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Abstract. Multi-Disciplinary Optimization (MDO) is widely ugkto suitably handle the advanced
design in several engineering applications. Sugticgiions are commonly simulation-based, in order
to properly capture the physics of the phenomendewurstudy. This framework demands fast
optimization algorithms as well as trustworthy nuiced analyses, and a synergic integration between
the two is required to obtain an efficient designgess. In order to meet these needs, an adaptive
Computational Fluid Dynamics (CFD) solver and & fgstimization algorithm have been developed
and combined by the authors. The CFD solver is dase a high-order discontinuous Galerkin
discretization while the optimization algorithm as high-performance version of the Artificial Bee
Colony method. In this work, they are used to as&li@etypical aero-mechanical problem encountered
in turbomachinery design. Interesting achievementsthe considered test case are illustrated,
highlighting the potential applicability of the grased approach to other engineering problems.

Keywords. MDO, swarm intelligence, discontinuous Galerkimbamachinery, CFD

1. Introduction

In advanced engineering, computational tools assamessential role when dealing with
complex design problems (Rao 2009). This field nexgu efficient improvement strategies,
extensive automation of the design process anddesl appropriate investigations of the involved
physical phenomena. In general, a compromise betaeeuracy and time/cost is mandatory for
the whole design system, especially for the contjmutal simulations adopted to describe the
physics. In this regard, a proper tuning and vélitaof numerical models on reference problems
must be accomplished. Furthermore, the adoptednatiion strategy should efficiently satisfy
the pursued goals while respecting all the comdgain conclusion, the optimization algorithm
and the physical description should be combinedabyautomatic process which leads to an
efficient design platform.
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In this framework, several modern applications mgieeering require detailed, multipurpose and
fast optimizations. The Multi-Disciplinary Optimizan (MDO) approach is regularly adopted to
manage such problems (Vanderplaats 2007), retumsef of non-dominated candidate solutions,
i.e., the Pareto Front. In the present work, the QMihethodology is used to optimize a
turbomachinery test case, the well-known T106c pressure turbine cascade. Its geometry and
experimental results are openly available (Michadgkal. 2010; Hillewaertet al 2013). A
representative simulation-based MDO problem is tbeinup, estimating both performance and
mechanical properties. The objective is to minimthe aero losses while respecting some
structural constraints.

In order to address such a problem, a fully autanMDO platform is developed. It integrates the
optimization algorithm directly with the Computated Fluid Dynamics (CFD) simulations,
without using surrogates. Although surrogates aptoited in a large class of applications (Jones
2001; Koziel and Leifsson 2013; McCullagh and Neli889) their training phase is a delicate
matter (Forresteet al. 2008) and hence could not be not cost-effectivéerms of Function
Evaluations (FEs) when the target functions hagé dimensionality and are very complex, noisy
and multimodal. Therefore, this work exploits arficgdnt direct search technique explicitly
designed to limit the total number of FEs.

There are several architectures and algorithmsalsdeitfor MDO, also when each function
evaluation is costly: gradient-based methods, tregion approaches, nature-based algorithms,
adjoint techniques and many others (Martins andiea@®013; Vestraete and Periaux 2012; Koziel
and Yang 2011; loll@t al. 2001). Among them, the meta-heuristic plays a@@m@nant role when
dealing with many variables and noisy target fuordi whose properties are not known a priori
(Talbi 2009). Besides the well-known evolution-tihs®trategies, there are many recent bio-
inspired and efficient methods (Yang 2010), sucPRadicle Swarm Optimization (PSO) and other
swarm-based techniques (Bonabegal. 1999; Kennedy 2010). One of the most promisinipes
Artificial Bee Colony (ABC) algorithm (Karaboga 200 Starting from it, the authors developed a
high-performance single-objective strategy callesBAC, which also offers the possibility to
provide a partial Pareto set for MDO problems bygishe weighted sum approach. The AsBeC
algorithm was already successfully employed forl-wemld turbomachinery multi-objective
optimizations (Bertini et al. 2013), giving advagea in comparison to other forefront methods.
The flow field around the T106¢ blade is studiedniyans of an adaptive discontinuous Galerkin
CFD method, developed by the authors for solvirgdbmpressible Reynolds Averaged Navier-
Stokes (RANS) equations in two-dimensional domaiitis solver can use high-order
discretizations in both space and time and it canage both structured and unstructured meshes
and different physical models (Ferrero and Lard&@h3; Ferrero and Larocca 2015).

Details about the adopted CFD solver and the AsBlgGrithm are provided in Section 2 and 3
respectively, while Section 4 covers the enginggetast case with the optimization settings and
results.

2. Simulation environment

2.1 Discontinuous Galerkin CFD

The blade performance is evaluated by numericallyirsy the equations of fluid dynamics
through a time marching approach. Navier-Stokesatgpus or Reynolds-Averaged Navier-Stokes
equations are integrated on general shaped twordiomal domains. As far as the RANS



approach is concerned, the low Reynolds k-omegaehmdposed by Wilcox (2006) is used. This
model can give good results for turbomachinery igppbns in which separation phenomena have
to be taken in account (Pacciaial. 2011). The model is implemented in a hon-standzadner
following the approach of Basst al (2005). The physical description is completedh®/use of a
transition model based on the laminar kinetic epeancept, following the work of Pacciaet al
(2012).

The numerical technique is based on a discontin@alerkin spatial discretization. The most
attractive feature of this choice is the possiitit implement robust high order schemes also in
the presence of complex geometries with unstrudtareshes. Furthermore, the local nature of the
discontinuous Galerkin reconstruction makes it iibdsgdo deal with very stretched and distorted
elements, such those which are generally useddbrfReynolds number flows.

Briefly, the solution inside an element is représdrby means of a high order reconstruction
projected on a hierarchical modal basis. In thiy,veaveral degrees of freedom are used inside
each element. In this work a basis obtained frotersor product of Legendre polynomials is
chosen. The basis functions are orthonormalizeth wie modified Gram-Schmidt procedure,
following the approach of Basst al(2012). This last aspect is particularly importdat
preserving the accuracy order when distorted el&nane employed (Basst al 2012).
Curvilinear elements are used at solid walls ineor match the accuracy of the geometrical
representation with the accuracy of the soluti@tmditization. In particular, Serendipity mappings
are implemented for quadrilateral elements up &oftlurth order and mappings up to the third
order are used for triangular elements (Onate 2008 convective fluxes are evaluated according
to Osher and Solomon (1982) and Pandolfi (1984).

Diffusive fluxes are computed by a recovery-baseldeme (Ferrer@t al 2015). For what
concerns time integration, both explicit and implschemes have been implemented. Steady state
simulations, like those considered in this worke accelerated by means of a fully implicit
backward Euler scheme. In this case, the Jacolidheosystem is evaluated analytically. The
resulting linear system is solved at each time s$kepugh the restarted Generalized Minimal
Residual algorithm (Saad 2003) with an Incompledesér Upper preconditioner.

The time step in the performed simulations is choaecording to the ramping strategy
described by Colombo (2011). An additional contsointroduced in the present implementation,
in order to switch from implicit to explicit (firsbrder) time integration when the time step size
drops below a certain threshold. This feature riqdarly important during the initial transient i
which the cost of the implicit integration wouldtrime compensated by a large time step. The
simulations were stopped when the L2 norm of te&ltels drops down a fixed tolerance (10e-5).

2.2 Grid generator

The simulation environment is completed by the ofghe GNU GPL mesh generation
software Gmsh (Geuzaine and Remacle 2009). Theeaseshployed in this work are composed
by a clustered O-type structured grid near thedyladrrounded by an unstructured grid (Fig.1).
All the elements are quadrilateral. The distandgvéen the inlet and the leading edge is equal to
0.7 chords, while the outlet boundary is positionad chord downstream the trailing edge.

Since the governing equations are discretized bigla-order representation, it is fundamental
to employ a sufficiently high-order description fie wall boundaries. In particular, curvilinear
elements with cubic edges are used. The high-agptot elements inside the boundary layer
region can become significantly distorted whenwad edge is curved. In order to prevent the
jacobian of the mapping to become negative, thie-bigler optimization tool available in Gmsh is



used. In this way, the final mesh contains curedinedges not only at wall (Fig.2a) but also inside
the first layers near it (Fig. 2b).
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(a) Without wall optimization | (b) With wall optimization
Fig. 2 Curvilinear mesh generation close to thd (zetail of the trailing edge)

The hierarchical nature of the chosen basis watiag to develop a p-adaptive algorithm.
This is a useful feature in the framework of autbmaptimization problems; indeed, the
algorithm refines the solution without the neea@nge the grid. In particular, an entropy-based
sensor is used to detect the boundary layer anddke and to increase the reconstruction order in
the involved elements. In this way it is possildeuse a relatively coarse and uniform mesh in the
wake region. The order of each element can rang® fwo to four according to the sensor

response (see Fig. 7).



3. Optimization environment

3.1 The AsBeC algorithm

The applicative field of engineering optimizatianusually characterized by simulation-based
problems (Martinget al. 2005; Larocca 2008) in which computational anayaee heavily time
consuming. Some of the most widespread techniquései single-objective optimization context
lay in the class of meta-heuristic (Glover and kaydberger 2003). Among them, one of the
newest and most promising is the nature-inspiretifiéial Bee Colony algorithm (ABC)
(Karaboga 2007), which combines the principlesatiBle Swarm Optimization theory (Kennedy
and Eberhart 1995) and Differential Evolution (Briet al 2005). If compared with other
competitive methods, ABC demonstrates high qualityustness and flexibility for a great variety
of optimization problems (Karaboga and Akay 20@¥sides, a lot of technical dissertations, test
case applications and improvement works have beee ith the recent years (Bolaji al. 2013).

Karaboga firstly developed the Atrtificial Bee CajofABC) algorithm in 2005. The algorithm
reproduces the behaviour of a honeybee colony lsiegréor the best nectar source into a target
area. Some bees, i.e., the employees, are eagnes$d a food source and search the space near
it. Then they come back to the hive and communitiegeposition of the best found food sources
to other bees, i.e., the onlookers, that help thpleyees in the most promising regions. Nectar
sources that reveal themselves non-productive lbaedoned in place of eventual new fruitful
positions, which are investigated by a bee movinthe whole target area, i.e., the scout. In the
optimization context, nectar sources representripgt configurations and their nectar amount is
the objective value to optimize; non-productiverses are those not improving for some time.

The ABC algorithm is recognized to be simple tolienpent, easy to be effectively parallelized
and hybridized, driven by few control parametetexible and robust over a wide range of
problems, according to many authors (e.g., Karaleigal 2014). On the other hand, its local
search and refinement skills are less efficienhwétspect to the global search attitude. Moreover,
it does not exploit the history of the best pofiotsnd.

1: Produce random food sources in the search area

2: Assigm each food source to a different employee

3. Repeat

4. Employee Group phase: produce new configurations near their food sourgpdating them
whenever any improvementfaand

5: Assign each onlooker to one of the food sourcepending on their quality
6: Onlooker Group phase: produce new configurations near their food sourgpdating them
whenever any improvement asind
7 If a food source is not improving for some tirtleen replace it with a new randorselecte
configuration (scou}
8: Until requirements are met

Fig. 3 ABC/AsBeC pseudocode

Since the original version of the Artificial Beeoldny many researches on the topic were
developed. Despite the great amount of availabdealiure on ABC variants and modifications
(Bolaji et al. 2013), to the best of our knowledge no paper dimés a performance gain even
with very few function evaluations. This aspeabfisnajor interest in a CFD-based context like the
one herein presented, in which only some hundrédsSEs are available to limit the machine
times.



A new algorithm named Artificial super-Bee enhan€&mony (AsBeC) is then proposed to
deal with costly optimization. The AsBeC is a matdfion of the original ABC aimed at
improving its speed and solution accuracy for peoid where function evaluations have to be
limited below 16. To accomplish these tasks, enhancements of tis& lsructure and
hybridizations with local interpolation are usedhe$e techniques speed up the convergence of the
best solutions in their neighbourhood without sty the swarm at the same time. As a result,
the local search skills of the original ABC (expétion) is improved without worsening its global
attitude (exploration), especially during the fistarch phases. The improving techniques are
classified in the two groups outlined below.

» Hybridizations. super-bee concept. These modifications alter the original pseudo-
random movement of the bees, accelerating the atiilon process and its accuracy
through simple local interpolation hybrids.

a. Whenever one bee does not improve its nectar sevitbehe original pseudo-
random mutation, then it tries the opposite movemenis simple linear local
estimator is inspired to the concept of opposit@sed learning (Tizhoosh
2005);

b. Each bee can estimates the local and directionafatiure of the objective
function, acting as a second order optimizationhoetwith partial Hessian
computation. The multi-dimensional parabola passimgugh three previous
positions of the bee (starting food source poimst fandom movement and
opposite position) is calculated and its minimumeigaluated. This local
parabolic estimator follows the basic principlescohvex optimization (Boyd
2004);

c. The data knowledge about the history of the bdstisas evolving in time is
used to make a prediction. A bee is then guidectdsvthe foreseen next best
search direction, computed through a weighted geeoé the last directions of
improvement.

» Enhancements. These techniques do not alter the architecturbenbtiginal ABC, but
they make it work differently in order to boost tlexploitation from the early
optimization phases.

a. Each group of bees have more time to evolve theitan sources, having also
more chances to use its super-bee skills;

b. The exploitation of the best food sources is stippgvileged while the worst
ones are always penalized. This is particularlyefieral with small colonies;

c. The scout is relocated in a dynamic range thatrigen the current position
of the food sources, allowing also exiting thetstgrboundaries and following
the colony movements.

A short pseudo-code of the ABC/AsBeC is outlined=ig. 3. In the presented test case, the
AsBeC algorithm will include the baseline configiima as starting point into the random
generated initial food sources, in order to fashenoptimization process.

3.2 Partial pareto

The AsBeC algorithm was originally designed to dedh Single-Objective problems (SO),
nevertheless it can be successfully used to exrpattial Pareto Front, which is an approximation
of the global one, when solving Multi-Objective (M@roblems. First of all, the weighted sum
approach is adopted to transform the MO problern mtSO one (Deb 2001). Then, since the



algorithm stores all the configurations tested ahdir results, the information about the

contributions to the weighted sum is kept and eswlduring the entire optimization process.
Therefore, an estimated Pareto front is built agrami by identifying the non-dominated points

from the collective hive memory. This partial Paret more reliable and close to convergence in
the regions presenting higher weighted sum.

Demonstrative tests on multi-objective analytiaaidtions show that the AsBeC can extract a
consistent partial Pareto. In particular, the arghimllowed the same approach of Debal.
(2002), by using benchmark problems widely adoptdderature to test Multi Objectives Genetic
Algorithms (MOGAS). All problems in this testbedveatwo objective functions to be minimized,
they are unconstrained and their dimensionalityyvaries from 1 to 30. Six heterogeneous
problems over the nine described by Deb at al. {p0famely SCH, FON, KUR, ZDT3, ZDT4
and ZDT6, have been selected for the purpose wfataig the AsBeC. The total number of FEs is
chosen to be 25000, as in many other papers otofie (e.g Toffolo and Benini 2003). The
weighted sum approach has been applied to theumaiidbns f; and f, using unitary weights and
the corresponding results are presented in Fifadh optimization process is repeated 20 times,
due to the random nature of the algorithm, themamyed results are shown.

It is evident that the AsBeC partial Pareto is dblapproximately describe the Pareto-optimal
Front in the zones presenting minimal weighted suhich are reported in the Table 1 below.

Table 1 Minimal weighted sum regions for the addgienchmark in the two objectives Pareto space

SCH FON KUR ZDT3 ZDT4 ZDT6

[0.002,0.978] | [-14.522, - _ [1.0, 0.0]
[1.0.1.01 | 15978 0.002]| 11583 | 0-850.-0.773]] [0.250,0.500] 1, 3554 o gagy)

The resulting AsBeC performance seems valuablemmparison with well-known genetic and
evolutionary multi objective algorithms, like NSGNSGA-II, SPEA, PAES and GeDEA ( Deb
al. 2002; Toffolo and Benini 2003).

Another important test is the evaluation of theelRarconvergence as function of FEs. This
helps to understand how many function evaluatisashaeded to approach the optimal Pareto, at
least with few points. The convergence check fer AsBeC is performed in a 5D search space
(same dimensionality of Section 4) by using twahaf selected six test functions, FON and ZDT3,
which present different types of Pareto Front: sngon-convex and continuous while the other is
convex but disconnected. Partial Pareto resultsreperted in Fig. 5a-c for FON Fig. 5d-f for
ZDT3, testing 5000, 600 and 250 FEs. In both césissclear that Pareto convergence quickly
degrades reducing function evaluations. Nevertbelesen 250 FEs seems to be sufficient to
obtain at least some configurations close to tladyéinal Pareto.

The results of this paragraph support the use ef ABBeC partial Pareto to interpret the
optimization results in Section 4.
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4. Engineering application

This core section is devoted to the engineerindiegtjon, from pre-processing details to
results presentation.

Airfoil design is a complex topic which still rasea lot of interest in the engineering
community. Coupling the airfoil shape optimizatianith high-fidelity aero analyses such as
detailed CFD is an established practice, especfaltyturbomachinery (e.g. Koiro 1999). In
particular, the multi-disciplinary aero-mechaniagbtimization of turbine blades is standard
problem addressed in industrial contexts (Schaboetsid 2010; Bertiniet al. 2013).

In this work, a renowned turbine test case, i.e. ¢thscade blade T106c, is chosen as the
baseline to exemplify a real-world oriented MDOsé&a on contemporary numerical tools. For
that cascade, experimental data on the 2D bladiatte plane for several working conditions are
available from the von Karman Institute for Fluigriamics (Michaleket al 2010; Hillewaertet
al. 2013). These data are used in Paragraph 4.3aafating the simulation environment. In
certain conditions this blade is characterized hyeaident recirculation bubble and a strong
diffusion on the suction side, thus offering largargins of improvement. In particular, the MDO
process in this Section considers the inlet swigla set to 40 deg while the design value for the
T106¢ is 32.7 deg (see Table 3). The optimizatimegss will then drive the airfoil shape towards
new profiles suitable for this severe off-design.

The Paragraph 4.1 briefly describes the paramgystem adopted to capture the blade shape;
Paragraph 4.2 illustrates the validation of theliedptools, such as the grid convergence and
independence, the estimation of the CFD errors #rel parameterization efficacy. The
optimization platform is described in Paragraph wi8le Paragraph 4.4 illustrates the problem
definition and settings. Finally, results are repdiin Paragraph 4.5.

4.1 Airfoil parametrization

Airfoils have to be finely characterized in ordergroperly interpret the physical phenomena
investigated by computational fluid dynamics. Indiethe grid generation is one of the most
delicate aspects when numerical simulations arelwed. The mesh generation requires a large
number of points on the profile: they have to beug to capture all the geometrical peculiarities
and closely spaced near to the areas with therlatgeature.

A parameterization system for the airfoil shapehisn introduced. This approach enables to
draw the profile through its coordinates by meahfew curves, whose definition is obtained by
defining some fundamental geometrical parametérs. Best parameterization is the one with the
lower dimensionality among those capable to propdefine any geometric detail. In this way the
airfoil management would be as simple as possilileowt losing accuracy. A good parametric
system involves only a small number of key parameteven if a little approximation in the
geometry could be present and accepted. Consegutitel adopted parameterization must be a
balanced compromise between complexity and quality.

A suitable reference parameterization for turbim®is could be the one suggested by Anders
and Haarmeyer (2010). It has been adopted In theept work with few simplifications and
modifications. The most straightforward idea f&asection in Cartesian coordinates would be to
implement circumferences for the leading edge dmedttailing edge connecting them through
polynomial lines, a third degree curve for presside and a fourth degree one for suction side.
Seven reference points univocally define these floawing laws: three for the leading edge, three
for the trailing edge and one on the throat pdtour reference tangents, which define the wedge



angles for upper and lower sides near leading mailing edges are then used as conditions to
mathematically solve the system. The airfoil cureatculated in this way are continuous and
differentiable and they have no discontinuitiegafirst order, hence they are @t class.

Extra degrees of freedom are added by capturingsdinge polynomial curves using rational
Bezier Splines (BS) of the same order. Then theghisi of the BS control points can later
introduce further flexibility in defining the shapéthe airfoil.

The independent parameters needed to draw a pai@ei€eil in the system above described
are seventeen (Table 2), assuming that the fibtast weights of each BS have to be equal to 1.

Table 2 The seventeen parameters needed to uriivdeakribe a turbine airfoil
X, translation of the leading edge alc

turbine x axis

C.x axial chord

¥ pressure side BS weight

Ay translation of the leading edge algng

turbine y axis

C,, tangential chord

"pressure side BS weight

Xt, X coordinate of throat point

Bin, inlet blade angle

2" suction side BS weight

Vi, Y coordinate of throat point

dRleading edge radius

"“Juction side BS weight

W, inlet wedge angle

4" suction side BS weight

Bous Outlet blade angle

Ree, trailing edge radius

Wy, OUtlet wedge angle

This definition is in line with other typical ch@s for turbomachinery (Wilson 1991; Anders
and Haarmeyer 2010).

The drawing laws are used to obtain area and mimimprincipal inertia moment of the airfoil
(Gauss’s formulae). Fig. 6 illustrates the T106sdbiae airfoil captured in the parametric system
(thick curve). BS control points (circular see-tigh markers), BS polygons (thin lines) and the
centroid (black filled marker) are highlighted hetfigure.

¥ [m]

[ T R SN SN S R S T . M
1.04 105 1.06 1.07 1.08 1.09 11 111 112 113 1.14
x [m]

Fig. 6 Baseline airfoil parameterization




4.2 CFD analyses validation

There are several experimental data availabledditirature for the T106c blade (Michalek et
al. 2010; Hillewaert et al. 2013), however the Cg&dlver was tested by studying the reference
configuration defined in Table 3. The purpose @sth preliminary simulations is to estimate the
error produced by the CFD solver on the performaveduation. This is fundamental to identify a
tolerance to stop the optimization process andnterstand if the improvements showed by the
algorithm are meaningful or not.

First, a grid convergence and independence analygierformed to establish the minimum
resolution required to reproduce the performandate baseline blade with sufficient accuracy.
The refinement procedure is stopped by monitorivey donvergence of the average exit losses.
This study is carry out on the baseline configorawnly, then the chosen resolution level is also
adopted during the entire optimization process. Tihal grid contains approximately 7000
guadrilateral elements. If second order (4 degreedreedom per equations for element)
Discontinuous Galerkin elements were used in thi#eedlomain this discretization would be
equivalent to a finite volume grid with 28000 celnce the p-adaptivity algorithm was employed
some elements inside the domain used third ordele(Pees of freedom per equation for each
element) and fourth order (16 degrees of freedonepaation for each element) reconstructions,
so the total number of degrees of freedom is highdypical value obtained in a simulation is
approximately equal to 35000 degrees of freedomepestion. Fig. 7 shows an example of the
reconstruction order distribution inside the domain

In Fig. 8, the wall isentropic Mach number disttibn calculated by the present discretization
is compared with the experimental data. The plpores the numerical results obtained on both the
original geometry and its parametric representatidatice that the overall behaviour is well
described and the main differences introduced byp#rametric representation are localized on the
leading edge and on the first part of the suctida.sThis is mostly due to the difficult fitting tifie
leading edge by a circumference.

In Table 4 the total pressure loss coefficient (Bgs reported in order to compare experimental
results, CFD on the original geometry and CFD @nghrametric geometry:
pY — P} )

0 €

where P° stays for stagnation pressure and subscripts 2 amdicate respectively inlet and outlet
stations.

Data in Table 4 refer to a control station posiidr0.465 axial chords downstream the trailing
edge, in accord with the experimental results. Lasefficients are computed through the spatial
average of the losses distribution reported byemitlert et al. (2013).

This test was used to calibrate the transition rhade to estimate the CFD error.

Cpo =

Table 3 Reference condition for CFD validation

Isentropic exit Re numbeRe,;=1.85e+5 Inlet Turb. Intensity=0.9%

Isentropic exit Mach numbekM,,=0.65 Inlet angle=32.7 deg
Inlet total temperaturd’?=298 K Specific heat ratig=1.4
Inlet total pressureP=7198 Pa Gas constant R=287.1 J/kgK




Table 4 Comparison on average total pressure lefficent

Loss coefficient{ po
Experiment reported by Hillewagt al (2013) 7.8e-3
CFD original geometry 7.2e-3
CFD parametric geometry 7.0e-3

A\

Fig. 7 Reconstruction order distribution
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Fig. 8 Comparison on wall isentropic Mach number




4.3 Simulation based optimization platform

An automatic platform is developed for the MDOwihich the optimizer and the CFD solver
are integrated. In the specific case, a singleidid studied in a 2D fluid environment; however,
the same approach can be extended to multi-rowirBDl&tions or different applications.

Once the original geometry is captured in the patamsystem, the optimization can begin.
The AsBeC MDO algorithm operates the calls to tniadrawing, the grid generation and the
CFD solver. These three routines are called thraumghvaluation function that acts like a “black-
box": given a certain set of input variables drivenAsBeC, it returns the output objectives to the
main program.

The optimization algorithm settings are: the maximaoumber of function evaluations, the
number of free-to-change variables, the boundatfes formulation of the targets and the total
number of bees. When the process finishes, if théeged solutions are still not good enough for
the designer, the entire procedure can be repeated.

The platform exploits the parallel version of theB&C algorithm (see Section 3) hence it is
able to evaluate several configuration in parallélis feature is of great advantage on multi-core
machines or clusters, since each CFD simulationbeadirectly associated to a different core or
node. A flow chart of the entire process is repbiteFig. 9.

The AsBeC algorithm, the airfoil drawer/creatore thvaluation function and all the related
scripts are written in GNU Octave language. The GBIRL software Gmsh is used for the grid
generation and the CFD code is written in FortiEme optimization is performed on a 6-cores
Intel® i7-3930k machine with GNU/Linux operatingssgm. The authors emphasize that such a
platform can work with a personal computer and feftware.

PREVIOUS OPERATIONS
* Baseline parametric capturing

<

P | MAIN PROGRAM, AsBeC ALGORITHM
{ 7w"| + Problem settings
* AsBeC settings

* Optimization running \
Variable

set Objective

| set

EVALUATOR

| AIRFOIL DRAWER

| GRID GENERATION

| IMPORT RESULTS

| CFD LAUNCHING |

| CALCULATE OBJS

OPTIMIZATION POST-PROCESS <_/_/
* Pareto Front and best configurations
* Eventual restart of further refine loop

Fig. 9 Flow chart of the parallelized simulationsbd optimization platform




4.4 MDO set up

Assuming that the optimization algorithm and thggital simulator have been properly tuned,
design parameters and objectives choices are hiee ey points for the MDO success. The target
functions must combine all the multidisciplinargits needed to be investigated. The authors
chose two representative objectives to minimizepeiated to the real-world design. They are
formulated considering the section under study pargof the multi-row turbine frame.

L osses

Kinetic energy losses between upstream and dovamsteeraged quantities are defined as:

y-1
()
LOSS = ¢+ {gl=]; Gp=1-——"5 @
_(B2)7
- (5)

Wherep stays for static pressurg? stays for total pressure, is the air specific heat ratio
and (i is the kinetic energy loss coefficient calculagedhe exit station. The scaling constapt
is described later. The exit total pressure vakedun Eq (2) is obtained by means of mass flow
average.

These losses are directly related to aerodynanficiesfcy and then they represent a good
performance index.

Dynamic constraints deviations

The 3D shaping of a turbine blade has to be mechbyicompliant, so that in each section the
area (A) and minimum inertia momeng,() must satisfy the requirements for blade integaityl
safe operability. These two values are set bytitetsiral analyses and are continuously calibrated
while aero-mechanical cycles are performed. Fomg¥a, increasing area and inertia moment
improve the mechanical properties of the airfoilt it could lead to weight or resonance issues.
These are related to the 3D blade and are appleciatly by dedicated and comprehensive
analyses. The 2D approach if a fast environmengiidoils optimization, but it cannot involve
directly such verifications. However, you can assufrey have been performed by the 3D blade
designer, thus area and moments are already sagjstile margins for structural integrity.
Consequently, the optimization should try not tayvA and },, from the values obtained by
capturing the baseline airfoil in the parametristeyn. Then, the second objective is formulated to
penalize their deviations.

Another important constraint that should be keptind is the mass flow rate elaborated by the
blade channel). In order not to alter the working point of theliine stage to which the blade
section belongsm must be kept constant. In fact, the Overall Endifenufacturer decides the
mass flow rate throughout the turbine once thembelynamic cycle is frozen. The mass flow rate
(mp) related to the baseline airfoil is then chosereference value.

In conclusion, the two previous aspects are contbinghe second dimensionless Constrained
Objective (CO) that appears as a symmetrical peatadn function, including three scaling
constantsc,, c¢; andcy:

A—Ag m— nig

; e 2|1 3)
B min,B mpg

where |x| operator is the absolute value ofand Ag, I,,;, 5 andnip are baseline quantities.

Baseline mechanical properties are herein interadedesign targets, but the objective in (3) can

Imin - Imin,B

CO=C2'|

‘+C3'



be easily reformulated taking care of any speaifitie for A and J;,, for example returned by
detailed structural analyses.

The coefficients front, to ¢, are needed in the context of the weighted sumaagpr In
fact, objectives should be written in a form suadit they contribute in equal measure to the global
weighted sumW, - LOSS + W, - CO, when the weight$/ associated to it are unitary. For this
reason, the coefficients should be tuned in order to adjust LOSS and CQegin such a way
that they assume the same order of magnitude dthingntire optimization process. It is evident
that a sensitivity on each contribute to the twgeéafunctions is needed. This sensitivity is gdide
by the particular optimization problem and by itaihdaries, and in the specific case leads to:

c; =100; ¢, =10;¢3 =10;¢4, = 10

which makes each target function varies around 1ewhis way, the weight®/ take the role
of importance indexes associated to each objeclive.weighted sum can put in evidence one or
another aspect simply by adjusting these importardexes.

The variables selection and their boundaries ardaitt key point to be addressed. The decision
to investigate some variables in place of otherssée from the common turbine design strategy.
Only tools that solve row interactions, like 1D mixae, 2D crosswise or multi-row CFD tools,
can change some parameters. These are the alysaditiening of the airfoil, the chord, the throat
and the exit blade angle. In addition, the thregutates the mass flow rate, even if there are
blockage effects due to boundary layer thicknedsetalso considered. The throat point,Yx) is
then maintained constant also to strengthen COctiage Manufacturing and material limits
impose some restrictions, especially for what réganinimum thickness and bending properties
near the trailing edge. For this reasons, traidge radius and exit wedge angle should be
changed cautiously.

As a result, only eight out of seventeen varialales considered for optimization. However,
since the significant problems with this airfoiledocalized on the suction side, modifying the
pressure side can hardly have a positive influehrcarder to reduce as much as possible the
dimensionality of the problem, the authors havalfinselected the following five variables:

* B, inlet blade angle;

* Wy, inlet wedge angle;

« 2"suction side BS weight;

« 3Ysuction side BS weight;

« 4" suction side BS weight.
During the optimization process these variableshasebounded into an hypercube centred on the
baseline values. The upper and lower boundariethefinterval are chosen according to the
designer experience and specific problem sensitilihey must be large enough to accept the
changes necessary to achieve the goals, but sulfficinarrow to avoid geometric degeneration.
Moreover, it is important to keep in mind that rinkeractions and 3D phenomena are not resolved
at this level. As a consequence, the 2D optimiratimist fall under the assumption of small
perturbations to assure applicability.
For the specific problem boundaries assume theviilig values:

e Upper\Lower Bound; = +10 [deg]

* Upper\Lower Bound, = +5 [deg]

* Upper\Lower Bound; = +0.3 []

e Upper\Lower Bound, = +1 [-]

e Upper\Lower Bounds = +1 [-]



Considering that the CFD simulations are heavityeticonsuming, the optimization process
has to limit the total number of FEs. Hundredsuofction evaluations with the AsBeC algorithm
are enough to approach the global solution whefinrdewith problems like the one under exam
(see Paragraph 3.2 and Bertini et al. 2013). Thiengation is set up by using 12 bees overall,
equally divided in 6 employees and 6 onlookers, 2hdycles for 264 CFD analyses in total. The
choice of this number of FEs is supported by tlsestdescribed in Section 3.

The weights are biased with the aim to drive thenmom search towards the zones with lower
losses, assuming:

W,=5 W,=1

4.5 Results

The final optimal solution in terms of weighted sismeported in Table 5; it is characterized by
a relative losses reduction of about 25.5% witlpeesto the baseline configuration. On the other
hand, its area, minimum inertia moment and masw ftbffer by 1.56%, 28% and 0.83%
respectively from the reference values. Area andsnfimw are close to the baseline ones, while
Imin iS much higher. Increasing the minimum inertia reomcould improve the mechanical
qualities of the airfoil, as it reduces local sté&s and enhances blade stiffness. However, only
specific analyses as dynamic response, hereinamopiésed, can point out if the stiffness increase
produces side effects.

Optimized
Baseline

H H fitted curve @ 132FEs
35F-4---- R A, fitted curve @ 264 FEs |.

CO objective [-]

28 3 32 34 36
LOSS objective [-]

(a) Isentropic Mach number and geometry for|
baseline and optimized (best weighted sum) (b) Partial Pareto front
airfolil

Fig. 10 Results




Fig. 10a shows the comparison in terms of geonwetmied wall isentropic Mach numbers
between the baseline airfoil and the optimized dfig. 11a and 11b illustrate the comparison
between the entropy fields around the two airfdils clear that the entropy generation is reduced
in the second configuration. With the considerednaented incidence, the baseline airfoil is
characterized by a large recirculation on the sactide near the leading edge. In contrast, thie bes
weighted sum configuration avoids this separatiod eegulates the diffusion after the throat
station. Fig. 12a and 12b show the streamlineldrgading edge region. As a negative aspect, the
best weighted sum airfoil is excessively front leddvith respect to the baseline. To move the
configuration towards more after-loaded profilegeiaction phenomena among adjacent turbine
rows should be included in the simulation.

Besides the best weighted sum airfoil, it is pdsstie identify other two solutions which
correspond to the best individual goals (Tabler'he one with the best aero performance obtains a
26.5% reduction on losses but that configuratioan®ng the worst ones for CO, while the best
for constraints is obviously the baseline.

The obtained partial Pareto Front in Fig. 10b afioitentifying all the best compromise
configurations. The Pareto points are concentratst the best weighted sum regions found by
the algorithm during the optimization process. Tigeire also shows the Pareto convergence,
extension and population from 132 FEs (light maskdo the final condition of 264 FEs (dark
markers). Best weighted sum regions are near (LQSS€0=3.0) and (LOSS=3.4, CO=0.2) in
the final Pareto, while there was only a best arear (LOSS=3.2, CO=1.6) for the 132 FEs
Pareto. This last area and the one around theifassluld be close to convergence, since they are
densely populated and do not move forward fromtb3264 Fes.

(a) Baseline airfoll (b) Airfoil with minimum weighted sum
Fig. 11 Entropy field close to the trailing edge

The post processing of the optimization results esaik possible to recognize which are the
variables that strongly influence the losses. Intipaar, the main benefits are related to the
increase of the inlet blade angle. In fact, thenogation process changed the inlet blade angle in
order to match the inlet flow angle for the choserrking condition. On the other hand, the
reduction of the losses leads to an increment @fnimimum inertia moment due to the higher
flow turning and blade cambering. The only way éatain CO objective divergence is improving
efficiency without acting too much @, thus regulating BS weights ang,. However, this leads
to minor loss reduction, sing, has a significant impact on aero performance.



Particular care has to be taken in the interpatatif the obtained results. Indeed, both CFD
simulations and experimental measurements aretaffdry uncertainties (see Section 4). For this
reason, the main advantage of the optimizationhes wnderstanding of the effects and the
sensitivity of the different variables on performanThis knowledge makes it possible to establish
design rules based on a solid physical background.
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(a) Baseline airfoll
Fig. 12 Streamlines around the leading edge

Table 5 Best configurations for individual goalsglameighted sum

LOSSI-] CO[] Weighted Sum|[-]
LOSSest 2.68 3.97 2.90
COgEest 3.65 0.00 3.04
Weighted Sumgest 2.72 3.04 2.77

5. Concluding remarks

This paper describes a multidisciplinary approasttdrbomachinery design problems. A CFD
solver and an optimization platform have been dpedly developed for addressing the
aeromechanical design of a turbine cascade. Irr todassess the reliability of the adopted tools,
the meta-heuristic optimization algorithm was tdsba analytical functions and the CFD solver
was validated on experimental data.

The results obtained for the chosen test case sugjg this approach is able to efficiently
adapt the airfoil shape according to the workingndittons. Above all, some guidelines for
multidisciplinary improvements are derived. IndeadPareto Front approximation is provided and
analysed, obtaining the population of best candidatutions.

The achievements presented in this paper pavedkidar an effective application of such kind
of design platform to other engineering problem&nedifferent from airfoil design. Indeed, the
key features constituting the backbone of the desdrapproach might have a good all-purpose
applicability. Future works on the topic will covdifferent kinds of engineering applications in
order to assess what are the advantages and iongavhen generalizing this methodology.
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