logic Devices history roadmap. 30

3.6 Programmable Read Only Memory (PROM) internal architecture. 31

3.7 CPLD internal architecture [220]. 31

3.8 FPGA internal architecture [30]. 32

3.9 Zynq-7000 All Programmable SoC architecture [245]. 33

3.10 Field Programmable Gate Arrays (FPGAs) taxonomy. 34

3.11 Antifuse example [30]. 34

3.12 Microsemi RTAX-DSP device architecture [148]. 35

3.13 Floating Gate transistor [139]. 36

3.14 FLASH-based FPGAs programming technology [119]. 37

vi

3.15 Microsemi RTG4 device architecture [149]. 38

3.16 Static Random Access Memory (SRAM) memory cell [119]. 38

3.17 SRAM-based FPGAs programming technology [30]. 39

3.18 Core Logic Fabric for Altera Stratix 10 devices [9]. 40

3.19 Altera Stratix 10 FPGA ALM Block Diagram [9]. 40

3.20 Altera Stratix 10 FPGA Architecture Block Diagram [9]. 41

3.21 Xilinx FPGAs Configurable Logic Block (CLB) architecture[242]. 41

3.22 Layout of a Xilinx Zynq-7000 FPGA. 42

3.23 Space missions employing Microsemi RTSX-SU FPGAs [144]. 43

3.24 Space missions employing Microsemi RTAX FPGAs [144]. 43

3.25 Space missions employing Microsemi RTAX FPGAs [144]. 44

3.26 Past and planned Space missions employing Microsemi RTAX FPGAs [144]. 44

3.27 Partial Reconfiguration concept [239]. 46

3.28 Partial Reconfiguration Design Flow [239]. 47

3.29 Methods for delivering partial bitfiles [230]. 48

3.30 Partial Bitstream composition and loading process [241]. 49

3.31 Chain of dependability threats. 50

3.32 Effect of a ionizing particle on a MOS transistor [110]. 51

3.33 Single-Event Effects classification [252]. 52

3.34 Example of the effect of a Single Event Upset (SEU) on the configuration of a pro-

grammable routing matrix [37]. 55

4.1 ABLUR block diagram . 65

4.2 Gradient calculator architecture . 66

4.3 α estimator architecture . 66

4.4 Histogram calculator architecture . 67

4.5 α selector internal architecture . 68

4.6 Hyper-Laplacian distributions with different α values . 69

4.7 Real-world scene images affected by blur and their gradients distribution, together

with the Hyper-Laplacian that better fits them (represented with black crosses) 72

4.8 RMSE of the recovered latent images w.r.t. the original ones, varying the inputα value,

for the two examples in Figure 4.7 (the minimum RMSE is highlighted with a circled

star) . 73

4.9 Example from Figure 4.7 deblurred by ABLUR (RMSE=0.044) and by software imple-

mented double precision version of the same algorithm (RMSE=0.039) 74

4.10 Example from Figure 4.7 deblurred by ABLUR and edges extracted from blurry and

deblurred image . 75

4.11 SA-FEMIP computational pipeline . 78

vii

4.12 Reconfigurable Gaussian Filter hardware architecture . 79

4.13 Gaussian Filter internal architecture . 79

4.14 Gaussian Filter internal buffers architecture. (i,j) indicates the pixel coordinates. 81

4.15 NVE internal architecture . 82

4.16 Adaptive Harris Features Extractor internal architecture 85

4.17 Adaptive Cell-based Thresholding hardware architecture 88

4.18 TH and NF shifter vector hardware architecture . 89

4.19 Features Matcher internal architecture . 90

4.20 Fake matches on test images ranging different Cross-Correlation window size 92

4.21 Timing diagram of SA-FEMIP . 93

4.22 SDP results for FEMIP and the proposed architecture . 97

4.23 Example of extracted matches . 98

4.24 NEM results for different levels of injected Gaussian noise, varying the Gaussian Filter

variance . 99

4.25 Correct Matches (CM) results for different levels of injected Gaussian noise, varying

the Gaussian Filter variance . 99

5.1 Bitstream generation [229]. 103

5.2 Bitstream Loading process [229]. 103

5.3 Reconfiguration time of Xilinx solution . 105

5.4 Bitstream generation with the proposed solution. 106

5.5 Bitstream loading process with the proposed solution. 106

5.6 Comparison between proposed solution and Xilinx solution 107

5.7 Critical connections and cores . 108

5.8 Reconfiguration time with 2 Frames . 110

5.9 Xilinx PlanAhead tool device view . 111

5.10 Difference of DPRs time in 1 day - Bitstream size equal to 1,969 32-bit words. 112

5.11 Difference of DPRs time in 1 day - Bitstream size equal to 11,040 32-bit words. 113

5.12 DPR controller architecture for Synchronous DPR mode. 116

5.13 DPR controller architecture for Asynchronous DPR mode. 117

5.14 Proposed TMR approach applied to the Asynchronous DPR mode architecture. 118

5.15 Protected bitstream generation. 119

5.16 DPR controller architecture for D2PR-CRC mode. 120

5.17 Protected bitstream generation. 122

5.18 DPR controller architecture for D2PR-EDAC mode. 122

5.19 Proposed controller instantiated in a LEON3-based system. 123

5.20 Reconfiguration throughput w.r.t. data block size for the proposed DPR controller

configured in D2PR-CRC mode. 125

viii

6.1 FPGA configuration memory SEUs fault injection approaches classification 131

6.2 Proposed fault injection infrastructure architecture . 133

6.3 Fault locations generation flow . 134

6.4 Essential bits meaning . 136

6.5 Two-dimensional convolution datapath, with Triple Modular Redundancy 139

6.6 Fault injection time vs number of equivalent injected SEUs trends comparison, in the

case of the LEON3 running CRC32 . 142

ix

LIST OF TABLES

3.1 Characteristics of Xilinx FPGAs configuration ports [239]. 47

4.1 Resource Usage for Xilinx Virtex 7 VX485T FPGA device 71

4.2 Comparison among deblurring approaches in terms of execution time and RMSE . . . 73

4.3 Resources usage and power consumption of FEMIP and SA-FEMIP, implemented on

a Xilinx XQR4VLX200 Virtex 4 FPGA device . 94

4.4 Resource usage and throughput of FEIC and SA-FEMIP for a Xilinx XQR4VLX200 Vir-

tex 4 FPGA device . 95

5.1 Area occupation and reconfiguration time of different implementations 110

5.2 Hardware resources and throughput for the proposed controller operating in a LEON3-

based system implemented on a Virtex4-VLX100 FPGA. 124

5.3 Hardware resources and throughput for the proposed controller implemented on an

Artix7-xc7a100t FPGA. 126

5.4 Comparison of the proposed DPR controller with state of the art and vendor solutions.

The target device is a Virtex6-vlx240t FPGA. 126

6.1 LEON3 CUT + associated fault injection infrastructure 139

6.2 2D convolution datapath CUT + associated fault injection infrastructure 139

6.3 2D convolution datapath with TMR CUT + associated fault injection infrastructure . . 140

6.4 CUTs Bitstream size, percentage of Essential Bits, application execution time, and total

injection time . 140

6.5 Fault Injection classification results . 141

x

C
H

A
P

T
E

R

1
INTRODUCTION

Nowadays, computer vision is one of the most evolving areas of Information Technol-

ogy (IT). Digital image processing, i.e., the use of algorithms to process and/or ex-

tract information from digital images, is being increasingly adopted in multiple ap-

plication fields.

In general, digital image processing applications fall in two macro-fields: the former includes

those applications in which it is used to improve visual information that must be subsequently

interpreted by a human actor. Two examples are represented by consumer electronics, such as

digital video or photo-cameras, and medical applications. The latter macro-field includes ap-

plications in which image processing is employed to extract information that must be stored,

transmitted, or used for autonomous machine interpretation. Unmanned Aerial Vehicles (UAVs)

navigation, autonomous surveillance and reconnaissance, military situational awareness, and

other particular defense, aerospace, and automotive applications, fall in this class [93].

Within the aforementioned fields, image processing is used to serve both non-critical and

critical tasks. As example, in automotive, cameras are becoming key sensors for increasing car

safety and driving comfort, and for building high-reliable Advanced Driver Assistance Systems

(ADAS) [209]. They have been employed for infotainment (non-critical), as well as for some

mission-critical driver assistance tasks, such as Forward Collision Warning and Avoidance, In-

telligent Speed Control, or Pedestrian Detection.

Also in the aerospace field cameras are likely to become reference sensors. Since decades,

cameras are being used for Earth or deep-space observation through in-orbit satellites or pow-

erful space telescopes (e.g., Hubble), and remote rovers navigation. Nonetheless, during the last

years, several additional studies and projects carried out by space agencies have also demon-

strated suitability of cameras and digital image processing in innovative space-mission contexts.

For instance, they can be employed for object recognition during active space debris removal

processes [62], or to assist the entry, descent and landing phase of spacecrafts employed in fu-

1

1. INTRODUCTION

ture space exploration missions, thus enabling an autonomous video-based navigation of such

objects [60].

In these application fields, real-time behaviors are often required in order to allow the system

to quickly react to external dangerous events. However, the complexity of the applied algorithms

brings a challenge when trying to build real-time embedded image processing systems, requir-

ing high computing capacity, usually not available in modern processors for embedded systems.

Hardware acceleration is therefore crucial and devices such as Field Programmable Gate Arrays

(FPGAs) best fit the growing demand of computational capabilities.

FPGAs are digital integrated circuits which functionality can be programmed, once or mul-

tiple times, by the user or the designer after manufacturing, i.e., in the field [100]. They provide

logic gates, memories and Digital Signal Processors (DSPs) blocks, thus enabling the implemen-

tation of complex digital functions and custom hardware accelerators. Due to their flexibility

and continuously growing computing capacity, FPGAs often represent the preferred platform for

the final deployment of embedded image processing systems. These devices can assist and off-

load embedded processors by significantly speeding-up computationally intensive software al-

gorithms, thereby acting as efficient dedicated co-processors.

However, critical applications impose strict requirements in terms of both device dependabil-

ity and algorithm robustness. Technology shrinking is highlighting reliability problems related to

both aging phenomena and to the increasing sensitivity of electronic devices to external radi-

ation events, that can cause transient or even permanent faults, leading to wrong information

processed or, in the worst case, to a dangerous system failure.

In addition, even if the circuit which implements the chosen image processing algorithm is

working correctly, sensor noise, illumination conditions variation, and other transitory environ-

mental factors can impact the quality of the images acquired by cameras, consequently decreas-

ing the trustworthiness of the algorithm’s output results.

The research work presented in this thesis focuses on the development of techniques for im-

plementing efficient and robust real-time embedded image processing hardware accelerators

and systems for mission-critical applications. FPGAs have been chosen has target technology,

following the current trend that is replacing custom and expensive Application Specific Inte-

grated Circuits (ASICs) with more flexible FPGA devices also in such applications [97].

According to the aforementioned issues, three main challenges have been faced and will be

discussed, along with proposed solutions, throughout the thesis: (i) achieving real-time perfor-

mances, (ii) enhancing algorithm robustness, and (iii) increasing overall system’s dependability.

In order to ensure real-time performances, efficient FPGA-based hardware accelerators im-

plementing selected image processing algorithms have been developed. Functionalities offered

by the target technology, and algorithm’s characteristics have been constantly taken into account

while designing such accelerators, in order to efficiently tailor algorithm’s operations to available

hardware resources. Moreover, efficient design, verification and validation methodologies have

2

1.1. Thesis Organization

been developed and adopted throughout the research work.

On the other hand, the key idea for increasing image processing algorithms’ robustness is to

introduce self-adaptivity features at algorithm level, in order to maintain constant, or improve,

the quality of results for a wide range of input conditions, that are not always fully predictable

at design-time (e.g., noise level variations). This has been accomplished by measuring at run-

time some characteristics of the input images, and then tuning the algorithm parameters based

on such estimations. Dynamic reconfiguration features of modern reconfigurable FPGAs have

been extensively exploited in order to integrate run-time adaptivity into the designed hardware

accelerators.

Dynamic Reconfiguration is the ability of modern FPGAs to be reconfigured at run-time with-

out interrupting system’s operations. The entire device or, in some cases, portions of it can be

reconfigured in order to run-time change implemented hardware functionality, to correct design

bugs, or to on-line recover from hardware faults.

However, the usage of dynamic reconfiguration exposes the system to new dependability

threats that can cause mis-reconfigurations and consequently severely impact reconfigured de-

vice’s operations. For this reasons, tools and methodologies have been also developed in order to

increase the overall system dependability during reconfiguration processes, thus providing safe

run-time adaptation mechanisms.

In addition, taking into account the target technology and the environments in which the

developed hardware accelerators and systems may be employed, dependability issues have been

analyzed and relevant fault models have been defined and adopted. This led to the development

of a platform for quickly assessing the reliability and characterizing the behavior of hardware

accelerators implemented on reconfigurable FPGAs when they are affected by such faults. The

proposed platform can help designers to identify the weaknesses of the circuit and consequently

apply the most suitable fault mitigation or protection techniques.

Finally, it is worth to mention that the entire thesis work relies on a strong collaboration with

two companies operating in the aerospace market, i.e., Thales Alenia Space Italy and Cobham

Gaisler AB (Sweden). Several target applications in the aerospace field have been selected during

the research period and will be considered as main reference case-studies for the proposed solu-

tions. Nonetheless, the concepts behind the contributions of this thesis can be generalized and

applied when dealing with the development of embedded image processing, or more in general

signal processing, systems for mission-critical applications.

1.1 Thesis Organization

The thesis has been split in two main parts in order to allow the reader to easily understand the

concepts and contributions of the presented research work. The first part includes two introduc-

tory chapters:

3

1. INTRODUCTION

• Chapter 2 provides an overview on image processing concepts and applications. The chap-

ter starts with a brief history of digital image processing. Then, several applications are pre-

sented focusing on those ones in which image processing is employed in mission-critical

contexts, and highlighting issues, challenges and limitations of modern systems. Several

reference use-cases and issues are discussed more in detail since they will be deeply ana-

lyzed in the following chapters. Image processing algorithm’s classes are introduced and

some mathematical background provided;

• Chapter 3, provides an overview of modern FPGAs, focusing on reconfigurable ones, and

discussing the reasons behind their popularity and adoption in mission-critical applica-

tions. After a brief summary of the history that led from the first programmable device to

modern reconfigurable FPGAs, the chapter details modern device types and architectures.

Dynamic Partial Reconfiguration (DPR) is then introduced along with some technical de-

tails about the run-time reconfiguration process. Finally, dependability threats related to

the usage of FPGAs in critical environments will be presented, analyzed and discussed.

The second part of the thesis presents the actual contributions of the research work. Ac-

cording to the points and challenges highlighted in the previous section, the rest of the thesis is

organized as follows:

• Chapter 4 provides details on proposed approaches to enhance image processing algo-

rithm robustness [59, 60, 61, 63, 77, 121, 122]. The implementation of associated hardware

accelerators and systems on FPGAs is also detailed. Several case-studies are presented. For

each of them, algorithms, issues, and advancements with respect to the state of the art are

discussed;

• Chapter 5 discusses the proposed solutions for enhancing dynamic reconfiguration pro-

cess dependability [58, 65]. In particular, this chapter details the issues related to run-time

dynamic reconfiguration and the effect of mis-reconfigurations. Then, it presents two al-

ternative ways to safely enhance reconfiguration process dependability. The former is es-

sentially based on a set of rules to be applied at design-time [58], while the latter relies

on the usage of a flexible hardware reconfiguration manager that must be instantiated in

the target system [65]. Both approaches can be employed to safely enable self-adaptivity

mechanisms in the designed image processing hardware systems without decreasing the

dependability levels required by the target applications;

• Chapter 6 introduces the problem of evaluating system’s robustness with respect to tar-

get fault models. It provides an overview of the state-of-the-art methods for emulating or

injecting faults in FPGA-based systems, highlighting their limitations. Finally, it presents

a methodology, along with an associated hardware platform, for emulating the effects of

4

1.1. Thesis Organization

selected soft errors types on modern FPGAs. The presented methodology provides design-

ers a powerful tool to quickly evaluate the behaviour of the developed systems in harsh

environments [64].

5

C
H

A
P

T
E

R

2
DIGITAL IMAGE PROCESSING FOR MISSION-CRITICAL

APPLICATIONS

According to the literature, Digital Image Processing represents a sub-field of the more

general Digital Signal Processing, and refers to the usage of computer algorithms to

process and/or extract useful information from digital images [93].

In general, an image can be defined as a “spatial representation of an object or a scene” [14],

represented trough a continuous function:

f (x, y), x, y ∈ℜ (2.1)

where f denotes the value of the analog image at the coordinate (x, y).

In contrast to Analog Image Processing, which operates on analog representations of the ob-

ject or scene, Digital Image Processing acts on a spatially-sampled and quantized representation

of it, i.e., a digital image, which can be represented through a discretized function:

f̄ [x, y], x, y ∈N (2.2)

where f represents the quantized intensity value of the digital image at the sampled coordi-

nate (x, y). Equivalently to Equation 2.2, a digital image can be represented through a two-

dimensional array:

f̄ [x, y] =

f [0,0] f [0,1] ... f [0,C −1]

f [1,0] f [1,1] ... f [1,C −1]

...

f [R −1,0] f [R −1,1] ... f [R −1,C −1]

 (2.3)

composed of R rows and C columns of picture elements, called pixels. The value of each pixel

stores the quantized intensity level of that point in the scene. For digital images, pixels store one

7

2. DIGITAL IMAGE PROCESSING FOR MISSION-CRITICAL APPLICATIONS

or more integer values, represented trough bit arrays, that result from a quantization process

carried out by the adopted imaging sensor circuitry. Common bit-widths for the representation

of a pixel are 8 or 24 for grey-scale and colors images, respectively [14].

Usually, digital image processing is carried out by applying one or more image processing

algorithms to the frames acquired trough an imaging sensor. As shown in Figure 2.1, algorithms

are applied sequentially in order to extract high level information that can be easily handled by

the user of the image processing system.

Figure 2.1: Representation of a generic image processing flow.

According to [14], image processing algorithms can be grouped depending on the type of data

they have to handle and process. This concept is also illustred in Figure 2.2, which depicts the so

called Image Processing Pyramid.

• Image Pre-processing: this category includes all the algorithms used to enhance the qual-

ity of the input frames, and more in general enhance the relevant information. Examples

of pre-processing operations are distortion correction, histogram equalization, and noise

filtering [93]. Pre-processing techniques act on every pixel composing the image, in order

to change their values;

• Image Segmentation: the purpose of segmentation is to detect objects or regions in an

image, characterized by some specific properties. They essentially extract features from

the pixels information, providing a higher-level description of the input frame.

• Image Classification: starting from a set of features, classification algorithms identify ob-

jects, and eventually classify them into categories;

8

2.1. History of Digital Image Processing

Figure 2.2: Digital image processing pyramid [14].

• Image Recognition: recognition algorithms work on objects extracted from the image and

aim at deriving high level descriptions or interpretation of the scene.

2.1 History of Digital Image Processing

The first applications of digital images date back to the early 1920s, when newspaper pictures

were sent through the Bartlane cable transmission system across the Atlantic. At that time, a pic-

ture can be trasmitted in less than three hours using a telegraph and reproduced at the receiving

part exploiting a special telegraph printer [93, 140].

Although in the following years the systems and underlying technology were improved, we

can start talking about “true” digital image processing with the introduction and development of

digital computers with sufficient computational capabilities. Actually, the first computers pow-

erful enough to process digital images were introduced in the 1960s [93]. In that period, due to

the high activity of the space programs, the NASA Jet Propulsion Laboratory developed and used

image processing techniques to enhance the quality of the Moon images taken from the Ranger

7 space probe [158], therefore demonstrating the effectiveness and potentialities of digital image

processing. In fact, the imaging system was the unique scientific instrumentation equipped on

the Ranger 7 probe, that in 1964 was able to capture, for the first time (for the US), 4,316 images

of the Moon (Figure 2.3) and transmit them to the Earth in the 15 minutes before its impact on

the lunar surface [158].

In the late 1960s and early 1970s, digital image processing started to be employed also in

medical applications, with the introduction of the computerized axial tomography [87].

Due to the technology advance and the decrease of modern computers cost-to-performance

ratio, digital image processing has expanded its application domains. Nowadays it is heavily em-

ployed in numerous fields, including, but not limited to, aerospace, automotive, medicine, biol-

ogy, and defense [93].

9

2. DIGITAL IMAGE PROCESSING FOR MISSION-CRITICAL APPLICATIONS

Figure 2.3: First image of the Moon taken by Ranger 7 [158].

2.2 Image Processing in mission-critical applications

Nowadays digital image processing is being increasingly adopted in numerous application fields,

to serve both critical and non-critical tasks. Two examples are represented by the usage of digi-

tal image processing techniques for building innovative automotive Advanced Driver Assistance

Systems (ADAS) or autonomous Video-based Navigation Video-based Navigation (VBN) systems

for future space exploration missions.

As stated in [7], “one of the major goals of the automotive industry is to reduce the number of

traffic fatalities and severity of accidents”. Although standard safety (e.g., airbag or ABS) systems

are heavily employed in modern vehicles, due to the large and continuously increasing number of

vehicles in on the road, new innovative technologies have been introduced to increase car safety

and to assist drivers to avoid dangerous situations. In this context, vehicles are being equipped

with multiple smart camera-based systems, that can carry out different tasks, as depicted in Fig-

ure 2.4.

During the last years, vehicle-based camera systems for ADAS have become more and more

complex, being able to perform real-time tasks such as traffic sign recognition, pedestrian de-

tection, forward collision avoidance and road lane detection [167]. An example ADAS system

high-level block diagram is illustrated in Figure 2.5.

As reported in [222], an ADAS system may be based on several subsystems that can share

some portions of the digital image processing pipeline:

• Viewable system: images are captured through one or more imaging sensors and decoded

10

2.2. Image Processing in mission-critical applications

Figure 2.4: Examples of vehicle camera-based systems tasks [222].

Figure 2.5: Block diagram of an automotive ADAS system [222].

for further video processing (e.g., for image enhancement and distortion correction) in or-

der to provide graphical information that can be displayed to the driver;

• Non-viewable system: includes all those hardware and software systems needed to impl-

ment digital image processing algorithms for extracting useful information from the ac-

quired frames and for interpreting them to characterize the vehicle environment and sup-

port continuous threat assessment and drive countermeasures (e.g., to identifying lane

markings, road signs, pedestrians and other vehicles) [222].

On the other hand, in the aerospace domain, digital image processing has been used in the

last decades for many purposes [176], such as Earth Observation [23, 161], Space Cartography

[160], Satellites and Spacecrafts Attitute Control [129], and Rovers Navigation [165].

11

2. DIGITAL IMAGE PROCESSING FOR MISSION-CRITICAL APPLICATIONS

A recent example of the usage of digital image processing techniques requiring high compu-

tational capabilities in the space domain is represented by the NASA Curiosity mission [163].

Curiosity is a car-sized rover (see Figure 2.6), that is exploring the Martian surface since August

2012.

Figure 2.6: Curiosity rover.

As reported in [165], the Curiosity rover has been equipped with 17 "eyes", for a total of 10

cameras. 6 cameras are devoted to the rover navigation, while the other 4 are used to perform

science investigations on the Mars surface:

• Hazcams: four pairs of cameras are employed for hazard avoidance. Hazcams are black and

white cameras mounted on the lower portion of the front and rear of the rover to capture

three-dimensional images. Hazard detection is essential to protect the rover from crashing

into unexpected obstacles. These cameras work in tandem with the software that allows

the rover to autonomously react and avoid dangerous situations [165];

• Navcams: two pairs of cameras are used to help rover ground navigation providing a panoramic

view of the terrain. These cameras also work in cooperation with Hazcams;

• MastCam: two Mast cameras are used to take three-dimensional color images and videos

of the Martian terrain;

• MAHLI: the Mars Hand Lens Imager provides close views of the minerals, textures, and

structures in the martian surface. It takes color images of features as small as 12.5 microm-

eters.

12

2.2. Image Processing in mission-critical applications

In addition to the aforementioned cameras, the Curiosity mission employs an additional cam-

era that has been used to acquire frames during the rover landing phase. The Mars Descent Imager

(MARDI) acquired 1600x1200 pixel images (Figure 2.7) at roughly 5 frames per second through-

out the entire landing period, i.e., from the landing module heatshield separation until surface

touchdown.

Figure 2.7: Picture of the Curiosity’s heatshield taken by MARDI [164].

During the landing phase, the acquired frames were written into flash memory in real-time

and transmitted later to the Earth.

Although vision-based approaches have been heavily employed to allow autonomous rover

ground navigation, during the Entry, Descent and Landing phase, cameras are usually employed

as passive components, not included in the spacecraft landing control loop (e.g., MARDI in Cu-

riosity mission).

In a space exploration mission, the Entry, Descent and Landing (EDL) represents one of the

most dangerous phases, since all the expensive on-board electronic and mechanical instruments

are subject to strong mechanical vibrations that can damage them. Moreover, a high accuracy of

the landing point must be guaranteed in order to be able to reach predefined and safe portions of

the target planet surface. For these reasons, during the last years, there was an increasing interest

of space agencies in developing innovative EDL systems that try to minimize the probability of

mission failures, while at the same time providing an increased precision of the landing point.

The landing accuracy is usually measured resorting to the size of the so called landing ellipse,

which identifies the predicted landing zone. The size of the landing zone is essentially deter-

mined by the uncertainty of numerous environmental factors, that can impact the descending

13

2. DIGITAL IMAGE PROCESSING FOR MISSION-CRITICAL APPLICATIONS

trajectory during the actual landing phase. Figure 2.8 illustrates the predicted landing ellipse of

the Curiosity rover. The size of the landing ellipse was 20x7 kilometers.

Figure 2.8: Representation of the Curiosity’s landing ellipse on the Martian surface[201].

The high precision of the state-of-the-art Curiosity’s landing system is due to the adoption of

a combinations of different sensors and approaches that enable a guided landing phase. Figure

2.9 summarizes the Curiosity’s EDL phases.

When the parachute is completely deployed, the heat shield is released, and the radar begins

collecting data about velocity and altitude. The information gathered from the radar instruments

are then used by the Guidance Navigation and Control (GNC) system to correct, if necessary, the

spacecraft descending trajectory through the usage of thrusters.

During the last years, space agencies have increased the effort for the development of novel

EDL systems. In particular, VBN approaches have been preferred, as demonstrated by several

funded studies [69, 79] due to the potentialities offered by digital image processing and the lim-

ited weight of vision instruments and associated processing systems. VBN systems aim at com-

puting the speed and attitude of the spacecraft by processing consecutive frames acquired through

an imaging sensor. This approach is also called Relative Navigation, which aims at computing

speed and relative position of the spacecraft by processing images in real-time.

A typical relative navigation image processing chain is depicted in Figure 2.10 [122].

Relative Navigation is carried out by performing two main activities:

• Features Extraction and Matching FEM: each frame is processed to detect those pixels

or regions that represent features of interest in the image (e.g., corners or edges on the

surfaces). The detected features are then compared to extract those that can be recognized

in two consecutive images (matching points);

14

2.2. Image Processing in mission-critical applications

Figure 2.9: Representation of the Curiosity’s EDL [159].

Figure 2.10: Representation of the Curiosity’s EDL [122].

• Motion Estimation: the output results of FEM are analyzed by the motion estimation algo-

rithms that extract the relative position, speed and attitude of the camera by fusing match-

ing points information with those extracted by additional sensor, such as radars or lidars.

A first approach to an autonomous VBN system in space exploration missions has been ac-

complished during the Mars Exploration Rovers mission [162], in which two rovers, i.e., Spirit and

15

2. DIGITAL IMAGE PROCESSING FOR MISSION-CRITICAL APPLICATIONS

Opportunity landed on the Martian surface.

The EDL approach adopted in such mission was parachute-assisted and almost entirely bal-

listic. Moreover, due to the limited knowledge of the Martian environment (e.g., wind speeds and

atmosphere composition), the predicted trajectory presented a large uncertainty, leading to an

estimated landing ellipse of 15x160 kilometers.

However, during the EDL phase, the so-called Descent Image Motion Estimation System (DIMES)

has been employed. DIMES represents the first autonomous machine vision system used to

safely land a robotics payload on another planet. It consists of a camera and a software algorithm

for estimating horizontal velocity using images, inertial and altitude measurements [40, 109].

Figure 2.11 illustrates the DIMES descent scenario.

Figure 2.11: DIMES descent scenario [109].

Three images are taken by the camera, at roughly 2000m, 1700m, and 1400m above the Mar-

tian surface, and processed by a software algorithm that first extracts features between the first

and the second image, and other two features between the second and the third image. The

three images are scaled and rotated depending on the actual attitude, that has been measured

through an inertial measurement unit. Finally, two features for each image pair are tracked us-

ing a two-dimensional correlator in order to compute and estimate the average velocity between

two acquired frames. The resulting value is also checked with respect to the outputs of the iner-

tial measurement unit data that eventually propagates a control command to thrusters to correct

16

2.3. Imaging sensors and related issues

the horizontal velocity of the spacecraft [40, 109].

It is worth to mention that this system has been successfully employed during landing of both

Spirit and Opportunity rovers, and played an important role in the first case. In fact, during Spirit

landing, the total velocity was at the limit of the landing airbag capability. Airbags were used to

limit the impact forces of the rover with the Martian surface. However, tests highlighted that,

if the velocity at impact instant had been too large, the airbags would be ripped [40]. Anyway,

DIMES was able to compute the correct values and activate thrusters to reduce the risky horizon-

tal velocity [109] and provide a safe landing of the Spirit rover on the planet terrain.

2.3 Imaging sensors and related issues

The image sensor represents the fundamental part of a camera. In its basic form, an image sen-

sor can be defined as a sensor that converts light information into electrons, and subsequently

electrons into a voltage.

Two main sensor technologies are adopted to generate digital images that can be digitally

processed, i.e., Charge-Coupled Device (CCD) and CMOS.

Figure 2.12 illustrates the high level block diagram of a CCD sensor.

Figure 2.12: CCD imaging sensor high level block diagram [130].

A CCD is a solid-state image sensor composed of a two-dimensional array of pixels. A pixel is a

MOS capacitor that stores charges whenever a photon is absorbed [120, 137] (Photon-to-Electron

Convesion phase). When exposure is complete, pixels’ charges are sequentially transferred to the

17

2. DIGITAL IMAGE PROCESSING FOR MISSION-CRITICAL APPLICATIONS

read-out circuitry that generates a buffered output voltage proportional to the amount of charge

trapped by a single pixel. Afterwards, an off-chip Analog-to-Digital Converter (ADC) converts the

analog voltage value generated by each pixel into a binary representation.

On the other hand, as depicted in Figure 2.13, in a CMOS sensor most of the operations are

performed on-chip.

Figure 2.13: CMOS imaging sensor high level block diagram [130].

A CMOS sensor is composed of a two-dimensional array of pixels elements that, depending

on the adopted technology, can be either passive (Figure 2.14) or active (Figure 2.15).

Figure 2.14: CMOS passive pixel sensor [80].

18

2.3. Imaging sensors and related issues

Figure 2.15: CMOS active pixel sensor [80].

As shown in Figure 2.14, a CMOS passive pixel element consists of a photo-diode and a pass

transistor. When the pass transistor is activated, the photo-diode is connected to the column bus

and the charge accumulated in the photodiode is converted into a proportional voltage by the

read-out circuitry [80].

On the other hand, Figure 2.15 illustrates a CMOS active pixel, composed of a photo-diode

and three transistors [80]. When the reset transistor (i.e., the one driven by the RST signal) is

turned-on, the photo-diode looses the accumulated charge because of the direct connection to

the power supply (i.e., VDD). An amplifier transistor is used to read the pixel voltage without re-

moving the actual accumulated charge, while a selection transistor (i.e., the one driven by the RS

signal) is used guarantee the access of the read-out circuitry to the target pixel voltage. The main

difference of such pixel architecture over a CCD sensor relies on the fact that (i) the entire charge-

to-voltage conversion takes place in each pixel [130], and (ii) CMOS pixels do not require special

manufacturing techniques since they can be fabricated resorting to the same silicon technology

process of the surrounding logic.

Either acquired trough a CCD or a CMOS sensor, digital images may not accurately reproduce

the target scene due to the presence of several phenomena, such as temperature or sensor manu-

facturing process variations, or sensor mechanical vibrations during the exposure time, that can

induce errors in the output pixels values.

In particular, two main effects are usually considered as unwanted sources of digital image

degradation, i.e., noise and blur [93]. Figure 2.16 and Figure 2.17 illustrate two examples of digital

images affected by noise and blur, respectively.

Several types of image noise and blur exists, and they are briefly discussed in the sequel.

Noise can be defined as a stochastic undesired variation of the pixels values that leads to a

19

2. DIGITAL IMAGE PROCESSING FOR MISSION-CRITICAL APPLICATIONS

(a) Original image. (b) Noisy image.

Figure 2.16: Example of an image affected by noise.

(a) Original image. (b) Blurry image.

Figure 2.17: Example of the blur effect.

deviation from the correct representation of the target scene [255].

As stated in [93], “the principal sources of noise in digital images arise during image acquisition

and/or transmission. The performance of imaging sensors is affected by a variety of factors, such

as environmental conditions during image acquisition (e.g., light levels and sensor temperature),

and by the quality of the sensing element themselves”. Some examples of noise sources are:

• Shot noise: this type of noise, also called Photon noise, is caused by the non-deterministic

arrival of photons during the image acquisition process. Basically, during the digital image

acquisition interval, photons hit the sensor’s sensing elements. However, it is not guaran-

teed that, if we carry-out two independent acquisitions of the same target scene (with the

same light conditions and for the same interval), the number of charges acquired by the

20

2.3. Imaging sensors and related issues

sensor elements will be the same, due to the random arrival of photons. Since the charge

accumulated is inherently discretized, this leads to a stochastic variation of the pixel value.

This effect is highlighted when the image is acquired with very narrow acquisition periods,

since the number of accumulated photo-electrons can be very low. Therefore, the impact

of this effect can be limited with the adoption of longer exposure periods;

• Dark current: also called Thermal noise, it represents the noise contribution given by the

thermally-generated electrons in the sensor’s pixels. It is proportional to the sensor temper-

ature and to the exposure time. As reported in [255], to partially suppress this type of noise,

the average dark current for a given acquisition period can be estimated and substracted

just before the ADC conversion. Nonetheless, since the thermal noise contribution is also

stochastic, even if the average value is removed, the contribution related to the standard

deviation is still present [255];

• Read noise: it represents the noise generated by the read-out circuitry during the pixel

voltage extraction;

• Amplifier noise: it is well known that all analog amplifiers introduce noise. In an imaging

sensor, the extracted pixel voltage is amplified before the actual Analog-to-Digital conver-

sion. This amplification is necessary to extend the range of the voltages generated by the

sensor sensing element to be compliant with the adopted ADC;

• Quantization noise: it is mainly introduced during the Analog-to-Digital conversion pro-

cess because of the sampling of the input analog voltage and subsequent conversion into

a discretized binary representation. It essentially depends on the adopted ADC levels, or

equivalently, on the number bits used to represent the pixel value.

On the other hand, according to [28], blur can be classified in:

• Motion blur: it is introduced when there is a relative translation, rotation, zoom, or a com-

bination of them, between the camera and the objects in the target scene;

• De-focus blur: this kind of image blur is introduced when the target scene presents objects

that have different distances with respect to the camera. It mainly depends on the focal

length, on the adopted lens, and on the distance between the camera and the objects;

• Atmospheric blur: this type of blur mainly affects remote sensing applications (e.g., Earth

observation from space satellites). This effects depends on several environmental factors,

such as temperature and atmospheric turbulence, that can lead to unpredictable light re-

fraction phenomena.

21

2. DIGITAL IMAGE PROCESSING FOR MISSION-CRITICAL APPLICATIONS

The aforementioned blur effects are accentuated when the target scene is poorly lighted and

so a greater exposure time is required. However, in many situations there is simply not enough

light to avoid using a long shutter speed, leading to an acquired images that is inevitably blurry.

2.3.1 Mathematical model

The presence of noise or blur effects in images can severely impact the performances of digital

image processing and computer vision algorithms, since image details (such as edges) and, more

in general, image information, may be partially lost.

Consequently, one of the aims of digital image processing is to try to restore the information

affected by unwanted effects, and therefore provide images that can be well processed by the

subsequent algorithms in order to extract “reliable” information.

A simplified model of a digital image g [x, y], composed of a two-dimensional array of R rows

and C columns of pixels, and affected by blur and noise, can be formalized as follows [28]:

g [x, y] =
R−1∑
a=0

C−1∑
b=0

h[a,b] f [x −a, y −b]+n[x, y] (2.4)

where f [x, y] denotes the ideal image not affected by any unwanted effect, n[x, y] represents the

additive noise that corrupt the image, while h[a,b] is the so-called Point Spread Function (PSF).

Equation 2.4 can be re-written as:

g [x, y] = h[a,b]∗ f [x, y]+n[x, y] (2.5)

where ∗ denotes the two-dimensional convolution operator.

Equation 2.4 and Equation 2.5 model the effect of blur through a two-dimensional convolu-

tion operation between the PSF and f [x, y]. Assuming the absence of noise, the PSF represents

the transfer function of the imaging system. As stated in [28], “if the ideal image”, i.e., f [x, y]

in Equation 2.5, “would consist of a single intensity point or point source, this point would be

recorded as a spread-out intensity pattern”, i.e., h[x, y] in Equation 2.5. Basically, the PSF repre-

sents the system response to a point source, and describes how each point source is “spreaded”

in the output image. From a system theory point of view, assuming that the considered imaging

system is linear, the PSF represents the system impulse response.

Despite its simplicity, this model is often adopted in practice because it provides a good ap-

proximation level of the real effects, and low-complexity.

In particular, Equation 2.4 assumes that the PSF function is spatially invariant, meaning that

each point of the image is blurred in the same way, independently from its location. Moreover,

the blur is assumed to be a process that does not absorb or generate energy [28], therefore:

R−1∑
x=0

C−1∑
y=0

h[x, y] = 1 (2.6)

22

2.3. Imaging sensors and related issues

On the other hand, the noise affecting the image is usually assumed to be a random variable,

that can be described through a probability density function, considered also spatially-invariant

and, most important, uncorrelated with respect to the values of the pixels in the image [93]. In

practical cases, a Gaussian probability density function [93] (characterized by an average value

and a varianceσ2) is often adopted to describe the noise affecting an image (i.e., Gaussian noise).

The reader may refer to [93] for further details on other common probability density functions

used in image processing.

Finally, it is worth to note that, in an ideal case:

h[x, y] =
1 if x = y = 0

0 ∀x, y 6= 0
(2.7)

and

n[x, y] = 0, ∀x, y (2.8)

therefore Equation 2.4 and Equation 2.5 become:

g [x, y] = f [x, y], ∀x ∈ [0,R −1], y ∈ [0,C −1] (2.9)

23

C
H

A
P

T
E

R

3
RECONFIGURABLE DEVICES FOR MISSION-CRITICAL

APPLICATIONS: ARCHITECTURES AND ISSUES

A Field-Programmable Gate Array (FPGA) is an integrated circuit that can be program-

med, once or multiple times, in the field, after manufacturing. Modern FPGAs offer

programmable logic blocks, flexible clock generation and interconnection circuitry,

memory blocks and embedded hard DSPs. This kind of resources enables the implementation

of any digital function. In addition, in order to allow complex Systems-on-Programmable-Chip

(SoPC) development, some specific device families also feature special embedded hard blocks,

such as entire microprocessors, memory controllers or high-speed transceivers.

Due to their flexibility, limited product development costs, and continuously growing com-

puting capabilities, nowadays FPGA technology represents a feasible and popular alternative so-

lution to Application Specific Integrated Circuits (ASICs), i.e., custom Integrated Circuits (ICs)

designed for a specific and fixed purpose.

The reasons behind FPGAs popularity mainly concern the simplified design flow, that con-

sequently impacts on overall project costs and Time-To-Market (TTM). Figure 3.1 illustrates the

standard FPGA-based design flow [221].

After deriving the functional specifications from the product requirements, designers gen-

erate a Register-Transfer Level (RTL) description of the circuit. This task can be accomplished

exploiting a Hardware Description Language (HDL), such as VHDL [41] or Verilog [141], or novel

High-Level Synthesis (HLS) tools. With the latter approach the RTL description can be automat-

ically generated resorting to C/C++/SystemC/OpenCL high-level functional models [46, 47, 107,

216, 251]. A first Behavioral Simulation is then performed in order to verify the generated RTL de-

scription against input specifications. Afterwards, the design is synthesized, placed, and routed

exploiting FPGA vendor’s Computer-Aided Design (CAD) tools. During this process, the RTL de-

scription is translated into a set of predefined physical resources (i.e., logic and interconnections)

25

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

Figure 3.1: Simplified FPGA design flow.

that are then mapped to the ones available in the target FPGA device.

Once the design is fully placed and routed, timing analysis is performed in order to verify if

the implemented circuit meets uses-defined timing constraints. This process is straightforward

since the physical device is fully pre-characterized by the FPGA manufacturer, and timing models

are already embedded in the CAD tool.

Eventually, the device configuration file, namely bitstream, is generated. This file stores the

physical configuration of each hardware resource inside the FPGA, in order to implement the tar-

get functionality. The device is then programmed and can be in-circuit verified. If design bugs

are found during this last verification stage, design flow iterations must be performed. Nonethe-

less, due to FPGA reconfigurability, the same physical device can be programmed with a newly

generated and corrected bitstream.

On the other hand, the ASICs design flow (Figure 3.2) is much more complex with respect to

the FPGA-based one [221].

In particular, since the physical device must be manufactured from the scratch, several addi-

26

Figure 3.2: Simplified ASIC design flow.

tional verification and characterization steps are required. Various Design-for-Testability (DfT)

features, such as scan-chains, Boundary-Scan/JTAG and Built-In Self-Test (BIST), are usually in-

serted in order to perform device testing using Automated Test Equipment (ATE) [217]. Moreover,

timing analysis and equivalency checks must be also performed after synthesis in order to verify

if the synthesis tools have produced a correct result (i.e., netlist). Afterwards, all the required

information are shared with the silicon foundry that is in charge of generating the masks and

manufacturing the physical device. After placement and routing, additional equivalency checks

are needed and analysis of second and third order effects, such as noise and parasitics, must be

performed.

By comparing Figure 3.1 and Figure 3.2 it is clear that the ASICs design cycle is much more

complex, and therefore longer, than the simplified FPGA-based design cycle. The additional ver-

ification and analysis steps are mandatory in order to discover as soon as possible design bugs or

other issues, with the aim of reducing as much as possible the probability of iterations in the late

design steps.

FPGAs also eliminate the complex and time-consuming floorplanning and production stages

of the project since the design logic is synthesized in order to be placed onto an already veri-

fied, characterized and manufactured FPGA device. Basically, while costs for the application de-

velopment and architectural design are faced for both FPGA-based and ASIC designs, the Non-

Recurrent Engineering (NRE) costs associated to the expensive actual silicon implementation

must not be afforded in case of FPGA-based designs, since the physical device production step

has been already managed by the FPGA manufacturer.

On the other hand, the choice of an ASIC technology provides full custom design capabilities

27

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

that can lead to smaller Integrated Circuit (IC) form factor and higher performances and lower

power consumption, since the placement of hardware logic and routing resources can be fully

customized and optimized.

However, the selection between one of the two approaches strongly depends also on the pro-

duction volumes. Figure 3.3 illustrates a qualitative comparison of a project total cost with re-

spect to the product volume for two generic FPGA/ASIC Technology Nodes, i.e., TN1 and TN2,

where TN2 is more advanced with respect to TN1.

Figure 3.3: FPGAs versus ASICs project cost analysis.

For low volumes, FPGAs are preferred since ASICs high NRE costs, that are increasing with the

technology shrinking, may be not affordable. Nonetheless, for high volumes, since the unit cost

for an ASIC will be much lower than an FPGA, there will be a crossover point in which producing

custom ASICs will be more advantageous. It is worth to note that the crossover volume value

increases for each technology advance.

All the aforementioned figures, merged with the reduction of the performance, speed and

power gaps between FPGAs and ASICs are pushing designers to adopt FPGAs not only for pro-

totyping purposes [90, 91], but also for the implementation of final release products with low

time-to-market in a broad range of applications, especially in those ones requiring medium or

low volumes [2, 181]. As a matter of fact, nowadays FPGAs are employed in numerous applica-

tion domains, including but not limited to, aerospace, defense, automotive, medical, high per-

formance computing, industrial, wireless communication and consumer electronics (see Section

3.3).

28

3.1. History and Evolution of Programmable Logic Devices: from Programmable Logic Arrays to
modern FPGAs

3.1 History and Evolution of Programmable Logic Devices: from

Programmable Logic Arrays to modern FPGAs

Field Programmable Gate Arrays today represent the last and the most advanced evolution of

Programmable Logic Devices (PLDs). Depending on their architectural complexity, PLDs can

be classified in two main groups (Figure 3.4): (i) Simple Programmable Logic Devices (SPLDs),

including Programmable Logic Arrays (PLAs) and Programmable Array Logic (PAL), and (ii) High

Capacity Programmable Logic Devices (HCPLDs), which include Complex Programmable Logic

Devices (CPLDs) and FPGAs.

Figure 3.4: Programmable Logic Devices taxonomy.

From the beginning of digital circuits, there has been a desire to have programmable hard-

ware. Consequently, starting from the late 60’s, several PLDs architectures were developed and

commercialized (Figure 3.5).

Actually, the first PLD was the Programmable Read Only Memory (PROM), which was com-

mercialized in 1969. As shown in Figure 3.6, PROMs are composed of a fixed AND-gates plane

and a programmable OR-gates plane. The AND plane generates all the minterms of the inputs,

while the OR plane can be programmed to implement the required function. Exploiting this ar-

chitecture, a PROM can implement any combinational function with limited inputs and outputs.

However, the PROM does not represent an efficient architecture when implementing logic

circuits, since it includes a full decoder for its address inputs.

The first evolution of PROMs was represented by the more flexible PLAs. Similarly to PROMs,

PLAs are based on an AND plane and an OR plane. However, in this case, both planes are pro-

grammable. Due to their full-programmability, PLAs were characterized by very high propaga-

tion delays. For this reason, they were not popular, and in the late 1970s they were replaced by

29

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

the Programmable Array Logic (PAL) architecture. PALs consist of a programmable AND plane

and a fixed OR array. In order to enable the implementation of sequential circuits, registers (i.e.,

Flip-Flops (FFs)) were also added to the available resources, making PAL very popular.

Nonetheless, as the technology advances and IC density grows, the architectural limits of PAL

structures arose. In particular, increasing the number of inputs and outputs of such structures led

to very high fan-ins and fan-outs for the AND and OR gates. Consequently, a more efficient solu-

tion was the integration of several PAL structures, that can communicate each other through pro-

grammable interconnections, in the same chip. These high-density devices were called CPLDs.

As shown in Figure 3.7, CPLDs are essentially made up of logic blocks and MacroCells (MC)

accessible through I/O blocks and arranged around a programmable interconnection network.

The logic blocks and the MCs include programmable AND-OR planes and additional com-

binatorial and sequential logic in order to implement multi-level complex functions, while the

Interconnect block allows communication between logic blocks.

Although CPLDs features made them very popular, several difficulties were encountered while

trying to extend CPLDs architecture to allow higher densities and higher logic capacity.

The result was the introduction of the first commercial Field Programmable Gate Array (FPGA)

in the 1985 by Xilinx co-founders Ross Freeman and Bernard Vonderschmitt.

In contrast to CPLDs, FPGAs are composed of a two-dimensional array of configurable logic

blocks. (Figure 3.8).

Usually, each logic block contains one or more Look-Up Tables (LUTs), several Flip-Flops

(FFs), multiplexers, and dedicated carry-chains. This resources allow the implementation of

any combinatorial or sequential function. The array of logic blocks is interleaved with a fexi-

Figure 3.5: Programmable Logic Devices history roadmap.

30

3.1. History and Evolution of Programmable Logic Devices: from Programmable Logic Arrays to
modern FPGAs

Figure 3.6: PROM internal architecture.

Figure 3.7: CPLD internal architecture [220].

31

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

ble interconnect network, configurable through programmable interconnection matrices. More-

over, input/output signals are managed through dedicated I/O blocks, usually supporting multi-

standard voltage levels [244]. Modern FPGA devices include also embedded SRAM memory blocks

and dedicated DSPs slices. The memory blocks provide a total storage space up to several tens

of MegaBytes on high-end devices and are used to implement fast and large data structures. The

DSPs slices usually include dedicated and configurable binary signed or unsigned multiply-and-

accumulate (MAC) units. The latter are massively used to implement arithmetic functions like

parallel multipliers [6].

During the last years, the constant technology shrinking enabled manufacturing of even more

heterogeneous FPGAs with increased logic capacity and the integration of entire embedded mi-

croprocessors, communication and memory controllers, or high-speed serial transceivers. Re-

cent examples are the SmartFusion2 [146] and Zynq-7000 [245] (see Figure 3.9) devices produced

by Microsemi and Xilinx, respectively. [146, 245]. Today, FPGAs available in the market enable

the implementation of complex SoPC, consequently reducing device count and board space.

Figure 3.8: FPGA internal architecture [30].

32

3.2. Field Programmable Gate Arrays architectures

Figure 3.9: Zynq-7000 All Programmable SoC architecture [245].

3.2 Field Programmable Gate Arrays architectures

As aforementioned, FPGAs include a set of configurable resources, i.e., logic and interconnects,

that can be programmed in order to implement a user-defined logic function. The configuration

process essentially consists in downloading the so-called bitstream into the target device. The

bitstream is generated by FPGAs vendors’ CAD tools at the end of the design process (see Figure

3.1).

Configuration is stored inside the device exploiting a defined programming technology. Mod-

ern FPGAs programming methods basically rely on three different technologies that make them

one-time programmable or reconfigurable (Figure 3.10):

• Antifuse;

• Flash memory;

• SRAM.

33

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

Figure 3.10: FPGAs taxonomy.

The following subsections details these three programming technologies, highlighting advan-

tages and drawbacks.

3.2.1 One-time programmable FPGAs

One-time programmable FPGAs use the so-called Antifuse technology in order to be configured.

The Antifuse is a programmable switch that initially acts as an open-circuit and can be burned

in order to provide a very low resistance connection. The burning process is irreversible, hence

the Antifuse-based FPGAs can be programmed only once. Consequently, the configuration is

non-volatile.

Figure 3.11 illustrates the working principle of the Antifuse technology.

Figure 3.11: Antifuse example [30].

34

3.2. Field Programmable Gate Arrays architectures

Basically, the Antifuse consists of a dieletric layer placed between two conductive layers. In

order to build a programmable connection, this device can be placed across two interconnect

wires. If unprogrammed, the Antifuse isolates the two wires. Applying a high voltage breaks down

the dieletric, therefore allowing FPGA signals to pass through the Antifuse [119] [139].

Examples of Antifuse-based FPGAs are the Axcelerator [143] and RTAX-S/SL [148] families

manufactured by Microsemi.

Figure 3.12 shows the architecture and layout of an Antifuse-based Microsemi RTAX device.

Figure 3.12: Microsemi RTAX-DSP device architecture [148].

The programmable logic is organized as a two-dimensional array of SuperClusters (SC), and

columns of RAM/First-In First-Out (FIFO) blocks and DSP Mathblocks. Each SuperCluster fea-

tures configurable combinational blocks (C), registers (R) and interconnection buffers (TX, RX

and B) that allow the implementation of complex combinatorial or sequential functions. On the

other hand, RAM/FIFO blocks and DSP Mathblocks can be used to implement memory structures

and arithmetic operations [148].

35

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

3.2.2 Reconfigurable FPGAs

Contrary to One-Time Programmable FPGAs, reconfigurable FPGAs can be re-programmed mul-

tiple times and today represent the most dominant part of the FPGA market.

In this case, programmable switches are configured resorting to memory cells used to store

the FPGA configuration. Depending on the underlying programming memory technology (i.e.,

Flash or SRAM), the configuration can be volatile or non-volatile.

3.2.2.1 Flash-based FPGAs

Flash-based FPGAs resort to Flash memory cells to store the device configuration and drive pro-

grammable resources accordingly.

Flash memory cells are based on the floating-gate avalanche-injection MOS (FAMOS) tech-

nology. As shown in Figure 3.13, the standard Metal-Oxide-Semiconductor (MOS) transistor is

enriched with an additional Floating Gate, isolated from the main Control Gate.

Figure 3.13: Floating Gate transistor [139].

If unprogrammed, the floating gate does not affect the normal operations. When a high volt-

age is applied between the control gate and drain terminals, negative charges flow through the

isolating layer and remain trapped in the floating gate. When the programming signal is removed,

a stable negative charge will be present into the floating gate, therefore modifying transistor’s be-

havior. The process can be reversed by applying proper high voltages in order to remove the

trapped charges from the floating gate [139].

Figure 3.14 illustrates the usage of such technology in an FPGAs device. Basically, the Pro-

gramming Transistor is used to inject charges into the floating gate, while the Switching Transis-

tor represents the actual programmable switch, where FPGA user signal can pass through [119].

By having separate switching and programming transistors, the switching one is preserved from

high programming voltages and can interface directly with low voltage logic [184].

The main advantage of Flash-based FPGAs is their non-volatility, i.e., the configuration will

not be lost even if the power supply is removed. This eliminates the need for an external storage

36

3.2. Field Programmable Gate Arrays architectures

Figure 3.14: FLASH-based FPGAs programming technology [119].

device used to load the configuration at startup. Moreover, with respect to Antifuse-based FPGAs,

Flash-based ones are reprogrammable. Nonetheless, the reconfiguration cycles are limited and

dictated by the accuracy of the programming/erasing procedures that can lead to charge biases

in the floating gates [119].

Recent examples of Flash-based devices are represented by the SmartFusion2, IGLOO2, and

RTG4 FPGA families, manufactured by Microsemi [146, 149].

Figure 3.15 illustrates the layout of a Microsemi RTG4 FPGA device.

The device presents a two-dimensional array of Logic Clusters, made up of Logic Elements in-

cluding Look-Up Tables (LUTs) and FFs. Rows of embedded memory blocks, i.e., LSRAMs, uSRAM

and uPROM, and DSP Mathblocks are also interleaved in the Logic Clusters array. The device also

features embedded Serializer/Deserializer (SERDES) blocks that facilitate the implementation of

high speed communication interfaces [149].

3.2.2.2 SRAM-based FPGAs

SRAM-based FPGAs exploit static memory cells (Figure 3.16) to store configuration data for pro-

grammable switches and logic.

Figure 3.17 illustrates the simplified architecture of an SRAM-based FPGA.

In paricular, SRAM cells are used to drive the gate of pass transistors and the select lines of

multiplexers in order to build the programmable network that connect and configure logic cells.

Unlike Flash-based and Antifuse-based devices, SRAM-based programming technology offers

an infinite reprogrammability and it does not require non-standard technological processes. This

37

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

Figure 3.15: Microsemi RTG4 device architecture [149].

Figure 3.16: SRAM memory cell [119].

greatly simplifies the manufacturing process, since the same technology can be used for both

configuration memory and programmable logic. Moreover, due to the adopted underlying tech-

nology, programming cycles are faster with respect to Flash-based and Antifuse-based devices

[17].

On the other hand, the main drawback of such programming technology is represented by

38

3.2. Field Programmable Gate Arrays architectures

Figure 3.17: SRAM-based FPGAs programming technology [30].

SRAM volatility. SRAM-based FPGAs must be programmed at power-on and lose their configu-

ration when the power source is disconnected. Consequently, an additional external storage or

control device is required in order to load the FPGA configuration at start-up. This also intro-

duces security issues, since configuration information can be intercepted and stolen. However,

to counteract such problem, modern SRAM-based FPGAs offer configuration encryption services

[119]. Some SRAM-based device families also offer internal Flash memory blocks to store one or

more configuration bitstreams that can be automatically loaded at startup in SRAM configuration

cells [124, 249].

Popular examples of SRAM-based devices are the Stratix [8] and 7Series [244] families manu-

factured by the two major FPGA vendors, i.e., Altera and Xilinx, respectively.

The basic architecture of state-of-the-art Altera Stratix 10 devices is illustrated in Figure 3.18.

The main building block of AlteraFPGAs is the Adaptive Logic Module (ALM), which includes

registers, full adders and a LUT (Figure 3.19).

ALMs can be connected together exploiting a programmable interconnection network, that

features bypassable registers used for critical paths retiming and pipeling.

Figure 3.20 illustrates the overall block diagram of a Stratix 10 device, which features the afore-

mentioned core logic fabric architecture along with an ARM-based hard processor system and

memory controllers, transceivers, DSPs, and memory blocks embedded in the same chip [9].

A similar architecture is also adopted by Xilinx. The basic logic building block of a Xilinx

39

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

Figure 3.18: Core Logic Fabric for Altera Stratix 10 devices [9].

Figure 3.19: Altera Stratix 10 FPGA ALM Block Diagram [9].

FPGA is represented by the CLB, that includes logic slices (Figure 3.21). Each logic slices is made

up of several LUTs, multiplexers and FFs. Each CLB is also connected to neighbor CLBs by means

of dedicated and fast carry lines (i.e., CIN and COUT in Figure 3.21) and local interconnections,

while a configurable Switch Matrix provides access to the general routing network.

As can be seen in Figure 3.22, CLBs are arranged as a two-dimensional array interleaved with

columns of embedded DSPs and memory blocks.

40

3.3. FPGAs for mission-critical applications

Figure 3.20: Altera Stratix 10 FPGA Architecture Block Diagram [9].

Figure 3.21: Xilinx FPGAs CLB architecture[242].

3.3 FPGAs for mission-critical applications

Nowadays, FPGAs applications cover numerous fields, including but not limited to, aerospace,

defense, automotive, medical, industrial, and wireless communication [104, 225]. FPGAs appli-

41

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

Figure 3.22: Layout of a Xilinx Zynq-7000 FPGA.

cations can span from high-performance computing data centers [173, 208] to digital signal and

image processing in real-time embedded systems [142, 203].

Due their characteristics, FPGAs are also widely employed in safety- and mission-critical sce-

narios, and in general, in those applications demanding high dependability [17], such as in space

where, as example, the development time and costs for producing new ASICs are not affordable

due to the very narrow market.

As a matter of fact, Antifuse, Flash and SRAM-based FPGAs have been widely adopted in the

space industry. During the last decade, both Microsemi and Xilinx produced space-grade devices

that meet the technology requirements imposed by the harsh environment in which they must

operate.

Microsemi provides radiation-tolerant Antifuse and Flash-based FPGAs, such as the RTSX-

SU, RTAX, and RT ProASIC3 device families [147]. Figures 3.23-3.24-3.25-3.26 show a list of space

missions in which these devices have been adopted, or it is planned to adopt them [144].

On the other hand, Xilinx provides both radiation-tolerant and radiation-hardened SRAM-

42

3.3. FPGAs for mission-critical applications

Figure 3.23: Space missions employing Microsemi RTSX-SU FPGAs [144].

Figure 3.24: Space missions employing Microsemi RTAX FPGAs [144].

based devices, such as the Virtex-4QV or Virtex-5QV families [247, 248]. These devices have been

also widely employed in the space market.

43

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

Figure 3.25: Space missions employing Microsemi RTAX FPGAs [144].

Figure 3.26: Past and planned Space missions employing Microsemi RTAX FPGAs [144].

FPGAs are also heavily employed in the automotive market, where governmental safety stan-

dards demand the most intelligent and advanced safety systems. As shown in Chapter 2, ADAS

44

3.4. Dynamic Partial Reconfiguration

applications require very-high computing capabilities, involving the processing of information

coming from numerous sensors, such as radars and cameras, distributed throughout the vehi-

cle. This usually requires high-performance many-core CPU or Graphics Processing Unit (GPU)

architectures for signal processing, which may or may not be specialized to the target operation

due to their limited flexibility and programmability.

On the other hand, by using FPGAs, designers can provide specialized circuits that can be

more efficient, in terms of flexibility, performance and power with respect to a general purpose

processing unit.

Numerous examples can be found in literature, where FPGAs have been used to implement

communications controllers and networks complying to the FlexRay automotive standard [185,

186], or to implement high performance radar or image signal processing modules providing

driver assistance functionalities [179, 189, 215].

3.4 Dynamic Partial Reconfiguration

As systems become more complex and designers are asked to provide even more efficient solu-

tions, FPGA adaptability has become a highly investigated aspect. While native Flash-based and

SRAM-based FPGAs can provide the flexibility of in-field or in-application reprogramming, novel

design strategies are required in order to reduce board space, power consumption and resource

utilization.

In this context, modern SRAM-based devices provide run-time or dynamic partial reconfig-

uration (DPR) features. DPR represents the ability to run-time change the functionality imple-

mented by selected portions of a circuit while maintaining the rest of the design in a fully oper-

ating state. This extends the native flexibility of FPGAs and the hardware design space allowing

to time-multiplex hardware resources. By exploiting DPR, designers can reduce cost and board

space since they can fit more logic into the target device, they can include additional functions

at run-time, and reduce power consumption by choosing a smaller device or swap out high-

performance modules when not needed.

In literature, DPR has been extensively adopted to design adaptive and self-adaptive System-

on-Programmable-Chips (SoPC) [24], to increase system fault-tolerance and self-repair capabil-

ities [49, 102, 150], or for on-demand hardware acceleration [44].

Both Altera and Xilinx provide SRAM-based dynamically and partially reconfigurable FPGAs,

along with dedicated hardware design flows [5, 230]. In the sequel, only the Xilinx partial recon-

figuration design flow will be discussed and analyzed, since it is the most advanced and adopted

in literature, and it has been used during this PhD work.

Figure 3.27 illustrates the working principle of DPR.

At design-time, DPR requires partitioning the system into static and reconfigurable module.

Each reconfigurable module (e.g., A1-4 in Figure 3.27) must then be binded to a physically user-

45

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

Figure 3.27: Partial Reconfiguration concept [239].

defined reconfigurable region of the FPGA (e.g., Reconfig Block "A" in Figure 3.27). Each recon-

figurable region can host a single reconfigurable module at a time. Through DPR, reconfigurable

modules in a region can then be swapped at run-time without interrupting the operations of the

circuit implemented outside the actually reconfigured area.

Xilinx’s EDA tools generate separate partial configuration files, called partial bitstreams or

partial bitfiles (i.e., A1-A4.bit in Figure 3.27), for each module to be mapped into a specific recon-

figurable area.

Figure 3.28 illustrates the partial reconfiguration design flow.

Starting from the HDL Sources, the static part of the design and the reconfigurable modules

are synthesized separately. The implementation process is then performed in order to produce

every possible full design configuration. A full configuration is built merging (i) the static netlist,

(ii) a reconfigurable module netlist for each user-defined reconfigurable region, and (iii) design

constraints files associated to both the static and the reconfigurable modules included in the con-

sidered configuration. It is worth to mention that the static portion of the design is implemented

only once, and the results are copied in subsequent design configurations (see Figure 3.28).

At the end of the implementation process, the FPGA must be first programmed using a full

bitstream associated with one of the created design configuration (e.g., Full_1-N.bit in Figure

3.28). Afterwards, reconfigurable modules can be swapped at run-time by loading the associated

partial bitfile (e.g., RMA.bit, RMB.bit or RMN.bit in Figure 3.28) inside the FPGA through one

of the available device configuration ports, that allows the access to the device configuration

memory.

Xilinx devices offer several configuration ports, each one characterized by a maximum band-

width (see Table 3.1).

DPR approaches can be classified depending on (i) where the partial bitstreams are stored

and (ii) which configuration port is used to load them. Two main approaches are depicted in

Figure 3.29.

Usually, partial bitstreams are stored in an external Flash memory. In order to load a partial

bit-file, an external or internal controller is needed. The controller must interface to the selected

46

3.4. Dynamic Partial Reconfiguration

Figure 3.28: Partial Reconfiguration Design Flow [239].

Table 3.1: Characteristics of Xilinx FPGAs configuration ports [239].

Configuration Port Max. Clock Frequency Data Width Max. Bandwidth

ICAP 100 MHz 32 bit 3.2 Gbps
SelectMAP 100 MHz 32 bit 3.2 Gbps

Serial Mode 100 MHz 1 bit 100 Mbps
JTAG 66 MHz 1 bit 66 Mbps

configuration port. In particular, the Internal Configuration Access Port (ICAP) provides access to

the FPGA configuration memory from within the FPGA. Consequently, by implementing a config-

47

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

Figure 3.29: Methods for delivering partial bitfiles [230].

uration controller in the FPGA fabric, it is possible to perform the so-called self-reconfiguration,

i.e., the reconfiguration process is initiated by logic implemented in the actually reconfigured

device. As shown in Table 3.1, the ICAP and SelectMAP provides the maximum configuration

bandwidth, leading to fast reconfiguration times. However, self-reconfiguration solutions are

often employed because ICAP eliminates the need of additional external controllers or micro-

processors, while guaranteeing the maximum reconfiguration speed [241]. Therefore the ICAP

primitive can be instantiated in the HDL description of the design in order to control the transfer

of the partial bitstreams before they are sent to the configuration memory.

3.4.1 Configuration Details and Bitstream Composition

As aforementioned, a partial bitstream includes all the configuration commands and data nec-

essary to configure a portion of the target FPGA and it can be loaded at any time during normal

device operations to replace functionality in a design-time defined FPGA region.

All user-programmable features inside the FPGA are configured exploiting a volatile configu-

ration memory (SRAM-based). Values stored in the configuration memory define the LUTs equa-

tions, routing networks, embedded memory values and all other aspects of the design.

Xilinx FPGAs’ configuration memory is arranged in frames that span the entire device. These

frames represent the smallest addressable portions of the device configuration memory space.

Nonetheless, loading a partial bitstream into the configuration memory does not require any

prior knowledge of the physical location of the reconfigured resources, since the information

48

3.4. Dynamic Partial Reconfiguration

needed for frame addressing is included in the partial bitstream itself. Consequently, a valid

partial bitstream cannot reconfigure the wrong region of the device.

Figure 3.30 illustrates the process of loading a partial bitstream in the target device. After

Figure 3.30: Partial Bitstream composition and loading process [241].

power-on, the device configuration memory is empty and put in configuration mode. An initial

full configuration is therefore needed. Once the initial configuration is completed, the FPGA

enters the user mode, where, at any-time, a partial configuration bit-file can be loaded through

one of the available configuration ports.

As shown in Figure 3.30, a typical partial bitstream is composed of the following sections:

• Header: this section includes device control and frame addressing information;

• Configuration Data: this represent the biggest section of a partial bitstream, consisting

of configuration information for all the resources included in the target reconfigurable re-

gion. These information may concern LUTs, DSPs, embedded memory blocks, and routing

matrices and switches;

• CRC: a final 32-bit checksum value is also attached at the end of the bit-file in order to verify

the integrity of the actually loaded configuration.

A special partial bitstream is the so-called blanking bitstream, which represents an empty

reconfigurable module. Basically, by configuring a region with the associated blanking bitstream,

the pre-existing functionality will be replaced with an empty module. It is worth to mention that

these bitstreams still includes few configuration information for the reconfigurable region I/Os,

and for any routing, associated with the static design, that can pass through this region of the

FPGA [241].

49

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

3.5 Dependability issues in modern reconfigurable FPGAs

Dependability aspects must be taken into account when employing FPGAs in safety- or mission-

critical applications.

In general, dependability can be defined as “the ability of a system to deliver a service that can

justifiably be trusted”, and “the ability of a system to avoid failures that are more frequent or more

severe, and outage durations that are longer, than is acceptable to the user” [12, 123]. As stated

in [18], “in case of mission-critical applications we can specify dependability as the capability to

tolerate faults induced by the environment that could lead to a failure of the entire system”.

A fault is defined as the misbehavior of an internal component of the system. It may be a

physical defect, imperfection, of flaw that occurs within some hardware or software components

of the system. Depending on system operations, faults can become errors if they are activated

and propagated to the outputs of the faulty component. An error is a discrepancy between the

intended behavior of a system and its actual behavior inside the system boundary. Eventually,

errors can lead to failures if the system deviates from the correct service operations or specifica-

tions. Figure 3.31 summarizes these concepts illustrating the relationships between faults, errors

and failures.

Figure 3.31: Chain of dependability threats.

Faults can be introduced in a system by the user, as example providing wrong inputs, or by

the environment. Device aging, temperature, mechanical vibrations, and electromagnetic inter-

ference represent some examples of possible faults causes in a digital integrated system [133].

Either operating at ground level or in space, FPGAs and, in general, digital ICs are subject

to radiation phenomena, that represents one the most critical environmental aspect and one of

the primary causes of faults in modern electronic systems [170, 177, 178]. In fact, the aggres-

sive technology shrinking, voltage scaling and the adoption of Commercial-Off-the-Shelf (COTS)

components also in critical applications is exacerbating the issues caused by such phenomena.

Radiation can be defined as the interaction of particles with the electronic device, causing

energy exchange. Several kinds of radiations exist, and the main are related to the interaction

with cosmic rays, alpha particles, electrons, and photons.

The interaction between a ionizing particle and the device causes the so called funneling ef-

fect.

50

3.5. Dependability issues in modern reconfigurable FPGAs

Figure 3.32: Effect of a ionizing particle on a MOS transistor [110].

As shown in Figure 3.32, when a ionizing particle penetrates the semiconductor substrate

of a CMOS transistor, it frees electrone-hole pairs, producing a charged track. Consequently, it

temporarily modifies the depletion layer of the transistor. The created charges can be collected

by reverse-biased junctions and converted into a voltage pulse, thus increasing the probability of

a change of information in a sensitive node of the circuit.

A second effect caused by the interaction of ionizing particles with the semiconductor device

is the displacement of the crystal lattice. If the particle enters the material, it can damage its

crystal lattice by changing the arrangement of the atoms, causing a variation of the electrical

properties of the device. Moreover, it is worth noting that the combination of the funneling and

displacement effects can cause an accumulation of charges that can gradually decrease device

performances during its operational life.

In order to easily analyze the behavior of the circuits in presence of the aforementioned physi-

cal phenomena, fault models have been defined. A fault model represents a simplified functional

representation of the component’s misbehavior, caused by the physical effect.

The two main fault models for radiation-induced faults are the Single Event Effects (SEEs) and

Total Ionizing Dose (TID). The former models the effect of the funneling phenomena, while the

latter models the effect of crystal lattice displacement and charges accumulation.

As shown in Figure 3.33, SEEs includes all those fault models that can affect the considered

device for a limited period of time (i.e., Soft Errors), or permanently (i.e., Hard Errors).

Soft Errors includes:

51

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

Figure 3.33: Single-Event Effects classification [252].

• Single Event Transient (SET): due to the funneling effect, voltage and/or current spikes

may be generated for a limited period of time (in the order of picoseconds or nanosec-

onds). If the pulse-width of this spike is sufficient and at the right time (e.g., close to the

sample instant of a Flip-Flop), it can propagate through the logic and eventually sampled

by memory elements, thus introducing errors;

• Single Event Upset SEU: it represents a change in the state of a memory element (e.g., FFs,

SRAM cell, or flash cell) caused by the interaction with a radiation particle. As example,

looking at Figure 3.17, if a SET is generated inside an SRAM memory cell internal feedback

node, if the duration and width of the glitch is sufficient, it may flip the value stored by that

cell. SEUs can be corrected by simply overwriting the content of the affected memory cell.

In general the upset can affect a single memory element (Single Bit Upset (SBU)) or multi-

ple memory elements (Multiple Bit Upset (MBU)). MBUs can be introduced in the circuit

if SEUs are not corrected, thus leading to accumulation effects, or if a single particles has

enough energy to upset multiple neighbor memory elements.

Although in the past the probability of that the system could be affected by an MBU was

not relevant, nowadays, the technology shrinking leads to smaller device sizes and higher

integration, consequently increasing MBU rates;

• Single Event Functional Interrupt (SEFI): it is a temporary errors that affect elements of

the device aimed at controlling its functionality. This fault can cause a malfunctioning of

the whole device. Usually they can be recovered performing a global reset or a power cycle.

As example, faults in the FPGA configuration engine may permanently affect configura-

tion memory and implemented circuit functionality until a device reset or a power cycle is

executed.

On the other hand, faults classified as hard errors are:

52

3.5. Dependability issues in modern reconfigurable FPGAs

• Single Event Latch-Up (SEL): it is a disruptive permanent error that cause an increase of

the device current. An SEL can provoke the destruction of the device itself if not stopped

in time by disconnecting the power supply. This phenomenon relies on the presence of

parasitic p-n junctions inside the standard CMOS structure. This junctions form a positive

feedback network that, if triggered by a current spike, can lead to burning of the device [17];

• Single Event Burnout (SEB): Single-event burnout (SEB) is a short-circuiting caused when

a high-energy ion impacts a transistor source while the transistor is in its off-state, causing

forward biasing. An SEB is typically related to power MOSFETs and high-voltage devices

[132];

• Single Event Gate Rupture (SEGR): it affects non-volatile memory cells. During writing or

erasing operations the transistor is stressed by relatively high voltages. If a heavy particle

strikes the transistor gate while it is stressed by such high electric field, it creates a low

resistance path within the dielectric between the gate and the substrate. Consequently,

this can lead to the dielectric melting.

Beside SEEs, TID are instead caused by spurious charge accumulation and crystal lattice dis-

placements in the device material. This phenomena usually lead to a gradual decrease of device

performances, and to an increase of power consumption. These effects are mainly due to the

change of electrical characteristics of the device, such as the variation of the transistor threshold

that, in case of floating-gate transistors, can lead to a permanent programmability loss.

Considering reconfigurable FPGAs, SRAM-based are more susceptible to radiation phenom-

ena with respect to Flash-based, mainly due to the smaller transistor technology sizes [17, 145]. It

has been also demonstrated that, in modern SRAM-based FPGAs, the probability of SETs, SEFIs

and hard errors is extremely low if compared to SEUs [126, 226, 252], making the latter a major

concern.

Focusing on SRAM-based FPGAs, memory elements susceptible to SEUs belong to the fol-

lowing two categories:

1. user: this category includes all the elements that can be employed by the user in order to

implement the FPGA application (i.e., flip-flops, embedded memories and shift registers

beloging to the FPGA fabric or to the embedded hard macros, such as DSPs and high-speed

transceivers.

An SEU in a design memory element cause transient faults that can propagate wrong values

through the logic, consequently causing errors and/or failures.

2. configuration: this includes all the memory cells and registers that compose the FPGA

configuration memory and the associated control circuitry.

53

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

If an SEU provokes a bit-flip in the device configuration memory, it could cause a perma-

nent change in the implemented circuit functionality. Such faults are more critical with

respect to the ones afecting user memory elements since the FPGA configuration is usually

written once only after power-on.

As stated in [187], which takes into account results reported in [4], “assuming that all flip-flop

cells are used, the chance of an upset in these elements is very low if compared to a design that

heavily utilizes embedded block RAM (BRAMs) blocks. The probability of an upset is more than

400 times higher than for a flip-flop upset due to the high ratio of BRAM cells to flip-flop cells. For

the configuration memory cells, the ratio is even larger...”. Consequently, SEUs that impact the de-

vice configuration memory (and, to some extent, the embedded memory blocks) are the primary

sources of soft errors that require mitigation in modern FPGAs [252], and an analysis of their ef-

fects on the system is therefore required in order to be able to take the proper countermeasures.

Configuration memory values define the routing architecture and the configuration of all the

functional units inside the device (e.g., capture clock and reset polarity for flip-flops, or content of

LUTs). Consequently, an SEU in the configuration memory may alter the topology of the imple-

mented architecture. Figure 3.34 shows an example of the effect of a bit-flip in a SRAM memory

bit associated to the configuration of a programmable routing matrix.

Figure 3.34 illustrates a fault-free reference configuration of the routing matrix and a possi-

ble faulty configuration due to an SEU. In the considered example, the Net_1, connecting the

input IN_0 coming from another resource to the output OUT_1 is replaced with a new net (i.e.,

Net_2, therefore breaking the signal path. Moreover, Net_2 represents an antenna since IN_6 is

left unconnected and OUT_1 is driven with an unknown value.

3.5.1 Dependability issues in dynamically reconfigurable systems

As discussed in Section 3.4, state-of-the-art SRAM-based device offer run-time DPR features. Al-

though DPR can be used to increase reliability figures of a system, e.g., by implementing FPGA

configuration memory scrubbing or advanced adaptive fault tolerance and fault recovery mech-

anisms [49, 102, 150], its adoption in applications demanding high reliability is still limited.

The motivations are related to the dependability of the DPR process itself. In fact, DPR ex-

poses the system to faults and errors affecting both the hardware controller, employed for man-

aging reconfigurations, and actual configuration data (i.e., partial bitstreams) that are used to

overwrite portions of the FPGA configuration memory content at run-time.

Both types of errors are very critical since, similarly to an SEU effect, a mis-reconfiguration

can lead, in the worst case, to a permanent disruption of the entire system functionality. Recover-

ing from such errors could require a full device reconfiguration and/or reset of system operations.

It is worth to mention that writing the FPGA configuration memory with a faulty bitstream

can impact not only the functionality implemented by the targeted reconfigurable module, but

54

3.5. Dependability issues in modern reconfigurable FPGAs

(a) Fault-free routing matrix configuration.

(b) Faulty routing matrix configuration.

Figure 3.34: Example of the effect of a SEU on the configuration of a programmable routing matrix
[37].

also the static portion of the design due to corrupted frame addressing information or because

some interconnections related to the static portion of the design route through the reconfigurable

module FPGA region.

As mentioned in Section 3.4, DPR is often carried out through the internal ICAP interface. Re-

configuring through the ICAP does not require any additional external hardware, since reconfig-

uration tasks can be triggered, executed and monitored by control logic or soft microprocessors

embedded in the same FPGA. Essentially, the reconfiguration control logic is in charge of re-

trieving partial bitstreams from an internal or external memory and delivering them to the ICAP.

Clearly, when partial bitstream files are stored locally, the reconfiguration process is faster and

more reliable, but, a wide portion of the FPGA embedded memory block is wasted. On the con-

trary, if partial bitstream files are stored in an external memory, no internal memory is required

but the overall reconfiguration process may be slower, with intrinsic lower dependability [191].

As design size and complexity continues to grow (e.g., multi-core or many-core SoCs), area is

55

3. RECONFIGURABLE DEVICES FOR MISSION-CRITICAL APPLICATIONS: ARCHITECTURES AND

ISSUES

becoming a critical resource [183]. Therefore, storing partial bitstreams on external memory de-

vices is the mostly adopted solution. Nevertheless, this approach increases the error probability

on partial bitstream files, as communications errors may happen during external data transfer.

As illustrated in Figure 3.30, to validate the integrity of a partial bitstream, each bit file in-

cludes a final checksum value. This checksum is compared with an ICAP internally generated

one at the end of the reconfiguration process. If a mismatch occurs, the ICAP signals that a cor-

rupted partial bitstream has been received. Nonetheless, this mechanisms does not provide any

protection to the system since it is triggered only at the end of the reconfiguration process, i.e.,

when all data have been already written in the FPGA configuration memory.

Taking into account partial bitstream composition (see Figure 3.30), two kinds of errors may

occur: (i) configuration data errors errors and (ii) control and frame addressing errors. When

errors occur in the data portion of the bitstream, the recovery procedure is often not critical,

because just the reconfigurable region has been corrupted. Loading a new partial bitstream file

is in the most cases sufficient to fix the error [231]. However, since routing resources residing

in the reconfigurable region can also be used to connect logic resources associated to the static

portion of the design, this kind of error can also impact on entire design functionality.

On the other hand, when errors occur in the header section of the bitstream, the corruption

modifies control and/or frame addressing information. In such cases, the error may also affect

FPGA resources that reside outside the reconfigurable region, therefore a safe recovery requires a

full FPGA reconfiguration. Highly reliable or real-time applications must adopt additional error

detection mechanisms to overcame this issue.

To conteract the aforementioned issue, an optional and alternative PerFrameCRC solution

has been introduced by Xilinx only for 7-Series and Zynq7000 devices [250]. When generating

partial bitstreams for these devices, additional intermediate control instructions and checksum

values are embedded in the partial bitstream, leading to a bitstream size overhead of about 4-

5% [250]. In these devices configuration data are internally buffered by the ICAP, and associated

checksums are checked before actually writing them in the configuration memory. Although this

method provides a more reliable solution (only available in latest device families) w.r.t. the previ-

ous one, these checks are performed with a fixed granularity, leading to error detection capabili-

ties, increased bitstream storage requirements and timing overheads that may not be compliant

with the constraints imposed by the target applications.

Nevertheless, in any case, delivering to the ICAP a wrong or a corrupted bitstream can poten-

tially interrupt system operations or permanently change circuit functionality. Either stored in an

external memory or in embedded FPGA memory blocks, partial bitstreams are subject to errors.

It is therefore essential to monitor configuration data and provide the requested uncorrupted bit-

stream at ICAP inputs. Moreover, unless a radiation-hardened FPGA is employed, configuration

data monitoring alone is not sufficient to overcome the aforementioned issues if it is not imple-

mented in conjunction with a reconfiguration controller that is protected with respect to faults

56

3.5. Dependability issues in modern reconfigurable FPGAs

affecting its hardware resources [71].

Depending on the employed device, bitstream storage and application requirements, differ-

ent protection schemes can be adopted to increase the overall dependability level of the recon-

figuration process. These considerations will be addressed in Chapter 5, that will present some

methodologies and tools, developed and analyzed during this PhD work, for enhancing DPR de-

pendability.

57

C
H

A
P

T
E

R

4
BUILDING ROBUST HARDWARE ACCELERATORS AND

SYSTEMS FOR REAL-TIME EMBEDDED IMAGE

PROCESSING ON RECONFIGURABLE FPGAS

Considering the applications introduced in Chapter 2, such as automotive pedestrian

detection and forward collision avoidance, or space video-based relative navigation,

real-time performances of the digital image processing systems are required, in order

to quickly react to external dangerous or unwanted events. A real-time digital image processing

system can be defined as a system “that regularly captures images, analyses them to obtain some

data, and then uses that data to control some activity, that”, to avoid failures, “must occur within

a predefined and limited time” [14].

The real-time performance constraints, often merged with the high computational workloads

generated by digital image processing algorithms, represents a challenge when trying to build

real-time and embedded imaging systems.

Modern embedded processors, providing inherently serial processing capabilities, cannot

fulfill the required constraints. Therefore, hardware acceleration, i.e., resorting to custom hard-

ware components to significantly speed-up computationally intensive software algorithms, rep-

resents a crucial solution.

Looking at common image processing algorithms flows (see Figure 2.1), it is clear that hard-

ware pipelined architectures can bring advantages, mainly in terms of throughput, with respect

to serial software processing approaches. Depending on the operations performed by each al-

gorithm it may be also possible to parallelize operations and adopt stream processing-based ap-

proaches to further increase the performances of the designed hardware system (the reader may

refer to [14] for detailed information on the aforementioned techniques).

Due to their flexibility, increasing computing capabilities and resources capacity, FPGAs rep-

59

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

resent one of the most popular technology that can be adopted to develop custom hardware

accelerators and entire embedded image processing system [14].

Taking into account that the results of the image processing pipeline are used to control the

system, when dealing with critical applications it is desiderable, and often mandatory, to guar-

antee that processing algorithms provide results characterized by a sufficient “confidence” level.

As discussed in Chapter 2, input images can be affected by unwanted noise or blur, that can hide

some information of the target scene. In these cases, pre-processing algorithms are applied to the

corrupted input images in order to smooth as much as possible such effects, thus improving and

highlighting useful information. This is done to minimize the probability that the subsequent

image processing algorithms will extract wrong information.

In addition, environmental conditions changes can cause fluctuations of the contributions

given by the unwanted effects, thus altering the performances of the applied algorithms. To

overcome this issue and increase image processing algorithms’ robustness, the key idea is to in-

troduce self-adaptivity features in order to maintain constant, or improve, the quality of results

for a wide range of input conditions, that are not always fully predictable at design-time (e.g.,

noise level variations). This is also true in space applications, where usually we are not able to

fully pre-characterize the environment in which the image processing system is going to be em-

ployed. Self-adaptivity has been accomplished by measuring at run-time some characteristics

of the input images, and then tuning the algorithm parameters based on such estimations. DPR

features of FPGAs have been exploited in order to integrate run-time adaptivity into the designed

hardware accelerators.

The following sections present the design of robust image processing hardware accelerators

on FPGAs for real-time applications. For increasing algorithm robustness, adaptivity has been

taken into account and it has been enabled by mean of dynamic partial reconfiguration of the

FPGA design. Referring to the applications and issues discussed in Chapter 4, two case studies

will be presented. The former approaches the problem of restoring information from blurred

images, while the latter discusses the implementation of a system for extracting and matching

features in a robust way.

4.1 ABLUR: an FPGA-based adaptive deblurring core for real-time

applications

While capturing a frame, the camera must maintain the shutter opened for a finite amount of

time, in order to acquire the proper amount of light and take a well defined image. However,

as mentioned in Section 2.3, relative movements between the camera and the scene during this

interval induce motion blur in the captured image.

It is very difficult to obtain good results by processing blurry frames, and so input images

must be firstly enhanced, in order to identify targets or extract information from them.

60

4.1. ABLUR: an FPGA-based adaptive deblurring core for real-time applications

There exist mechanical techniques to prevent this effect to occur, but they are cumbersome

and expensive. Considering for example an Unmanned Aerial Vehicle (UAV) engaged in a save

and rescue mission, where recording frames of scene to identify people and animals to rescue is

required. In such cases, weight of equipment is of absolute importance, and no extra hardware

can be used. In such case, vibrations are unavoidably transmitted to the camera, and recorded

frames are affected by blur. It is then necessary to deblur in real-time every frame to allow post-

processing algorithms to extract the largest possible amount of information from them.

Restoring the latent image from the input blurry one has long been a challenging problem

in digital imaging (e.g., [214], [213], [39]). Authors have modelled the task as a two-dimensional

deconvolution process [33]. This simplification holds on when the blur is considered spatially in-

variant, meaning that every point in the original image spreads-out the same way in forming the

blurry image [190]. In this case, the blurry image is the result of the two-dimensional convolution

of the target scene ideal image with the blur kernel, also known as Point Spread Function PSF (see

Section 2.3.1) [35].

However, even in this simplistic case, to accomplish the deblurring task it is necessary to

deal with two-dimensional deconvolution, that is well known to be an heavy task [34]. As two-

dimensional convolution cannot be directly inverted, it is necessary to perform complex math-

ematical operations to retrieve the real image hidden behind the blurry input [118]. For this

reason, deblurring algorithms are usually unable to achieve real-time performances.

Moreover, very often, to obtain acceptable output results, a tuning phase is required in or-

der to setup the deblurring algorithm parameters. In addition, a new setup phase is in general

required when the input images characteristics change (e.g., due to contrast or brightness varia-

tions).

The number of research activities dealing with hardware deblurring approaches is very small,

above all if it is compared to the huge amount of existing works dealing with software deblurring

approaches.

In literature, hardware is usually exploited as a medium to collect more in-depth information

about the blurring procedure (e.g., by using sensors to detect the relative camera motion [198]

[111]) rather than a way to speed-up mathematical calculations and, consequently, software de-

blurring approaches.

4.1.1 Deblurring Algorithms Overview

One of the very first works on this topic is presented in [136], where an iterative procedure is used

for recovering a latent image that has been blurred by a known PSF.

Classical deblurring approaches can be classified in blind and non-blind algorithms. While

the former approach does not need any information about the blur kernel, the latter requires at

least an estimation of it. In any case, the problem is severely unconstrained [128].

61

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

Early works on deblurring usually model the blur kernel using simple shapes and priors, as in

[169]. On the other hand, these exemplifications may lead to poor results when applied to natural

images [117]. Linear motion blur kernel model used in many works is very often overly simplified

for true motion blurring [32].

During the last years, to consider more complex blurring models, several multi-image based

approaches have been proposed. These methods estimate the blur kernel by analysing multiple

images of the same scene [38, 174]. Although these approaches have the advantage of discarding

too simplistic (and often unrealistic) assumptions, they cannot be applied when it is necessary

to work on single input images. For example, [197] presents a hybrid camera system equipped

with two imaging sensors. It can simultaneously captures high-resolution video together with a

low-resolution one that has denser temporal sampling. Frames captured with higher temporal

frequency are less affected by blur, since the smaller camera occlusion time is, the fewer relative

movements between camera and scene are. Using the different information retrieved at the same

time from the two sensors, it is possible to deblur frames in the high resolution video.

Super-resolution (SR) is an imaging technique that leverages multiple low-resolution frames

to construct a high-resolution frame [127]. It involves an exchange of information from frames

basing on the assumption that the target has remained unchanged.

The majority of the work published on SR focuses on the mathematical algorithms behind

SR and the ability to overcome inherent obstacles such as non-uniform blur [73], and motion

estimation errors [76]. However, SR approaches are not suitable when a single standard camera

is employed.

An interesting single-image deblurring approach based on Hyper-Laplacian priors is pre-

sented in [117]. Theoretical basis behind this method rely on the fact that typical gradients distri-

butions in real-world scene images have been proven to be well modeled by a Hyper-Laplacian

distribution (p(x) ∝ ek|x|α), with 0 < α < 1. However, the usage of such sparse distributions

makes the problem more complex, thus slow to solve.

To speed-up the algorithm, authors in [117] present a method that splits the deblurring task

into two separated sub-problems. Both these two phases aim at minimizing a cost function to

retrieve the most probable latent image. This method proved to be very fast since the most time-

consuming computations can be avoided by using a Look-Up-Table-based approach. However,

it requires a heavy tuning phase before providing good quality outcomes.

For what concerns deblurring approaches, hardware acceleration has been mainly used for

SR [10, 195].

4.1.2 ABLUR Architecture

This section discusses ABLUR, a self-adaptive core, implemented on a single FPGA device, that

is able to perform the deblurring task of single input images in real-time. DPR is exploited to

62

4.1. ABLUR: an FPGA-based adaptive deblurring core for real-time applications

enable self-adaptation of the deblurring algorithm parameters based on input images charac-

teristics. ABLUR exploits the algorithm presented in [117], avoiding human interaction during

the algorithm parameters tuning phase, by self-adapting to the input images characteristics at

run-time.

The approach presented in [117] has been chosen because it has proven to be very fast and

accurate; moreover, it is based on the Discrete Fourier Transform (DFT), an operation that is

easily implementable in hardware [206]. ABLUR architecture is able to deblur single 1024x1024

pixels images in real-time (i.e., 25 frames-per-second, fps).

As explained in [117], the problem of restoring a latent image x, starting from the input blurry

one y, can be solved in the frequency domain, exploiting Equation 4.1.

x =F−1
(
F (− f 1 ⊕w1 − f 2 ⊕w2)+λ ·F (K)∗ ·F (y)

‖F (F 1)‖+‖F (F 2)‖+λ · ‖F (K)‖
)

, (4.1)

where F (Z) and F−1(Z) denote the two-dimensional direct and inverse DFT of a matrix Z , re-

spectively [29], and ‖Z‖ represents the matrix obtained by applying the modulus operator to each

element of Z .

In Equation 4.1, ∗ is the complex conjugate, ⊕ is the convolution operator and · denotes

component-wise multiplication (the division is also performed component-wise), while λ is a

weighting constant. Moreover, since this method belongs to the family of non-blind deblur-

ring algorithms, it requires in input the blur kernel, represented with its Optical Transfer Func-

tion (OTF) K . The OTF models the transfer function of an optical system, and is represented as a

matrix as big as the input image [94].

Instead, F 1 and F 2 are the OTFs of f 1 and f 2, that are the two first-order derivative filters in

the x and y axis, respectively (f 1 = [1 −1] and f 2 = [1 −1]T).

Finally, w1 and w2 are computed as:

w1 = argmin
w

|w |α+ 1

2
(w − v1)2

w2 = argmin
w

|w |α+ 1

2
(w − v2)2,

(4.2)

where

v1 = y ⊕ f 1

v2 = y ⊕ f 2.
(4.3)

In Equation 4.2, α is a parameters related to the distribution of the gradients in the input

image, and in general it is between 0 < α< 1 for real-world images, denoting a Hyper-Laplacian

ditribution [117], while argminz f (z) represents the values of z that minimize the function f (z).

Authors propose to solve Equation 4.2 by using a Look-Up Table, which, for a fixed α, stores

pre-computed data (i.e., w1 and w2), for each possible v i . Obviously, data are discretized, in

63

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

order to limit the LUT size. In addition, they propose to compute off-line F (K)∗ and the whole

denominator from Equation 4.1 as they do not depend on the input image y .

However, this algorithm presents two main limitations:

1. it is a non-blind deblurring algorithm, which implies that the exact blur kernel should be

provided as an input parameter to correctly restore an image;

2. it requires a tuning phase that has major impacts on the final produced outcomes, as the

value of α has to be fixed, for each input image.

To effectively implement this algorithm on an FPGA device, some considerations and optimiza-

tions have been done.

Concerning the first problem, from the knowledge of the system (e.g., vibrations induced to

the camera or expected relative motion between camera and the scene), a generic estimation of

the blur kernel can be employed as input. Tests have demonstrated that this algorithm is quite

robust to errors in the initial kernel estimation, which can be fixed a-priori, and applied on each

image at run-time (see Section 4.1.3).

To solve the second problem, it is possible to estimate at run-time the distribution of the input

image gradients, characterized by α, thus adapting the computations to the actual image scene

characteristics.

It is worth noting that, with respect to Equation (4.1), since the OTFs K , F 1 and F 2 are fixed

a-priori, the denominator is fully off-line pre-computable thus, at run-time, it can be retrieved

from an external memory.

Figure 4.1 shows the overall architecture of ABLUR.

ABLUR processes a stream of 8-bit packets representing a sequence of 1024x1024 grey scale

frames, with 8 bit per pixel (bpp) resolution. It is assumed that the image pixels are received in

a raster format, line-by-line from left to right and from top to bottom. ABLUR outputs a stream

representing the deblurred input frames, with the same bpp resolution.

Several interfaces to external memories are also needed in order to store temporary data, that

cannot be efficiently kept in the FPGA internal memory resources.

The following subsections detail all the main modules composing ABLUR.

4.1.2.1 Input Image Fast Fourier Transform module (FFT(y))

This module computes the two-dimensional Fast-Fourier Transform of the input image. Since

the input image is 1024x1024 pixels, it outputs a matrix of 1024x1024 64-bit complex values (both

the real and the complex parts of each value are represented on 32-bits).

In literature, many real-time FFT hardware modules have been presented (e.g., [51, 207]).

Since the focus of this section is not to present an architecture that implements the Fast Fourier

64

4.1. ABLUR: an FPGA-based adaptive deblurring core for real-time applications

Figure 4.1: ABLUR block diagram

Transform, this module has been implemented resorting to the Xilinx LogiCore Fast Fourier Trans-

form core [236].

However, to compute a two-dimensional fourier transform, two phases must be performed.

First, the FFT is computed for each row of the image, and stored in External Memory 1. Then, the

final FFT results are computed by retrieving the temporary FFT data in a column order [172].

This module is also in charge of computing the Inverse FFT in Equation 4.1, to extract the de-

blurred image results.

4.1.2.2 Gradient calculator

This module computes the gradients (i.e., v1 and v2) of the input image by convolving it with the

filters f 1 and f 2 (see Equation 4.3). Figure 4.2 shows the internal architecture of the Grandients

calculator module.

For each pixel composing the input image, it outputs the associated gradients in the x and y

axis (i.e., v1 and v2). Since the input images are received in a row-by-row raster format, and the

convolution with the filters f 1 and f 2 operates on adjacent pixels in the x and y axis, a FIFO buffer

is needed to store a single 1024 pixels row of the input image (i.e., Row Buffer in Figure 4.2). This

buffer has been implemented using a single FPGA internal Block-RAM (BRAM) memory resource

[243]. At startup, the FIFO buffer is filled with all the pixels associated to the first row of the

65

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

Figure 4.2: Gradient calculator architecture

image. Then, whenever a new input pixels is received, it is stored inside the buffer. Leveraging

the dual-port feature of the BRAMs, in the same clock cycle, the oldest stored pixel is read-out.

The new read-out pixel is used, in conjuction with the last read-out one, stored in the register

FF in Figure 4.2, to compute v1. Simultaneously, the read-out pixel is subtracted to the actual

received pixel to compute v2.

4.1.2.3 α estimator

The α estimator module computes the α parameter (see Equation 4.2) that best fits the charac-

teristics of the input images. The resulting value of α is used to select the right configuration of

the w calculator LUT, to be applied to the following image. This is acceptable since, at real-time

frame rate (i.e., 25 fps), the image characteristics are very similar between the actual frame and

the following one.

In particular,α characterizes the gradients distribution of the input image, that, for real-world

images, follow a hyper-laplacian distribution (i.e., p(x) ∝ e |x|
α

where 0 <α< 1) [117]. The distri-

bution of the gradients can be computed by extracting the gradients histograms.

As shown in Figure 4.3, the α estimator is composed by two main sub-modules: (i) the His-

togram Calculator, and (ii) the α selector.

Figure 4.3: α estimator architecture

The Histogram Calculator computes the histogram of the input image gradients. Its inter-

nal architecture, shown in Figure 4.4, is based on two dual-port BRAM buffers (i.e., BR AMx and

BR AMy), each one associated to a 20-bit counters.

66

4.1. ABLUR: an FPGA-based adaptive deblurring core for real-time applications

Figure 4.4: Histogram calculator architecture

The values of v1 and v2, received from the Gradients calculator, are used to address the two

buffers. Within the same clock cycle, the two read-out values are incremented by one, and stored

in the same address location of the respective buffer. During this phase the α read signal is set

to 0 by the Controller. When all v1 and v2 values are received, the Controller sets the HD signal,

indicating that the two buffers contain the complete histograms associated to the gradients in

the x and y directions.

The α selector, using a Look-Up Table (LUT) approach, outputs the α value that best fits the

computed histogram distribution. In particular, it contains the αLUT, as shown in Figure 4.5,

which stores 12 α values in the range (0.40, 0.95), discretized with a step of 0.05. Figure 4.6

plots the hyper-laplacian distributions associated to some α stored in the αLUT and their av-

erage slopes in the ranges [−30,−20] and [20,30].

As can be noted from Figure 4.6, looking to the slopes of the functions in the ranges [−30,−20],

or [20,30], is sufficient to discriminate between hyper-laplacian functions with differentα values.

Thus, the α selector reads from both histogram buffers the values of the histogram bars, associ-

ated to the gradient values 20, -20, 30, and -30, only. To accomplish this task, the Controller of

the Histogram Calculator sets α read to 1, while the HIST Address signal is used by the α selec-

tor to extract the histogram bar values HBx and HBy , associated to the aforementioned gradient

values.

Then, the average slope of the hyper-laplacian function in the selected range is computed

and used to address the αLUT in order to extract the α parameter (Figure 4.5).

It is worth noting that, although only few values are used, the whole gradients histograms

have been computed since these information are often exploited by subsequent image process-

67

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

Figure 4.5: α selector internal architecture

ing algorithms (e.g, for edge detection [182]), thus they can be an additional output of ABLUR.

In any case, this computation does not affect the overall performances, and it requires very few

resources.

4.1.2.4 Reconfiguration Manager

The Reconfiguration Manager receives in input theα, computed by theα estimator, and retrieves,

from an external memory the partial configuration bitstream associated to the new chosen con-

figuration for the LUT in the w calculator. The configuration bitstream is then written to the

internal configuration port (i.e., ICAP in Xilinx FPGAs), located inside the FPGA device, and di-

rectly connected to its configuration engine.

At the end of the reconfiguration process the w calculator LUT contains the updated values,

corresponding to the selected α, that can be used to compute w during the next image cycle.

4.1.2.5 w calculator

The w calculator module operates in two consecutive steps. First, it solves Equation 4.2 using a

LUT approach. Basically, it receives v1 and v2; as the LUT stores the corresponding values of w

for discretized v values, it is possible to compute w1 and w2 very fast. For each different value of

α a different LUT is required (as Equation 4.2 depends on α).

To ensure a good approximation, for a fixedα, the LUT contains 104 w1 and w2 32-bits values,

as proposed in [117], leading to the usage of two 312,5 Kbits memories (each one used to compute

w1 and w2, respectively).

68

4.1. ABLUR: an FPGA-based adaptive deblurring core for real-time applications

Figure 4.6: Hyper-Laplacian distributions with different α values

In order to save FPGA internal memory resources, at run-time, only the LUT associated with

the actual estimated value of α is instantiated inside the FPGA device. Run-time partial reconfig-

uration is then exploited to change the LUT configuration when the α value changes.

Afterwards, w1 and w2 are convolved with the negated values of the filters f 1 and f 2, using

the same architecture as in Figure 4.2. Finally, the two convolved values are added togheter (see

Equation 4.1) to calculate the value of the w that is the output of this module.

4.1.2.6 w Fast Fourier Transform module (FFT(w))

This module computes the two-dimensional Fast-Fourier Transform of the values received from

the w calculator. It is important to note that the received values represent a 1024x1024 elements

matrix. As the FFT(y) module, the FFT(w) has been implemented resorting to the Xilinx LogiCore

Fast Fourier Transform core [236].

69

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

4.1.2.7 Formula Solver

The Formula Solver module is in charge of computing the sums and the component-wise division

required by Equation 4.1. This module receives F (y) and F (w) as inputs, and reads an external

memory to retrieve both F (K)∗ and the whole denominator D , which are pre-computed off-line

(see Section 4.1.2).

This module outputs a 1024x1024 complex matrix on which will be applied the inverse Fourier

Trasform to retrieve the deblurred output image.

4.1.2.8 Control Unit

This module coordinates the operations of all the aforementioned modules. In fact, ABLUR op-

erations can be grouped in four phases.

During the first phase, while the input image is received, the FFT(y), the Gradients Calculator,

the w calculator, the FFT(w), and the α estimator modules are activated. In particular, FFT(y)

and FFT(w) compute the first part of the two-dimensional Fourier Transform, on the rows of the

respective input matrices (as mentioned in Section 4.1.2.1 and Section 4.1.2.6), while α estimator

computes the gradients histograms.

In the second phase, when the image is completely received, FFT(y) and FFT(w) computes the

second part of the Fourier Transforms, retrieving the data computed during the first phase. In the

meanwhile, α estimator outputs the α value. During this phase, the Formula Solver receives in

input all the data needed to compute the sums and the division in Equation 4.1.

In the third phase the FFT(y) module is used to compute the first part of the inverse Fourier

Transform of the values extracted by the formula solver, while the Reconfiguration Controller re-

configures the w calculator LUT with the chosen configuration, reading the estimated α value.

Finally, in the fourth phase, the same module computes the second part of the inverse Fourier

Transform and outputs the deblurred image values.

4.1.3 Experimental results

To evaluate the hardware resources usage and the timing performances of the proposed archi-

tecture, ABLUR has been synthesized and implemented on a Xilinx Virtex 7 VX485T FPGA device.

Table 4.3 reports the FPGA resources usage of each internal module, along with the percentages

of consumed resources with respect to the ones available in the selected device.

From Table 4.3 it is possible to note the limited hardware resources consumption, in terms of

both logic (i.e., LUTs and Digital Signal Processors (DSPs)) and memory resources (i.e. BRAMs),

for the selected device.

The 37 internal memory resources consumed by the w calculator are needed to store the Re-

configurable LUT associated to the run-time selected α value. The reconfiguration of this Look-

Up Table requires 0.2ms, since the configuration bitstream is about 80 KBytes, and the maxi-

70

4.1. ABLUR: an FPGA-based adaptive deblurring core for real-time applications

Table 4.1: Resource Usage for Xilinx Virtex 7 VX485T FPGA device

Module
FPGA Area Occupation

LUTs FFs BRAMs DSPs

Control Unit 1,347 113 - -

FFT(y) 2,207 376 16 94

FFT(w) 2,207 376 16 94

Gradients Calculator 112 35 1 -

α estimator 315 34 2 -

w calculator 265 53 37 -

Reconfiguration controller 150 66 - -

Formula Solver 2,113 560 - 4

Total 8,716 (2.87%) 1,613 (0.27%) 72 (3.50%) 192 (6.86%)

mum bandwidth of the internal reconfiguration port (called ICAP in Xilinx devices) is equal to

3.2 Gbit/s [238]. This reconfiguration time does not influence the overall throughput, since the

reconfiguration process can be performed while carrying out the final inverse Fourier transform,

that is more time consuming.

At the maximum operating frequency of 255 MHz, ABLUR is able to process 29 1024x1024

frames per second, thus achieving real-time performances.

To demonstrate the effectiveness and to quantify the accuracy of the proposed self-adapting

approach, a test environment has been developed to read sharp natural-world images and inject

motion blur. The proposed architecture has been modeled as a Matlab script resorting to a fixed-

point algebra to emulate the actual hardware precision. The Matlab model has been used also to

perform functional verification of the implemented hardware architecture.

During the test phase, a motion blur kernel was used to simulate relative movements between

camera and scene that are 7-pixel long and with an angle of 3 degrees with the x axis. The test

environment is based on Matlab, running on Windows 7 x64 on a Notebook PC equipped with an

Intel Core i5-2450M @2.50GHz CPU and 8 GB of RAM.

After injecting blur in the original images, the test environment invokes the deblurring func-

tion, implementing in software the algorithm executed by ABLUR. The blur kernel k passed to the

algorithm is a minor perturbation of the true kernel, to mimic kernel estimation errors, as done

in [117].

Tests have been performed on 100 1024x1024 pixels images. For each image, a software rou-

tine finds the α value that best fits the image gradients distribution. This value is also the one

that minimizes the error between the reconstructed latent image, and the original input one. In

71

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

particular, to quantify the quality of the reconstructed images, the RMSE! (RMSE!) has been em-

ployed and computed as:

RMSE(L,O) =
√∑1024

i=1

∑1024
j=1 (Li , j −Oi , j)2

1024 ·1024
(4.4)

where Li , j and Oi , j represent a pixel in position (i , j) in the latent and original images, respec-

tively.

Figure 4.7 shows two images examples along with their hyper-laplacian gradients distribu-

tions, characterized by two different α values.

Figure 4.7: Real-world scene images affected by blur and their gradients distribution, together
with the Hyper-Laplacian that better fits them (represented with black crosses)

72

4.1. ABLUR: an FPGA-based adaptive deblurring core for real-time applications

Instead, the graph in Figure 4.8 shows the RMSE! results while applying the algorithm imple-

mented in ABLUR, with different α values.

Figure 4.8: RMSE of the recovered latent images w.r.t. the original ones, varying the inputα value,
for the two examples in Figure 4.7 (the minimum RMSE is highlighted with a circled star)

It can be noted that the optimalα value is different between the two images, and corresponds

to the one that characterize their Hyper-Laplacian gradients distribution.

During simulations ABLUR was able to identify the optimal α value, with a 0.05 resolution,

thus ensuring equals, or even better outcomes w.r.t using a static α input.

In addition, since the hardware implementation of ABLUR uses fixed-point data representa-

tion, the error introduced with respect to using a software implemented double precision version

of the same algorithm has been evaluated. Figure 4.9 shows the visual results and the RMSE! val-

ues of ABLUR and software double precision version outputs.

For the sake of completeness, the output results of ABLUR have been compared with the ones

obtained by other single-image deblurring approaches (i.e., [117] and two MATLAB built-in func-

tions Deconvlucy and Deconvblind, both based on the algorithm discussed in [136]). Results are

summarized in Table 4.2, and show that ABLUR achieves real-time performances while still pro-

viding high quality outcomes. Slight worsening in RMSE! are due to approximations of the con-

sidered fixed-point algebra. The average elapsed time and the average RMSE! are computed over

100 runs.

Table 4.2: Comparison among deblurring approaches in terms of execution time and RMSE

Algorithm Avg Elapsed Time (s) AVG RMSE

ABLUR (HW) 0,034 0,0574
[117] 2,094 0,0409

Deconvlucy 3,126 0,0454
Deconvblind 6,396 0,0455

73

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

(a) Latent image restored by ABLUR (b) Latent image restored by double precision soft-
ware algorithm

Figure 4.9: Example from Figure 4.7 deblurred by ABLUR (RMSE=0.044) and by software imple-
mented double precision version of the same algorithm (RMSE=0.039)

ABLUR ensures a speed-up of about 60x with respect to the Matlab version of the algorithm

proposed in [117], while providing still acceptable results.

Deconvlucy and Deconvblind provide similar results in terms of RMSE!, while being more

time consuming with respect to the approach exploited by ABLUR [117].

Finally, a possible example of usage of ABLUR is discussed. Consider an UAVs engaged in a

save and rescue mission, recording frames of scene to identify people to rescue while flying. To

automatically detect people in difficulties, it could be useful to detect edges in every frames; such

edges may be compared to typical human shapes, so that an alarm is triggered when possible

human target is found. However, in such case, vibrations are unavoidably transmitted to the

camera, and recorded frames are affected by blur, so that small edges are confused (or even totally

hidden) by blur and impossible to detect. It is then necessary to deblur in real-time every frame

to allow post-processing algorithms to extract the largest possible amount of sharp edges from

them.

Figure 4.10 shows the outcome of an edge-detection algorithm applied on the original image,

its blurry version and the the latent image recovered by ABLUR. As is highlighted in this example,

edges are definitely more sharp and detailed when extracted from the deblurred image, and very

similar to the ones extracted from the original image.

74

4.1. ABLUR: an FPGA-based adaptive deblurring core for real-time applications

(a) Original sharp image (b) Edges extracted from original
image

(c) Blurry image (d) Edges extracted from blurry im-
age

(e) Latent image restored by ABLUR (f) Edges extracted from deblurred
image

Figure 4.10: Example from Figure 4.7 deblurred by ABLUR and edges extracted from blurry and
deblurred image

75

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

4.2 SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based

on Partially Reconfigurable FPGAs for Space Applications

Upcoming plans for solar system exploration in the next 30 years are expected to include landing,

sample and return missions to moons, planets, asteroids, and comets [157]. As discussed in Sec-

tion 2.2, in recent space missions Spirit, Opportunity, and Curiosity, the spacecraft descending

trajectory and the final landing point were precomputed and fixed during the mission planning,

enabling to reach a maximum landing precision, quantified in terms of area in which the space-

craft is likely to land (landing ellipse) of 20 km [156]. Spacecraft autonomous precision landing

capabilities able to reduce the landing ellipse to sub-kilometer accuracy would provide safe and

affordable access to landing sites that promise the highest science return and pose minimal risk

to the spacecraft [154]. VBN is an area of computer vision that exploits image frames captured

by cameras and image processing algorithms to assist navigation in several application domains,

including robotics, unmanned vehicles, and avionics [256][155]. The wide availability of cameras

on spacecrafts makes VBN a very interesting approach for the implementation of autonomous

EDL control systems for next generation space missions.

VBN algorithms extract geometrical information from a set of real-time sampled image frames.

As discussed in Section 2.2, they basically perform two activities named Feature Extraction and

Matching (FEM), and Motion Estimation. During Features Extraction and Matching (FEM), each

frame is processed to detect those pixels that represent features of interest for the image (e.g., cor-

ners or edges of surfaces). The detected features are then compared to extract those that can be

recognized in two consecutive images (matching points). To increase accuracy, motion estima-

tion algorithms require very accurate matching points distributed across the entire frame [134].

FEM algorithms require high computation capability to guarantee high frame rates and therefore

high accuracy. Hence, very efficient hardware accelerators for this task are mandatory.

This section discusses SA-FEMIP, an optimized FPGA-based self-adaptive FEM architecture

based on the well known Harris feature extractor algorithm [99]. This architecture introduces

self-adaptation of the parameters of the image processing algorithms employed for the FEM task.

Self-adaptation enables to better optimize the FEM algorithm to the environmental conditions,

thus increasing the robustness with respect to noise and variations of external conditions that are

typical of the space environment. Adaptation is obtained introducing very marginal overhead

and guaranteeing high operational rates. This is achieved by resorting to DPR capabilities of

modern space-qualified FPGAs.

4.2.1 Related Works

Feature extraction is the most complex activity performed by FEM algorithms. Several feature

extraction algorithms have been proposed in the literature (e.g., Beaudet [20], SUSAN [188], Har-

76

4.2. SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Partially
Reconfigurable FPGAs for Space Applications

ris [99], Speeded-Up Robust Features (SURF) [19] and Scale Invariant Feature Transform (SIFT)

[135]). From the algorithmic point of view, SURF and SIFT are probably the most robust solutions

since they are scale- and rotation-invariant. This means that features can be matched between

two consecutive frames even if they have differences in terms of scale and/or rotation. However,

due to their complexity, hardware implementations are very resource hungry. As an example,

[16] and [27] propose two FPGA-based implementations of the SURF algorithm. The architecture

proposed in [16] consumes almost 100% of the LUTs available on a medium sized Xilinx Virtex 6

FPGA, without guaranteeing real-time performances. Similarly, the architecture proposed in [27]

consumes about 90% of the internal memory of a Xilinx Virtex 5 FPGA. It saves logic resources,

but it is able to real-time process images with a resolution limited to 640x480 pixels. Another

example is presented in [254], where an FPGA-based implementation of the SIFT algorithm is

presented. It is able to real-time process 640x480 pixel images, consuming about 30,000 LUTs

and 97 internal DSPs in a Xilinx Virtex 5 FPGA.

Among the available feature extraction algorithms, Harris is probably the best trade-off be-

tween precision and complexity [204]. Under the assumption of small differences between con-

secutive frames (i.e., high frame rates or small camera displacements), its accuracy is comparable

to SURF and SIFT, with a significant lower complexity. Since high frame-rates are mandatory dur-

ing the EDL phase to allow real-time correction of the descending trajectory, Harris is a very good

candidate to implement a high-speed and low-area FEM accelerator block for space-applications

[68]. For each pixel (x, y) of a frame, Harris computes the so called corner response R(x, y) accord-

ing to the following equation:

R(x, y) = Det(N (x, y))−k ·Tr2(N (x, y)) (4.5)

where k is an empirical correction factor equal to 0.04, while Det(N (x, y)) and Tr2(N (x, y)) repre-

sent, respectively, the determinant and the trace of the second-moment matrix, which depends

on the spatial image derivatives Lx and Ly , in the respective directions (i.e., x and y) [99]:

N (x, y) =
(

L2
x Lx Ly

Lx Ly L2
y

)
(4.6)

where Li is a spatial image derivative in the direction i.

Pixels with high corner response have high probability to represent a corner (i.e., an image

feature) of the selected frame and can be selected to search for matching points between consec-

utive frames.

4.2.2 SA-FEMIP Architecture

This section analyzes the SA-FEMIP architecture discussing where and how adaptation to envi-

ronmental conditions has been introduced.

77

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

SA-FEMIP is a pipelined architecture that processes a 32-bit input stream representing a se-

quence of 1024x1024 grey scale frames with 10 bit per pixel (bpp) resolution (see Figure 4.11).

Frame size and resolution are those provided by almost all space-qualified CMOS cameras [75].

Images are received in a raster format, line-by-line from left to right and from top to bottom. The

output of SA-FEMIP is the set of matching points identified in the processed frames. The SA-

FEMIP pipeline includes three main functional blocks: the Reconfigurable Gaussian Filter, the

Adaptive Harris Feature Extractor, and the Feature Matcher. Moreover, SA-FEMIP includes an in-

put/output interface to communicate with an external memory used to temporarily store images

filtered by the Reconfigurable Gaussian Filter and later required during the feature matching step.

Matching
Points

Feature
Matcher

Adaptive
Harris
Feature

Extractor

SA-FEMIP

Reconf.
Gaussian

Filter

Pixels
stream

External Memory Interface

Figure 4.11: SA-FEMIP computational pipeline

The following sections details the operations carried out the modules composing SA-FEMIP,

along with their internal architetures.

4.2.2.1 Reconfigurable Gaussian Filter

The Reconfigurable Gaussian Filter performs Gaussian smoothing of the input image. It reduces

the image noise level, thus improving the feature extraction accuracy [93]. Gaussian filtering

is performed by means of a two-dimensional convolution of the input image with a 7x7 Gaus-

sian kernel mask [93] according to Equation 4.7. A 7x7 kernel is enough to approximate a two-

dimensional Gaussian function with variance σ2
f ≤ 2 [78], which enables to forcefully reduce the

noise that strongly affects images taken in space environments.

F I (x, y) =
s−1∑
i=0

s−1∑
j=0

I
(
δx + i ,δy + j

) ·K (i , j) (4.7)

In Equation 4.7, F I (x, y) is the filtered pixel in position (x, y), I represents the input image, s is

the kernel size (s = 7 in this architecture), K (i , j) is the kernel factor in position (i , j), and δx and

δy are computed according to the following equation:

δx,δy = x, y −
(

s −1

2

)
(4.8)

78

4.2. SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Partially
Reconfigurable FPGAs for Space Applications

Figure 4.12 shows the architecture implementing the proposed approach.

RM!
Pixels
from

the camera

Gaussian Filter!

NVE Reconfig.
Manager C

on
fig

.
Po

rt

Filtered
pixels

σ
n!

External Memory
Interface

Figure 4.12: Reconfigurable Gaussian Filter hardware architecture

The Reconfigurable Gaussian Filter is composed of: (i) the Noise Variance Estimator (NVE),

(ii) the Reconfiguration Manager, and (iii) the Gaussian Filter.

Figure 4.13 shows the architecture of the Gaussian Filter module.

Figure 4.13: Gaussian Filter internal architecture

The Splitter gets the image flow through the 32-bit input interface and unpacks it in order

to reconstruct the original 10-bit pixel flow. Pixels are then sent to the Smart Write Dispatcher

(SWD), that stores them inside the Rows Buffer (RB) before the actual convolution computation.

The Row Buffer is composed of 7 FPGA Block-RAMs (BRAMs) [253] each one able to store a

full image row1. Rows are buffered using a circular policy as reported in Figure 4.14. Pixels of a

row are loaded from right to left, and rows are loaded from top to bottom (Figure 4.14(a)). When

the buffer is full, the first row of the buffer is used again (Figure 4.14(b)).

When the first 7 rows of the image are ready in the Row Buffer the actual pixel filtering starts.

At this stage, pixels of the central row (row number 4) can be processed and filtered. It is worth to

1The number of rows of the buffer is equal to the kernel size.

79

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

remember here that, using a 7x7 kernel matrix, a 3-pixel wide border of the image is not filtered,

and related pixels are therefore discarded during filtering.

For each pixel to filter, a 7x7 image patch is extracted from the Row Buffer and stored in the

Slide Window Buffer (i.e., a buffer composed of 49 10-bit registers). This can be efficiently done if

one considers that the image is received in a raster way as shown in Figure 4.14(c). At each clock

cycle, a full Row Buffer column is shifted into the Sliding Window Buffer (Figure 4.14(c)). After the

7th clock cycle, the first image block is ready and the Sliding Window Buffer is convolved with the

Kernel Mask. At each following clock cycle, a new Row Buffer column enters the Sliding Window

Buffer and a new filtered pixel of the row is produced. While this process is carried out, new pixels

continue to feed the Row Buffer, thus implementing a fully pipelined computation. From (4.7),

taking into account the considered kernel size (i.e., 7x7 pixels), 49 multiplications are required to

produce a filtered pixel F I (x, y). In the proposed architecture, all multiplications are executed in

parallel within a single clock cycle. Since kernel factors have been internally represented through

constants, 49 constant-multipliers are instantiated. After that, an adder tree (similar to the one

presented in [52]) adds the 49 multiplication results to produce the filtered pixel.

The NVE, exploiting the algorithm presented in [196], estimates the Gaussian noise variance

(i.e., σ2
n) affecting the input image. The selected algorithm involves highly parallelizable oper-

ations. It first requires to extract the strongest edges (or features) of the input image exploiting

the Sobel features extractor. This task is performed using two 2D convolutions [53] between the

input image and the Sobel kernels (Equation 4.9) [92]:

Gx = I (x, y)∗

−1 −2 −1

0 0 0

1 2 1

 ,Gy = I (x, y)∗

−1 0 1

−2 0 2

−1 0 1

G = |Gx |+
∣∣Gy

∣∣ (4.9)

where I (x, y) is the pixel intensity in the (x, y) position of the input image, and G is the edge map

associated with the input image. The strongest edges are then extracted by selecting the highest

10% values inside G . Finally, σ2
n can be computed as:

σ2
n =

(
C · ∑

I (x,y)6=ed g e

∣∣I (x, y)∗N
∣∣)2

(4.10)

where N is the 3x3 Laplacian kernel [196] and C is a constant defined as:

C =
√
π

2
· 1

6(W −2)(H −2)
(4.11)

where W and H are the width and height of the input image, respectively (in the proposed archi-

tecture W = H = 1024).

80

4.2. SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Partially
Reconfigurable FPGAs for Space Applications

….

….

(1,1)

(1,2)

(1,N
)

(7,1)

(7,2)

(7,N
)

I (7,:)

I (1,:)

…
.

….

(2,1)

(2,2)

(2,N
)

(a) 1st to 7-th row received

….

….

(8,1)

(8,2)

(8,N
)

(7,1)

(7,2)

(7,N
)

I (8,:)

…
.

….

(2,1)

(2,2)

(2,N
)

(b) 8-th image row received

K
(1,1)

K
(1,7)

….

….

K
(7,1)

K
(7,7)

….

…
.

…
. * = FI(4,4)

SHIFT

SLIDING WINDOW BUFFER

(1,1)
(1,2)

(1,N
)

….

ROWS BUFFER KERNEL MASK

(1,7)
(1,6)
(1,5)
(1,4)
(1,3)
(1,2)
(1,1)

(4,1)
(4,2)

(4,N
)

….

…
.

(7,1)
(7,2)

(7,N
)

….

…
.

(4,7)
(4,6)
(4,5)
(4,4)
(4,3)
(4,2)
(4,1)

(7,7)
(7,6)
(7,5)
(7,4)
(7,3)
(7,2)
(7,1)

…
.

…
.

(c) Slide window filling for Pixel (4,4)

Figure 4.14: Gaussian Filter internal buffers architecture. (i,j) indicates the pixel coordinates.

The internal architecture of the NVE is shown in Figure 4.15.

The SIWB implements the sliding-window buffering approach of the input image to extract

3x3 pixel windowsSobel using a pipelined architecture similar to the one reported in Figure 4.13.

The outputs of SIWB feed the two main modules of LVE: the Sobel Extractor (SE in Figure

4.15), and the Laplacian.

Basically, SE extracts the features from the input image and asserts its output flag only if the

81

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

Figure 4.15: NVE internal architecture

currently processed pixel is one of the 10% strongest features in the image. First, it executes the

operations reported in Equation (4.9). The Gx and Gy modules receive in input the pixels of the

current 3x3 patch and compute the two-dimensional convolutions between the input pixels and

the Sobel kernels. These two modules are internally implemented as a MUL/ADD tree composed

of 6 multipliers (only 6 values are different from zero in Sobel kernels) and 3 adder stages, for a

total amount of 5 adders.

The outputs of the Gx and Gy are then added together, through a 16 bit adder, to find the G

value (see Equation 4.9). The computed G is compared with a threshold in order to set the SE

output only if the current pixel is one of the 10% strongest features in the image.

The threshold value cannot be determined at design time since it strongly depends on the

camera and environment conditions. Thus, the TH_adpt module (see Figure 4.15) is in charge of

calculating the initial threshold value and adapting it frame by frame, by simply applying Algo-

rithm 1. where N_target_features represents the strongest features in the input image (i.e., the

Algorithm 1 Adaptive Thresholding algorithm

N _t ar g et_ f eatur es ← 0.1∗ si ze(G)
Gap ← N _Sobel _ f eatur es − (N _t ar g et_ f eatur es)
O f f set ←Gap ∗ (0.5/3000)∗Cur r ent_T H
if Gap <−3000 || Gap > 3000 then

New_T H ←Cur r ent_T H +O f f set
else

New_T H ←Cur r ent_T H
end if

10% of the complete image). Gap is the difference between the current number of extracted Sobel

features (N_Sobel_features) and N_target_features. If the value of Gap is less than -3000 or more

82

4.2. SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Partially
Reconfigurable FPGAs for Space Applications

than 3000, the current value of the threshold (i.e., Current_TH) is incremented or decremented

(depending on its value) by one Offset. The new calculated value for the threshold (i.e., New_TH)

represents the threshold to be provided in input to the comparator for the next input image.

Since at high frame rates the image conditions between two consecutive frames are approx-

imately the same, the threshold value calculated from the previous frame can be applied to the

current processed frame. This task is performed for every input frame, in order to maintain the

number of extracted features around N_target_features. Obviously, at startup the Current_TH is

initialized to a low value, and experiments using a MATLAB implementation of the NVE, applied

on the Affine Covariant Regions Datasets [1], have shown that TH_adpt need a maximum of 8

frames to reach a stable threshold value.

In parallel to the SE operations, the Laplacian module computes the convolution between

the input image and the 3x3 Laplacian Kernel. This operation is performed adopting the same

approach used in the Gx and Gy modules. Although, in this case the MUL/ADD tree is composed

of 9 multipliers (all Laplacian Kernel factors are different from zero) and 4 adder stages, for a total

amount of 8 adders.

The Laplacian output is provided in input to an accumulator (acc in Figure 4.15). This accu-

mulator is enabled only when SE provides in output a zero, in other words only when the current

processed pixel is not one of the 10% strongest features. In this way, when the complete image has

been received acc contains the value of the sum in Equation 4.10 (i.e.,
∑

I (x,y)6=ed g e

∣∣I (x, y)∗N
∣∣).

The following two multipliers conclude the computation of Equation 4.10.

The computation ofσ2
n is exploited by the Reconfigurable Gaussian Filter to implement frame-

by-frame adaptation (through DPR) of the filter varianceσ2
f , based on the estimated noise affect-

ing the input images. In fact, an architecture that uses a fixed Gaussian filter variance (σ2
f) works

well if the noise level of the processed frames is known a priori. As an example, a high filter vari-

ance is useful for high noise levels. Instead, for low noise levels the images are oversmoothed,

thus reducing the accuracy of the feature extraction and matching modules [93].

In literature, many works propose adaptive filters [175][258][50][202]. Among the proposed

approaches, those based on evolutionary algorithms are the most promising, in terms of timing

performances and hardware resources usage [66]. Nevertheless, they provide very good results

if the processed images are similar to the one used during the training phase of the evolution-

ary algorithm. Instead, if the received image characteristics (e.g., illumination conditions, tonal

distribution, etc.) cannot be predicted, as in the harsh space environment, the filtering perfor-

mances become very poor [153] [152].

In the the proposed approach the noise level estimated for the current frame is used to se-

lect the filter variance that would guarantee optimum filtering results. This filter variance is then

used to filter the next input image, allowing adaptation of the filter parameters frame-by-frame

during the entire descending sequence. The adaptation of the filter variance is achieved by re-

configuring the 49 constant multipliers required to perform the convolution of the image with

83

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

the Gaussian kernel. This significantly saves hardware resources with respect to a solution that

uses 49 generic multipliers in which the Gaussian kernel constants are selected using multiplex-

ers driven according to the selected filter variance.

In order to enable reconfiguration, the 49 multipliers are enclosed in an FPGA reconfigurable

module (RM in Figure 4.12). A reconfigurable module is a portion of an FPGA design that can

be reconfigured at run-time, without impacting the behavior of the rest of the design. While the

Gaussian Filter processes the input image, the NVE estimates the noise level. When a full frame

has been processed, the NVE provides the current estimated σn to the Reconfiguration Manager.

The Reconfiguration Manager exploits this value to look-up into a bitstream address table and to

select the proper configuration for the multipliers inside the RM. The multipliers reconfiguration

is accomplished by reading the multipliers configuration bitstream from the external memory,

choosing the configuration associated with the estimated variance. The bistream is then used

to program the reconfigurable module of the FPGA resorting to the FPGA internal Configuration

Port (i.e., ICAP [238] in Xilinx FPGAs).

Finally, since for each value of σ2
f a configuration bitstream must be stored in the external

memory, the range of possibleσ2
f must be discretized according to the available external memory

space (see Section 4.2.2.5 for detailed information about the size of each bitstream).

4.2.2.2 Adaptive Harris Feature Extractor

The Adaptive Harris Feature Extractor implements the Harris corner detector. It processes the

filtered pixels, received from the Reconfigurable Gaussian Filter, and computes the frame fea-

tures. Each feature is represented by its coordinates (x, y) in the frame, and by the related cor-

ner response R(x, y), computed according to Equation 4.5. The computed corner responses

must be thresholded in order to identify those features that potentially represent a real corner.

However, the value of the threshold strongly depends on the image environment and condition

(e.g., brightness, noise, contrast). To provide a certain level of adaptation, [54] introduced a self-

adaptive threshold. The threshold T H is initialized at 0 at startup (i.e., all features are accepted).

It is then updated based on the number of features extracted from the current image, and ap-

plied to the next frame. In particular, for each frame, the number of selected features (N F) is

compared with the number of expected features (T F), set to a predefined value in order to limit

internal buffers size. If the two numbers are equal with a tolerance (δ) the threshold is already

optimized. If not, the new threshold is computed as T H = T H+((T F −N F)∗(0.5/T F)∗T H). The

reader may refer to [54] for additional details.

Computing the threshold for the next frame based on information on the current frame is

acceptable thanks to the high frame rate of the proposed architecture, that guarantees marginal

differences in consecutive frames. However, if the image presents a single small rugged region,

the extracted features, and subsequently the extracted matching points, will be concentrated in

84

4.2. SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Partially
Reconfigurable FPGAs for Space Applications

that limited region. This leads to poor information extracted from the input frames, and there-

fore to errors in the Motion Estimation phase. This drawback derives from the usage of a single

global threshold for an entire frame. The Adaptive Harris Features Extractor (AHFE) component

analyzed in this section, implements an adaptive cell-based thresholding that relies on frame

partitioning to apply different thresholds to different portions of the frame. This ensures that the

extracted features uniformly cover the overall frame.

The hardware architecture of the Adaptive Harris Feature Extractor is illustrated in Figure 4.16.

(x,y) Filtered
Pixels

Lx

Ly

Adaptive
Cell-based

Thresholding

Corner
Response

Calculator R(x,y)

val_feat

Figure 4.16: Adaptive Harris Features Extractor internal architecture

The first two modules of the Adaptive Harris Feature Extractor, Lx and Ly , compute the spatial

image derivatives of the filtered image in the horizontal (Lx) and vertical (Ly) direction, respec-

tively. This operation is performed by convolving the filtered image, received from the Reconfig-

urable Gaussian Filter, with the 3x3 Prewitt kernel [93], using an architecture similar to the one

proposed for the Gaussian Filter. Then, the Corner Response Calculator module computes the de-

terminant and the trace of the second-moment matrix N (x, y), which are required to calculate the

Harris corner response R(x, y) associated with each input pixel. Finally, the Adaptive Cell-based

Thresholding (ACTH) module thresholds the computed corner responses, asserting the val_feat

signal when the current processed pixel is above the threshold and therefore represents an actual

feature.

Selecting a well distributed set of features within the frame improves the motion estimation

accuracy. In order to level the distribution of the extracted features on the processed frames, the

ACTH module splits the input image in 64 cells of 128x128 pixels each. It then tries to extract

the same number of features from each cell. This goal is achieved exploiting a local threshold for

each cell, instead of using a single global threshold for the overall image. The chosen number

of cells represents a good trade-off between accuracy and memory requirements. As it will be

discussed in Section 4.2.2.5, it ensures to uniformly cover the input image and, at the same time,

to avoid the introduction of a large number of cells that would require a lot of memory to store

85

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

Algorithm 2 Adaptive Cell Thresholding approach
Require: NF[8,8] . # extracted features in each cell
Require: TH[8,8] . Threshold value of each cell
Require: TF[8,8] . # target features in each cell
1: Const N _cel l=64 . # of cell
2: Const δ=15 . Tolerance
3: Const LowT H=15 . Threshold lower bound
4: Const OT F =3000 . Overall # target features
5: Curr_EF=

∑
N F [i , j] . Current overall # extracted features

6: LowTH_cell[8,8]=[0,...,0]
7: TF_slack=0
8: for i=0;i<8;i++ do
9: for j=0;j<8;j++ do
10: Disp=NF[i,j]-TF[i,j]
11: Step = Disp * (0.5/OT F)*TH[i,j]
12: if Disp<−δ then
13: new_TH[i,j]=TH[i,j]+Step
14: if new_TH[i,j]< LowT H then
15: new_TH[i,j]=TH[i,j]
16: LowTH_cell[i,j]=1
17: TF_slack=TF_slack + | Disp |
18: end if
19: else
20: if Disp>+δ then
21: new_TH[i,j]=TH[i,j]+Step
22: else
23: new_TH[i,j]=TH[i,j]
24: end if
25: end if
26: end for
27: end for
28: if TF_slack > 0 then
29: if TF_slack < N _cel l then
30: TF_slack_cell = 1
31: else
32: TF_slack_cell = b TF_slack ÷ N _cel lc
33: end if
34: for i=0;i<8;i++ do
35: for j=0;j<8;j++ do
36: if Curr_EF <=OT F then
37: if LowTH_cell[i,j]=0 then
38: new_TF[i,j]=TF[i,j]+TF_slack_cell
39: else
40: new_TF[i,j]=NF[i,j]
41: end if
42: else
43: if TF[i,j] = 0 then
44: new_TF[i,j]=TF[i,j]
45: else
46: new_TF[i,j]=TF[i,j]-1
47: end if
48: end if
49: end for
50: end for
51: end if
52: return (new_TH, new_TF)

the related information items.

The ACTH module analyzes information related to the current frame implementing the deci-

sion process described in Algorithm 2, and computes the local thresholds to use for the following

frame. The threshold adaptation process requires to know, for each cell composing the frame, (i)

the number of extracted features (N F), (ii) the current threshold (T H) initialized at the highest

possible value at startup (i.e., no features are extracted), and (iii) the current number of expected

86

4.2. SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Partially
Reconfigurable FPGAs for Space Applications

features (T F). In the performed tests, T F has been initialized to 48 to fix the overall number of

expected features per frame (OT F) to about 3,000 features. This value limits the size of the inter-

nal buffer used to store the extracted features in the Feature Matcher module. Since N F , T H and

T F must be defined for each cell of the frame, they are stored in the form of 8x8 matrices, with

the matrix elements associated to the defined frame cells.

Algorithm 2 can be split in two main parts. The former (from row 8 to 27) updates the cell

threshold values. For every cell (i , j), it compares the number of extracted features N F [i , j] with

the number of expected features T F [i , j] (Di sp at row 10). If these two values differ no more

than a defined tolerance (i.e., the difference is contained in the range [+δ,−δ]) the threshold

is not changed (row 23). Otherwise, the threshold is updated adding Step to its current value

(rows 13 and 21). One additional test is performed when the number of extracted features is

lower than the number of expected ones (from row 14 to 18). In particular, the updated threshold

(new_T H [i , j]) is considered valid if it is higher than a lower bound value (LowT H). If not, the

threshold is not changed (row 15). This avoids to over-reduce the threshold value and to provide

in output weak features that could be potentially associated with the noise in the input frame. In

fact, if a cell represents a flat part of the planetary surface, a high value of the image gradient, and

consequently a high value of the computed corner response, is mainly due to the noise.

The second part of Alg. 2 (from row 28 to 51) optimizes the number of features extracted for

each cell in order to obtain a total number of features for the frame as close as possible OT F .

To do that, it is worth to remember that all cells that reach the threshold lower bound cannot

further update their threshold. If, with this threshold, the number of extracted features for the

cell N F [i , j] is lower than the number of expected features for the cell T F [i , j] there is a certain

amount of features corresponding to | Di sp | that can be redistributed to other cells with thresh-

old higher than the lower bound. To exploit this, each cell with threshold lower than the lower

bound is marked through the LowT H_cel l [i , j] flag (row 16) and the number of unused features

of these cells is accumulated in the T F _sl ack parameter (row 17) in order to be redistributed to

the other cells, according to the decision process described from row 28 to 51. The T F _sl ack rep-

resents the number of expected features that can be borrowed to the cells that have not reached

the threshold lower bound (i.e., LowT H_cel l [i , j] = 0). The number of features to borrow to each

cell (T F _sl ack_cel l) is computed dividing T F _sl ack by the number of cells composing the im-

age. To ensure a high number of extracted features, the algorithm always borrows at least one

feature to each cell with LowT H_cel l [i , j] = 0 (rows 29 to 33). If the total number of extracted

features Cur r _EF is lower or equal to OT F (from row 36 to 41), if the cell has not reached the

threshold lower bound the number of expected features for the cell is increased of T F _sl ack_cel l

(row 38). Otherwise, it is left unchanged (row 40).

Using this approach, the total number of extracted features (Cur r _EF) could increase more

and more due to the borrow mechanism, that increases the T F [i , j] values. To allow a decrease

of the T F [i , j] values, and so to maintain the overall number of extracted features around OT F ,

87

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

if Cur r _EF exceeds OT F , the target feature value of each cell is decreased by 1 (from row 43 to

47).

The hardware architecture of the ACTH module is shown in Figure 4.17.

R(x,y) val_feat Features
Counter

Thresholds
&

Target Features
Updater

TH
sh_vector

NF
sh_vector

Controller

Figure 4.17: Adaptive Cell-based Thresholding hardware architecture

It is composed of four main modules: (i) the Features Counter, (ii) the Thresholds & Target Fea-

tures Updater, (iii) the TH sh_vector, and (iv) the NF sh_vector. The Thresholds & Target Features

Updater module implements Alg. 2, while the Features Counter performs the actual thresholding

of each corner response R(x, y) received from the Corner Response Calculator (see Figure 4.16).

This module reads the thresholds associated with each image cell (i.e., T H [i , j] in Alg. 2) that are

stored in the TH sh_vector, and compares them with the received corner responses, asserting the

val_feat signal if R(x, y) is higher than the threshold associated with the image cell containing the

currently processed pixel.

The TH sh_vector module is implemented as in Figure 4.18. It is composed of eight 8-positions

shift registers connected as circular buffers. Each shift register stores eight threshold values as-

sociated with a row of image cells (it is worth to remember that the image is split in 64 cells

organized in 8 rows with 8 cells each, and a threshold value is associated with each cell). The

en signal enables the 1-position right shifting operation, while the Sel signal selects which shift

register must be rotated. These two control signals are driven in order to provide in output the

threshold associated with the image cell of the currently processed pixel. Since the image is re-

ceived in a raster way, and each image cell is composed of 128x128 pixels, en is asserted for a

clock cycle every 128 received corner responses (i.e., whenever we move from a cell to the follow-

ing one). Instead, Sel selects the next shift register (i.e., the next row of image cells) after 128x1024

received corner responses (i.e., whenever a complete row of image cells has been processed). To

avoid loosing the threshold values, during the thresholding phase each shift register composing

the TH sh_vector acts as a circular buffer through the multiplexer driven by the th_phase signal

(see Figure 4.17). Instead, during the thresholds updating phase, the content of the TH sh_vector

88

4.2. SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Partially
Reconfigurable FPGAs for Space Applications

Shifter_7

en

Sel

Shifter_6

Shifter_1

Shifter_0
0 7

Data_in Data_out

sel sel

th_phase

0

1

Figure 4.18: TH and NF shifter vector hardware architecture

is overwritten (exploiting the Data_in port) with new thresholds values computed by the Thresh-

olds & Target Features Updater module.

Simultaneously to the thresholding task, the Features Counter counts (through an accumulator)

the number of extracted features for each image cell (i.e., N F [i , j] in Alg. 2), and stores these val-

ues inside the NF sh_vector. The NF sh_vector is implemented as the TH sh_vector (Figure 4.18),

and both modules share the input control signals. Whenever we move from the current image

cell to the next one, the content of the internal accumulator is stored inside the NF sh_vector, and

it is initialized with the output value provided by the NF sh_vector. At the end of the operations

described by Algorithm 2, a local reset is asserted to clear the content of the NF sh_vector in order

to prepare it for the next image processing cycle. All aforementioned control signals are gener-

ated by the Controller module (Figure 4.17), which also coordinates the operations of all modules

included in the ACTH.

4.2.2.3 Features Matcher

The Features Matcher (Figure 4.19) receives the features extracted by the Adaptive Harris Feature

Extractor and finds the set of features that match in two consecutive images.

This module adopts two different optimization strategies.

The former concerns the matching task, that is performed exploiting un-normalized Cross-

89

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

Figure 4.19: Features Matcher internal architecture

Correlation:

C = ∑
i , j∈patch

| I2(i , j)− I1(i , j) | (4.12)

where patch identifies the window on which the correlation must be calculated (i.e., correlation

window) and Ix identifies the pixel intensity associated with the x image. The less is the value of

C, the more correlated will be the two points.

The un-normalized Cross Correlation is a matching approach less robust to variations of en-

vironmental conditions than the Normalized Cross-Correlation (NCC) one. Although, in this

context the high frame rate leads to negligible differences in the conditions (e.g., brightness or

contrast) of two consecutive images. Thus, the usage of un-normalized Cross Correlation does

not introduce any error in the matching task. In addition, if compared to a NCC approach [257], it

leads to a very simple hardware implementation, providing a significant gain in FPGA resources

utilization and throughput.

The latter concerns the selection of potentially correlated features. Analyzing the speed of

a space-module during the descending phase, and considering the high input frame rate used

to sample images, we identified that a feature can perform a maximum movement of 17 pixels

between two consecutive images [200]. Thus, two features can be considered as potentially cor-

related if they are both in a 35x35 pixel neighborhood between the two considered images. Cross-

Correlation is therefore computed on these features, only, reducing the computational load and

speeding up the matching task.

The Features Matcher receives feature coordinates and associated R-factor from the Adaptive

Harris Feature Extractor, and stores them in the Features Buffer (FB), implemented as a group of

BRAMs.

In this specific implementation, this buffer can store up to 3,500 features, using 14 internal

BRAMs.

Whenever an entire image is processed and all features are stored in FB, the 3x3 Non-Max

90

4.2. SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Partially
Reconfigurable FPGAs for Space Applications

Suppressor performs a preliminary filtering operation. For each feature, it scans a 3x3 pixels

neighborhood looking for close features. If they are found, the feature with the highest R-factor

in this region is marked as valid, while the others are marked as non-valid. To speed up this

operation, that would require a complete search into FB, we observed that, during the whole ex-

perimental campaign, no more than 10 features per image row have been identified. Given this

observation, considering that features are obtained analyzing the image row by row and then

saved into FB, a neighbor feature will be for sure stored in a (+20, -20) region of FB, centered

on the considered feature. This allows us to reduce the neighbor search space and therefore to

dramatically decrease the execution time, without increasing area occupation.

All valid features are stored in the the NMS Buffer, that can store up to 1,000 filtered features

coordinates, using 4 BRAMs.

The NMS Buffer is composed of two sub-buffers (Frame 1 Features buffer and Frame 2 Features

buffer). These two buffers are alternatively used to internally store features associated with two

consecutive images, that must be analyzed and matched. So that no external memory is required

to store these information.

The Correlation Controller scans the Frame 1 Features buffer and the Frame 2 Features buffer

looking for two correlated features. It compares the coordinates associated with a feature con-

tained in one of the two buffers with all the coordinates in the other buffer. Whenever two po-

tentially correlated features are found (i.e., their distance is no more than 17 pixels, as afore-

mentioned), their un-normalized Cross-Correlation is computed using the intensity of all pixels

contained in the two 11x11 pixels windows surrounding the two correlated features. These values

(previously stored by the Gaussian Filter) are loaded from the external memory.

A 11x11 pixels Cross-Correlation window size has been chosen for the hardware implemen-

tation after a test campaign on planetary image sequences, that simulate the descending phase

of a spacecraft. For each pair of consecutive frames, the matched features have been saved in

order to evaluate the number of true and fake matches. Figure 4.20 shows the maximum rate of

fake matches, out of the number of total matches, that was observed between different images,

varying the size of the Cross-Correlation window. Results have been evaluated by mean of an

automatic script, able to detect fake matches between two consecutive images of the well-known

descending test-cases.

As can be seen in Figure 4.20, a window size greater than 11x11 pixels does not provide any

significant improvement on the quality of the matched couples. Furthermore, this implemen-

tation provides more than 9x precision improvement, compared to the current state-of-the-art

[68], which is based on a 7x7 pixels window.

The 11x11 window related to the first feature is loaded into the Patch Register, that is com-

posed of 121 25-bit registers. Then, while the window associated to the feature of the second im-

age is loaded, the cross-correlation is computed "on-the-fly". Each time a new pixel is received

from the external memory, it is subtracted from the corresponding pixel of the first image, that is

91

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

Figure 4.20: Fake matches on test images ranging different Cross-Correlation window size

already stored in the Patch Register. This operation is performed by the Computation module that

contains a 25-bit subtractor connected to an accumulator. This approach makes the area occu-

pation of this module independent from the correlation window dimension, making the designer

free to select the more appropriate correlation window without any area occupation penalty.

Finally, the Cross-Correlation results are thresholded, in order to eliminate fake-matchings.

If the calculated Cross-Correlation value is less than a given threshold, the coordinates of the

correlated features are stored inside the internal Matched Buffer, implemented as a single BRAM.

This buffer is able to store up to 512 matched features pairs. Moreover, since a feature of the

first image can be correlated to several features of the second image, only the match that has the

lowest Cross-Correlation value (i.e., the highest probability to be correlated) is considered valid.

This ensures unique matched pairs, and higher quality of matches.

4.2.2.4 SA-FEMIP timing diagram

During the reconfiguration process, the Reconfiguration Manager in the Reconfigurable Gaussian

Filter must access the external memory to retrieve the RM configuration bitstream. To avoid the

stall of the processing chain, this access must be scheduled when no other module requires in-

formation from the external memory. As shown in the timing diagram of Figure 4.21, the external

memory is accessed by the Reconfigurable Gaussian Filter in write mode to store the computed

filtered pixel values. During this phase the Reconfigurable Gaussian Filter and the Adaptive Har-

ris Feature Extractor work in pipeline, while the noise variance is computed (Image Filtering,

Features Extraction and Noise Estimation activities in Figure 4.21). At the end of the feature ex-

traction, the NMS phase takes place, and, finally, the Feature Matcher performs the matching

phase where it accesses the external memory in read mode to retrieve the data needed to com-

92

4.2. SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Partially
Reconfigurable FPGAs for Space Applications

pute the cross-correlation. It is worth noting that the Image Filtering and the Features Extraction

slots are not perfectly aligned due to the latency in loading the internal pipeline of the Reconfig-

urable Gaussian Filter. Looking at Figure 4.21, the external memory is always idle during the NMS

phase (ti dl e in Figure 4.21). This time slot can be used to reconfigure the filter (R task in Figure

4.21) without stalling the processing chain. This means that no timing overhead is introduced in

the feature extraction and matching task.

Phase

Ext. Memory Status

Image i

NMS Matching Noise Estimation NMS Matching Noise Estimation

Write Read Write Read

Image i+1

Tfiltering tmatching tidle tfiltering tmatching tidle

Image Filtering Image Filtering
Features Extraction

R R

Features Extraction

21.5ms 7.6ms 1.2ms

Figure 4.21: Timing diagram of SA-FEMIP

4.2.2.5 Experimental Results

To estimate the hardware resources and the timing performances, the SA-FEMIP architecture has

been synthesized on a space-qualified Xilinx Virtex 4-QV VLX200 FPGA device that, together with

the Virtex 5-QV VFX130 FPGA, represents the state-of-the-art architecture for space-qualified re-

programmable FPGAs. The reason to select the Virtex 4 architecture instead of the newer Virtex

5 is twofold. First the SA-FEMIP architecture has been designed to be integrated and tested in-

side the Thales Alenia Space Avionic Testbench (ATB), i.e., a hardware infrastructure emulating the

on-board computing platform of a spacecraft. The ATB is equipped with a Gaisler Research GR-

CPCI-XC4V development board [86]. This board integrates a Xilinx Virtex 4 VLX200 FPGA, which

provides the same internal logic architecture of the space-qualified version. Second, implement-

ing SA-FEMIP on a Virtex 4 FPGA allowed us to perform fair comparisons with other published

architectures, thus highlighting the benefits of the introduced improvements.

Table 4.3 compares the proposed adaptive architecture with the non-adaptive architecture

proposed in [54] (FEMIP). Comparison is performed in terms of area overhead by considering

internal logic and memory resources (i.e., registers, Look-Up Tables (LUTs), and Block-RAMs

(BRAMs) [253]). Percentages in Table 4.3 represent the used portion of the hardware resources

available in the Xilinx Virtex 4-QV VLX200 FPGA. It is important to point out that the synthesis

of both FEMIP and SA-FEMIP architectures has been forced to avoid the use of DSPs. The rea-

sons for this choice will be better elaborated later in this section. Power consumption is analyzed

considering an operating frequency of 60 MHz for both architectures.

93

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

Table 4.3: Resources usage and power consumption of FEMIP and SA-FEMIP, implemented on a
Xilinx XQR4VLX200 Virtex 4 FPGA device

Module
FPGA Area Occupation Max.Freq. Power

Registers LUTs BRAMs [MHz] [W]

FEMIP[54]

GF 696 (0.30%) 5,896 (3.31%) 7 (2.08%) 118.36 0.064

HFE 1,106 (0.62%) 11,081 (6.22%) 6 (1.79%) 62.55 0.407

FM 2,432 (1.36%) 656 (0.37%) 19 (5.65%) 101.30 0.037

Total 4,234 (2.38%) 17,633 (9.89%) 32 (9.52%) 62.55 2.002

Proposed

RF 939 (0.53%) 7,448 (4.18%) 10 (2.98%) 118.36 0.083

AHFE 1,362 (0.76%) 12,468 (7.00%) 6 (1.79%) 62.55 0.462

FM 2,432 (1.36%) 656 (0.37%) 19 (5.65%) 101.30 0.037

Total 4,733 (2.66%) 20,576 (11.55%) 35 (10.42%) 62.55 2.097

Overhead Total 499 (0.28%) 2,943 (1.66%) 3 (0.90%) 0 0.095

Table 4.3 shows that SA-FEMIP FPGA occupation is around 10% for logic and memory re-

sources, and the overhead w.r.t. FEMIP is less than 2%. This overhead is due to the additional

modules required to perform adaptation in the Reconfigurable Gaussian Filter (RF) and the ad-

ditional hardware required to implement the Adaptive Harris Features Extractor (AHFE). In par-

ticular, in the RF, the increased occupation is due to the NVE and the Reconfiguration Manager

modules. Instead, in the AHFE, the area overhead is introduced by the usage of a more complex

thresholding approach, with respect to the simple one adopted in FEMIP. It is worth to highlight

here that an effort has been placed to limit the registers overhead. The AHFE architecture strongly

relies on shift registers structures to implement the required vectors and matrices included in Alg.

2. This kind of component can be efficiently implemented in Xilinx FPGAs, exploiting the Xilinx

SRL capability of the Look-Up Tables (LUTs) [253].

The maximum operating frequencies of each module reported in Table 4.3 demonstrate that

no timing penalty is introduced in SA-FEMIP by the introduction of the adaptivity features.

The power consumption of each module reported in Table 4.3 does not take into account

the contribution of the clock circuitry and the leakage. These contributions are included in the

overall power consumption. By comparing the power consumption of SA-FEMIP with the one of

FEMIP a very limited overhead equal to 4.75% is observed. It is worth noting that the power con-

sumption of the RF module does not include the power used during the partial reconfiguration

process. However, according to [25] the reconfiguration process consumes few tens of mW, only.

Eventually, the throughput, in terms of frames-per-second (fps), is the same (i.e., 33 fps) for

both FEMIP and SA-FEMIP.

In Table 4.4, the performances and the area occupation of SA-FEMIP have been compared

with FEIC [68] [69]. FEIC is a Feature Extraction and matching Integrated Circuit, based on the

Harris algorithm, that University of Dundee developed for the European Space Agency (ESA) in

the framework of the Navigation for Planetary Approach and Landing (NPAL) project. LUTs and

BRAMs used by FEIC are reported for a Virtex II device (as in [69]), but the internal logic and

94

4.2. SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Partially
Reconfigurable FPGAs for Space Applications

memory architecture is the same as in Virtex 4 family devices. The reported data confirm the great

improvements of the proposed architecture, both in terms of resources usage and throughput.

Table 4.4: Resource usage and throughput of FEIC and SA-FEMIP for a Xilinx XQR4VLX200 Virtex
4 FPGA device

Resource Usage Max. Speed

LUTs BRAMs [KB] [fps]

Proposed 20,576 78.75 33

FEIC [69] 50,688 162.5 20

Improvements -59.4% -51.5% +65%

The low area occupation of SA-FEMIP allow designers to exploit the free hardware resources

to apply fault mitigation strategies to increase the reliability of the design, a key requirement

in space applications. Several fault-mitigation strategy against Single Event Upset (SEU) can be

applied on FPGA devices. Following [205], these techniques can be classified as (1) netlist level

techniques or (2) register transfer level techniques.

Netlist level techniques include different types of Triple Modular Redundancy (TMR) tech-

niques [205]. Triplication can be limited to the sequential elements of the circuit (i.e., Sequential

logic TMR) introducing for each register of the design two additional registers and a 3-input voter.

Otherwise, the full design can be triplicated (i.e., Global TMR) introducing a hardware overhead

equal to the 200% of the original design.

Register transfer level techniques aim at protecting the Finite State Machines (FSMs) of the

design (e.g., Safe FSM Coding, and 3-Hamming distance enhancement in FSMs). Usually, the

overhead introduced by these techniques is one order of magnitude lower than the one associ-

ated with the TMR techniques.

In general, the total hardware overhead, even if a combination of the aforementioned tech-

niques is exploited, can vary from 60% up to 200% of the original design [205]. It is clear that,

given the low amount of resources required by SA-FEMIP, fault tolerance techniques can be freely

implemented within the selected device. Moreover, even after the implementation of fault toler-

ance techniques, space is also available to integrate in the same device additional FPGA-based

IP-cores useful to accelerate other computational intensive tasks performed during the descend-

ing phase (e.g., Hazard map computation [210]). This is very important considering the limited

resources available in space applications.

As mentioned at the beginning of this section SA-FEMIP has been synthesized avoiding the

use of DSPs. This decision can now be better motivated. DSPs have the advantage of further re-

ducing the area occupation of FEMIP especially when multipliers are implemented. With the use

of DSPs the SA-FEMIP occupation would be reduced to 9,029 (5.06%) LUTs, 66 (68.75%) DSPs,

while the occupation of registers and BRAMs remains the same. Nevertheless, DSPs are limited

95

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

resources. With 66 DSPs required out of the 96 available in the Virtex 4 VLX200 FPGA, TMR tech-

niques for this portion of the design would not be possible. Moreover, the intensive use of DSPs

increase the routing complexity.

SA-FEMIP has not been compared to [31], since [31] implements the multi-scale Harris de-

tector (i.e., a rotation-invariant version of the Harris detector). [31] consumes a lot of hardware

resources, and implements a feature that is not actually required in EDL applications since rota-

tions between two consecutive images are limited [70].

The proposed architecture has been evaluated in terms of accuracy and robustness, exploit-

ing an image dataset, provided by Thales Alenia Space Italia s.p.a. company, that covers different

landing zones (i.e., portions of the Mars surface), environmental conditions (i.e., image quality),

and camera movement types, in a synthesized Mars environment. Camera movement types in-

clude displacements, up to 30 meters, at different altitudes (from 1,000 meters to 5,000 meters),

and angular speed (up to 2.5 ◦/s, in accordance to [70]), while image quality types include the

injection of different levels of Gaussian noise, blur, brightness and contrast variations.

According to [70], the robustness has been evaluated exploiting two parameters: (i) Number

of Extracted Matches (NEM), that identifies the number of matching points, and (ii) Spatial Dis-

tribution of Points (SDP), that measures how much the extracted matching points are uniformly

spread in the image, defined as:

SDP =

N∑
i=1

−pi log pi

log N
(4.13)

where pi is computed as the number of matching points within an image cell (see Section 4.2.2.2)

over the total number of extracted matching points in the frame, and N is the number of image

cells (i.e., 64).

Figure 4.22 shows the SDP results obtained from FEMIP [54] and SA-FEMIP by providing

in input the images composing the aforementioned dataset. Thanks to the adaptive cell-based

thresholding approach, the proposed architecture outperforms FEMIP results in every test case

(i.e., Test Index). In particular, the improvements are very high (from Test Index 0 to 76) when

the input images represent a landing zone characterized by few small rugged regions. This is

visually highlighted in Figure 4.23 that depicts the matching points extracted by FEMIP (Figure

4.23(a)) and SA-FEMIP (Figure 4.23(b)). Each figure shows two consecutive input images with

lines connecting the features that match in the two images.

Figure 4.24 shows the NEM versus different levels of injected Gaussian noise variance σ2
f

(since FEMIP has a fixed σ2
f = 2, its NEM is represented by the dashed line).

A fixed σ2
f does not allow to reach the highest NEM for every noise level. Thus, exploiting

the reconfigurable filter architecture it is possible to highly increase the number of extracted

matches, as shown by the Optimal line in Figure 4.24. In order to follow the trend of this line,

96

4.2. SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Partially
Reconfigurable FPGAs for Space Applications

Figure 4.22: SDP results for FEMIP and the proposed architecture

in the proposed architecture 5 configurations for the RF module have been chosen. In particular,

these configurations are associated to σ2
f equal to 0.5, 0.75, 1, 1.5 and 2, for the noise level ranges

[0,100], [100,200], [200,300], [300,600], [600,1600], respectively. As can be seen in Figure 4.24, the

usage of a reconfigurable filter increases the NEM value w.r.t. FEMIP up to 2 times, especially for

a σ2
n lower than 600.

Moreover, as described in Section 4.2.2.1, the usage of the DPR enables to save resources with

respect to use a static hardware architecture including 49 multipliers, each one with a multiplexer

to select the right Gaussian kernel value. In the proposed architecture, using the same fixed-

point data representation adopted in [54], the RM and the Reconfiguration Controller (Figure

4.12) require 5,320 LUTs and few registers. Instead, a static hardware architecture (as the one

reported in [56]), with the same data parallelism, would require about 19,000 LUTs, leading to a

save of 72% of hardware resources.

Since each bitstream for the RM module is 166 KB (for the selected FPGA device), to store

the 5 configurations 830 KB are required in the external memory. Since the throughput of the

Reconfiguration Controller is 400 MB/s (i.e., this value is limited by the maximum throughput of

the ICAP [238]), the time required to reconfigure the RM is equal to 0.42 ms. This time fits the

idle time of the external memory (i.e., ti dle in Figure 4.21) that is equal to 1.2 ms (i.e., the time

required by the Matcher to perform the NMS phase). For the sake of completeness, considering

an operating frequency of SA-FEMIP chain equal to 60 MHz, the time required to perform the

filtering and the matching tasks (i.e., t f i l ter i ng and tmatchi ng in Figure 4.21) is 21.5 ms and 7.6

ms, respectively.

Eventually, Figure 4.25 shows the percentages of Correct Matches (CM) for the different fil-

ter configurations and injected noise levels. CM has been computed exploiting the knowledge

about the camera movement between two consecutive images of the dataset. Starting from the

97

4. BUILDING ROBUST HARDWARE ACCELERATORS AND SYSTEMS FOR REAL-TIME EMBEDDED

IMAGE PROCESSING ON RECONFIGURABLE FPGAS

(a) FEMIP

(b) Proposed architecture

Figure 4.23: Example of extracted matches

98

4.2. SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Partially
Reconfigurable FPGAs for Space Applications

Figure 4.24: NEM results for different levels of injected Gaussian noise, varying the Gaussian Filter
variance

Figure 4.25: Correct Matches (CM) results for different levels of injected Gaussian noise, varying
the Gaussian Filter variance

position of a matching point in the first image, it is possible to compute its expected position in

the second image by using a three dimensional roto-traslation model. For each couple of images

in the dataset this process has been automated through a MATLAB script. Then, the CM values

have been computed by comparing the outputs of the script with the ones of the proposed archi-

tecture.

It is worth noting that, the CM values are not computed for every σ2
f since, as shown in Figure

4.24, with a filter characterized by a low variance it is not possible to extract matching points for

very high noise levels.

As can be seen in Figure 4.25, the accuracy of the different filter configurations is higher than 85%

for every noise level, and it is almost equal for a fixed noise level. These data demonstrate that

the proposed filter is able to maximize the NEM, while preserving the correctness of its outputs.

99

C
H

A
P

T
E

R

5
ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL

RECONFIGURATION

In literature, DPR has been adopted in heterogeneous contexts, opening new scenarios on

hardware/software co-design. It represents a promising solution to increase the overall

SoC fault-tolerance [193] [55] [57], to enable on-demand hardware acceleration [180] [15]

or, as also demonstrated in Chapter 4, to build self-adaptive systems [60]. Nevertheless, as dis-

cussed in Section 3.4, DPR comes at a cost of dependability issues related to the dynamic recon-

figuration process itself.

This chapter discusses the proposed solutions for enhancing dynamic reconfiguration pro-

cess dependability. In particular, it briefly recaps the issues related to run-time dynamic recon-

figuration and the effect of mis-reconfigurations. Then, it presents two alternative ways to safely

enhance reconfiguration process dependability. The former is essentially based on a set of rules

to be applied at design-time, while the latter relies on the usage of a configurable hardware self-

reconfiguration manager that must be instantiated within the target system. Both approaches

can be employed to safely enable self-adaptivity mechanisms in the designed systems without

decreasing the dependability levels required by the target applications.

5.1 Dependability issues in DPR

As mentioned in Section 3.4, Xilinx’s EDA tools generate a separate configuration file (called par-

tial bitstream or partial bit-file) for each module to be mapped into a specific reconfigurable

region. The partial reconfiguration process can be then activated at run-time by loading a par-

tial bitstream inside the FPGA through a dedicated configuration port, that can be either exter-

nal (e.g., SelectMAP or internal (i.e., ICAP) [238]. ICAP is usually preferred when building self-

adaptive systems because it does not require external hardware controllers in charge of managing

101

5. ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL RECONFIGURATION

configuration. However, if the design does not include a soft/hard-core microprocessor embed-

ded in the FPGA, such as the Microblaze [223] or PowerPC [224], a user-designed reconfigura-

tion manager, placed in the static portion of the design, is required to load the partial bitstream

through the internal configuration port.

As mentioned in Section 3.4, in general, the routing resources inside a reconfigurable area can

be also exploited for the intercommunication among static modules. In the DPR user guide [231],

Xilinx reports that, when a partial reconfiguration design is placed and routed, “the static routes

can route through reconfigurable areas”. Instead, “routes within reconfigurable modules cannot

route outside the boundaries of the user-defined reconfigurable partition”.

Let us suppose that the partial bitstream is stored in an off-chip memory (RAM or Flash), in

addition to the hypothesis of fault-free internal logic. If a corrupted bitstream is loaded into the

FPGA, errors can be localized in the header section or the data section of the bitstream. If the

header is corrupted, the static portion of the design could be damaged, thus requiring an overall

FPGA reconfiguration. The time overhead caused by the full reconfiguration may be unaccept-

able in time-critical applications such as hard real-time scenarios. The full reprogramming may

also impact high-dependable applications due to the disruptive consequences on the static por-

tion of the design.

On the contrary, if errors are localized in the data part of the bitstream, a faulty reconfigured

module will be instantiated. To restore a correct FPGA configuration, a DPR in the same recon-

figurable area is sufficient. However, if links between static modules are routed through the re-

configurable area, a global reset of the FPGA could be required. For instance, if interconnections

between the Reconfiguration Manager (RM) and the Memory Controller (MC) cross the reconfig-

urable area, a faulty DPR could damage these links, isolating the RM. The RM would therefore be

unable to communicate with MC to read the partial bitstreams, therefore preventing any repair

mechanism.

5.2 Dependable DPR with minimal area and time overheads

This section discusses a methodology aimed at providing a dependable DPR flow, minimizing

both area occupation and reconfiguration time. Exploiting data provided by Xilinx manuals, a

tool has been developed to isolate and protect the most critical sections of a partial bitstream.

In addition, design rules are also provided in order to protect the most critical modules in the

static portion of the FPGA. A System-on-Chip (SoC) use case will be analyzed to demonstrate the

feasibility and effectiveness of such methodologies on complex designs.

The problem of dependable partial reconfiguration has been addressed by Xilinx in the Par-

tial Reconfiguration User Guide [231], where a partial bitstream Cyclic Redundancy Code (CRC)

checking is suggested.

102

5.2. Dependable DPR with minimal area and time overheads

The main idea is to split the original partial bit file into blocks, and for each block to calculate

a single word CRC signature. Finally, the partial bit file is reassembled, combining the blocks and

their corresponding CRC signatures (Figure 5.1).

Figure 5.1: Bitstream generation [229].

At reconfiguration time, whenever a new block is loaded from the external memory, the CRC

signature is recalculated by a dedicated hardware component, and the block is stored into a

BRAM inside the FPGA.

When the whole block has been transferred from the external memory, the reconfiguration

manager compares the received CRC signature with the calculated one (Fig. 5.2).

Figure 5.2: Bitstream Loading process [229].

If the CRC comparison is successful, the block can be sent to the ICAP and the related portion

of the frame reconfigured. Otherwise, the reconfiguration manager must reload the block from

the external memory.

This implementation requires a CRC evaluator, a Finite State Machine (FSM) for the control

of the reconfiguration process (i.e., a Reconfiguration Manager) and a set of embedded memories

to buffer the data.

Depending on the available FPGA resources, the designer need to choose the best block size,

that impacts on both reconfiguration time and internal memory occupation.

On the one hand, when increasing the number N of blocks (i.e., when decreasing the number

of words per block), a higher number of CRC signatures must be stored, leading to an increase

103

5. ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL RECONFIGURATION

of bitstream size. At the same time, the memory occupation becomes smaller, since the required

buffering capability equals the block dimension.

On the other hand, when decreasing the number of blocks, fewer CRC signatures must be

stored in the bitstream, thus decreasing the total amount of words in the external memory. How-

ever, during the CRC checking process, more words must be stored in the memory embedded in

the FPGA, thus increasing the area occupation.

The total reconfiguration time is due to two contributions:

TX−C RC = Tr ead +Tbl ock (5.1)

where:

• Tr ead is the time required to load the bit file from the external memory:

Tr ead = K +N

min(f IC AP , fMem)
(5.2)

where K is the bitstream dimension in terms of 32 bit words; N is the number of CRC sig-

natures in terms of 32 bit words; f IC AP is the working frequency of the ICAP; fMem is the

memory working frequency.

• Tblock is the time spent loading the buffered block from BRAM to the ICAP:

Tbl ock = K /N

f IC AP
(5.3)

where K /N is the block dimension in terms of 32 bit words.

Using this model, it is possible to evaluate how the reconfiguration time is influenced by the block

dimension. Fig. 5.3 plots the reconfiguration time as a function of the block dimension K /N . This

evaluation has been performed with different bitstream file dimensions (# frames involved in the

reconfiguration).

Fig. 5.3 shows the reconfiguration time considering a 100 MHz working frequency for both

ICAP and external memory. Note that, with a block dimension of a single word (N=K), one CRC

signature for every word is required. In this case, Tr ead becomes the most relevant term, but no

memory is required for buffering.

The same time overhead occurs when a block is as long as the bitstream (N=1). While there

is just one CRC signature, the whole bistream must be buffered before being sent to the ICAP,

resulting in high embedded memory occupation. This significantly increases Tbl ock .

5.2.1 Proposed Methodology and Design Rules

Despite the discussed solution is fairly comprehensive, it may implies significant time and area

overheads. In the sequel an alternative methodology will be presented and analyzed. The pro-

104

5.2. Dependable DPR with minimal area and time overheads

0 2000 4000 6000 8000 10000

20

40

60

80

100

120

140

160

180

200

BLOCK DIMENSION (K/N) [WORDS]

T
X

−
C

R
C

 [u
s]

1 Frame
3 Frames
5 Frames
7 Frames

Figure 5.3: Reconfiguration time of Xilinx solution

posed methodology tries to reduce these overheads by protecting just the critical part of the par-

tial bitstream. Some ad-hoc design rules are also introduced.

5.2.1.1 Partial bitstream file splitting

As mentioned and explained in Sec. 3.4.1, the partial bit-file is composed of three main parts. The

first part contains frame addressing and control information. The second includes the data for

the reconfiguration in the selected frames. The last part includes the built-in ICAP CRC check-

sum.

It is straightforward that, in terms of dependability, the most critical part is the first one, since

it defines the portion of the FPGA to reconfigure. In fact, if an error occurs in an address or control

information, a static portion of the FPGA could be unintentionally reconfigured and the system

could become inoperative.

The proposed approach deeply protects, with CRC signatures, this portion of the partial bit-

stream that contains the most critical words, letting the rest unprotected (see Figure 5.4).

At reconfiguration time, whenever a critical word is read from the external memory, it is fol-

105

5. ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL RECONFIGURATION

Figure 5.4: Bitstream generation with the proposed solution.

lowed by the relative CRC signature. The critical word will be temporarily stored and the relative

CRC signature is calculated on-the-fly. The next word read out from external memory will be the

software-calculated CRC: it will be compared with the hardware computed and, if they are equal,

the critical word will be sent to the ICAP. The non-critical words are loaded from the external

memory and directly sent to the ICAP, without any time overhead or buffering (see Figure 5.5).

Figure 5.5: Bitstream loading process with the proposed solution.

Analyzing more in detail the proposed solution, it requires, on the software side, a script that

is able to split the bitstream depending on the semantic and to generate CRC signatures for criti-

cal words. In hardware a CRC calculator and a FSM for the control of the reconfiguration process

have to be implemented, while no FPGA embedded memory block is required.

The reconfiguration time with the proposed CRC checking is

TOU R−C RC = K +C

min(f IC AP , fMem)
(5.4)

where K is the bitstream dimension in terms of 32 bit words; C is the number of critical words;

f IC AP is the working frequency of the ICAP; fMem is the memory working frequency.

Fig. 5.6 plots the ratio TX−C RC /TOU R−C RC , which proved to be always >1.

106

5.2. Dependable DPR with minimal area and time overheads

0 2000 4000 6000 8000 10000
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

BLOCK DIMENSION (K/N) [WORDS]

T
X

−
C

R
C

 /
T O

U
R

−
C

R
C

1 Frame
3 Frames
5 Frames
7 Frames

Figure 5.6: Comparison between proposed solution and Xilinx solution

Despite the proved time and area occupation advantages of the proposed solution, to assure

a high dependability of the reconfiguration process, we have to guarantee that an error in the

non-checked part of the bitstream file will not lead to a fault in the system. The jeopardy is that

some static connections are routed in the reconfigurable area, and, due to a faulty reconfigura-

tion process, the link between two points could be broken. This goal is achieved by fulfilling the

following rules:

1. potential critical links must not cross any reconfigurable area

2. connection inside critical modules must not cross (i.e., be routed through) reconfigurable

areas.

5.2.1.2 Critical links protection

To ensure a dependable reconfiguration process, critical connections must be protected. These

include:

• External-Memory to Memory Controller links;

107

5. ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL RECONFIGURATION

• Memory Controller to Reconfiguration Manager links;

• Reconfiguration Manager to ICAP links.

In order to guarantee that these links do not cross the reconfigurable area, after the automatic

routing performed by the synthesis tool, the layout must be checked and some links manually

re-routed, if required.

5.2.1.3 Critical modules protection

The second rule imposes that all critical modules must be protected. In systems which use partial

reconfiguration, since bitstreams are loaded from the external memory, all modules involved in

the communication between the external memory and the ICAP must be considered critical (see

Fig. 5.7). In addition, also design specific modules could be considered critical. Their integrity

can be preserved by constraining critical modules in predefined physical region called partitions.

Electronic Design Automation (EDA) tools enables the user to manually place a module in a spe-

cific area, guaranteeing that all the specified hardware and the related connections are inside the

physical regions.

Figure 5.7: Critical connections and cores

5.2.2 Experimental results

This section reports a set of experiments performed to validate the proposed methodology and

to compare its performance with the reference solution (Figures 5.1 and 5.2).

The experimental setup includes a Leon3 processor-based SoC [45, 83], implemented on a Xil-

inx ML403 demo board, equipped with a Xilinx Virtex 4 FPGA device and 64 MB of DDR SDRAM

[218]. The SoC design includes a reconfigurable area and an ad-hoc reconfiguration manager

connected to the AMBA bus and an internal timer able to measure the partial reconfiguration

time. The reconfiguration manager is able to:

108

5.2. Dependable DPR with minimal area and time overheads

• address the external memory, loading bitstream files without any CPU intervention (Direct-

Memory-Access);

• perform DPR through ICAP;

• perform the CRC check;

• automatically manage the whole reconfiguration process, even in presence of errors.

The Leon3 processor works at 66 MHz, the ICAP controller and, the DDR SDRAM at 100 MHz.

5.2.2.1 Reference solution implementation

The reference solution has been implemented employing a parallel CRC-32 computation module

to minimize the CRC latency. The selected polynomial is 0x90022004 which guarantees Hamming

distance equal to 6 [113].

For each considered reconfigurable module a partial bit-file of 1,969 32-bit words has been

generated.

We evaluated the reconfiguration time and the required area considering the following block

sizes: 4, 16, 32, 44, 64, 128, 256, 512 32-bit words. Fig. 5.8 shows the relation between the recon-

figuration time and the block size. The solid line plots the reconfiguration time calculated using

Equation 5.1 while the dots report the measured reconfiguration time for the 8 considered block

sizes. The graph confirms that the considered mathematical model provides a good estimate of

the configuration time and can be used to identify the best block size for a given design.

5.2.2.2 Proposed approach implementation

Differently from the previous solution, the proposed approach is designed to protect 16-bit crit-

ical words. A smaller CRC can therefore be adopted. We implemented a parallel CRC-16 with

polynomial equal to 0x968B which guarantees Hamming distance equal to 7 [115].

The presented design rules have been applied to the proposed design. Partitions have been

created using Xilinx EDA tools to protect the SoC critical modules (i.e., Reconfiguration Manager

(RM) and Memory Controller (MC)). To ensure that the processor keeps running also after a faulty

reconfiguration, the Leon3 has been constrained in a specific region, also (see Figure 5.9). This

introduces a minimal degradation (1.2%) in the maximum working frequency.

Finally, all critical connections have been checked, in order to assure that they do not cross

the reconfigurable area, and only 2 links were manually re-routed.

5.2.2.3 Comparison

Table 5.1 compares the two analyzed solutions, in terms of area occupation and fault free re-

configuration time. The assets of the proposed solution are no BRAM occupation and a shorter

109

5. ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL RECONFIGURATION

0 100 200 300 400 500 600
60

62

64

66

68

70

72

74

76

78

80

BLOCK DIMENSION (K/N) [WORDS]

T
X

−
C

R
C

Calculated
Measured

Figure 5.8: Reconfiguration time with 2 Frames

Table 5.1: Area occupation and reconfiguration time of different implementations

Solution
Block Size CRC BRAM RM Reconfig. Time

[bit] [#] [#] [# slices] [us]
w/o CRC 0 0 0 197 (3.60%) 61.04

Proposed Approach 1x16 42 0 295 (5.39%) 61.78
Ref. Solution 64 x 32 31 1 290 (5.30%) 63.72
Ref. Solution 1 x 32 1,969 0 290 (5.30%) 77.88
Ref. Solution 1,969 x 32 1 8 290 (5.30%) 73.49

reconfiguration time compared to the Xilinx solution, with a very small overhead in the configu-

ration manager (increase of 1.7% of slices) due to a more complex FSM.For sake of completeness,

Table 5.1 also provides information about the worst and best cases for the reference solution, and

a CRC free DPR system.

So far the performance comparison has considered the fault free DPR time, only. The rest of

this section will compare DPR performance in case of faults in the bitstream, which have been

injected in the words of the data portion, only. This condition is conservative, since it represents

110

5.2. Dependable DPR with minimal area and time overheads

Figure 5.9: Xilinx PlanAhead tool device view

the worst-case condition for the proposed solution. In fact, when applying the reference solution,

if a faulty block is loaded, the error is detected as soon as the CRC of the block is checked. The

block can be immediately reloaded, thus introducing a time overhead equal to the block loading

time. In the proposed solution, if an error occurs in a critical word, it is immediately detected

111

5. ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL RECONFIGURATION

enabling the system to reload the corrupted word. On the other hand, if the error occurs in the

data portion, it will be detected only at the end of the reconfiguration process, during the ICAP

CRC check. In this case the full DPR process must be restarted since the reconfigurable area has

been corrupted, thus introducing a higher overall reconfiguration time overhead.

The time overhead introduced by errors in the loaded blocks for the two considered solutions

is therefore influenced by the DPR rate, and by the word error probability observed when loading

bitstream blocks. Figure 5.10 and Figure 5.11 analyze the difference in system activity time spent

for DPR in the two solutions over a one day observation period for different DPR rates and word

error probabilities.

Figure 5.10 analyzes the case of a partial bit file composed of 1,969 32-bit words.

Figure 5.10: Difference of DPRs time in 1 day - Bitstream size equal to 1,969 32-bit words.

Figure 5.11 performs a similar analysis, but considering a larger reconfigurable area com-

posed of 8 frames, i.e., a partial bit file of 11,040 32-bit words.

In last case, when the word error probability increases over 10−6, the reference solution should

be preferred. This is due to the additional reconfiguration process required in the proposed so-

112

5.3. A portable open-source controller for safe Dynamic Partial Reconfiguration

Figure 5.11: Difference of DPRs time in 1 day - Bitstream size equal to 11,040 32-bit words.

lution whenever configuration data words are corrupted.

5.3 A portable open-source controller for safe Dynamic Partial

Reconfiguration

Although DPR can be used to increase reliability figures of a system, its adoption in applications

demanding high reliability is actually very limited for two main reasons. The first one concerns

the additional complexity introduced during the system design phase. In fact, to efficiently en-

able and manage run-time DPR, designers are often required to develop ad-hoc external or em-

bedded hardware controllers. The latter, instead, is related to the dependability of the reconfigu-

ration process itself (see Sections 3.5.1 and 5.1). DPR exposes the system to errors affecting both

the hardware controller and the bitstreams that are used to overwrite portions of the FPGA con-

figuration memory content at run-time. These errors are very critical since a mis-reconfiguration

can lead, in the worst case, to a permanent disruption of the entire system functionality. Recover-

ing from such errors could require a full device reconfiguration and/or reset of system operations.

113

5. ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL RECONFIGURATION

To tackle the aforementioned issues this section presents a portable open-source embedded

controller for safe dynamic and partial reconfiguration of systems implemented on Xilinx FPGAs.

The main novelties with respect to the state-of-the-art solutions mainly concern its high con-

figurability and the possibility to introduce embedded error detection and correction circuitry,

which monitors for bitstreams data errors during reconfigurations. Schemes for increasing the

reliability of the proposed controller with respect to errors affecting the FPGA device are also dis-

cussed. Its flexibility allows designers (i) to instantiate the controller as a peripheral in processor-

based systems or in conjunction with custom FSMs, and (ii) to tune its hardware and reconfigu-

ration timing overheads based on the requirements of the target application.

It is worth to mention that the HDL source code has been made available through the open

source Cobham Gaisler GRLIB GPL IP-cores library [45].

5.3.1 Related Works

Xilinx provides several IP-cores for enabling DPR and interfacing user designs with the ICAP.

XPS HWICAP [227] and AXI HWICAP [235] represent two DPR controllers equipped with PLB and

AXI4-Lite slave bus interfaces, respectively. Their main limitations concern the restricted applica-

bility to processor-based systems and the inefficiency of data transfers due to the slave interface,

that leads to reconfiguration throughputs far below the ICAP theoretical limit (i.e., 3.2Gbps). A

slightly more flexible solution is represented by the PRC/EPRC controller [232], which provides a

FIFO user interface that allows its usage with custom user logic. However, its source code is not

provided and netlists are available only for Virtex-5 and Virtex-6 devices.

Several works have been proposed in literature to overcome the limitations of the IP-cores

provided by Xilinx. They mainly focus on maximizing reconfiguration throughput by design-

ing DPR controllers that best fit the target system and use model [43, 48, 95, 131, 168]. Recent

examples can be found in [212] and [74]. In [212], authors improve AXI HWICAP by adding an

AXI4 DMA interface to reconfigure a Zynq device. Their solution reaches a throughput of 382

MBytes/sec. In [74], an hardware manager with FAT16 file system support is proposed, reaching

398.6 MBytes/sec while imposing a bitstream size limit.

In some cases, the approaches proposed in literature rely on ICAP overclocking in order to

accelerate the reconfiguration throughput beyond the Xilinx specifications [26, 98, 103, 171]. Al-

though these methods provide a dramatically improved reconfiguration speed, they are not suit-

able when targeting a safe DPR, since process, voltage, or temperature variations may lead to

malfunctions if ICAP specifications are not fulfilled [103].

Recently, generic DPR controllers have been proposed in [211] and [199]. In particular, in

[211] authors present a reconfiguration manager, implemented on a Virtex-6 device, which ap-

proaches the maximum reconfiguration throughput when the bitstream is read from a DDR3

memory, while [199] proposes a controller that achieves roughly 253 MB/sec when directly inter-

114

5.3. A portable open-source controller for safe Dynamic Partial Reconfiguration

faced to an external SD Flash memory.

None of the aforementioned solutions takes into account DPR dependability issues. Few

works can be found in literature targeting the development of reliable DPR controllers aimed at

increasing overall reconfiguration process reliability. On one hand [101] proposes a reliable ICAP

controller targeting only FPGA configuration memory scrubbing while, on the other hand, in [72]

and [71] authors propose and discuss several alternatives for increasing reliability of embedded

DPR controllers (e.g., by applying Triple or Dual Modular Redundancy). Although the proposed

solutions provide DPR controllers that are robust w.r.t. faults affecting the FPGA device, they do

not tackle bitstream integrity issues.

The proposed portable and open-source controller, instead, tries to provide a comprehensive

solution for enabling safe dynamic and partial reconfiguration. The flexibility of the proposed

controller allows designers to adopt it in applications requiring, as example, reconfigurable mod-

ule relocation [67] or blind FPGA configuration memory scrubbing [102].

5.3.2 Proposed architecture

The proposed DPR controller has been designed in order to provide portability and configurabil-

ity on different FPGA families. In particular, it can be configured at design-time through VHDL

generics that allow to select the target device and define the operation performed by the con-

troller at run-time. Depending on the target system and application requirements it can be con-

figured to operate in four different modes:

• Synchronous DPR;

• Asynchronous DPR;

• Dependable DPR with Cyclic Redundancy Check (D2PR-CRC);

• Dependable DPR with Error Detection and Correction (D2PR-EDAC);

The following subsections detail the architectures of the proposed controller for each operating

mode, discussing when a particular configuration should be preferred to implement a safe DPR.

5.3.2.1 Synchronous/Asynchronous DPR

Figure 5.12 shows the architecture of the proposed controller in its basic configuration, i.e., Syn-

chronous mode.

It mainly consists of a FSM that drives and monitor the ICAP, supported by a Direct Memory

Access (DMA) engine and a control and status registers block. All modules, including the ICAP,

operate synchronously with respect to the input system clock.

The control and status registers block includes several registers that can be read and written

to setup, trigger, and monitor the reconfiguration process at run-time. The DMA is in charge of

115

5. ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL RECONFIGURATION

Figure 5.12: DPR controller architecture for Synchronous DPR mode.

retrieving 32-bit bitstream data words from an embedded or external memory, starting from the

address specified by the user through a 32-bit register in the Control and Status registers block.

Obviously, depending on the actual system implementation, a custom wrapper may be needed to

adapt the interface of the DMA engine to the user requirements (e.g., to connect the controller to

a bus infrastructure or directly to a memory controller. An interrupt signal is asserted whenever

an error is encountered or to report the end of the reconfiguration process.

An additional functionality is provided by the 32-bit RM Reset output signal. At run-time,

whenever a reconfigurable module is replaced, the logic inside that module must be reset before

being activated with the new reconfigured functionality [250]. Each bit of the RM Reset signal acts

as synchronous reset for each reconfigurable module in the design. It is automatically asserted by

the DPR controller at the end of the reconfiguration process in order to initialize only the actually

reconfigured logic. This functionality can be enabled or disabled through a 32-bit register for up

to 32 different reconfigurable regions of the FPGA.

If the system clock frequency is greater than the one sustainable by the ICAP (i.e., 100Mhz),

the proposed controller can be configured in Asynchronous DPR mode. As shown in Figure 5.13,

the Synchronous architecture (see Fig. 5.12) is extended by adding two control units, a FIFO

buffer, and clock generation circuitry.

The FIFO buffer is implemented using one or more FPGA embedded Block-RAMs configured

in 512x36 or 1024x36 bit mode depending on the target device [244], and its depth can be con-

figured through VHDL generics. This buffer is used to transfer data across two different clock

domains, i.e., System clock and ICAP clock. ICAP clock is generated exploiting a clock manager

hard macro [244] sourced by the System clock. The FSM READ module is in charge of managing

the bitstream data retrieval through the DMA. Contrary to the Synchronous mode, data are writ-

ten into the FIFO buffer and not directly into the ICAP. As soon as data are available in the buffer,

the FSM WRITE controller reads-out and deliver them to the ICAP.

116

5.3. A portable open-source controller for safe Dynamic Partial Reconfiguration

Figure 5.13: DPR controller architecture for Asynchronous DPR mode.

The registers block, interrupt and DMA engine make the proposed architecture suitable to

be employed in systems with custom user interfaces and also in processor-based bus infrastruc-

tures, allowing the processor to control and manage the reconfiguration process through soft-

ware drivers. In this last case, the advantage deriving from the adoption of DMA and interrupt is

twofold: on one hand it frees the processor from directly managing the data transfer and repeat-

edly polling the status of the reconfiguration, while, on the other hand it accelerates bitstream

data retrieval operations [131].

The maximum reconfiguration throughput in both operating modes can be estimated by the

following equation:

M ax_T P = BS

max{Ts y s ,TIC AP } · BS
32

≤ 400MB y tes/s (5.5)

where BS represents the bitstream size in bits, while Ts y s and TIC AP are the system and ICAP

clock periods, respectively. In Equation 5.5, the denominator represents the time required to

write BS bits of data to the 32-bit interface of the ICAP.

Practically, the reconfiguration throughput depends on the actual system implementation.

When retrieving bitstream data, communication overheads due to the adopted bus protocol or

memory latencies must be taken into account. Therefore, the actual throughput that can be

achieved when instatiating the proposed controller in the target system can be roughly estimated

by the following equation:

T P = min{M ax_T P,BWBU S ,BWmemor y } (5.6)

where BWBU S represents the actual bandwidth of the bus infrastructure, while BWmemor y is the

bandwidth provided by the memory controller used to interface the embedded or external mem-

ory storing bitstream data.

Both Synchronous and Asynchronous configurations do not natively provide any bitstream

error detection and/or correction functionality. They represent two alternative solutions to en-

117

5. ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL RECONFIGURATION

able DPR with very low hardware overheads. These configurations can be used when reliabil-

ity is not a major concern, or if the user logic or memory controller used to retrieve bitstream

data embed error detection and correction capabilities. Unless a radiation hardened FPGA (e.g,

Virtex5-QV [247]) is employed, the proposed controller can be effectively protected against faults

affecting the FPGA device by implementing Dual or Triple Modular Redundancy (TMR), or one

of the schemes proposed in [71]. However, when used in Asynchronous mode, the controller in-

cludes one or more embedded Block-RAMs used to implement the FIFO buffer. Applying dual or

triple modular redundancy will also double or triple the memory resources needed to implement

the proposed DPR controller. Embedded memories often represent a critical resource when de-

signing complex systems. To limit this overhead an alternative scheme is proposed and depicted

in Figure 5.14, where TMR is applied to all the modules composing the DPR controller, while the

FIFO buffer is not replicated.

Figure 5.14: Proposed TMR approach applied to the Asynchronous DPR mode architecture.

Taking into account that the bitstream data word length is 32-bits and embedded Block-RAMs

are configured to host 36 bit words, each memory line presents 4 unused bits. These additional

bits can be employed to implement error detection through an even or odd parity scheme [82],

providing very low hardware overhead. In particular, FSM READ and FSM WRITE include addi-

tional logic for encoding and decoding bitstream data. Parity bits are computed on the input data

before being written by the FSM READ into the FIFO. The incoming 32-bit bitstream word is split

in 4 8-bits sub-words. A even or odd parity bit is computed for each sub-word, leading to an en-

coded 36-bit word written in the FIFO. During buffer read-out, performed by FSM WRITE, parity

bits are checked and if no errors are detected the extracted 32-bit word is written into the ICAP.

This simple parity scheme provides detection of single or an odd number of errors within each

8-bits sub-word stored in the FIFO buffer. It represents a realistic countermeasure since usually

physical memory layout methodologies are employed to interleave memory cells, thus minimiz-

ing the occurrences of multiple errors in a single memory word [219]. As will be demonstrated

118

5.3. A portable open-source controller for safe Dynamic Partial Reconfiguration

in Section 5.3.3, since both encoder and parity checker mainly consists of simple xor trees [82],

the proposed methodology provides low hardware overhead, in terms of logic resources, while

reducing memory requirements with respect to a full TMR approach.

5.3.2.2 Dependable DPR (D2PR)

As mentioned in Section 5.1, monitoring for partial bitstream data errors is essential to avoid

FPGA mis-reconfigurations due to a corrupted partial bitstream. Two alternative methods and

DPR controller architectures are presented. Both methodologies are based on introducing infor-

mation redundancy at design-time in the partial bitstream data files generated by the EDA tools.

5.3.2.3 Dependable DPR with Cyclic Redundancy Check (D2PR-CRC)

The first approach aims at detecting partial bitstream data errors by performing periodic on-line

CRC checks. As shown in figure 5.15, at design-time the partial bitstream is parsed and processed

by a software routine in order to compute and embed CRC signatures, similarly to what done in

Section 5.2.

Figure 5.15: Protected bitstream generation.

In particular, the partial bitstream is split in blocks of 32-bit words. A signature is then com-

puted for each data block and embedded in the Protected Bitstream.

Figure 5.16 shows the architecture of the DPR controller when configured in D2PR-CRC mode.

With respect to the Asynchronous mode, the FSM READ is assisted by an on-line CRC Generator

and a CRC checker. Basically, whenever a Protected Bitstream word is read from the memory

through the DMA, it is directly written in the FIFO buffer. In addition, it is sent to the CRC gener-

119

5. ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL RECONFIGURATION

Figure 5.16: DPR controller architecture for D2PR-CRC mode.

ator, implemented as a parallel 32-bit Linear Feedback Shift Register (LFSR) [13], that computes

at run-time a 32-bit signature in a single clock cycle.

Whenever a data block is completely received, the associated pre-computed signature is read

trough the DMA and compared with the one extracted at run-time by the CRC generator. If no

errors are detected, the currently received data block is validated and the FSM WRITE can start

reading it from the FIFO in order to deliver bitstream data to the ICAP. While the buffer is being

emptied, FSM READ instructs the DMA engine to retrieve the following data block.

Obviously, the FIFO buffer must be sized in order to store at least one full data block. The data

block size can be configured by the user at design-time. This parameter has a direct impact on

(i) bitstream storage memory requirements, (ii) actual reconfiguration throughput, and (iii) error

detection capabilities.

Equation 5.7 shows the relationship between the total Protected Bitstream Size (PBS) and the

user-defined data block size (Bl k).

PBS = BS +32 ·⌈ BS

Bl kS

⌉
(5.7)

The second term of Equation 5.7 represents the additional contribution given by the 32-bit sig-

natures interleaved in the partial bitstream.

The maximum effective reconfiguration throughput that can be achieved by the proposed

architecture can be estimated by the following equation:

M ax_T P = BS

max{Ts y s ,TIC AP } · PBS
32 +TIC AP · Bl kS

32

(5.8)

In Equation 5.8, the first term of the denominator represents the overall time needed to read

the protected bitstream through the DMA, while the second term consider the additional latency,

120

5.3. A portable open-source controller for safe Dynamic Partial Reconfiguration

introduced by the adopted buffering approach, for delivering the last data block to the ICAP after

its validation.

The actual reconfiguration throughput depends also on bus and memory bandwidths, as re-

ported by Equation 5.5.

The 32-bit CRC error detection approach provides detection of all burst errors, up to 32 bits

in a single data block, and a tunable coverage on random errors depending on the chosen CRC

polynomial and data block size [114] (see Section 5.3.3).

The same protection strategy discussed for the Asynchronous mode can be employed to pro-

tect the proposed architecture against faults affecting the device. In particular, since CRC checks

are performed before writing data in the FIFO, the additional parity checks (see Section 5.3.2.1)

are needed to detect errors affecting data stored in the Block-RAMs used to implement the buffer.

Finally, it is worth noting that, with respect to the PerFrameCRC functionality offered only

by 7Series FPGAs [238], the proposed approach represents a more flexible solution, allowing de-

signer to tune memory requirements, error detection capabilities and timing overhead depend-

ing on the constraints imposed by the target application.

5.3.2.4 Dependable DPR (D2PR) with Error Correcting Code (D2PR-EDAC)

In D2PR-EDAC mode, the proposed controller provides partial bitstream error detection and cor-

rection capabilities through an Error Correcting Code (ECC). In particular, a Single Error Correc-

tion Double Error Detection (SECDED) Error Correcting Code (ECC) has been chosen due to its

representative target error model and its limited code and hardware overheads [82].

Partial bitstreams must be first processed at design-time by a software routine in order to

produce a Protected bitstream composed of SECDED encoded words packets, that will be subse-

quently decoded by the DPR controller at run-time.

As shown in Figure 5.17, each Protected bitstream packet is composed of 5 32-bit words, where

Encodedi (x : y) represents the (x,y) bit range of the encoded word associated to the 32 bit bit-

stream Wordi . It is worth to remember that SECDED encoding process results in 7 bits overhead

on a 32 bits input word [82].

The architecture of the DPR controller configured in D2PR-EDAC mode is depicted in Figure

5.18.

Taking as reference the architecture presented for the Asynchronous mode (see Section 5.3.2.1),

the FSM WRITE module is assisted by an on-line SECDED decoder, that checks and decode the

received words and, if a single error is found, correct them.

Protected bitstream data packets are continuously read through the DMA and 32-bit encoded

data words are written in the FIFO, only needed if system clock differs from the chosen ICAP

clock. FSM WRITE continuously reads out data from the buffer until an entire 5-words packet

is reconstructed. Whenever the fifth word of a packet is read out, the decoding phase starts. It

121

5. ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL RECONFIGURATION

Figure 5.17: Protected bitstream generation.

Figure 5.18: DPR controller architecture for D2PR-EDAC mode.

consists lasts four clock cycles, needed to decode four bitstream data words. At each clock cycle

a data word is decoded and delivered to the ICAP. If present, any single error is corrected before

writing the data word in the configuration port. On the other hand, the reconfiguration process

is terminated if double errors are found during the decoding process. At the end of this phase,

FSM WRITE restarts the process by reading the following 5-words packet from the FIFO.

Similarly to the DPR controller operating in (D2PR-CRC) mode, the SECDED Protected Bit-

stream Size and the maximum throughput achievable by the proposed controller can be esti-

mated using Equations 5.5-5.8. However, in this operating mode, data block size (Bl kS) is fixed

and equal to 128 bits.

Integrating error correction in the DPR controller allows to avoid interruptions during re-

122

5.3. A portable open-source controller for safe Dynamic Partial Reconfiguration

configuration processes due to bitstream data errors, therefore preserving overall system perfor-

mances.

A protection strategy similar to the one discussed for the Asynchronous mode can be adopted

to protect the proposed architecture against faults affecting the device. In particular, since bit-

stream data words are checked just before being delivered to the ICAP, the additional parity en-

coder and decoder embedded in FSM READ and FSM WRITE (see Section 5.3.2.1) are not needed.

In fact, under the assumption of single or double occurrences, errors affecting data stored in the

Block-RAMs used to implement the FIFO buffer are also detected by the SECDED logic.

5.3.3 Experimental Results

To demonstrate the flexibility of the proposed controller and evaluate its hardware overheads

and reconfiguration throughput, two different test cases have been implemented. In the first

scenario, the proposed DPR controller has been instantiated in a LEON3 processor-based system

[85] implemented on a Virtex4-VLX100 FPGA. As shown in Figure 5.19, the controller is connected

to the on-chip AMBA AHB bus, acting as a master peripheral.

Figure 5.19: Proposed controller instantiated in a LEON3-based system.

A small wrapper is needed to adapt the interface of the DMA module to the signals required

by the AMBA AHB protocol. On the other hand, the registers included in the Control and Status

registers block have been mapped in the bus memory space, allowing the LEON3 processor to

read and write them through simple software drivers. The DPR controller is used to reconfigure

a FIR filter peripheral physically mapped to an FPGA location requiring 28.7 KBytes of bitstream

data in order to be reconfigured. Bitstream data are stored in an external SDRAM memory, acces-

sible by the DMA engine through a memory controller mapped on the bus. Reconfigurations are

triggered and monitored by the processor.

Reconfiguration time and throughput have been measured using an hardware timer embed-

ded in the DPR controller. Table 5.2 reports the obtained results, in terms of hardware resources

and effective reconfiguration throughput, when implementing the proposed controller in the

123

5. ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL RECONFIGURATION

four different configurations presented in Section 5.3.2. System and ICAP frequencies are set

to 60 MHz and 100 MHz, respectively. In Table 5.2, percentages denote resources consumption

Table 5.2: Hardware resources and throughput for the proposed controller operating in a LEON3-
based system implemented on a Virtex4-VLX100 FPGA.

Configuration LUTs FFs BRAMs
Throughput
[MBytes/s]

Synchronous
307 118

-
235

(0.3%) (0.1%) (240)

Asynchronous
471 235 1 235

(0.5%) (0.2%) (0.4%) (240)

D2PR-CRC
811 318 1 229.7

(0.8%) (0.3%) (0.4%) (235.8)

D2PR-EDAC
815 352 1 186

(0.8%) (0.5%) (0.4%) (192)

with respect to the ones available in the target device. In all configurations, the proposed con-

troller provides very low hardware overhead. This is an important aspect when adopting DPR

for reducing overall system resource requirements by time-multiplexing hardware modules. In

fact, FPGA logic used by the DPR controller must reside in the static portion of the design, thus

representing a hardware overhead of the system. Obviously, a digital clock manager is also re-

quired to generate the 100 MHz ICAP clock needed in Asynchronous, D2PR-CRC and D2PR-EDAC

operating modes.

The measured throughput values are compliant with the ones estimated (reported between

parentheses in Table 5.2) exploiting Equations 5.5 and 5.8. AMBA AHB bus and memory con-

troller latencies cause low overhead during data transfers and the main parameter that limits the

reconfiguration throughput is represented by the system clock frequency (i.e., 60 MHz).

When configured in D2PR-CRC mode, the CRC polynomial implemented by the CRC genera-

tor is x32 + x18 + x14 + x3 +1. This particular polynomial provides detection of all burst errors up

to 32 bits in a data block and detection of all 5 random errors for data blocks smaller than 31 Kib

[114]. For the chosen implementation, the data block size has been set to 108 32-bits words (i.e.,

3.37Kib), allowing the usage of a single Block-RAM to implement the FIFO buffer.

In general, when operating in D2PR-CRC mode, the actual effective throughput depends on

the chosen data block size, as reported by Equation 5.8. Figure 5.20 reports the trend of the re-

configuration throughput with respect to the block size, considering BS = 28.7K i B y tes, Ts y s =
16.66ns and TIC AP = 10ns.

As shown in Figure 5.20, the reconfiguration throughput can be maximized if properly select-

ing the data block size (in the considered test case the optimal block size is equal to 108 partial

bitstream words). By looking at Equation 5.8, it can be also demonstrated that the block size

that maximizes the throughput depends on the size of the original unprotected bitstream (i.e.

124

5.3. A portable open-source controller for safe Dynamic Partial Reconfiguration

Figure 5.20: Reconfiguration throughput w.r.t. data block size for the proposed DPR controller
configured in D2PR-CRC mode.

BS). This is also shown in Figure 5.20, where the red line represents the trend of the reconfigu-

ration throughput w.r.t. the chosen block size when BS = 125K i B y tes. Results shown in Table

5.2 highlight that it is possible to monitor bitstream data errors incurring in limited reconfigura-

ton timing overheads if the optimal bitstream data block size is selected at design-time when the

proposed DPR controller is configured in D2PR-CRC mode. The reconfiguration time overhead

in D2PR-EDAC mode is caused by the additional bits needed after the bitstream encoding pro-

cess. However, as discussed in Section 5.3.2.2, the DPR controller configured in D2PR-CRC mode

provides the same performances of D2PR-EDAC mode if data block size is set to 128 bits (i.e., 4

bitstream words).

The second scenario is represented by a system in which the DPR controller is directly inter-

faced to an on-chip memory, implemented using Block-RAMs, storing the partial bitstream. In

this case the user logic must trigger and monitor the reconfiguration process by reading/writing

the values in the Control and Status registers block.

The system has been implemented on an Artix7-xc7a100t FPGA. Table 5.3 reports the hard-

ware resources and throughput of the proposed controller implemented in its four possible con-

figurations. In this case, System frequency is set to 200 MHz, ICAP frequency is fixed to 100 MHz,

and the size of the bitstream needed to change the functionality of the selected reconfigurable

FPGA portion is equal to 119.4 KiBytes. In D2PR-CRC mode Bl kS = 5.5K i b to maximize the re-

configuration throughput.

The measured values match the ones estimated using Equations 5.5 and 5.8, since the DPR

controller is directly interfaced to a fast on-chip memory, and the throughput bottleneck is rep-

resented by the maximum ICAP clock frequency (i.e., 100 MHz).

125

5. ON ENHANCING DEPENDABILITY OF DYNAMIC PARTIAL RECONFIGURATION

Table 5.3: Hardware resources and throughput for the proposed controller implemented on an
Artix7-xc7a100t FPGA.

Configuration LUTs FFs BRAMs
Throughput

[MB/s]

Synchronous
249 112

- 400
(0.4%) (0.1%)

Asynchronous
443 226 1

400
(0.7%) (0.2%) (0.7%)

D2PR-CRC
588 278 1

395.4
(0.9%) (0.2%) (0.7%)

D2PR-EDAC
589 310 1

319.9
(0.9%) (0.2%) (0.7%)

The proposed DPR controller has been also implemented on a Virtex6-vlx240t FPGA, in order

to be compared with other portable state-of-the-art and vendor solutions. Results are reported

in Table 5.4, adopting the same input parameters of the previous scenario.

With respect to state-of-the-art and vendor solutions, the proposed controller provides simi-

lar hardware overheads while being able to monitor and eventually correct bitstream data errors.

At the same time it is able to sustain high reconfiguration throughputs. It is worth noting that

both XPS_HWICAP and AXI_HWICAP can be used only in conjunction with processor-based sys-

tems, since they show an OPB or AXI bus slave interface. The processor or an external master in

the bus is directly in charge of managing bitstream data trasfer, thus leading to increased timing

overheads. The proposed controller improves also vendor solutions by providing portability on

different FPGA device families and high configurability, while being able to achieve the maximum

possible reconfiguration throughput.

Its robustness with respect to faults affecting the device can be improved by applying dual

or triple modular redundancy or one the approaches proposed in [71]. When targeting standard

Table 5.4: Comparison of the proposed DPR controller with state of the art and vendor solutions.
The target device is a Virtex6-vlx240t FPGA.

Implementation LUTs FFs BRAMs
Throughput

[MB/s]

[211] 586 672 8 399.8
[199] 673 254 5 253

XPS-HWICAP[227] 799 746 1 8.5
AXI-HWICAP[235] 502 477 1 9.1

Synchronous 249 112 - 400
Asynchronous 443 226 1 400

D2PR-CRC 588 278 1 395.4
D2PR-EDAC 592 310 1 319.9

126

5.3. A portable open-source controller for safe Dynamic Partial Reconfiguration

replication approaches, the method proposed in Section 5.3.2 can be applied to avoid any mem-

ory resources overhead. In this case, additional hardware overheads due to the introduction of

parity encoders and decoders must be taken into account. Moreover, with respect to a full repli-

cation approach (e.g., TMR replicating the entire DPR controller, including memory buffer), an

additional intermediate voter is needed at the input of the FIFO (as shown in Figure 5.14). Due

to the very low complexity of the adopted parity scheme, these additional components lead to a

negligible hardware overhead with respect to the resources needed to accommodate all the DPR

controller replicas. Moreover, as discussed in Section 5.3.2.2, when the proposed controller is

configured in D2PR-SECDED mode, parity logic is not needed since bitstream data are checked

by the SECDED logic just before being delivered to the ICAP. On the other hand, the proposed

approach does not cause an increment of required FIFO resources, consuming the 50% or 33% of

memory resources if compared to standard dual or triple modular redundancy schemes, respec-

tively.

127

C
H

A
P

T
E

R

6
EVALUATING SYSTEM’S ROBUSTNESS THROUGH ERROR

INJECTION

How mentioned in Chapter 3, evaluating system performances and robustness is manda-

tory when targeting safety and or mission critical systems. When employing FPGAs

in such systems particular attention must be taken. Radiation induced SEUs can

affect both the memory elements embedded in the design, and the configuration memory that

stores the related FPGA configuration. In the former case, SEUs may alter the content of the FPGA

internal memory resources employed in the design (e.g., flip-flops, distributed RAMs, or Block-

RAMs), modifying processed data and/or the application control flow, thus leading to problem

similar to the ones occurring in ASICs. In such cases fault injection techniques similar to the ones

used when dealing with ASICs can be employed to assess the reliability of the design (e.g., scan-

chains [42], or saboteurs [138]). Instead, the latter case is much more critical, since a bit-flip in

an FPGA configuration memory cell may permanently alter the functionality of the implemented

circuit. In particular, it can cause changes in the configuration of Look-Up Tables (LUTs), Config-

urable Logic Blocks (CLBs), internal hard macros (e.g., Digital Signal Processors or Block-RAMs),

or routing matrices, leading to completely different circuits from the initially configured ones

[37]. Furthermore, the configuration memory is very large compared to all the other elements in

the device. Therefore, the probability that SEUs affect the FPGA configuration memory is high,

making it a major concern when designing high reliable FPGA-based systems. Nevertheless, it

has been demonstrated that, in most cases, SEUs affecting the configuration memory do not

influence the design functionality [126, 226, 246]. Consequently, fault injection techniques are

needed to deeply analyze the effect that SEUs in the configuration memory have on the imple-

mented design functionality. Fault injection can help designers to discover the weaknesses of

the circuit and to take the proper countermeasures by applying the most suitable fault detection

and/or fault tolerance techniques to selectively and efficiently harden the design.

129

6. EVALUATING SYSTEM’S ROBUSTNESS THROUGH ERROR INJECTION

To accurately assess the reliability of FPGA-based systems, designers must rely on very ex-

pensive neutrons or heavy ions beam radiation tests on actual circuit prototypes [81, 192]. Pre-

liminary, even less accurate, fault injection experiments in the early design stages can potentially

reduce the number of design iterations, speeding up the entire design process of complex Sys-

tems on a Programmable Chip (SoPC).

In literature, several solutions tackling this problem have been proposed and developed, span-

ning from simulation-based methods [37] to hardware approaches [18, 105, 166]. The latter ap-

proaches guarantee the maximum fault injection speed when the circuit under test and the fault

injection infrastructure are implemented in the same FPGA. To achieve high fault injection rates

they usually exploit DPR feature of modern SRAM-based FPGA devices (i.e., the ability to dynam-

ically change selected portions of a circuit, while the rest of the design is left unchanged and fully

functional [238]). Nonetheless, faults injected using this approach can affect the operations of

the fault injection infrastructure itself, or they can cause faults accumulation effects. In fact, in

some unpredictable conditions, the reference gold circuit state, i.e., the circuit state in which the

next fault should be injected, cannot be properly restored [116, 166]. This can lead to the stall of

the fault injection process, or to unknown erroneous faults classification results.

This chapter illustrates a Dynamic Partial Reconfiguration-based fault injection infrastruc-

ture for SEUs emulation in the configuration memory of Xilinx SRAM-based FPGAss. The pro-

posed infrastructure is integrated in the same device as the system under test, and exploits the

Xilinx Essential Bits technology [237] to:

1. extremely speed-up the fault injection process, as demonstrated by experiments carried

out on designs of different complexity;

2. ensure the correct behavior of the fault injection infrastructure itself and avoid undesired

faults accumulation effects during the whole fault injection process, as it occurs on other

single-FPGA fault injection platforms [18, 116, 166].

6.1 Related Works

The approaches for performing fault injection in the configuration memory of FPGA devices can

be grouped into three main categories (Fig. 6.1).

The first group includes techniques that exploit the availability of radiation test environ-

ments, in which neutrons or heavy ions beams are used to emulate the radiation conditions in

which the device will operate [81, 192]. Since radiation sessions are very expensive, their use is

limited to the validation of a system in the final design stages. Moreover, these experiments pro-

vide low controllability, since the memory cell to be flipped cannot be chosen, and the injection

rate is lower with respect to other fault injection techniques [81].

130

6.1. Related Works

Figure 6.1: FPGA configuration memory SEUs fault injection approaches classification

The second group includes simulation-based approaches, that do not require the physical

FPGA device. Simulations are performed relying on models that link each bit of the FPGA con-

figuration memory to the associated functionality at logic level. However, since this information

is not disclosed by FPGA vendors, models must be indirectly retrieved by reverse-engineering

experiments [37]. Furthermore, simulation-based fault injection techniques incur in huge simu-

lation time to obtain statistically valid results [21, 108].

The third, and biggest, category includes those methods that use extra hardware, or soft-

ware, to inject SEUs in the configuration memory of the FPGA. Basically, the device under test

is configured with a corrupted bitstream configuration file, in which a bit-flip is randomly in-

serted to emulate an SEU. To dramatically reduce the injection time, Dynamic Partial Recon-

figuration is used to reconfigure the minimum possible portion of the configuration memory,

called frame, instead of the entire device. This category includes Software-Implemented Fault

Injection (SWIFI) methods, that exploit a host PC, running a program managing the reconfigu-

ration of the device under test and the entire fault injection process [22, 89, 106, 112, 194], and

Hardware-Implemented Fault Injection (HWIFI) methods, that instead use extra-hardware (ex-

ternal or integrated in the same FPGA of the system under test) to further accelerate the fault

injection process [3, 18, 105, 116, 125, 151, 166].

Due to the increased density and capacity, in terms of logic cells, of modern FPGAs, HWIFI

methods integrated in the same FPGA of the system under test are nowadays the preferred so-

lutions. In fact, they do not require external hardware and provide the maximum possible fault

injection speed. They enable to gain several orders of magnitude in the injection speed, with

131

6. EVALUATING SYSTEM’S ROBUSTNESS THROUGH ERROR INJECTION

respect to SWIFI and external HWIFI techniques.

Basically, for each fault injection run, the infrastructure reads a frame of the configuration

memory, composed of several 32-bit words [233]. Then it modifies the frame according to the

chosen fault model, and reconfigure the configuration memory with the faulty frame. The in-

ternal fault injection infrastructure also provides the input vectors and reads the outputs of the

system under test to verify their correctness. Finally, the faulty frame is restored and another bit

in the same or in another frame is flipped [18, 166]. To accomplish the reconfiguration task, the

ICAP is employed [238].

Nonetheless, to properly operate, these approaches require an in-depth knowledge of the

structure and the frames addressing order of the considered FPGA. In fact, the designer must

know the addresses of the configuration frames associated with the FPGA resources implement-

ing the system under test. This information is not explicitly provided by vendors and depends

on the specific FPGA model. Moreover, in some unpredictable conditions, since a bit-flip in a

frame can affect also the information in the other frames, the fault-free configuration cannot be

restored after fault injection [166]. In this case, a reconfiguration of the entire device is there-

fore needed to avoid fault accumulation effects [116]. Furthermore, extra care must be taken

since faults injected using the integrated HWIFI approaches can affect the operations of the fault

injection infrastructure itself. This unintended effect can lead to the stall of the fault injection

process, or to unknown erroneous faults classification results [116].

The proposed integrated HWIFI infrastructure overcomes these limitations by exploiting the

Xilinx Essential Bits technology [237], and Dynamic Partial Reconfiguration, to ensure the cor-

rect behavior of the fault injection infrastructure itself, and to dramatically speed-up the fault

injection process reducing the set of fault locations. Moreover, it avoids any undesired fault ac-

cumulation effect during the whole fault injection process, still providing high fault injection

rates.

6.2 Proposed Methodology and Infrastructure

The architecture of the proposed fault injection infrastructure is depicted in Figure 6.2.

It is mainly composed of: (i) the Fault Generator, (ii) the System Clock Controller, (iii) the

System Input Controller, (iv) the System Output Collector, and (v) the Fault Classifier. Moreover,

a Main Control Unit manages, synchronizes and coordinates the activities of all the aforemen-

tioned modules.

The infrastructure takes in input the bitstream configuration file of the Circuit Under Test

(CUT), the Input Vectors needed to exercise the CUT, and the Golden Outputs of the fault-free

CUT run. According to the SEU fault model, a single bit-flip is introduced in the configuration

memory for each execution run. At the end of the fault injection process, the infrastructure pro-

132

6.2. Proposed Methodology and Infrastructure

Figure 6.2: Proposed fault injection infrastructure architecture

vides in output the results in terms of percentages of faults that caused an observable functional

error in the CUT.

The next subsections details the operation of each module composing the proposed infras-

tructure.

6.2.1 Fault Generator

According to the FARM model [11], when designing a fault injection environment, one must take

into account the adopted Fault Models, the Activation patterns used to stimulate the system un-

der test, the Readouts values collected during the experiment, and the extracted Measures.

As aforementioned, the fault model adopted by the proposed infrastructure is the SEU in

the configuration memory of the FPGA device. The choice of which configuration bit must be

flipped is randomly made on-line, during each fault injection run, choosing from a set of possible

locations, generated off-line.

The set of possible locations in which the SEUs will be injected is generated in two steps

(Figure 6.3).

To ensure the correct operations of the fault injection infrastructure during the whole fault

injection process, the basic idea of the proposed approach is to implement the CUT in a recon-

figurable region of the FPGA, and to extract, from the bitstream, only the locations of the bits

associated to the CUT. Differently from the CUT, the fault injection infrastructure is instead im-

plemented in a non-reconfigurable, or static, portion of the device.

During the first phase (Figure 6.3(a)), the HDL description of both the fault injection infras-

tructure and the CUT are merged and implemented to obtain the Initial bitstream configuration

133

6. EVALUATING SYSTEM’S ROBUSTNESS THROUGH ERROR INJECTION

(a) Step 1: CUT and blank partial bitstream generation.

(b) Step 2: essential faults location generation.

Figure 6.3: Fault locations generation flow

file, used to configure at startup the entire FPGA.

In order to implement the CUT in a reconfigurable partition, before the actual implementa-

tion, some placement constraints must be provided (i.e., the designer allocates a defined area of

the FPGA to the CUT). In this case the CUT is called Reconfigurable Module. After that, the im-

plementation process generates also the CUT partial bitstream file, that contains the information

needed to configure the Reconfigurable Module.

The same process is repeated to implement an empty, or blank, reconfigurable module in-

stead of the CUT, in the same previously defined reconfigurable area. The Blank partial bitstream

134

6.2. Proposed Methodology and Infrastructure

file associated with this module contains only the information regarding the input/output inter-

faces of the CUT (called partition pins), and the routing associated to the static part of the design

that passes through the reconfigurable partition. As stated in [238], only routing, and not logic,

associated with the static part of the design can use hardware resources contained in a reconfig-

urable partition.

Consequently, since this static routing information cannot be prevented to pass through re-

configurable partitions, an SEU injected in the configuration bits associated to this area can cause

errors or failures also in the fault injection infrastructure itself (i.e., the static part of the design)

[238]. This can make the fault injection infrastructure unusable, or behaving incorrectly.

To ensure that no faults are injected in a configuration memory cell associated with the fault

injection infrastructure, a further step is needed. This second step (Figure 6.3(b)) represents the

main difference with respect to existing state-of-the-art approaches that do not tackle the afore-

mentioned static routing problem.

Starting from the partial bitstreams associated to the CUT and to the blank reconfigurable

modules, the Xilinx Essential Bits technology is used to restrict the set of potential fault injection

locations[237]. This technology offers a functionality, embedded in the Xilinx BitGen tool [234],

that allows to identify and to extract, from the bitstream files, the configuration bits that are es-

sential to the design functionality (i.e., the so called essential bits). In fact, only a small fraction of

the bits are essential to the proper operation of any specific design loaded into the FPGA device

[237]. As shown in Figure 6.4(a), the Essential Bits functionality provides a mask in which if a bit is

set, the associated bit in the bitstream file is essential, and thus, if flipped, it modifies the circuit

functionality (Figure 6.4(b)).

Since the objective of a fault injection infrastructure is to flip those bits associated with the

CUT, resorting to the essential bits mask of the blank partial bitstream it is possible to localize the

locations of the bits associated with the static routing passing through the reconfigurable mod-

ule. The mask containing the position of the essential bits of the CUT (Essential faults locations

in Figure 6.3(b)) is obtained by bit-wise subtracting the masks associated to both the CUT and

the Blank partial bitstreams. It is worth to remember here that, as aforementioned, some bits

in the Blank bitstream carry information about the I/O interfaces of the CUT. By applying this

method, these bits will be not flipped during the fault injection process, thus their contribution

represents an error on the final computed fault injection metrics. However, as will be demon-

strated in Section 6.3, this contribution is very small, thus can be assumed negligible if the fault

injection experiments are made in the early design stages, where highly accurate results are not

required.

This means that the fault injection infrastructure will always inject an SEU in a position asso-

ciated with a bit that has no impact on the infrastructure itself, thus ensuring correct operations

during the whole injection process.

The second main advantage of using the Essential Bits technology for fault injection is that

135

6. EVALUATING SYSTEM’S ROBUSTNESS THROUGH ERROR INJECTION

(a) FPGA design, associated bitstream, and essential bits mask.

(b) Change of functionality due to an SEU in the configuration memory cell storing
an essential bit of the implemented design.

Figure 6.4: Essential bits meaning

the injection time is dramatically reduced, with respect to inject faults in every possible memory

location. In fact, in general, the essential bits of an implemented module are lower than 20% of

the total configuration bits [237]. Thus, it is useless to inject SEUs in the remaining 80% of the bits

composing the bitstream, since it is known a-priori that those faults will not cause any observable

functional error. Obviously, these not injected faults are counted as if they have been injected to

compute the final output statistics results.

The Essential faults location mask is used at run-time by the Fault Generator to choose a pos-

sible fault injection location. Using a LFSR, a pseudo-random injection time and location (among

the possible given by the Essential faults location mask) are generated. When the execution time

reaches the selected injection time, the Fault Generator reads the fault-free CUT partial bitstream

(Figure 6.2) and flips a bit according to the selected position. Afterwards, the execution can be

resumed. At the end of the execution, the CUT reconfigurable module is restored with the fault-

free partial bitstream. This last reconfiguration overwrites all the configuration frames associated

with the CUT, avoiding any fault accumulation effect.

It is worth noting that the proposed fault generation method can be easily adapted to emulate

also MBUs. This fault model is expected to become a more realistic model, with respect to SEUs,

136

6.2. Proposed Methodology and Infrastructure

for modern and future technology nodes [88].

6.2.2 System Input Controller

Referring to the FARM model [11], the Activation patterns, or Input Vectors, are provided to the

CUT through the System Input Controller. The Input Vectors can be stored either internally to

the FPGA device or in an external memory, depending on their size and on the CUT nature (e.g.,

processor, datapath, control unit). They can be generated off-line through simulations or other

techniques. Thus, the System Input Controller consists of a control unit, acting as a memory

controller, that reads the vectors from an internal or external memory, and feeds the inputs of the

CUT. When the CUT needs pseudo-random input vectors, the System Input Controller simply

consists of a LFSR [21].

6.2.3 System Clock Controller

The System Clock Controller is mainly composed of one or more FPGA Digital Clock Managers

(DCMs) [240], able to synthesize and manage the clocks needed by the CUT.

It works in conjunction with the System Input Controller to synchronize the CUT clock to

the Input Vectors, and to stop it during the reconfiguration process. In particular, at a random

time, during the execution of a run, the CUT clock is stopped and the configuration memory is

reconfigured using the faulty CUT partial bitstream, generated as explained in Subsection 6.2.1.

Afterwards, the CUT clock is re-activated, resuming the execution of the actual run until the fault

is detected, or until the end of the run, if the injected fault does not generate an observable error.

6.2.4 System Output Collector and Fault Classifier

Referring to the FARM model [11], the Readouts and the Measures are performed through the

System Output Collector and Fault Classifier modules.

The System Output Collector monitors the outputs of the CUT after each fault injection. De-

pending on the number of outputs and number of responses to observe, the designer can choose

the output comparison technique that best fit the considered CUT and test case (e.g, outputs

compression and signatures comparison, clock-by-clock comparison [21], etc).

If a difference is encountered during the outputs comparison process, the fault in the config-

uration memory of the FPGA device is targeted as critical. In the opposite case, the fault is con-

sidered non-critical since, even if at the end of the run it can be still present in the configuration

memory, it does not generate erroneous results or system failures. If the CUT is equipped with a

fault detection mechanism, the error detection signal can be used by the Fault Classifier to clas-

sify the faults detected by the CUT detection mechanisms, labeling them as hardware detected.

137

6. EVALUATING SYSTEM’S ROBUSTNESS THROUGH ERROR INJECTION

This functionality can be very useful when, in the early design stages, the designer is interested

in evaluating different fault detection techniques.

Eventually, the Fault Classifier can record both the position of the flipped bit in the CUT par-

tial bitstream and the injection time. This enables a further post-processing, since this informa-

tion can be merged with the FPGA Logic Allocation File. This file can be generated by the Xilinx

BitGen tool, and it provides information (not including routing) related to which design module

is associated with a set of bits in the bitstream [234].

6.3 Experimental Results

This section presents the experimental results gathered by implementing the proposed fault in-

jection infrastructure on a Xilinx ML605 evaluation board, equipped with a Virtex-6 LX240T FPGA

[228].

Three case studies have been considered:

• LEON3 processor [84], running several applications extracted from the MiBench bench-

mark suite [96]. The applications have been selected in order to stimulate different units of

the processor. In particular, the selected applications are: the Susan Edge detector, that ex-

tensively exploits the arithmetic operations of the Integer Unit and the Load/Store Unit, the

CRC32, that makes large use of the boolean operations of the Integer Unit, and the Inverse

Fourier Transform (IFFT), that mainly uses the floating-point Unit.

• two-dimensional convolution datapath, as the one reported in [36], composed of 49 8x8

multipliers and a balanced adder tree including 48 adders. This architecture is often em-

ployed when dealing with two-dimensional images filtering;

• the same aforementioned two-dimensional convolution datapath, with Triple Modular Re-

dundancy (TMR) error correction and detection mechanism, applied as shown in Fig. 6.5

(the majority voter sets the Error detected signal when it recognizes a mismatch between

the three module outputs).

Tables 6.1, 6.2, and 6.3 report the hardware resources, in terms of Look-Up Tables (LUTs), Flip-

Flops (FFs), Block-RAMs (BRAMs), and Digital Clock Managers (DCMs), needed to implement

the CUTs and the associated infrastructures in the three considered test cases, respectively.

For the LEON3 case study, the processor runs at 80 MHz, reading the application and the data

from an external memory through the System Input Controller. The System Output Controller, at

the end of the execution, reads from the external memory the results produced by the proces-

sor, and compares them with the golden ones stored in an internal Block-RAM. The comparison

results are sent to the Fault Classifier which computes the fault injection metrics.

138

6.3. Experimental Results

Figure 6.5: Two-dimensional convolution datapath, with Triple Modular Redundancy

Table 6.1: LEON3 CUT + associated fault injection infrastructure

Module LUTs FFs BRAMs DCMs
CUT (LEON3) 13,794 4,134 4 -

Fault Generator 499 359 - -
Sys. Input Contr. 2,292 1,430 - -
Sys. Clock Contr. - - - 1

Sys. Output Contr. 1,251 315 4 -
Fault Classifier 403 92 - -

Main Control Unit 1,094 67 - 1
Total 19,333 (12.8%) 6,397 (2.1%) 6 (1.4%) 2 (16.7%)

Table 6.2: 2D convolution datapath CUT + associated fault injection infrastructure

Module LUTs FFs BRAMs DCMs
CUT (datapath) 4,412 425 - -
Fault Generator 499 359 - -
Sys. Input Contr. 3,332 784 - -
Sys. Clock Contr. - - - 1

Sys. Output Contr. 166 24 - -
Fault Classifier 403 92 - -

Main Control Unit 1,094 67 - 1
Total 9,906 (6.6%) 1,751 (0.6%) - 2 (16.7%)

Instead, in the second test case (i.e., 2D convolution datapath), the System Input Controller

consists of an LFSR that pseudo-randomly generates 98 8-bit inputs for the 49 multipliers. The

inputs generation process is repeated for 307,200 clock cycles in order to emulate the processing

of an image composed of 640x480 pixels. The System Output Controller compresses the output

values using a Multiple-Input Shift-Register (MISR), and compares the output signature with the

golden one stored internally [21].

In the last considered test case, the Error detected signal of the TMR Voter (Figure 6.5) is con-

139

6. EVALUATING SYSTEM’S ROBUSTNESS THROUGH ERROR INJECTION

nected to the Fault Classifier to notify if a fault is detected by the TMR mechanism.

The System Clock Controller and the Fault Generator are the same among the three case stud-

ies. The System Clock Controller is composed of a single Digital Clock Manager (DCM) [240], nec-

essary to synthesize the clock for the CUT. The Fault Generator consists of: a memory controller,

that reads from the external memory a look-up table storing the positions of each essential bit

in the bitstream, two LFSRs, that pseudo-randomly select the injection time and the essential bit

position to flip, and a DPR controller which writes the CUT bitstreams in the configuration mem-

ory through the Internal Configuration Access Port (ICAP) of the FPGA device. The ICAP is driven

by the Fault Generator using the maximum possible clock frequency (i.e., 100 MHz), providing a

reconfiguration bandwidth of 3.2 Gbps [238].

Table 6.4 shows the partial bitstream sizes (BS) associated with the CUTs, the percentage of

essential bits %EB , the time needed to run the application (Tr un), and the total injection time

(Ti n j), performing a number of runs equal to the number of extracted essential bits.

In general, the total injection time can be estimated as:

Ti n j = #EB · (Tr un +TDPR) (6.1)

TDPR is the sum of two contributions: the first is the time needed to configure, with the faulty

bitstream, the reconfigurable partition in which the CUT is implemented, while the second rep-

resents the time needed to restore it, with the golden bitstream, at the end of each run. Since the

Table 6.3: 2D convolution datapath with TMR CUT + associated fault injection infrastructure

Module LUTs FFs BRAMs DCMs
CUT (datapath + TMR) 13,339 1,275 - -

Fault Generator 499 359 - -
Sys. Input Contr. 3,332 784 - -
Sys. Clock Contr. - - - 1

Sys. Output Contr. 166 24 - -
Fault Classifier 436 118 - -

Main Control Unit 1,094 67 - 1
Total 18,866 (12.5%) 2,627 (0.9%) - 2 (16.7%)

Table 6.4: CUTs Bitstream size, percentage of Essential Bits, application execution time, and total
injection time

CUT BS[K B] %EB Tr un[ms] Ti n j [s]
L3 Susan 755.6 16.2 37.91 41,415
L3 CRC32 755.6 16.2 20.94 24,552

L3 IFFT 755.6 16.2 395.65 395,514
2D conv. 170,9 13.6 6.14 4,573

2D conv TMR 478,4 13.6 6.14 4,573

140

6.3. Experimental Results

faulty and the golden CUT bitstreams have the same size, TDPR can be computed as:

TDPR = 2 · BS

f IC AP
(6.2)

where BS is the bitstream size, and f IC AP represents the ICAP operating frequency (i.e., 100 MHz

in our experiments).

It is worth mentioning that in all the considered test cases, the percentage of essential bits

associated with the static part of the design (i.e., the fault injection infrastructure and the I/O

interface of the CUT) in the CUT bitstream is less than the 0.7%. As explained in Section 6.2,

these bits are not included in the fault injection process. This contribution can be treated as an

error on the final computed metrics, since the fault injection infrastructure will not be present in

the final circuit implementation. However, this error can be considered negligible if this kind of

evaluation is made in the early design phases, where a very accurate measure is not required.

Table 6.5 shows the Fault Classifier results in terms of percentages of faults that caused an

observalbe error (Critical), and those that have not caused any error (Non-Critical). The number

of Equivalent Injected Faults (EIF) and the percentages are computed taking into account also

the number of non-essential bits. Each non-essential bit composing the bitstream can be flipped

without any effect on the circuit functionality, thus a fault in those bits can be considered as Non-

Critical.

As can be seen from Table 6.5, in the third test case (i.e., LEON3 running IFFT) the percentage

of faults that cause an error is higher than the percentage in the first two test cases, since the

application uses the floating point unit, which represents about 40% of the CUT area. In the

last test case the number of Critical faults is greatly reduced with respect to the fourth test case,

since all the faults detected by the TMR mechanism that do not lead to a Voter output error are

considered Non-critical.

The proposed methodology and infrastructure has been compared, in terms of fault injection

execution time, with the integrated HWIFI methods presented in [116], [18], and [166]. The fault

injection platforms presented in [18, 116, 166] require a fixed TDPR of about 10µs, since they

reconfigure a single frame of the configuration memory, instead of the overall CUT reconfigurable

Table 6.5: Fault Injection classification results

CUT EIF % Critical % Non-Critical
L3 Susan 6.18 M 9.8 90.2
L3 CRC32 6.18 M 7.3 92.7

L3 IFFT 6.18 M 13.6 82.4
2D conv. 1.39 M 12.4 87.6

2D conv TMR 1.39 M 1.3 98.7

141

6. EVALUATING SYSTEM’S ROBUSTNESS THROUGH ERROR INJECTION

Figure 6.6: Fault injection time vs number of equivalent injected SEUs trends comparison, in the
case of the LEON3 running CRC32

partition. Nonetheless, they incur in the problems described in Section 6.1.

Fig. 6.6 compares, in terms of total fault injection time (Ti n j), the proposed method, with

the ones proposed in [18, 116, 166], varying the number of equivalent injected faults (EIF). The

reference case is the LEON3 processor running the CRC32 application.

As can be seen from Fig. 6.6, the proposed fault injection infrastructure extremely speed-up

the fault injection process, especially when the number of SEUs to be injected is high. Moreover,

it ensures the correct operations during the whole fault injection process, guaranteeing always

reliable fault injection results, contrary to the platforms presented in [18, 116, 166].

142

CONCLUSIONS

The presented research work have introduced and discussed methodologies and approaches

for enhancing embedded real-time processing in mission-critical contexts.

After introducing the reasons why digital image processing is becoming a key technology to

enable innovative and more efficient approaches in mission critical applications (see Chapter 2),

the thesis discusses modern reconfigurable FPGA devices (see Chapter 3), focusing on Dynamic

Partial Reconfiguration features and their increasing popularity. Both Chapter 2 and Chapter 3

highlight the issues that can affect embedded real-time image processing systems, in terms of

unwanted effects on acquired digital images and dependability of the adopted technology.

Chapter 4 provides details on proposed approaches to enhance image processing algorithm

robustness. In particular, self-adaptivity features have been introduced in selected hardware ac-

celerators, in order to maintain constant, or improve, the quality of the algorithm results for a

wide range of input conditions, that are not always fully predictable at design-time (e.g., noise

level variations). This has been accomplished by measuring at runtime some characteristics of

the input images, and then tuning the algorithm parameters based on such estimations. Dy-

namic reconfiguration features of modern reconfigurable FPGAs have been used in order to in-

tegrate run-time adaptivity features into the proposed hardware accelerators.

Chapter 5 discusses the proposed solutions for enhancing dynamic reconfiguration process

dependability. In particular, it presents two alternative ways to safely enhance reconfiguration

process dependability, and consequently provide safe adaptivity mechanisms. The former is es-

sentially based on a set of rules to be applied at design-time, while the latter relies on the usage of

a configurable hardware self-reconfiguration manager that must be instantiated within the target

system.

Finally, Chapter 6 introduces the problem of evaluating systemâĂŹs robustness with respect

to target fault models, proposing a methodology, along with an associated hardware platform, for

emulating the effects of soft errors on modern dynamically reconfigurable FPGAs.

The entire work relied on a strong collaboration with the industry. This allowed to test and

demonstrate the proposed approaches and solutions using realistic test cases and actual relevant

technologies in the field. Thanks to these collaborations, the proposed solutions have improved

the state-of-the-art, as demonstrated by the obtained results.

The final aim of the presented research work has been to demonstrate the suitability of the

proposed solutions and approaches in mission-critical contexts.

143

A
P

P
E

N
D

I
X

A
LIST OF SYMBOLS AND ACRONYMS

Due to the large number of symbols used in this thesis to support the descrip-

tion of covered material, this appendix provides the following list of abbre-

viations. This list is intended to help the reader identify the meaning of a

given acronym in a fast and easy way.

ADAS Advanced Driver Assistance Systems

ADC Analog-to-Digital Converter

ALM Adaptive Logic Module

ASICs Application Specific Integrated Circuits

ATE Automated Test Equipment

BIST Built-In Self-Test

CAD Computer-Aided Design

CCD Charge-Coupled Device

CLB Configurable Logic Block

CRC Cyclic Redundancy Code

COTS Commercial-Off-the-Shelf

CPLDs Complex Programmable Logic Devices

CUT Circuit Under Test

145

LIST OF SYMBOLS AND ACRONYMS

DfT Design-for-Testability

DFT Discrete Fourier Transform

DMA Direct Memory Access

DPR Dynamic Partial Reconfiguration

DIMES Descent Image Motion Estimation System

DSPs Digital Signal Processors

ECC Error Correcting Code

EDA Electronic Design Automation

EDL Entry, Descent and Landing

FEM Features Extraction and Matching

FFs Flip-Flops

FIFO First-In First-Out

FPGAs Field Programmable Gate Arrays

FSM Finite State Machine

GNC Guidance Navigation and Control

GPU Graphics Processing Unit

HCPLDs High Capacity Programmable Logic Devices

HDL Hardware Description Language

HLS High-Level Synthesis

HWIFI Hardware-Implemented Fault Injection

IC Integrated Circuit

ICAP Internal Configuration Access Port

IT Information Technology

LFSR Linear Feedback Shift Register

LUTs Look-Up Tables

MBU Multiple Bit Upset

MOS Metal-Oxide-Semiconductor

146

List of symbols and acronyms

NRE Non-Recurrent Engineering

OTF Optical Transfer Function

PAL Programmable Array Logic

PLAs Programmable Logic Arrays

PLDs Programmable Logic Devices

PROM Programmable Read Only Memory

PSF Point Spread Function

RTL Register-Transfer Level

SBU Single Bit Upset

SEB Single Event Burnout

SECDED Single Error Correction Double Error Detection

SEEs Single Event Effects

SEFI Single Event Functional Interrupt

SET Single Event Transient

SEU Single Event Upset

SEGR Single Event Gate Rupture

SEL Single Event Latch-Up

SERDES Serializer/Deserializer

SIFT Scale Invariant Feature Transform

SoC System-on-Chip

SoPC Systems-on-Programmable-Chip

SPLDs Simple Programmable Logic Devices

SRAM Static Random Access Memory

SURF Speeded-Up Robust Features

SWIFI Software-Implemented Fault Injection

TID Total Ionizing Dose

TMR Triple Modular Redundancy

147

LIST OF SYMBOLS AND ACRONYMS

TTM Time-To-Market

UAVs Unmanned Aerial Vehicles

VBN Video-based Navigation

VHDL Very High-Speed Integrated Circuits HDL

148

BIBLIOGRAPHY

[1] University of Oxford - Affine Covariant Regions Dataset. www.robots.ox.ac.

uk/~vgg/data/data-aff.html.

[2] Hadi Parandeh Afshar. Closing the Gap between FPGA and ASIC: Balancing Flexi-

bility and Efficiency. PhD thesis, École Polytechnique Fédérale de Lausanne, 2012.

[3] M. Alderighi, F. Casini, S. d’Angelo, M. Mancini, S. Pastore, and G.R. Sechi. Evalu-

ation of single event upset mitigation schemes for SRAM-based FPGAs using the

FLIPPER fault injection platform. In Defect and Fault-Tolerance in VLSI Systems,

2007. DFT ’07. 22nd IEEE International Symposium on, pages 105–113, Sept 2007.

[4] Gregory Allen, Gary Swift, and Carl Carmichael. Virtex-4 vq static seu characteri-

zation summary. 2008.

[5] Altera Corporation. Increasing Design Functionality with Partial and Dynamic Re-

configuration in 28-nm FPGAs (WP-01137-1.0), 2010.

[6] Altera Corporation. Enabling High-Performance DSP Applications with Stratix V

Variable-Precision DSP Blocks - WP-01131-1.1, 2011.

[7] Altera Corporation. A Safety Methodology for ADAS Designs in FPGAs - White paper

(WP-01204-1.0)), 2013.

[8] Altera Corporation. A New FPGA Architecture and Leading-Edge FinFET Process

Technology Promise to Meet Next-Generation System Requirements (WP-01220-

1.1)), 2015.

[9] Altera Corporation. Stratix 10 Device Overview, 2015.

[10] Maria E Angelopoulou, Christos-Savvas Bouganis, Peter YK Cheung, and George A

Constantinides. Fpga-based real-time super-resolution on an adaptive image sen-

sor. In Reconfigurable Computing: Architectures, Tools and Applications, pages

125–136. Springer, 2008.

149

www.robots.ox.ac.uk/~vgg/data/data-aff.html
www.robots.ox.ac.uk/~vgg/data/data-aff.html

BIBLIOGRAPHY

[11] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, and

D. Powell. Fault injection for dependability validation: a methodology and some

applications. Software Engineering, IEEE Transactions on, 16(2):166–182, Feb 1990.

[12] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Fundamental concepts

of dependability. University of Newcastle upon Tyne, Computing Science, 2001.

[13] M. Ayinala and K.K. Parhi. High-speed parallel architectures for linear feedback

shift registers. Signal Processing, IEEE Transactions on, 59(9):4459–4469, Sept 2011.

[14] Donald G Bailey. Design for embedded image processing on FPGAs. John Wiley &

Sons, 2011.

[15] C. Basile, S. Di Carlo, and A. Scionti. FPGA-based remote-code integrity verifica-

tion of programs in distributed embedded systems. Systems, Man, and Cybernet-

ics, Part C: Applications and Reviews, IEEE Transactions on, 42(2):187–200, March

2012.

[16] N. Battezzati, S. Colazzo, M. Maffione, and L. Senepa. SURF algorithm in FPGA:

A novel architecture for high demanding industrial applications. In Proc. of 2012

Design, Automation Test in Europe Conference Exhibition (DATE), pages 161–162,

2012.

[17] Niccolò Battezzati, Luca Sterpone, and Massimo Violante. Reconfigurable field pro-

grammable gate arrays for mission-critical applications. Springer Science & Busi-

ness Media, 2010.

[18] Niccolò Battezzati, Luca Sterpone, and Massimo Violante. Reconfigurable field pro-

grammable gate arrays for mission-critical applications. Springer Science & Busi-

ness Media, 2010.

[19] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up

robust features. Computer Vision and Image Understanding (CVIU), 110:346–359,

2008.

[20] P. Beaudet. Rotationally invariant image operators. In Proc. of 4th International

Joint Conference on Patter Recognition, pages 579–583, 1978.

[21] Alfredo Benso and Paolo Prinetto. Fault Injection Techniques and Tools for Embed-

ded Systems Reliability Evaluation. Springer, 2003.

150

Bibliography

[22] P. Bernardi, M.S. Reorda, L. Sterpone, and M. Violante. On the evaluation of SEU

sensitiveness in SRAM-based FPGAs. In On-Line Testing Symposium, 2004. IOLTS

2004. Proceedings. 10th IEEE International, pages 115–120, July 2004.

[23] R. Bernstein. Digital image processing of earth observation sensor data. IBM Jour-

nal of Research and Development, 20(1):40–57, Jan 1976.

[24] Sheetal Bhandari, Fabio Cancare, Davide Basilio Bartolini, Matteo Carminati,

Marco Domenico Santambrogio, and Donatella Sciuto. On the management of

dynamic partial reconfiguration to speed-up intrinsic evolvable hardware systems.

In Proc. of the 6th HiPEAC Workshop on Reconf. Computing, 2012.

[25] R. Bonamy, D. Chillet, S. Bilavarn, and O. Sentieys. Power consumption model for

partial and dynamic reconfiguration. In 2012 International Conference on Recon-

figurable Computing and FPGAs (ReConFig), pages 1–8, 2012.

[26] R. Bonamy, Hung-Manh Pham, Sebastien Pillement, and D. Chillet. Uparc: Ultra-

fast power-aware reconfiguration controller. In Design, Automation Test in Europe

Conference Exhibition (DATE), 2012, pages 1373–1378, March 2012.

[27] D. Bouris, A. Nikitakis, and I. Papaefstathiou. Fast and efficient FPGA-based fea-

ture detection employing the SURF algorithm. In 18th IEEE Annual International

Symposium on Field-Programmable Custom Computing Machines (FCCM), pages

3–10, 2010.

[28] Alan C Bovik. Handbook of image and video processing. Academic press, 2010.

[29] Ronald Newbold Bracewell and RN Bracewell. The Fourier transform and its appli-

cations, volume 31999. McGraw-Hill New York, 1986.

[30] Stephen Brown and Jonathan Rose. Architecture of FPGAs and CPLDs: A tutorial.

IEEE Design and Test of Computers, 13(2):42–57, 1996.

[31] C. Cabani and W.J. MacLean. A proposed pipelined-architecture for FPGA-based

affine-invariant feature detectors. In Proc. of 2006 Computer Vision and Pattern

Recognition Workshop (CVPRW), pages 121–126, 2006.

[32] Jian-Feng Cai, Hui Ji, Chaoqiang Liu, and Zuowei Shen. Blind motion deblurring

from a single image using sparse approximation. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 104–111. IEEE, 2009.

151

BIBLIOGRAPHY

[33] Jian-Feng Cai, Hui Ji, Chaoqiang Liu, and Zuowei Shen. Framelet-based blind

motion deblurring from a single image. Image Processing, IEEE Transactions on,

21(2):562–572, 2012.

[34] Patrizio Campisi and Karen Egiazarian. Blind image deconvolution: theory and

applications. CRC press, 2007.

[35] Michael Cannon. Blind deconvolution of spatially invariant image blurs with

phase. Acoustics, Speech and Signal Processing, IEEE Transactions on, 24(1):58–63,

1976.

[36] S.D. Carlo, G. Gambardella, M. Indaco, D. Rolfo, G. Tiotto, and P. Prinetto. An area-

efficient 2-D convolution implementation on FPGA for space applications. In De-

sign and Test Workshop (IDT), 2011 IEEE 6th International, pages 88–92, Dec 2011.

[37] M. Ceschia, M. Violante, M.S. Reorda, A. Paccagnella, P. Bernardi, M. Rebaudengo,

D. Bortolato, M. Bellato, P. Zambolin, and A. Candelori. Identification and classifi-

cation of single-event upsets in the configuration memory of SRAM-based FPGAs.

Nuclear Science, IEEE Transactions on, 50(6):2088–2094, Dec 2003.

[38] J. Chen, L. Yuan, C.K. Tang, and L. Quan. Robust dual motion deblurring. In Com-

puter Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages

1–8. IEEE, 2008.

[39] Xiaogang Chen, Xiangjian He, Jie Yang, and Qiang Wu. An effective document im-

age deblurring algorithm. In Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on, pages 369–376. IEEE, 2011.

[40] Yang Cheng, J. Goguen, A. Johnson, C. Leger, L. Matthies, M.S. Martin, and R. Will-

son. The mars exploration rovers descent image motion estimation system. Intel-

ligent Systems, IEEE, 19(3):13–21, May 2004.

[41] Pong P Chu. RTL hardware design using VHDL: coding for efficiency, portability,

and scalability. John Wiley & Sons, 2006.

[42] Pierluigi Civera, Luca Macchiarulo, Maurizio Rebaudengo, M Sonza Reorda, and

Massimo Violante. Exploiting FPGA-based techniques for fault injection cam-

paigns on VLSI circuits. In Defect and Fault Tolerance in VLSI Systems, 2001. Pro-

ceedings. 2001 IEEE International Symposium on, pages 250–258. IEEE, 2001.

152

Bibliography

[43] C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hubner, and J. Becker. A

multi-platform controller allowing for maximum dynamic partial reconfiguration

throughput. In Field Programmable Logic and Applications, 2008. FPL 2008. Inter-

national Conference on, Sept 2008.

[44] Christopher Claus, Johannes Zeppenfeld, Florian Müller, and Walter Stechele. Us-

ing partial-run-time reconfigurable hardware to accelerate video processing in

driver assistance system. In Proceedings of the conference on Design, automation

and test in Europe, pages 498–503. EDA Consortium, 2007.

[45] Cobham Gaisler. GRLIB IP librry User’s Manual, 1.5.0 edition, January 2016.

[46] Altera Corporation. Implementing FPGA Design with the OpenCL Standard (WP-

01173-3.0), 2013.

[47] Philippe Coussy and Adam Morawiec. High-level synthesis: from Algorithm to dig-

ital circuits, volume 1. Springer, 2008.

[48] A. Cuoccio, P.R. Grassi, V. Rana, M.D. Santambrogio, and D. Sciuto. A generation

flow for self-reconfiguration controllers customization. In Electronic Design, Test

and Applications, 2008. DELTA 2008. 4th IEEE International Symposium on, pages

279–284, Jan 2008.

[49] J.J. Davis and P.Y.K. Cheung. Achieving low-overhead fault tolerance for parallel ac-

celerators with dynamic partial reconfiguration. In Field Programmable Logic and

Applications (FPL), 2014 24th International Conference on, pages 1–6, Sept 2014.

[50] G. Deng and L.W. Cahill. An adaptive gaussian filter for noise reduction and edge

detection. In Proc. of Nuclear Science Symposium and Medical Imaging Conference,

pages 1615 – 1619 vol.3, 1993.

[51] Adrien E Desjardins, Benjamin J Vakoc, Melissa J Suter, Seok-Hyun Yun,

Guillermo J Tearney, and Brett E Bouma. Real-time fpga processing for high-

speed optical frequency domain imaging. Medical Imaging, IEEE Transactions on,

28(9):1468–1472, 2009.

[52] S. Di Carlo, G. Gambardella, M. Indaco, D. Rolfo, G. Tiotto, and P. Prinetto. An area-

efficient 2-D convolution implementation on FPGA for space applications. In Proc.

of 6th International Design and Test Workshop (IDT), pages 88 –92, 2011.

153

BIBLIOGRAPHY

[53] S. Di Carlo, G. Gambardella, M. Indaco, D. Rolfo, G. Tiotto, and P. Prinetto. An area-

efficient 2-D convolution implementation on FPGA for space applications. In Proc.

of 6th International Design and Test Workshop (IDT), pages 88 – 92, 2011.

[54] S. Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta, and P. Lanza. FEMIP: A

high performance FPGA-based features extractor and matcher for space applica-

tions. In 23rd International Conference on Field Programmable Logic and Applica-

tions (FPL), pages 1–4, 2013.

[55] S. Di Carlo, A. Miele, P. Prinetto, and A. Trapanese. Microprocessor fault-tolerance

via on-the-fly partial reconfiguration. In European Test Symposium (ETS), 2010.

15th IEEE, pages 201–206, May 2010.

[56] S. Di Carlo, P. Prinetto, D. Rolfo, and P. Trotta. AIDI: An adaptive image denoising

fpga-based ip-core for real-time applications. In Adaptive Hardware and Systems

(AHS), 2013 NASA/ESA Conference on, pages 99–106, June 2013.

[57] S. Di Carlo, P. Prinetto, and A. Scionti. A FPGA-based reconfigurable software ar-

chitecture for highly dependable systems. In Asian Test Symposium, 2009. ATS ’09.,

pages 125–130, nov. 2009.

[58] Stefano Di Carlo, Giulio Gambardella, Marco Indaco, Paolo Prinetto, Daniele Rolfo,

and Pascal Trotta. Dependable dynamic partial reconfiguration with minimal area

& time overheads on xilinx fpgas. In Field Programmable Logic and Applications

(FPL), 2013 23rd International Conference on, pages 1–4. IEEE, 2013.

[59] Stefano Di Carlo, Giulio Gambardella, Piegiorgio Lanza, Paolo Prinetto, Daniele

Rolfo, and Pascal Trotta. Safe: a self adaptive frame enhancer fpga-based ip-core

for real-time space applications. In Design and Test Symposium (IDT), 2013 8th

International, pages 1–6. IEEE, 2013.

[60] Stefano Di Carlo, Giulio Gambardella, Paolo Prinetto, Daniele Rolfo, and Pascal

Trotta. Sa-femip: A self-adaptive features extractor and matcher ip-core based on

partially reconfigurable fpgas for space applications. 2014.

[61] Stefano Di Carlo, Giulio Gambardella, Paolo Prinetto, Daniele Rolfo, Pascal Trotta,

and Piegiorgio Lanza. Femip: A high performance fpga-based features extractor

154

Bibliography

& matcher for space applications. In Field Programmable Logic and Applications

(FPL), 2013 23rd International Conference on, pages 1–4. IEEE, 2013.

[62] Stefano Di Carlo, Paolo Prinetto, Daniele Rolfo, Nicola Sansonne, and Pascal Trotta.

A novel algorithm and hardware architecture for fast video-based shape recon-

struction of space debris. EURASIP Journal on Advances in Signal Processing,

2014(1):1–19, 2014.

[63] Stefano Di Carlo, Paolo Prinetto, Daniele Rolfo, and Pascal Trotta. Aidi: An adap-

tive image denoising fpga-based ip-core for real-time applications. In Adaptive

Hardware and Systems (AHS), 2013 NASA/ESA Conference on, pages 99–106. IEEE,

2013.

[64] Stefano Di Carlo, Paolo Prinetto, Daniele Rolfo, and Pascal Trotta. A fault injection

methodology and infrastructure for fast single event upsets emulation on xilinx

sram-based fpgas. In Defect and Fault Tolerance in VLSI and Nanotechnology Sys-

tems (DFT), 2014 IEEE International Symposium on, pages 159–164. IEEE, 2014.

[65] Stefano Di Carlo, Paolo Prinetto, Pascal Trotta, and Jan Andersson. A portable

open-source controller for safe dynamic partial reconfiguration on xilinx fpgas. In

Field Programmable Logic and Applications (FPL), 2015 25th International Confer-

ence on, pages 1–4. IEEE, 2015.

[66] R. Dobai and L. Sekanina. Image filter evolution on the xilinx zynq platform. In

Adaptive Hardware and Systems (AHS), 2013 NASA/ESA Conference on, pages 164–

171, 2013.

[67] T. Drahonovsky, M. Rozkovec, and O. Novak. Relocation of reconfigurable modules

on xilinx fpga. In Design and Diagnostics of Electronic Circuits Systems (DDECS),

2013 IEEE 16th International Symposium on, pages 175–180, April 2013.

[68] M. Dunstan, S. Parkes, and S. Mancuso. Visual navigation chip for planetary lan-

ders. In Proc. of 2005 Conference on DAta Systems In Aerospace (DASIA), pages 1–7,

2005.

[69] M. Dunstan and M. Souyri. The FEIC development for NPAL project: A core im-

age processing chip for smart landers navigation applications. In MicroElectronics

Presentation Days, ESA/ESTEC, 2004.

155

BIBLIOGRAPHY

[70] EADS Astrium. Navigation for planetary approach and landing - final report, [Ac-

cessed 28-July-2014].

[71] A. Ebrahim, T. Arslan, and X. Iturbe. On enhancing the reliability of internal con-

figuration controllers in fpgas. In Adaptive Hardware and Systems (AHS), 2014

NASA/ESA Conference on, July 2014.

[72] A. Ebrahim, K. Benkrid, X. Iturbe, and Chuan Hong. A novel high-performance

fault-tolerant icap controller. In Adaptive Hardware and Systems (AHS), 2012

NASA/ESA Conference on, June 2012.

[73] Michael Elad and Yacov Hel-Or. A fast super-resolution reconstruction algorithm

for pure translational motion and common space-invariant blur. Image Processing,

IEEE Transactions on, 10(8):1187–1193, 2001.

[74] F.A. Escobar, J. Tarrillo, Xin Chang, and C. Valderrama. Hardware managers with

file system support for faster dynamic partial reconfiguration. In Parallel and Dis-

tributed Processing with Applications (ISPA), 2014 IEEE International Symposium

on, pages 205–210, Aug 2014.

[75] Fairchild Imaging Corporation. CCD424 1024 x 1024 Pixel Image Area Split Frame

Transfer CCD Sensor, 2002.

[76] Sina Farsiu, M Dirk Robinson, Michael Elad, and Peyman Milanfar. Fast and robust

multiframe super resolution. Image processing, IEEE Transactions on, 13(10):1327–

1344, 2004.

[77] Giuseppe Airo Farulla, Marco Indaco, Paolo Prinetto, Daniele Rolfo, and Pascal

Trotta. Ablur: An fpga-based adaptive deblurring core for real-time applications.

In Adaptive Hardware and Systems (AHS), 2014 NASA/ESA Conference on, pages

104–111. IEEE, 2014.

[78] J Fernández-Berni, R Carmona-Galán, F Pozas-Flores, Á Zarándy, and Á Rodríguez-

Vázquez. Multi-resolution low-power gaussian filtering by reconfigurable focal-

plane binning. In SPIE Microtechnologies, pages 806806–806806. International So-

ciety for Optics and Photonics, 2011.

156

Bibliography

[79] G Flandin, B Polle, B Frapard, P Vidal, C Philippe, and T Voirin. Vision based nav-

igation for planetary exploration. In 32nd Annual AAS Rocky Mountain Guidance

and Control Conference, 2009.

[80] E.R. Fossum. Cmos image sensors: electronic camera-on-a-chip. Electron Devices,

IEEE Transactions on, 44(10):1689–1698, Oct 1997.

[81] G. Foucard, P. Peronnard, and R. Velazco. Reliability limits of TMR implemented

in a SRAM-based FPGA: Heavy ion measures vs. fault injection predictions. In Test

Workshop (LATW), 2010 11th Latin American, pages 1–5, March 2010.

[82] Eiji Fujiwara. Code design for dependable systems: theory and practical applica-

tions. John Wiley & Sons, 2006.

[83] J. Gaisler. A portable and fault-tolerant microprocessor based on the SPARC v8 ar-

chitecture. In Dependable Systems and Networks (DSN), 2002. International Con-

ference on, pages 409–415, June 23–26, 2002.

[84] J. Gaisler. A portable and fault-tolerant microprocessor based on the SPARC v8

architecture. In Dependable Systems and Networks, 2002. DSN 2002. Proceedings.

International Conference on, pages 409–415, 2002.

[85] Jiri Gaisler. A portable and fault-tolerant microprocessor based on the sparc v8

architecture. In Dependable Systems and Networks, 2002. DSN 2002. Proceedings.

International Conference on, pages 409–415. IEEE, 2002.

[86] Gaisler Research AB. GR-CPCI-XC4V LEON PCI Virtex 4 development board - prod-

uct sheet, [Accessed 28-July-2014].

[87] Joseph Gambarelli, Gérard Guérinel, Laurent Chevrot, and Mathieu Mattèi. Com-

puterized Axial Tomography: An Anatomic Atlas of Serial Sections of the Hu-

man Body AnatomyâĂŤRadiologyâĂŤScanner. Springer Science & Business Media,

2012.

[88] Z. Ghaderi, S.G. Miremadi, H. Asadi, and M. Fazeli. HAFTA: Highly available fault-

tolerant architecture to protect SRAM-based reconfigurable devices against mul-

tiple bit upsets. Device and Materials Reliability, IEEE Transactions on, 13(1):203–

212, March 2013.

157

BIBLIOGRAPHY

[89] E.A. Ghazaani, Z. Ghaderi, and S.G. Miremadi. A non-intrusive portable fault injec-

tion framework to assess reliability of FPGA-based designs. In Field-Programmable

Technology (FPT), 2013 International Conference on, pages 398–401, Dec 2013.

[90] F. Giesemann, G. Paya-Vaya, H. Blume, M. Limmer, and W. Ritter. A comprehensive

asic/fpga prototyping environment for exploring embedded processing systems

for advanced driver assistance applications. In Embedded Computer Systems: Ar-

chitectures, Modeling, and Simulation (SAMOS XIV), 2014 International Conference

on, pages 314–321, July 2014.

[91] Fei Gong, M. Vaidya, R. Kora, D. Harshbarger, B. Ulery, and W. Meyer. A fpga based

prototype verification in automotive mixed signal integrated circuit development.

In Circuits and Systems (MWSCAS), 2013 IEEE 56th International Midwest Sympo-

sium on, pages 1200–1203, Aug 2013.

[92] R.C. González and R.E. Woods. Digital image processing 3rd edition. Prentice Hall,

2007.

[93] R.C. González and R.E. Woods. Digital Image Processing. Pearson/Prentice Hall,

2008.

[94] Joseph W Goodman. Introduction to Fourier optics. Roberts and Company Pub-

lishers, 2005.

[95] S. Guillet, F. de Lamotte, N. Le Griguer, E. Rutten, J.-P. Diguet, and G. Gogniat. Mod-

eling and synthesis of a dynamic and partial reconfiguration controller. In Field

Programmable Logic and Applications (FPL), 2012 22nd International Conference

on, pages 703–706, Aug 2012.

[96] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown.

MiBench: A free, commercially representative embedded benchmark suite. In

Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop on,

pages 3–14, Dec 2001.

[97] S. Habinc. Suitability of reprogrammable FPGAs in space applications - feasibility

report. Technical report, Gaisler Research, September 2002.

[98] S.G. Hansen, D. Koch, and J. Torresen. High speed partial run-time reconfiguration

using enhanced icap hard macro. In Parallel and Distributed Processing Workshops

158

Bibliography

and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, pages 174–180,

May 2011.

[99] C. Harris and M. Stephens. A combined corner and edge detector. In Proc. of the

4th Alvey Vision Conference, pages 147 – 151, 1988.

[100] Scott Hauck and Andre DeHon. Reconfigurable Computing: The Theory and Prac-

tice of FPGA-Based Computation. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 2007.

[101] J. Heiner, N. Collins, and M. Wirthlin. Fault tolerant icap controller for high-reliable

internal scrubbing. In Aerospace Conference, 2008 IEEE, pages 1–10, March 2008.

[102] I. Herrera-Alzu and M. Lopez-Vallejo. Design techniques for xilinx virtex fpga con-

figuration memory scrubbers. Nuclear Science, IEEE Transactions on, 60(1):376–

385, Feb 2013.

[103] John C Hoffman and Marios S Pattichis. A high-speed dynamic partial reconfig-

uration controller using direct memory access through a multiport memory con-

troller and overclocking with active feedback. International Journal of Reconfig-

urable Computing, 2011, 2011.

[104] A. Hofmann, R. Wansch, R. Glein, and B. Kollmannthaler. An FPGA based on-

board processor platform for space application. In Adaptive Hardware and Systems

(AHS), 2012 NASA/ESA Conference on, pages 17–22, June 2012.

[105] M.M. Ibrahim, K. Asami, and Mengu Cho. Evaluation of SRAM-based FPGA per-

formance by simulating SEU through fault injection. In Recent Advances in Space

Technologies (RAST), 2013 6th International Conference on, pages 649–654, June

2013.

[106] Y. Ichinomiya, K. Takano, M. Amagasaki, M. Kuga, M. Iida, and T. Sueyoshi. Ac-

celerated evaluation of SEU failure-in-time using frame-based partial reconfigu-

ration. In Field-Programmable Technology (FPT), 2012 International Conference

on, pages 220–223, Dec 2012.

[107] Cadence Design Systems Inc. C-to-Silicon Compiler High-Level Synthesis: Auto-

mated high-level synthesis for design and verification, 2011.

159

BIBLIOGRAPHY

[108] Eric Jenn, Jean Arlat, Marcus Rimen, Joakim Ohlsson, and Johan Karlsson. Fault in-

jection into VHDL models: the MEFISTO tool. In Fault-Tolerant Computing, 1994.

FTCS-24. Digest of Papers., Twenty-Fourth International Symposium on, pages 66–

75. IEEE, 1994.

[109] A. Johnson, R. Willson, J. Goguen, J. Alexander, and D. Meller. Field testing of the

mars exploration rovers descent image motion estimation system. In Robotics and

Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Confer-

ence on, pages 4463–4469, April 2005.

[110] Josh Broline and Nick van Vonno - Electronic Design. Hard-

ening And Testing Semiconductor Devices In The Space Radia-

tion Environment. http://electronicdesign.com/analog/

hardening-and-testing-semiconductor-devices-\

space-radiation-environment. Accessed: 2016-02-18.

[111] Neel Joshi, Sing Bing Kang, C Lawrence Zitnick, and Richard Szeliski. Image

deblurring using inertial measurement sensors. ACM Transactions on Graphics

(TOG), 29(4):30, 2010.

[112] P. Kenterlis, N. Kranitis, A. Paschalis, D. Gizopoulos, and M. Psarakis. A low-cost

SEU fault emulation platform for SRAM-based FPGAs. In On-Line Testing Sympo-

sium, 2006. IOLTS 2006. 12th IEEE International, pages 7 pp.–, 2006.

[113] P. Koopman. 32-bit Cyclic Redundancy Codes for internet applications. In De-

pendable Systems and Networks (DSN), 2002. International Conference on, pages

459–468, December 2002.

[114] P. Koopman. 32-bit cyclic redundancy codes for internet applications. In Depend-

able Systems and Networks, 2002. DSN 2002. Proceedings. International Conference

on, pages 459–468, 2002.

[115] P. Koopman and T. Chakravarty. Cyclic Redundancy Code (CRC) polynomial selec-

tion for embedded networks. In Dependable Systems and Networks (DNS), 2004.

International Conference on, pages 145–154, July 2004.

[116] U. Kretzschmar, A. Astarloa, J. Jimenez, M. Garay, and J. Del Ser. Compact and

fast fault injection system for robustness measurements on SRAM-based FPGAs.

Industrial Electronics, IEEE Transactions on, 61(5):2493–2503, May 2014.

160

http://electronicdesign.com/analog/hardening-and-testing-semiconductor-devices-\space-radiation-environment
http://electronicdesign.com/analog/hardening-and-testing-semiconductor-devices-\space-radiation-environment
http://electronicdesign.com/analog/hardening-and-testing-semiconductor-devices-\space-radiation-environment

Bibliography

[117] Dilip Krishnan and Rob Fergus. Fast image deconvolution using hyper-laplacian

priors. In Advances in Neural Information Processing Systems, pages 1033–1041,

2009.

[118] Dilip Krishnan, Terence Tay, and Rob Fergus. Blind deconvolution using a normal-

ized sparsity measure. In Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on, pages 233–240. IEEE, 2011.

[119] Ian Kuon, Russell Tessier, and Jonathan Rose. Fpga architecture: Survey and chal-

lenges. Foundations and Trends in Electronic Design Automation, 2(2):135–253,

2008.

[120] R.D. LaBelle and S.D. Garvey. Introduction to high performance ccd cameras. In

Instrumentation in Aerospace Simulation Facilities, 1995. ICIASF ’95 Record., Inter-

national Congress on, pages 30/1–30/5, Jul 1995.

[121] P Lanza, A Martelli, Paolo Ernesto Prinetto, Daniele Rolfo, A Tramutola, and Pas-

cal Trotta. Advanced image processing in space applications: the new trend to

increase the success rate of exploration space missions.

[122] P Lanza, A Martelli, Paolo Ernesto Prinetto, Daniele Rolfo, A Tramutola, and Pas-

cal Trotta. Fpga-based ip-cores library for advanced image processing in space

applications. In 2013 International Space System Engineering Conference on Data

Systems In Aerospace.

[123] J.-C. Laprie. Dependable computing and fault tolerance : Concepts and termi-

nology. In Fault-Tolerant Computing, 1995, Highlights from Twenty-Five Years.,

Twenty-Fifth International Symposium on, pages 2–, Jun 1995.

[124] Lattice Semiconductor. MachXO2 Family Data Sheet (DS1035), 2015.

[125] U. Legat, A. Biasizzo, and F. Novak. Automated SEU fault emulation using partial

FPGA reconfiguration. In Design and Diagnostics of Electronic Circuits and Systems

(DDECS), 2010 IEEE 13th International Symposium on, pages 24–27, April 2010.

[126] Austin Lesea, Saar Drimer, Joseph J Fabula, Carl Carmichael, and Peter Alfke. The

rosetta experiment: atmospheric soft error rate testing in differing technology FP-

GAs. Device and Materials Reliability, IEEE Transactions on, 5(3):317–328, 2005.

161

BIBLIOGRAPHY

[127] Brian Leung and Seda Ogrenci Memik. Exploring super-resolution implementa-

tions across multiple platforms. EURASIP Journal on Advances in Signal Process-

ing, 2013(1):116, 2013.

[128] Anat Levin, Yair Weiss, Fredo Durand, and William T Freeman. Understanding

and evaluating blind deconvolution algorithms. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1964–1971. IEEE, 2009.

[129] C.C. Liebe. Star trackers for attitude determination. Aerospace and Electronic Sys-

tems Magazine, IEEE, 10(6):10–16, Jun 1995.

[130] Dave Litwiller. Ccd vs. cmos. Photonics Spectra, 35(1):154–158, 2001.

[131] Ming Liu, W. Kuehn, Zhonghai Lu, and A. Jantsch. Run-time partial reconfigura-

tion speed investigation and architectural design space exploration. In Field Pro-

grammable Logic and Applications, 2009. FPL 2009. International Conference on,

pages 498–502, Aug 2009.

[132] S. Liu, M. Boden, D.A. Girdhar, and J.L. Titus. Single-event burnout and

avalanche characteristics of power dmosfets. Nuclear Science, IEEE Transactions

on, 53(6):3379–3385, Dec 2006.

[133] Dominik Lorenz, Martin Barke, and Ulf Schlichtmann. Efficiently analyzing the

impact of aging effects on large integrated circuits. Microelectronics Reliability,

52(8):1546 – 1552, 2012. {ICMAT} 2011 - Reliability and variability of semiconduc-

tor devices and {ICs}.

[134] E. Loupias, N. Sebe, S. Bres, and J.-M. Jolion. Wavelet-based salient points for im-

age retrieval. In Proceedings. 2000 International Conference on Image Processing,

volume 2, pages 518–521 vol.2, 2000.

[135] David G. Lowe. Object recognition from local scale-invariant features. In Pro-

ceedings of the International Conference on Computer Vision-Volume 2 - Volume 2,

ICCV ’99, Washington, DC, USA, 1999. IEEE Computer Society.

[136] LB Lucy. An iterative technique for the rectification of observed distributions. The

astronomical journal, 79:745, 1974.

[137] A. Lustica. Ccd and cmos image sensors in new hd cameras. In ELMAR, 2011

Proceedings, pages 133–136, Sept 2011.

162

Bibliography

[138] Wassim Mansour and Raoul Velazco. SEU fault-injection in VHDL-based proces-

sors: A case study. Journal of Electronic Testing, 29(1):87–94, 2013.

[139] Clive Maxfield. FPGAs: World Class Designs: World Class Designs. Newnes, 2009.

[140] M.D. McFarlane. Digital pictures fifty years ago. Proceedings of the IEEE, 60(7):768–

770, July 1972.

[141] Ronald W Mehler. Digital Integrated Circuit Design Using Verilog and SystemVer-

ilog. Elsevier, 2014.

[142] Uwe Meyer-Baese and U Meyer-Baese. Digital signal processing with field pro-

grammable gate arrays, volume 65. Springer, 2007.

[143] Microsemi Corporation. Axcelerator Family FPGAs Datasheet, 2012.

[144] Microsemi Corporation. FPGAs for Space Applications, 2012.

[145] Microsemi Corporation. IGLOO2 and SmartFusion2 65nm Commercial Flash FP-

GAs - Interim Summary of Radiation Test Results, 2014.

[146] Microsemi Corporation. IGLOO2 FPGA and SmartFusion2 SoC FPGA - DS0128

Datasheet, 2015.

[147] Microsemi Corporation. Radiation-Tolerant FPGAs, 2015.

[148] Microsemi Corporation. RTAX-S/SL and RTAX-DSP Radiation-Tolerant FPGAs

Datasheet, 2015.

[149] Microsemi Corporation. RTG4 FPGA Fabric User Guide (UG0574), 2015.

[150] Lukas Miculka and Zdenek Kotasek. Generic partial dynamic reconfiguration con-

troller for transient and permanent fault mitigation in fault tolerant systems im-

plemented into fpga. In Design and Diagnostics of Electronic Circuits Systems, 17th

International Symposium on, April 2014.

[151] JM Mogollon, H Guzman-Miranda, J Napoles, J Barrientos, and MA Aguirre. FTUN-

SHADES2: A novel platform for early evaluation of robustness against SEE. In Ra-

diation and Its Effects on Components and Systems (RADECS), 2011 12th European

Conference on, pages 169–174. IEEE, 2011.

163

BIBLIOGRAPHY

[152] J. Mora, A. Gallego, A. Otero, E. de la Torre, and T. Riesgo. Noise-agnostic adap-

tive image filtering without training references on an evolvable hardware platform.

In 2013 Conference on Design and Architectures for Signal and Image Processing

(DASIP), pages 182–189, 2013.

[153] J. Mora, A. Gallego, A. Otero, B. Lopez, E. de la Torre, and T. Riesgo. A noise-agnostic

self-adaptive image processing application based on evolvable hardware. In 2013

Conference on Design and Architectures for Signal and Image Processing (DASIP),

pages 351–352, 2013.

[154] A.I. Mourikis, N. Trawny, S.I. Roumeliotis, A.E. Johnson, A. Ansar, and L. Matthies.

Vision-aided inertial navigation for spacecraft entry, descent, and landing. IEEE

Transactions on Robotics, 25(2):264–280, April 2009.

[155] P. Nangtin, P. Kumhom, and K. Chamnongthai. Video-based obstacle tracking for

automatic train navigation. In Proc. of 2005 International Symposium on Intelligent

Signal Processing and Communication Systems (ISPACS), pages 21–24, 2005.

[156] NASA. NASA Curiosity Rover: Entry, Descent, and Landing, [Accessed 28-July-

2014].

[157] NASA. Solar system exploration roadmap, [Accessed 28-July-2014].

[158] NASA Jet Propulsion Laboratory. Mission to Moon - Ranger 7. http://www.

jpl.nasa.gov/missions/ranger-7/. Accessed: 2016-02-21.

[159] National Aeronautics and Space Administration. Final Minutes of Curios-

ity’s Arrival at Mars. http://www.nasa.gov/mission_pages/msl/

multimedia/gallery/pia13282.html. Accessed: 2016-02-22.

[160] National Aeronautics and Space Administration. Kepler 2 and K2 - Mis-

sion Overview. http://www.nasa.gov/mission_pages/kepler/

overview/index.html. Accessed: 2016-02-22.

[161] National Aeronautics and Space Administration. NEO - NASA Earth Observation.

http://neo.sci.gsfc.nasa.gov/. Accessed: 2016-02-22.

[162] National Aeronautics and Space Administration - Jet Propulsion Laboratory. Mars

Exploration Rovers. http://mars.nasa.gov/mer/overview/. Accessed:

2016-02-23.

164

http://www.jpl.nasa.gov/missions/ranger-7/
http://www.jpl.nasa.gov/missions/ranger-7/
http://www.nasa.gov/mission_pages/msl/multimedia/gallery/pia13282.html
http://www.nasa.gov/mission_pages/msl/multimedia/gallery/pia13282.html
http://www.nasa.gov/mission_pages/kepler/overview/index.html
http://www.nasa.gov/mission_pages/kepler/overview/index.html
http://neo.sci.gsfc.nasa.gov/
http://mars.nasa.gov/mer/overview/

Bibliography

[163] National Aeronautics and Space Administration - Jet Propulsion Laboratory. Mars

Science Laboratory: Curiosity Rover. http://mars.jpl.nasa.gov/msl/

mission/overview/. Accessed: 2016-02-22.

[164] National Aeronautics and Space Administration - Jet Propulsion Laboratory. Mars

Science Laboratory: Curiosity Rover - Mars Descent Imager (MARDI). http://

mars.nasa.gov/msl/mission/instruments/cameras/mardi/. Ac-

cessed: 2016-02-22.

[165] National Aeronautics and Space Administration - Jet Propulsion Laboratory. Mars

Science Laboratory: Eyes and Other Senses. http://mars.jpl.nasa.gov/

msl/mission/rover/eyesandother/. Accessed: 2016-02-22.

[166] G.L. Nazar and L. Carro. Fast single-FPGA fault injection platform. In Defect and

Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2012 IEEE Interna-

tional Symposium on, pages 152–157, Oct 2012.

[167] Sergiu Nedevschi, Radu Danescu, Ciprian Pocol, and Marc Michael Meinecke.

Stereo image processing for adas and pre-crash systems. In proc of 5th Interna-

tional Workshop on Intelligent Transportation, pages 55–60, 2008.

[168] Kyprianos Papadimitriou, Apostolos Dollas, and Scott Hauck. Performance of par-

tial reconfiguration in fpga systems: A survey and a cost model. ACM Transactions

on Reconfigurable Technology and Systems (TRETS), 4(4):36, 2011.

[169] Gardana Pavlovic and A Murat Tekalp. Maximum likelihood parametric blur iden-

tification based on a continuous spatial domain model. Image Processing, IEEE

Transactions on, 1(4):496–504, 1992.

[170] Edward Petersen. Single event effects in aerospace. John Wiley & Sons, 2011.

[171] Hung-Manh Pham, Van-Cuong Nguyen, and Trong-Tuan Nguyen. Ddr2/ddr3-

based ultra-rapid reconfiguration controller. In Communications and Electronics

(ICCE), 2012 Fourth International Conference on, pages 453–458, Aug 2012.

[172] Ioannis Pitas. Digital image processing algorithms and applications. Wiley.com,

2000.

165

http://mars.jpl.nasa.gov/msl/mission/overview/
http://mars.jpl.nasa.gov/msl/mission/overview/
http://mars.nasa.gov/msl/mission/instruments/cameras/mardi/
http://mars.nasa.gov/msl/mission/instruments/cameras/mardi/
http://mars.jpl.nasa.gov/msl/mission/rover/eyesandother/
http://mars.jpl.nasa.gov/msl/mission/rover/eyesandother/

BIBLIOGRAPHY

[173] A. Putnam, A.M. Caulfield, E.S. Chung, D. Chiou, K. Constantinides, J. Demme,

H. Esmaeilzadeh, J. Fowers, G.P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,

A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P.Y.

Xiao, and D. Burger. A reconfigurable fabric for accelerating large-scale datacen-

ter services. In Computer Architecture (ISCA), 2014 ACM/IEEE 41st International

Symposium on, pages 13–24, June 2014.

[174] Alex Rav-Acha and Shmuel Peleg. Two motion-blurred images are better than one.

Pattern Recognition Letters, 26(3):311–317, 2005.

[175] F. Russo. A method for estimation and filtering of gaussian noise in images. IEEE

Transactions on Instrumentation and Measurement, 52(4):1148 – 1154, 2003.

[176] Julio Sanchez and Maria P. Canton. Space Image Processing. CRC Press, Inc., Boca

Raton, FL, USA, 1st edition, 1998.

[177] Ronald Donald Schrimpf and Dan M Fleetwood. Radiation effects and soft errors

in integrated circuits and electronic devices, volume 34. World Scientific, 2004.

[178] Ronald Donald Schrimpf and Dan M Fleetwood. Radiation effects and soft errors

in integrated circuits and electronic devices, volume 12. World Scientific, 2004.

[179] F. Schwiegelshohn, L. Gierke, and M. Hubner. Fpga based traffic sign detection for

automotive camera systems. In Reconfigurable Communication-centric Systems-

on-Chip (ReCoSoC), 2015 10th International Symposium on, pages 1–6, June 2015.

[180] R. Scrofano, M.B. Gokhale, F. Trouw, and V.K. Prasanna. Accelerating molecular dy-

namics simulations with reconfigurable computers. Parallel and Distributed Sys-

tems, IEEE Transactions on, 19(6):764–778, June 2008.

[181] SEMICO research corporation. How an FPGA Approach to Complex System Design

Can Improve Profitability: Real Case Studies, 2012.

[182] Debashis Sen and Sankar K Pal. Gradient histogram: Thresholding in a region of

interest for edge detection. Image and Vision Computing, 28(4):677–695, 2010.

[183] O. Serres, V.K. Narayana, and T. El-Ghazawi. An architecture for reconfigurable

multi-core explorations. In Reconfigurable Computing and FPGAs (ReConFig),

2011. International Conference on, pages 105–110, December 2011.

166

Bibliography

[184] Douglas Sheldon. Flash-based fpga nepp fy12 summary report.

[185] S. Shreejith and S.A. Fahmy. Extensible flexray communication controller for fpga-

based automotive systems. Vehicular Technology, IEEE Transactions on, 64(2):453–

465, Feb 2015.

[186] Shanker Shreejith, Kizhepatt Vipin, Suhaib A. Fahmy, and Martin Lukasiewycz. An

approach for redundancy in flexray networks using fpga partial reconfiguration.

In Design, Automation Test in Europe Conference Exhibition (DATE), 2013, pages

721–724, March 2013.

[187] Felix Siegle, Tanya Vladimirova, Jørgen Ilstad, and Omar Emam. Mitigation of ra-

diation effects in sram-based fpgas for space applications. ACM Comput. Surv.,

47(2):37:1–37:34, January 2015.

[188] S. M. Smith and J. M. Brady. SUSAN - a new approach to low level image process-

ing. International Journal of Computer Vision (IJCV), 23:45–78, 1995.

[189] Haengseon Son, Seonyoung Lee, and Kyungwon Min. Fpga implementation of

uwb radar signal processing for automotive application. In Wireless Technology

Conference (EuWIT), 2010 European, pages 49–52, Sept 2010.

[190] Man Mohan Sondhi. Image restoration: The removal of spatially invariant degra-

dations. Proceedings of the IEEE, 60(7):842–853, 1972.

[191] A. Sreeramareddy, R. Kallam, A.R. Dasu, and A. Akoglu. Self-configurable archi-

tecture for reusable systems with accelerated relocation circuit (SCARS-ARC). In

Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010. IEEE

International Symposium on, pages 1–4, April 2010.

[192] L. Sterpone, D. Sabena, A. Ullah, M. Porrmann, J. Hagemeyer, and J. Ilstad. Dy-

namic neutron testing of dynamically reconfigurable processing modules archi-

tecture. In Adaptive Hardware and Systems (AHS), 2013 NASA/ESA Conference on,

pages 184–188, June 2013.

[193] M. Straka, J. Kastil, and Z. Kotasek. Fault tolerant structure for SRAM-based FPGA

via partial dynamic reconfiguration. In Digital System Design: Architectures, Meth-

ods and Tools (DSD), 2010. 13th Euromicro Conference on, pages 365–372, Septem-

ber. 2010.

167

BIBLIOGRAPHY

[194] Martin Straka, Jan Kastil, Zdenek Kotasek, and Lukas Miculka. Fault tolerant sys-

tem design and SEU injection based testing. Microprocessors and Microsystems,

37(2):155–173, 2013.

[195] Tomasz Szydzik, Gustavo M Callico, and Antonio Nunez. Efficient fpga implemen-

tation of a high-quality super-resolution algorithm with real-time performance.

Consumer Electronics, IEEE Transactions on, 57(2):664–672, 2011.

[196] Shen-Chuan Tai and Shih-Ming Yang. A fast method for image noise estimation

using laplacian operator and adaptive edge detection. In Proc. of 3rd International

Symposium on Communications, Control and Signal Processing (ISCCSP), pages

1077 – 1081, 2008.

[197] Yu-Wing Tai, Hao Du, Michael S Brown, and Stephen Lin. Correction of spatially

varying image and video motion blur using a hybrid camera. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 32(6):1012–1028, 2010.

[198] Yu-Wing Tai, Ping Tan, and Michael S Brown. Richardson-lucy deblurring for

scenes under a projective motion path. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 33(8):1603–1618, 2011.

[199] J. Tarrillo, F.A. Escobar, F. Lima Kastensmidt, and C. Valderrama. Dynamic partial

reconfiguration manager. In Circuits and Systems (LASCAS), 2014 IEEE 5th Latin

American Symposium on, pages 1–4, Feb 2014.

[200] Thales Alenia Space. Aerospace module speed and trajectory estimation - internal

report. Technical report, 2012.

[201] The Planetary Society. Curiosity’s shrinking landing ellipse. http:

//www.planetary.org/blogs/emily-lakdawalla/2012/

20120611-curiosity-landing-ellipse.html. Accessed: 2016-02-

22.

[202] Jing Tian and Li Chen. Image noise estimation using a variation-adaptive evolu-

tionary approach. IEEE Signal Processing Letters, 19(7):395 – 398, 2012.

[203] Matteo Tomasi, Shrinivas Pundlik, and Gang Luo. Fpga–dsp co-processing for fea-

ture tracking in smart video sensors. Journal of Real-Time Image Processing, pages

1–17, 2014.

168

http://www.planetary.org/blogs/emily-lakdawalla/2012/20120611-curiosity-landing-ellipse.html
http://www.planetary.org/blogs/emily-lakdawalla/2012/20120611-curiosity-landing-ellipse.html
http://www.planetary.org/blogs/emily-lakdawalla/2012/20120611-curiosity-landing-ellipse.html

Bibliography

[204] Tinne Tuytelaars and Krystian Mikolajczyk. Local Invariant Feature Detectors: A

Survey. Now Publishers Inc., 2008.

[205] C. Urbina-Ortega, G. Furano, G. Magistrati, K. Marinis, and A. Menicucci. Flash-

based FPGAs in Space, design guidelines and trade-off for critical applications.

In Proc. of IEEE Conference on Radiation Effects on Components and Systems

(RADECS), 2013.

[206] Isa Servan Uzun, Abbes Amira, and Ahmed Bouridane. Fpga implementations of

fast fourier transforms for real-time signal and image processing. In Vision, Image

and Signal Processing, IEE Proceedings-, volume 152, pages 283–296. IET, 2005.

[207] Isa Servan Uzun, Abbes Amira, and Ahmed Bouridane. Fpga implementations of

fast fourier transforms for real-time signal and image processing. In Vision, Image

and Signal Processing, IEE Proceedings-, volume 152, pages 283–296. IET, 2005.

[208] Wim Vanderbauwhede and Khaled Benkrid. High-Performance Computing Using

FPGAs. Springer, 2013.

[209] Gorka Velez, Ainhoa Cortés, Marcos Nieto, Igone Vélez, and Oihana Otaegui. A

reconfigurable embedded vision system for advanced driver assistance. Journal of

Real-Time Image Processing, 10(4):725–739, 2014.

[210] C.Y. Villalpando, R.A Werner, J.M. Carson, G. Khanoyan, R.A Stern, and N. Trawny.

A hybrid FPGA/Tilera compute element for autonomous hazard detection and

navigation. In Aerospace Conference, 2013 IEEE, pages 1–9, 2013.

[211] K. Vipin and S.A. Fahmy. A high speed open source controller for fpga partial re-

configuration. In Field-Programmable Technology (FPT), 2012 International Con-

ference on, pages 61–66, Dec 2012.

[212] K. Vipin and S.A. Fahmy. Zycap: Efficient partial reconfiguration management on

the xilinx zynq. Embedded Systems Letters, IEEE, 6(3):41–44, Sept 2014.

[213] Wei Wang and Michael K Ng. On algorithms for automatic deblurring from a single

image. Journal of Computational Mathematics, 30(1):80–100, 2012.

[214] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. Non-uniform deblurring for shaken

images. International Journal of Computer Vision, 98(2):168–186, 2012.

169

BIBLIOGRAPHY

[215] V. Winkler, J. Detlefsen, U. Siart, J. Buchler, and M. Wagner. Fpga-based signal

processing of an automotive radar sensor. In Radar Conference, 2004. EURAD. First

European, pages 245–248, Oct 2004.

[216] Loring Wirbel. Xilinx SDAccel: A Unified Development Environment for Tomorrow’s

Data Center, 2014.

[217] Francis C Wong. Digital circuit testing: A guide to DFT and other techniques. Else-

vier, 2012.

[218] Xilinx. ML403 Evaluation Platform, v2.5 edition, May 2006.

[219] Xilinx Corp. UltraScale Devices Maximize Design Integrity with Industry-Leading

SEU Resilience and Mitigation, wp462 (v1.0) edition, 2015.

[220] Xilinx Corporation. CPLD: what is a CPLD? http://www.xilinx.com/

cpld/. Accessed: 2015-12-26.

[221] Xilinx Corporation. FPGA vs. ASIC: What is the Difference Between a FPGA and an

ASIC? http://www.xilinx.com/fpga/asic.htm. Accessed: 2015-12-19.

[222] Xilinx Corporation. The Total Solution for Next-Generation Automotive Appli-

cations. http://www.xilinx.com/applications/automotive.html.

Accessed: 2015-01-03.

[223] Xilinx Corporation. MicroBlaze Processor Reference Guide, January 2008.

[224] Xilinx Corporation. PowerPC Processor Reference Guide, January 2010.

[225] Xilinx Corporation. Automotive Driver Assistance Systems: Using the Processing

Power of FPGAs - White paper (WP399), 2011.

[226] Xilinx Corporation. Continuing Experiments of Atmospheric Neutron Effects on

Deep Submicron Integrated Circuits - White paper (WP286), 2011.

[227] Xilinx Corporation. LogiCORE IP XPS HWICAP v5.01a (DS586), June 2011.

[228] Xilinx Corporation. ML605 Hardware User Guide - UG534 (v1.8), 2012.

[229] Xilinx Corporation. Partial Reconfiguration of Xilinx FPGAs Using ISE Design Suite

- WP374, 2012.

170

http://www.xilinx.com/cpld/
http://www.xilinx.com/cpld/
http://www.xilinx.com/fpga/asic.htm
http://www.xilinx.com/applications/automotive.html

Bibliography

[230] Xilinx Corporation. Partial Reconfiguration of Xilinx FPGAs Using ISE Design Suite

(WP374 - v1.2), 2012.

[231] Xilinx Corporation. Partial Reconfiguration User Guide, ug702 (v12.3) edition, Oc-

tober 2012.

[232] Xilinx Corporation. PRC/EPRC: Data Integrity and Security Controller for Partial

Reconfiguration (XAPP887) v1.1, June 2012.

[233] Xilinx Corporation. 7 Series FPGAs Configuration User Guide (UG470), 2013.

[234] Xilinx Corporation. Command Line Tools User Guide (UG628), 2013.

[235] Xilinx Corporation. LogiCORE IP AXI HWICAP v3.0 (PG134), December 2013.

[236] Xilinx Corporation. LogiCORE IP Fast Fourier Transform v9.0 Product Guide -

PG109, 2013.

[237] Xilinx Corporation. LogiCORE IP Soft Error Mitigation Controller v4.0 - Product

Guide for Vivado Design Suite (PG036), 2013.

[238] Xilinx Corporation. Partial Reconfiguration User Guide (UG702), 2013.

[239] Xilinx Corporation. Partial Reconfiguration User Guide (UG702 - v14.5), 2013.

[240] Xilinx Corporation. Virtex-6 FPGA Clocking Resources User Guide (UG362), 2013.

[241] Xilinx Corporation. Vivado Design Suite User Guide: Partial Reconfiguration

(UG909 - v2015.4), 2013.

[242] Xilinx Corporation. 7 Series FPGAs Configurable Logic Block User Guide (UG474),

2014.

[243] Xilinx Corporation. 7 Series FPGAs Memory Resources User Guide - UG473, 2014.

[244] Xilinx Corporation. 7 Series FPGAs Overview - DS180, 2014.

[245] Xilinx Corporation. A Generation Ahead for Smarter Systems: 9 reasons why the

Xilinx Zynq-7000 All Programmable SoC platform is the smartest solution, 2014.

[246] Xilinx Corporation. Device Reliability Report - Fourth Quarter 2013 (UG116), 2014.

171

BIBLIOGRAPHY

[247] Xilinx Corporation. Radiation-Hardened, Space-Grade Virtex-5QV Family

Overview (DS192 - v1.4), 2014.

[248] Xilinx Corporation. Space-Grade Virtex-4QV Family Overview (DS653 - v2.1), 2014.

[249] Xilinx Corporation. Spartan-3AN FPGA Family Data Sheet (DS557), 2014.

[250] Xilinx Corporation. Vivado Design Suite User Guide - Partial Reconfiguration

v2014.4 (UG909), November 2014.

[251] Xilinx Corporation. Vivado Design Suite User Guide: High-Level Synthesis - UG902

(v2015.4), 2015.

[252] Xilinx Corporation. White Paper: UltraScale Devices Maximize Design Integrity

with Industry-Leading SEU Resilience and Mitigation (WP462 - v1.0), 2015.

[253] Xilinx Corporation. Virtex-4 FPGA User Guide - UG070, [Online - accessed 28-July-

2014].

[254] Lifan Yao, Hao Feng, Yiqun Zhu, Zhiguo Jiang, Danpei Zhao, and Wenquan Feng.

An architecture of optimised SIFT feature detection for an FPGA implementation

of an image matcher. In International Conference on Field-Programmable Technol-

ogy, 2009. FPT 2009., pages 30–37, 2009.

[255] Ian T Young, Jan J Gerbrands, and Lucas J Van Vliet. Fundamentals of image pro-

cessing. Delft University of Technology Delft, The Netherlands, 1998.

[256] Jun Zhang, Weisong Liu, and Yirong Wu. Novel technique for vision-based UAV

navigation. IEEE Transactions on Aerospace and Electronic Systems, 47:2731–2741,

2011.

[257] Feng Zhao, Qingming Huang, and Wen Gao. Image matching by normalized cross-

correlation. In Proc. of 2006 International Conference on Acoustics, Speech and Sig-

nal Processing(ICASSP), pages II:729–732, 2006.

[258] Zhen-Bing Zhao, Jin-Sha Yuan, Qiang Gao, and Ying-Hui Kong. Wavelet image de-

noising method based on noise standard deviation estimation. In Proc. of Inter-

national Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), vol-

ume 4, pages 1910 – 1914, 2007.

172

	List of Figures
	List of Tables
	Introduction
	Thesis Organization

	Digital Image Processing for Mission-critical Applications
	History of Digital Image Processing
	Image Processing in mission-critical applications
	Imaging sensors and related issues
	Mathematical model

	Reconfigurable Devices for Mission-critical Applications: architectures and issues
	History and Evolution of Programmable Logic Devices: from Programmable Logic Arrays to modern FPGAs
	Field Programmable Gate Arrays architectures
	One-time programmable FPGAs
	Reconfigurable FPGAs
	Flash-based FPGAs
	SRAM-based FPGAs

	FPGAs for mission-critical applications
	Dynamic Partial Reconfiguration
	Configuration Details and Bitstream Composition

	Dependability issues in modern reconfigurable FPGAs
	Dependability issues in dynamically reconfigurable systems

	Building Robust Hardware Accelerators and systems for real-time embedded image processing on reconfigurable FPGAs
	ABLUR: an FPGA-based adaptive deblurring core for real-time applications
	Deblurring Algorithms Overview
	ABLUR Architecture
	Input Image Fast Fourier Transform module (FFT(y))
	Gradient calculator
	 estimator
	Reconfiguration Manager
	w calculator
	w Fast Fourier Transform module (FFT(w))
	Formula Solver
	Control Unit

	Experimental results

	SA-FEMIP: a Self-Adaptive Features Extractor and Matcher IP-core based on Partially Reconfigurable FPGAs for Space Applications
	Related Works
	SA-FEMIP Architecture
	Reconfigurable Gaussian Filter
	Adaptive Harris Feature Extractor
	Features Matcher
	SA-FEMIP timing diagram
	Experimental Results

	On Enhancing Dependability of Dynamic Partial Reconfiguration
	Dependability issues in DPR
	Dependable DPR with minimal area and time overheads
	Proposed Methodology and Design Rules
	Partial bitstream file splitting
	Critical links protection
	Critical modules protection

	Experimental results
	Reference solution implementation
	Proposed approach implementation
	Comparison

	A portable open-source controller for safe Dynamic Partial Reconfiguration
	Related Works
	Proposed architecture
	Synchronous/Asynchronous DPR
	Dependable DPR (D2PR)
	Dependable DPR with Cyclic Redundancy Check (D2PR-CRC)
	Dependable DPR (D2PR) with Error Correcting Code (D2PR-EDAC)

	Experimental Results

	Evaluating system's robustness through error injection
	Related Works
	Proposed Methodology and Infrastructure
	Fault Generator
	System Input Controller
	System Clock Controller
	System Output Collector and Fault Classifier

	Experimental Results

	List of symbols and acronyms
	Bibliography

