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1 Introduction: Proteins, Multiple Sequence Alignments
and Co-Evolution

1.1 Proteins and Structure

This Section is based on the introductory chapters on proteins of [1] and [69].

Proteins make up the largest part of the dry mass of the cell and are involved in
virtually every organized event happening in the cell [1]. They are used as struc-
tural elements, enzymes, parts of molecular motors, hormones (and generally signaling
molecules), carriers, and more. Proteins are coded in genes and their expression and
maturation is a central part of the (auto-)regulation of cells.

There is a huge number of different proteins. In the human body alone there are around
20000 protein coding genes which produce a much higher number of different proteins,
taking post-transcriptional modification into account. Proteins show an enormous
variety in structure and function and the picture becomes even more complicated
when protein complexes, consisting of many proteins binding to each other transiently
or permanently, are taken into account.

Given their importance and complexity, it is not surprising that many diseases like
Alzheimer’s or Cancer are linked to malfunctioning or missing proteins and a better
understanding of how proteins work might lead to better treatments for such sicknesses.

The structure of a protein is closely related to its function, a claim that is known as
the structure-function paradigm [78]. Therefore it is often very advantageous to know
the structure of a protein if one wants to understand what the protein does and how
it does it.

A protein can be seen as a chain of amino acids, linked to each other by a covalent
peptide bond. Each amino acid carries one of twenty different side chains which all
have different chemical properties. The sequence of the amino acids along the chain is
called the primary structure of the protein. The chain can bend and twist and certain
amino acid pairs can form covalent or non-covalent bonds, so that after folding of the
chain a stable structure emerges. This structure is usually divided into 4 parts, which
are

� Primary Structure: The amino acid sequence of the protein along its peptide-
bond backbone

� Secondary Structure: Motifs based on relatively local hydrogen bonds between
the amine hydrogen and carboxyl oxygens, building often found elements such
as α-helices or β-sheets

� Tertiary Structure: The 3D conformation of the protein. This is determined by
how the chain, already locally folded into secondary structure, makes contacts
with itself (for example by hydrogen bonds or disulfide bridges).
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Figure 1.1: Different levels of protein structure. Figure taken from https://en.

wikipedia.org/wiki/Protein_structure

� Quaternary Structure: Several protein chains bound to each other, building a
complex.

Even though the sequence of a protein largely determines its structure (something
known as Anfinsen’s Dogma [2]), this mapping from sequence to structure is not trivial
even with modern computational techniques. In fact, computational protein folding is
one of the most worked on topics in biophysics and bioinformatics [11].
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Figure 1.2: Multiple Sequence Alignment, Rows corresponds to proteins (leftmost
entry is the protein name), Columns correspond to consensus posi-
tions (residues); Figure taken from https://en.wikipedia.org/wiki/

Multiple_sequence_alignment

1.2 Multiple Sequence Alignments

1.2.1 Protein Families

Proteins evolve and mutations in their sequences occur. This comprises amino acids
substitutions, inserts and deletes. Even though the structure of a protein is very inti-
mately connected to its function, many different sequences lead to the same structure
and leave the functionality of the protein unimpaired (or only slightly impaired or even
improved).

It is natural to group homologous proteins, which have similar structure and function
due to their phylogenetic relationship, and treat them effectively as different versions
of the same protein. The set of such sequences makes a protein family [59].

In order to make the data more amenable to statistical analysis it is favorable to define
consensus residues of the family and map the amino acids of the single proteins onto
them. This leads to a data matrix that contains for every sequence m an amino acid
ami belonging to the consensus site i (or a gap symbol if no such amino acid can be
found). This data matrix is called a multiple sequence alignment (MSA) and online
databases like PFAM [77] contain large amounts of protein families (more than 16000
at the conception of this thesis) with up to several hundred thousand sequences.

The creation of quality MSAs is largely a task for bioinformatics and most of the
work presented here considers the MSA as given. Nonetheless, it is favorable to have
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1.2 Multiple Sequence Alignments 7

some understanding of the main algorithms used in this field in order to understand
the data and its idiosyncrasies better (Section 3 for example treats the problem of
gap-stretches, something that is fundamentally an artefact of the alignment generation
procedure). We therefore give a short discussion of the central concept of profile Hidden
Markov Models (HMMs), which underly all of the alignments used in this thesis via
bioinformatical algorithms and programs such as HMMER [35] and HHBlits [79]. This
exposition follows closely the corresponding chapters of [24].

1.2.2 Profile Hidden Markov Models

The creation of a large MSA usually needs a smaller MSA of a few sequences as input
(HHBlits can also start from a single query sequence). These small alignments should
be high quality and contain only sequences that are with high confidence members of
the protein family one wants to model. The Pfam database (http://pfam.xfam.org/)
makes curated seed alignments available, together with the final alignment created with
HMMER. The creation of a seed alignment from unaligned sequences is still another
topic. This can be done manually or using programs such as MAFFT [53].

Given a seed alignment, one usually wants to extract more sequences of this family
from a large database of protein sequences like Uniprot [16] (which contains about
56 · 106 sequences at the conception of this thesis). The way this is usually done is to
train a probabilistic model on the seed alignment and then search for sequences in the
database that have a high probability given this model. This is not trivial since the
sequences in the database are not aligned to the seed alignment and insertions and
deletions have to be taken into account. Arguably the most popular models for this
task are Profile Hidden Markov Models (HMM) [24].

A profile hidden markov model defines a probability for a sequence of states of variable
length. This probability distribution has the structure of a markov chain, which means
that the probability of a state si at the ith position in the chain is conditionally
independent of the states s1, . . . , si−2 given si−1:

P (si | si−1, si−2, . . . , s1) = P (si | si−1) (1.1)

The symbols can have one of three different types, insertion states Ij , deletion states
Dj and match states Mj . These states are indexed with the consensus residue j of
the protein they correspond to. Note that above we used i to index the state of the
HMM, which is not the same as a consensus residue in the protein. In fact, several
consecutive states of the markov chain can belong to the same consensus residue. An
easy example is an insertion of an amino acid after a consensus residue j of the family,
where this insertion is specific to this one protein sequence. The HMM models this
insertion as coming from a state Ij , and it belongs to the same consensus residue as
the preceding amino acid which belongs to the match state Mj .

DISAT, Politecnico di Torino Christoph Feinauer
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Figure 1.3: A profile HMM. Squares correspond to match states, diamonds to insert
states and circles to delete states, Figure taken from [24]

Insertions and deletion states emit amino acid with a probability depending on the
amino acids and the position on the chain, while deletion states emit no residue (a gap
symbol can be inserted instead). Therefore protein sequences generated from such a
model can have different lengths.

The transition probabilities to go from one state to the other define the probability
distribution, e.g.

P (s5 = M3 | s4 = D2), (1.2)

which is the probability to go to a match state for consensus residue 3 if the last state
was a delete state corresponding to consensus residue 2. In fact, files defining HMMs as
for example the pre-calculated HMMs that Pfam [36] makes available for their protein
families are not much more than a table with probabilities to jump between different
states and the amino acid emission probabilities for the different states (dependent on
the consensus residue). We summarize from now on all these probabilities defining the
HMM by the capital letter H.

An pictorial representation of a profile HMM, found in [24] can be found in Figure
1.3. Here, squares correspond to match states, diamonds to insert states and circles
to delete states.

The procedure to arrive at a MSA is to estimate the transition probabilities from
the seed alignment and then to search for sequences in the database that have a
large probability given the parameters H. Emission probabilities for amino acids
and transition probabilities for the states can be estimated directly from the multiple
sequence alignment when the state sequence is known. Some care has to be taken
to avoid overfitting, like not assigning a zero probability to amino acids never seen
at a residue, especially when dealing with seed alignments that consist of only a few
sequences.

Given a new and unaligned sequence we do not know its possible state sequence, but
only the emitted symbols. Technically, one would like to calculate the probability of
the sequence given the model H,
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P (e | H) =
∑
s

P (e|s,H)P (s,H) (1.3)

where e is the observed (emitted) sequence and the sum runs over all sequences s with
their model probability P (s). According the Markov property,

P (s) = P (s1)

Ns∏
i=2

P (si | si−1). (1.4)

The quantity P (e | H) can be calculated by a dynamic programming algorithm called
the forward algorithm [24]. Alternatively one can extract the s that gives the maximal
contribution of the sum in Equation 1.3 and calculate

P (e, s∗ | H) = P (e | s∗, H)P (s∗ | H) (1.5)

where s∗ = argmax
s

P (e, s | H). This can be calculated by the Viterbi algorithm [24].

Whether to include the sequence in the multiple sequence alignment or not can then
be decided by looking whether a score derived from these probabilities exceeds some
threshold. HMMER [35] for example looks at the ratio of the probability of the se-
quence given H and the probability of a sequence in a random model obeying only the
background amino acid frequencies (the log of this ratio is called the log-odds score).
In addition, one can introduce E-values, which measure how likely it is that a ran-
dom sequence achieves a higher log-odds ratio than the sequence under investigation.
This gives an estimate of false positives in the alignment and can be used to control
specificity.

1.3 Statistical Analysis of Protein Sequence Data and Co-Evolution

Having generated a MSA, statistical analysis can be conducted. An example is to look
for conserved sites, having a low entropy [60]

Hi = −
∑
a

fi(a) log fi(a), (1.6)

where fi(a) is the frequency of occurence of amino acids a in residue (MSA column)
i and the sum runs over all possible amino acids. Such conservation might be indica-
tive of evolutionary conservation and evolutionary conservation might be indicative of
importance for structure and/or function [89].

An alternative hallmark for structural constraints influencing the amino acid distri-
butions in an MSA is residue co-evolution. Put forward more than 20 years ago [40],
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this reasoning has given rise to its own branch of research [20]. Co-evolution can arise
for example when two residues are in contact with each other and the fitness of the
protein is impaired when a mutation occurs which makes this contact unstable. This
should lead to correlated amino acid substitutions at contacting residues and, if cor-
related residues are found in the MSA, can vice versa be used to search for evidence
of a contact in the MSA.

Several problems make this protein contact inference not trivial:

� Co-evolution must not necessarily originate in a contact but may be due to
functional constraints

� Correlation might not be a good indicator for a direct co-evolutionary signal;
residue i might be correlated to a residue j without being in contact with it,
because both are in contact with a third residue k

� Strongly conserved residues (which are a priori more likely to contact other
residues, see Figure 2.3) may show little to no variation, in which case only a
low correlation signal may be detected

� MSAs might have only a few sequences and the correlation signal may be noisy

� The sequences in the MSA might have diverged only recently, which introduces
a phylogenetic bias that distorts the correlation signal

� Experiments are biased to sample from organisms that are of academic or medical
interest, which introduces a further bias in the correlation signal

� In homo-dimers intra-protein co-evolution is not distinguishable from co-evolution
due to the inter-protein contacts

Nonetheless, the field of statistical analysis of protein sequence data and especially the
extraction of co-evolutionary signals between residues is active and thriving. In the
next section, we will review some methods for protein contact prediction that address
the problems presented above, especially the disentangling of direct and indirect co-
evolution between protein residues.
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2 Methods: Existing Approaches for Predicting Residue
Contacts

All methods used in this thesis are part of the DCA approach to contact prediction,
based on the Generalized Potts Model and brought to fame in [68]. Nonetheless, it
is necessary to point out that the field of contact prediction is more than 20 years
old [40] and it seems therefore necessary to discuss also some other approaches. We
therefore present in this Section a relatively old but basic approach, based on Mutual
Information, and two newer ones, PSICOV and the application of Bayesian Trees.
The latter two perform similarly to DCA for contact prediction. We also mention
that non DCA approaches, such as PSICOV for example, are important inputs for
meta-methods, which arrive at the best overall performance for contact prediction to
date [51,84].

2.1 Some Non-DCA Approaches

2.1.1 Mutual Information

Mutual Information (MI) is one of the preferred measures of correlation between two
discrete stochastic variables X and Y in information theory [66] and defined as

IXY = IXY =
∑
A,B

PXY (A,B) log

(
PXY (A,B)

PX(A)PY (B)

)
, (2.1)

where PXY is the joint probability distribution of X and Y and the sum runs over all
values A and B that the random variables can take. In terms of the entropy H of the
stochastic variables X and Y this can be rewritten as:

IXY = HX −HX|Y = HY −HY |X (2.2)

Intuitively, this can be read as the amount of information of the variable X that is left
after the information that Y contains about X has been subtracted.

One can apply this measure to protein sequence data by treating the columns of a MSA
as realizations of random variables and calculate the (empirical) mutual information
Iij between all column pairs i and j using the data distribution fij(a, b),

Iij = Iji =
∑
A,B

fij(A,B) log

(
fij(A,B)

fi(A)fj(B)

)
, (2.3)

where fij(a, b) is the frequency of co-occurrence of amino acid a at residue i and amino
acid b at residue j.
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Figure 2.1: True positive rate (true positives divided by number of predictions) in the n
top-ranking predictions, where n is indicated by the y-axis. The red curve
corresponds to mutual information, the blue curve to mutual information
with an average product correction as presented in [23]. The test-set used
here are the 53 proteins analyzed in [68].
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Figure 2.2: Histogram of distances between nodes based on the contact maps derived
from the 53 pdb files corresponding to the data set analyzed in [68].

Figure 2.1 shows that using the mutual information of a residue pair as a score for this
pair being a contact does not work very well. Even the highest scoring prediction is a
true positive in only about 60% of all cases. Several reasons might be responsible for
this:

Indirect couplings: First, note that mutual information as any measure of correla-
tion is also a measure of how well knowledge of the variable X can be used to predict
the outcome of a measurement of the variable Y . This is connected to, but not iden-
tical to, the quantity that we assume to be an indication for a 3D contact: A strong
direct influence of the variable X on Y . For predicting the outcome of one variable
given the other, on the other hand, the kind of connection between the variable is not
important. A prototypical example of a case where this makes mutual information a
bad proxy for direct coupling is when two residues which are not in contact in a pro-
tein show correlated amino acid substitutions because they are both in contact with a
third residue. An indication of the possible extent of this problem is the pronounced
interconnectedness of the protein residue contact network, as shown by the graph dis-
tances (the number of edges of the shortest path between two nodes in the contact
network) in Figure 2.2. A more sophisticated analysis of the problem can be found
in [13], where it is shown that highly correlated but non-contacting residues often have
chains of co-evolving contacting residues between them.

Site entropy: Another problem consists in the different entropy (variability) of the
variables. Mutual information can be shown to be positive semidefinite, so Equation
2.2 sets the upper bound as min(HX , HY ) and a prediction based on mutual informa-
tion will be biased to predict more contacts at higher entropy of the two corresponding
positions. Intuitively, the relation should be vice versa: Taking part in a contact in-
duces a evolutionary pressure for conservation in a position, lowering the entropy of

DISAT, Politecnico di Torino Christoph Feinauer



2.1 Some Non-DCA Approaches 14

Figure 2.3: Mutual information is biased to predict contacts between pairs with a high
sum of entropies. The bins have sizes 0.2. ’Data’ shows the fraction of
all contacts measured in the PDB files of the 53 analyzed proteins in [68]
falling into a bin depending on the sum of the entropies of the two sites
into the bins. ’mfDCA DI’,’plmDCA’,’PSICOV’ and ’Mutual Information’
show the fraction of the first 200 predicted pairs per bin.

the stochastic variable connected to that position [13].

Figure 2.3 shows the dependence of the probability of receiving a high score for a pair
on the sum of the entropies of the residues of the pair for several methods. It can be
seen that MI indeed tends to assign a high score when the sum of the column entropies
is higher, while the more successful methods presented later on follow rather closely
the distribution as measured in PDB files.

Phylogenetic background The multiple sequence alignment consists of sequences
that (ideally) have a relatively recent common ancestor. It is natural to assume that
two sequences look more similar if they are closer in the phylogenetic tree originating
from this common ancestor. This violates the assumption that the measured sequences
are independent and identically distributed (i.i.d.). It might for example happen that
two positions with no mutual influence get fixed and conserved in their value in all
branches following generation G (but possibly with different values in the individual
branches). The two positions then show a high degree of correlation (and mutual
information) resulting from phylogeny alone.

A partial remedy for these shortcomings can be found in an interesting approach
called Average Product Correction (APC) [23]. This approach aims to minimize
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any background influences like phylogeny and site entropy. We follow a sketchy but
instructive derivation found in [13] and assume that the mutual information Iij of
positions i and j is made of two parts; Irij due to a real mutual influence (be it indirect
or direct) and BiBj , a product of single-site characteristics that do not depend on the
partner:

Iij = Irij +BiBj (2.4)

These single site characteristics might stem for example from a higher or lower en-
tropy of the residue with respect to the mean. By estimating this contribution and
subtracting it from the score one hopes now to correct for such a background. The
special form in which the single site characteristics Bi and Bj enter in Equation 2.4
lead to the name of Average Product Correction. While other forms like the Average
Sum Correction have been studied, the one presented here leads to the largest increase
in prediction quality [23].

It is now assumed that Irij � BiBj . Then the one- and two-site averages of Iij will
also be dominated by the single site contributions (average denoted by •):

Ii• ≈ BiB• (2.5a)

I•• ≈ (B•)
2

(2.5b)

and therefore

Irij ≈ Iij −
Ii•Ij•
I••

. (2.6)

Mutual information thus corrected has a significantly better prediction quality (al-
though still not satisfactory in the absolute value) [23].

Notice that in the derivation there was no explicit reference to the characteristics
of mutual information. This ansatz can therefore be used as well to correct other
quantities for a dominating background. Indeed, APC has been shown to enhance
the prediction quality also for other scores like the PSICOV score (see Section2.1.2),
the posterior probabilities of the Bayesian network approach (see Section 2.1.3) and
the Frobenius norms of plmDCA (see Section 2.2.3). The only score that seems to be
unaffected by an average product correction term is the Direct Information as described
in Section 2.2.2. This is interesting because it is not a priori clear what background
influences are successfully corrected by APC. That Direct Information and Frobenius
norm react differently to APC but use the same reweighting-technique to correct for
phylogenetic bias might be a hint that APC is correcting mainly for an entropic bias
and that this is a minor problem in the DI framework. In fact, plotting in Figure 2.4
the same type of graph as Figure 2.3 for the Frobenius norm and the average product
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Figure 2.4: APC corrects the Frobenius Norm for entropic bias The bins have sizes 0.2.
’Data’ shows the fraction of all contacts measured in the PDB files of the
53 analyzed proteins in [68] falling into a bin depending on the sum of the
entropies of the two sites into the bins. ’Frobenius Norm’ and ’Frobenius
AP corrected’ show the fraction of the first 200 predicted pairs per bin,
with couplings inferred by plmDCA (see Section 2.2.3).

corrected Frobenius norm, we see that the distribution of the double column entropies
is much closer to the real one after the correction.

2.1.2 Sparse Inverse Covariance Estimation (PSICOV)

A classic approach to disentangle direct from indirect contributions to correlations
is the calculation of partial correlation coefficients. A successful application to pro-
tein sequences termed PSICOV (Protein Sparse Inverse Covariance Estimation) was
presented by Jones et al. in 2012 [50].

Partial correlation coefficients are a method to subtract from the correlation signal
of two random variables within an intercorrelated system of random variables contri-
butions that arise by the influence of the rest of the system on these two variables.
Hence, this quantity should be thought of as the correlation between two variables,
after the influence of the other variables has been removed [56].

To this end the authors transform the MSA into a numerical representation using
binary variables xmia, which are 1 if in the mth sequence of the MSA one finds amino
acid a at residue i, and 0 else (these binary variables are more formally introduced
in the later Section 2.2.1, but the information given should be enough to follow this
section). Denoting by xia average of these variables over the whole data set and by
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Cia,jb = E
[
(xmia − xia)(xmjb − xjb)

]
(2.7)

their covariance matrix, where the index ia corresponds to the integer (i − 1) · q + a
with q being the number of amino acids symbols in the alignment.

The partial correlation coefficients connected to the two variables xia and xjb are
defined as:

ρia,jb = − Θia,jb√
Θia,iaΘjb,jb

, (2.8)

where the matrix Θ is defined as

Θia,jb = (Cia,jb)
−1. (2.9)

The idea to invert the covariance matrix to arrive at interaction scores will be revisited
in different contexts in Sections 2.2.2 and 3. The problem encountered is also the same,
namely that the correlation matrix C is not invertible.

Whereas mfDCA uses a pseudocount to cure the invertibility of the matrix (see Section
2.2.2), the authors of [50] apply methods of sparse inverse covariance estimation and
search for an approximate solution to Equation 2.9, adding a sparsity prior. Notice
that this sparsity corresponds to the assumption that most positions show no directly
coupled mutations. Regarding contacts, this sparsity is empirically well-founded: as
the number of contacts is on the order of N , while the number of possible contacts on
the order of

(
N
2

)
. Sparsity priors (or at least priors favoring small couplings) are also

used in DCA, for example by plmDCA (see Section 2.2.3).

In order to find an approximation to the inverse of a singular matrix with the con-
straint of sparsity, the authors in [50] use the graphical Lasso method. The final
objective function can be seen as the negative log-likelihood in a Gaussian approxi-
mation (treating the variables as real variables) with the l1-norm of the matrix Θ as
a regularizer:

∑
ia,jb

Cia,jbΘia,jb − log det Θ + τ
∑
ia,jb

|Θia,jb| (2.10)

The first two terms have for an invertible C a minimum at Θ = C−1. The second
part is the regularizer, favoring sparse solutions and ensuring convexity. Its strength is
controlled by τ . In terms of Bayesian Inference this is nothing else than a exponential
prior on the parameters multiplied with the posterior:

P (D,Θ) = P (D|Θ)P (Θ) (2.11)
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with

P (D|Θ) ∝ e
−M

∑
ia,jb

Cia,jbΘia,jb

(det Θ)M
(2.12)

P (Θ) = e
−

∑
ia,jb

|Θia,jb|
(2.13)

In order to speed up convergence, the sample covariance matrix C is shrinked towards
a structured, unbiased estimator:

Ĉia,jb = λCδia,jb + (1− λ)Cia,jb, (2.14)

where C is the mean of the diagonal entries of C. For λ→ 1 this new matrix becomes
non-singular. The strategy of the authors in [50] is to increase λ gradually until the
resulting matrix is non-singular. The minimization of Equation 2.10 is then executed
with the new matrix Ĉ.

The score for the residue pair i and j is based on the l1-norm of the (q − 1)× (q − 1)
submatrix of Θ that contains the partial correlation coefficients corresponding to the
position pair i and j without the contribution of the gaps:

Fij =

q−1,q−1∑
a,b

|Θij(a, b)|, (2.15)

were we have used tensorial notation for Θ to lighten notation.

In order to arrive at the final score, the authors in [50] apply an average product
correction (see Section 2.1.1 for a description). To further reduce the phylogenetic
bias, a reweighting scheme equal to the one described in 2.2.2 is applied.

The method performs very well for contact prediction (see Figure 3.1) and is an im-
portant ingredient for meta-methods [84].

2.1.3 Bayesian Trees

An interesting method to disentangle direct from indirect couplings that conceptually
rather different from the ones presented until now and framed completely in the lan-
guage of Bayesian inference was presented 2010 by Burger and van Nimwegen [13].
The idea of the method is to assume that the random variables (i.e. the amino acids)
have a statistical interdependence that can be modeled by a Bayesian tree [73]. In a
Bayesian tree every node representing a variable is assigned set of parent nodes. For
the considerations here we also assume that every node has a single parent. These
parent-children relationships express conditional independencies: A random variable
is independent of his ancestors given the value of his parent. Identifying the nodes
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with columns in a MSA, the probability of a sequence s = (s1, s2, ..., sN ) can therefore
be written as:

P (s|π) =
∏
i

P (si|{sπ(i)}), (2.16)

where {sπ(i)} is the set of parents of node si, and the probability of an empirical MSA
D given a tree is simply

P (D|π) =

M∏
m

P (sm|π). (2.17)

The tree π is of course not known a priori. To arrive at a probability for the MSA, a
sum over all trees using a prior should be calculated:

P (D) =
∑
π

P (D|π)P (π). (2.18)

An unnormalized posterior probability for a given edge (ij) representing a direct in-
fluence of position i on position j can be constructed using Equation 2.18. This gives
a probability of the data Pij(D), given that the edge i-j exists. Then, a score for this
edge can be defined as:

Sij =
Pij(D)

P (D)
(2.19)

The two problems left is to find explicit expressions for the probabilities in Equation
2.18 and, what seems to be more complicated, to evaluate the sum over all possible
trees.

The first problem is easily solvable by substituting the relations in Equations 2.16.
We adapt the notation of [13] and write P (Dij) for the marginal probability to find
column i and j together in the MSA, and P (Di) analogously for only one of them.
We further label the root node of the tree with r. This node r does not have a parent,
which will be made explicit in the following equations:

P (D|π) = P (Dr)
∏
i 6=r

P (Di|Dπ(i)) (2.20)

=

[∏
i

P (Di)

]∏
i 6=r

P (Di,π(i))

P (Di)P (Dπ(i))

 . (2.21)
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Given a tree and the single- and double-site probabilities, we can thus calculate the
posterior. These single- and double-site probabilities should follow a multinomial dis-
tribution as the sequences are assumed to be drawn identically and independently from
the same sequence-distribution:

P (Di|{wi(a)}) =
∏
a

wi(a)Mfi(a), (2.22)

P (Dij |{wij(a, b)) =
∏
a,b

wij(a, b)
Mfij(a,b) (2.23)

where, to avoid confusion and in accordance with [13], the symbol wi(a) denotes the
probability to find amino acid a at position i and the symbol wij(a, b) the corresponding
two-site probability. The authors in [13] use a Dirichlet prior (the conjugate prior to
the multinomial distribution) for the probabilities {wi(a)} and {wij(a, b)} with hyper-
parameters λ and λ′ to arrive at explicit expressions for the column probabilities.
Given the single and double site frequencies fi(a) and fij(a, b) measured in the MSA
the following relations can be obtained:

P (Di) =
Γ(qλ)

Γ(M + qλ)

∏
a

Γ (Mfi(a) + λ)

Γ(λ)
(2.24)

P (Dij) =
Γ(q2λ′)

Γ(M + q2λ′)

∏
ab

Γ(Mfij(a, b) + λ′)

Γ(λ′)
, (2.25)

where consistency demands λ = qλ′. Together with Equation 2.21 this defines P (D|π).

The problem left is to construct a prior over the trees and evaluate the sum in Equation
2.18. For a class of priors called decomposable priors, a method based on a generalized
version of Kirchhoff’s Matrix Tree Theorem [42] developed by Meila and Jaakkola [65]
can be applied. In such a decomposable prior the prior probability of a tree can be
written as the product of probabilities Wij over its edges (i, j):

P (π) =
∏
i 6=r

Wi,π(i) (2.26)

Plugging Equations 2.26 and 2.21 in Equation 2.18 we arrive at the final expression
for P (D):

P (D) =

[∏
i

P (Di)

]∑
π

∏
i 6=r

Ri,π(i)Wiπ(i)

 (2.27)

where
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Riπ(i) =
P (Di,π(i))

P (Di)P (Dπ(i))
(2.28)

and Wiπ(i) enables one to easily incorporate any prior information one believes to have.

The sum over all trees in Equation 2.27 can now be written as the determinant of any
minor of the Laplacian of the matrix Mij [65] with

Mij = RijWij . (2.29)

The computation of the score in Equation 2.19 can therefore be done with the time
complexity of calculating the determinant of a (N − 1)× (N − 1) matrix, i.e. cubic in
N .

The authors in [13] apply as a last ingredient an average product correction to the
score (see Section 2.1.1).

The performance of the method in protein contact inference is better than the simple
mutual information approach, but the worst one of the more advanced techniques. One
of the reasons might be that the underlying model is bad: There is no good reason
to assume a tree is a good model for conditional independencies between residues of
a protein. An indication that it is indeed a bad one is the fact that using just the
maximum-likelihood tree instead of a full Bayesian approach produces results only
marginally better than using mutual information [13].

2.2 DCA Approaches

Approaches for the statistical modeling of protein sequence data based on the so-
called Generalized Potts Model (see Eq. 2.30 below) are collected under the umbrella-
term Direct Coupling Analysis (DCA). Examples are mean-field DCA (mfDCA) [68],
pseudo-likelihood based DCA (plmDCA) or DCA based on Boltzmann Machine learn-
ing [87]. This model assigns a statistical weight P (s|θ) to any possible protein sequence
s, dependent on the parameters θ. The general approach is to learn the parameters
θ given the data and then use the parameters to calculate an interaction scores be-
tween protein residues. This interaction score is then used as a representation of the
confidence that two residues are in contact.

The approaches differ in the way they preprocess the data, in the way they calculate
the parameters given the data and also in the way they calculate the interaction score.
In the following we will first present some general features of the Generalized Potts
model and then describe some approaches for protein contact reference based on it in
more detail.
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2.2.1 The Generalized Potts Model and Maximum Entropy

The Generalized Potts Model We define the Generalized Potts Model (GPM) as
the discrete exponential family that assigns to a sequence s = (s1, . . . , sN ) of length
N a probability of the form

P (s | J, h) =
1

Z(J, h)
exp

 N∑
i=1

N∑
j=i+1

Jij(si, sj) +

N∑
i=1

hi(si)

 , (2.30)

where the si can take on any value from an alphabet of size q and the Jij(a, b) and
hi(a) are real numbers indexed by the positions i and j and the symbols (amino acids)
a and b. Note that this use of the term Potts Model deviates from the terminology
used traditionally [99]. The normalization constant Z is defined as

Z =
∑
s

exp

 N∑
i=1

N∑
j=i+1

Jij(si, sj) +

N∑
i=1

hi(si)

 . (2.31)

Notice that this sum contains qN terms. With q = 21 (20 amino acids and one gap
symbol, see Section 1.2) and N ≈ 30 (for a small protein) these are around 1019 terms.
This means that an exact and direct calculation of Z is impossible even for small
proteins.

Inspired by statistical physics, the exponent of an object like Equation 2.30 is often
called (with reversed signs) Hamiltonian, or simply the model :

−H(s) =

 N∑
i=1

N∑
j=i+1

Jij(si, sj) +

N∑
i=1

hi(si)

 (2.32)

It defines the probability distribution.

It is often convenient to write Equation 2.30 using Kronecker deltas δai (s) (see e.g. [4]),
which are defined to be 1 if si = a in s and 0 otherwise. Any sequence can then be
represented as a binary vector of length N · q,

s =


δa1 (s)

δb1(s)

. . .

δqN (s)

 (2.33)
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and Equation 2.30 can be transformed into

P (s | J, h) =
1

Z(J, h)
exp

 N∑
i=1

N∑
j=i+1

∑
a,b

Jij(a, b) · δai (s)δbj(s) +

N∑
i=1

∑
a

hi(a)δai (s)

 .

(2.34)

We hope the reader will bear with us for yet another representation that is more
general and more convenient to do calculations in, especially in the later Section 3.2
when the model of Equation 2.32 is extended beyond pairwise terms.

With a simple index α for every term, real parameters ξα, absorbed signs and arbitrary
functions φα(s) (called potentials) we can rewrite the probability in Equation 2.30 as

P (s | ξ) =
1

Z(ξ)
exp

(
R∑
α=1

ξαφα(s)

)
(2.35)

Obviously, one can go back to Equation 2.34 by assigning one α to every term in
Equation 2.34 and substituting the ξ for the J and h, and the Kronecker deltas (or
products of them) for the φ. The number of parameters is R =

(
N
2

)
q2 +Nq.

Maximum Entropy Derivation The GPM can be derived in the context of the
Maximum Entropy Principle (MaxEnt) [48]. This principle answers the question

’Which probabilistic model should I choose for my data?’

with

’The model that has the maximal entropy of all models that are coherent with the
constraints derived from the data.’.

This can be seen as a generalization of the Principle of Indifference [49]. Its core idea
is, colloquially speaking, that in the absence of any good reason to do otherwise, one
should assign the probabilities in a probability space as even as possible among all
possible outcomes.

Mathematically this means to find the probability vector p (where p has qN entries
that assign probabilities for the qN possible sequences) that maximizes the equation
C(p) + S(p), where the term C(p) enforces the constraints and S(p) is the Shannon
Entropy.

In order to arrive by this reasoning at the GPM of Equation 2.30 one chooses as
constraints the equality of the single-site and double-site frequencies of the model and
data.

We define
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pi(a) = E [δai (s)]
p

(2.36)

pij(a, b) = E
[
δai (s) · δbj(s)

]p
fi(a) = E [δai (s)]

f

fij(a, b) = E
[
δai (s) · δbj(s)

]f
with E [f(s)]

p
the expectation of function f in the model distribution and E [f(s)]

f
in

the data distribution.

The function determining p can then be written as

P ∗ = argmax
p

[
−
∑
s

P (s) logP (s) +
∑
i<j

∑
a,b

λij(a, b) (fij(a, b)− Pij(a, b)) (2.37)

+
∑
i

∑
a

λi(a) (fi(a)− Pij(a)) + ω

∑
s

P (s)− 1

],
where the first term in the bracket is the Shannon Entropy and the second and third
term enforce the equalities of the marginals using the Lagrange multipliers λ that are
indexed in the same way as the marginals. The last term enforces the normalization
of p by the Lagrange multiplier ω.

After calculating the derivative with respect to the probability P (â) of some fixed but
arbitrary state â it follows immediately that P ∗ must be of the form of Equation 2.30
with λij(a, b) = Jij(a, b) and λi(a) = hi(a) for all i,j,a and b.

Notice that this tells us only the form of the distribution, but gives no direct equation
for the parameters J and h. These must be chosen such that the constraints are
satisfied. This means that the model has still be to inferred on the data (see below).

In the case presented here the practical value of this line of reasoning is doubtable.
There is no a priori rule on how to choose the constraints, but with a corresponding
choice of constraints any model of the form

−H(s) =
∑
i

hi(si) +
∑
i<j

Jij(si, sj) +
∑
i<j<k

Kijk(si, sj , sk) + . . . (2.38)

can be derived, with arbitrary interactions of all orders. One needs additional con-
siderations, like the fact that inference for more than 2-body interactions becomes
unfeasible because of the large number of parameters and the problem of estimating
them from few samples.
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Alternatively, one can refer to the general form of the Hamiltonian in Equation 2.38
and see the Model in Equation 2.32 as a hopeful truncation thereof [29].

Inference A common way to find suitable parameters of the Potts Model of Equation
2.30 given the data D is to maximize the posterior [60],

P (J, h | D) ∝ P (D | J, h) · P (J, h), (2.39)

where the first term on the right hand side is the likelihood (read as a function of the
parameters) and the second term a prior. Setting the prior to a constant and under
the assumption that the data consists of independent samples this method is known as
maximum likelihood estimation. In this case, the likelihood function L can be written
as

L =

M∏
m=1

P (sm | J, h) (2.40)

where m is indexing the M sequences in the data.

It is often more convenient to maximize the logarithm of this function. Inserting
Equation 2.30 one gets

1/M · logL(J, h) =
∑
i<j

∑
a,b

Jij(a, b)fij(a, b) +
∑
i

∑
a

hi(a)fi(a)− logZ, (2.41)

and the goal is to find the J and h for which this function is maximal.

Another way to arrive at the same equation is to minimize the Kullback-Leibler dis-
tance [60] between the model distribution and the data distribution f ,

D (f || p) =
∑
s

f(s) log

(
f(s)

P (s)

)
=
∑
s

f(s) log f(s)−
∑
s

f(s) logP (s), (2.42)

which leads to Equation 2.41 after inserting Equation 2.30 (up to a term not depending
on J and h). Given the aspect of the last term the (negative) log-likelihood is also
called cross entropy in this context [15].

Notice also that Equation 2.41 still contains the partition function Z and its calculation
is therefore not feasible for arbitrary J and h.
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Concavity and Gauge Freedom It is easy to show that the log-likelihood is concave
since its Hessian (the negative of which is also called the observed information [88]) is
proportional to the correlation matrix between potentials (notation of Equation 2.35):

− ∂2 log (L)

∂ξα∂ξβ
∝ E [φαφβ ]− E[φα]E[φβ ] (2.43)

Since this is negatively semi-definite, the function is concave.

This does not mean, however, that the maximum of 2.41 is unique. In fact, it is easy
to see that any two Hamiltonians H1 and H2 for which

H1(s) = H2(s) + C (2.44)

holds for some constant C will lead to the same probability distribution 2.30 and to
the same likelihood 2.41. An easy transformation of the couplings that leaves the
probability distribution unaltered is for example

Jij(a, b)→ Jij(a, b) +Kij (2.45)

with Kij arbitrary.

2.2.2 Mean Field DCA

Mean-Field Direct Coupling Analysis (mfDCA), put forward in [68], was the first fast
and efficient method to infer the couplings Jij(a, b) in Equation 2.30, given a MSA. The
basic idea is a Taylor-expansion around zero couplings similar to the high-temperature
expansion (around β = 0) for the Ising model described in [39].

The starting point is a Legendre-transformation G(α) of the free energy (the logarithm
of the partition function defined by Equation 2.31) in combination with the introduc-
tion of a perturbation parameter α controlling the strength of the interaction term in
the Hamiltonian (notation taken from Section 2.2.1):

G(α) := − lnZ(α)−
q∑
i

N∑
a

Pi(a)hi(a), (2.46)

with

Z(α) =
∑

a1,a2,..,aN

exp

α N∑
i=1

N∑
j=i+1

Jij(ai, aj) +

N∑
i=1

hi(ai)

 (2.47)
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Notice that α = 0 corresponds to a system with no interaction and α = 1 to the
original system with full interaction. By virtue of the Legendre-Transformation the
following relations hold:

hi(a) =
∂G(α)

∂Pi(a)

(C−1)ij(a, b) =
∂2G(α)

∂Pi(a)∂Pj(b)
, (2.48)

where Cij(a, b) = Pij(a, b) − Pi(a)Pj(b) is the connected correlation matrix of size
Nq ×Nq and the last equality can be derived very non-rigorously by

δia,jb =
∂Pia
∂Pib

=
∑
kc

∂Pia
∂hkc

· ∂hkc
∂Pjb

(2.49)

and noting that for the Potts Model ∂Pia
∂hjb

= Cij(a, b). Since from deriving the first

Equation in 2.48 with respect to Pjb one gets ∂hkc
∂Pjb

= ∂2G(α)
∂Pk(c)∂Pj(b)

one can reinterpret

Equation 2.49 as a matrix inversion and rewrite it as the second part of Equation 2.48.

As for all matrices we will use the tensor notation Cij(a, b) and matrix notation Cia,jb
quite interchangeably. The reason is that with the former a sum over a and b is easy to
write, while when dealing with the inversion of the matrix the latter form is preferable.

The mean field solution now consists in expanding the relation for G in powers of α in
first order:

G(α = 1) ≈ G(0) +
∂G(α)

∂α

∣∣∣∣
α=0

(2.50)

Together with Equation 2.48 this leads to an explicit expression for the couplings:

(C−1)ia,jb = −Jia,jb for i 6= j (2.51)

Plugging into this equation an empirical version of the matrix Ĉij(a, b) = fij(a, b) −
f(a)f(b), derived from the MSA, one can infer the couplings Jij(a, b) by virtue of one
single matrix inversion.

The major problem with this solution is that the matrix Cia,jb is surely rank deficient
as

∑
b

Cia,jb =
∑
b

(fij(a, b)− fi(a)fj(b)) = fi(a)− fi(a) = 0, (2.52)

and the problem as presented by Equation 2.51 therefore ill-defined. A remedy for this
problem is to note that the gauge transformation (see Section 2.2.1)
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Jij(a, b)→ Jij(a, b)− Jij(a, q)− Jij(q, b) + Jij(q, q) (2.53)

leaves the probability distribution unchanged. Because in this gauge all entries of
the couplings Jia,jb involving the amino acid q are a priori zero, the representation
of the matrices C and J can be cut down to a reduced alphabet in which the amino
acid indices are 1...q − 1. In this N(q − 1)×N(q − 1) representation the trivial rank
deficiency in Equation 2.52 vanishes and the matrix at least could be invertible.

Unfortunately, in most cases the matrix is still singular. We take as an example the
Pfam PF00014 alignment (N = 53) [77]. The matrix C has N(q− 1) = 1060 rows but

MATLAB© reports a rank of only 902. A quick computational check reveals that in
fact 153 rows and columns have only zeros as entries, corresponding to the fact that
certain amino acids are never observed at certain positions (for example Tyrosine at
the 53th position).

One method to solve the problem of missing observations is the adding of a pseudo-
count. The intuition is to extract artificial data from an even distribution over all
amino acids at all sequence-positions and blend the resulting correlation matrix into
the one resulting from empirical measurements. Therefore, a new correlation matrix
CPS
ia,jb is set up using changed frequencies:

f̂i(a) = (1− λ)fi(a) +
λ

q

f̂ij(a, b) = (1− λ)fij(a, b) +
λ

q2
if i 6= j

f̂ij(a, b) = (1− λ)fij(a, b) +
λδa,b
q

if i = j

(2.54)

For a λ sufficiently large (but obeying 0 < λ < 1) the resulting matrix CPS
ia,jb is invert-

ible and the original program of inferring the couplings can be executed. Experience
shows that a value between 0.3 and 0.5 gives good results. Notice that this is fairly
large as λ = 0.5 means that we give the pseudocount the exact same weight as the
actual data.

The task left is how to combine the couplings connected to the positions i and j to a
score. The authors in [68] use for this purpose a quantity termed direct information
(DIij), the mutual information between site i and j based on a two-site probability
model

P dij(a, b) =
1

Zij
exp

(
Jij(a, b) + ĥi(a) + ĥj(b)

)
, (2.55)
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where Zij is calculated in an analogous manner to Equation 2.47 but restricted to

positions i and j and the new fields ĥ are inferred such that the empiricial single- and
double-site frequencies are recovered.

The direct information between sites i and j is then the mutual information calculated
in this restricted model:

DIij =
∑
a,b

P dij(a, b) ln
P dij(a, b)

Pi(a), Pj(b)
. (2.56)

Taking DIij as a score has the advantage that it is independent of a gauge transfor-
mation and therefore deserves the appellation of observable; the independence of the
gauge transformation is desirable in order to ensure that the same probability distri-
butions, which we assume to contain all information extractable, produce the same
contact predictions.

Even though disfavored in the original publication [68] there exist rivaling, more
intuition-based scores for a pair (i, j). An example is the Frobenius Jij(a, b) for fixed i
and j, which is presented in Section 2.2.3. Such measures have the disadvantage that
the resulting score is dependent on the gauge, so one has to choose one that seems suit-
able (one usually chooses the one that minimizes the absolute values of the couplings,
in order to explain away as much as possible of the distribution with fields). The
upside is that in most numerical experiments they lead to a better prediction quality
(a fact that lacks explanation so far). It also seems that these matrix norms get a
strong boost in prediction quality by the application of an average product correction
term in contrast to the DI score, which is virtually unaffected by it.

The method presented until now addresses the problem of indirect interactions but
not the problem of phylogenetic bias. In [68] (and subsequently in many other DCA
implementations) a reweighting scheme is introduced: For every sequence S in the
alignment the number of similar sequences is determined: The number of sequences
with a Hamming distance less than a parameter Θ. The inverse of this number, wm
for the mth sequence in the MSA, is then used as a weight for this sequence in the
calculation of the reweighted frequencies f̂ :

f̂(s) =
1

Meff

M∑
m=1

wmI [ s = sm ] , (2.57)

where Meff =
M∑
m=1

wm in order to ensure normalization of f̂ .

The method performs significantly better than mutual information, but is outper-
formed when more precise inference methods are used for the Potts Model, like pseudo-
likelihoods (see for example [27] for a comparison with plmDCA).
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2.2.3 Pseudolikelihoods

This section presents some technical aspects of the work in [27] and [26]. We also notice
that some concepts and ideas were already described in [3]. The context of this section
is the same as Section 2.2.2. The general approach is still to infer the GPM of Equation
2.30 on protein sequence data and then extract a score for the existence of a contact
between residue i and j from the parameters Jij . The differences between this Section
and the foregoing one are found in the method of inference (pseudo-likelihoods vs.
mean-field approximation) and the scoring (Direct Information vs. Frobenius Norm).
We will therefore focus on these two aspects in this Section. The later Sections 4 and
5 will build on the method presented here.

The Objective Functions The idea of pseudo-likelihoods is to use as an alternative
to the full likelihood the likelihood of one variable given the others [6].

The probability of the ith position given the other ones in a sequence s, written in the
representation of Equation 2.30, is

P (si | s/i, J, h) =
1

Zi(s/i)
exp

∑
j 6=i

Jij(si, sj) + hi(si)

 (2.58)

with

Zi(s/i) =
∑
a

exp

∑
j 6=i

Jij(a, sj) + hi(a)

 . (2.59)

Notice that the conditional probability corresponding to site i depends only on pa-
rameters which are connected to site i, or, in the language of factor graphs, on factor
nodes that are adjacent to the variable node i.

The pseudo log-likelihood function corresponding to the ith position reads

logPLi =

M∑
m=1

wm

∑
j 6=i

Jij(s
m
i , s

m
j ) + hi(s

m
i )− logZi(s

m
/i)

 (2.60)

This form is convenient since it can be implemented straight away. The wm are
sequence weights that can be used to give individual sequences more or less weight in
the inference process, introduced in the context of pseudolikelihoods for protein contact
inference in [27]. This can be used to correct for experimental and phylogenetic biases.
They are calculated in the same way as the weights for the reweighted frequencies for
mfDCA of Equation 2.57 of Section 2.2.2.
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The conditional probability can be written in the more general form of Equation 2.35.
We add this here since it makes the calculation of the gradient easy also when higher
order terms are introduced, which will be done in 3.2.

P (si | s/i, J, h) =
1

Zi(s/i)
exp

(∑
α∈∂i

ξαφα(si, s/i)

)
, (2.61)

where we have one summand in the exponent for every summand in the exponent of
Equation 2.58.

The pseudo log-likelihood can then be written as

log (PLi) = M ·

(∑
α

ξαE
[
φα(si, s/i)

]f̂ − E [logZi(s/i)
]f̂)

(2.62)

and its gradient with respect to a specific ξβ as

∂ log (PLi)
∂ξβ

= M ·
(
E
[
φβ(si, s/i)

]f̂ − E [φβ(si, s/i)
]t)

(2.63)

=

M∑
m=1

wm ·

(
φβ(smi , s

m
/i)−

∑
si

P (si | sm/i, J, h)φβ(si, s
m
/i)

)
, (2.64)

where in the first line t is the distribution defined by t(s) = P (si|s/i, J, h)f̂(s/i) and
the second line is reported because it is convenient to be implemented directly.

Written explicitly in terms of the parameters h and J this leads to

∂ log (PLi)
∂hi(a)

=

M∑
m=1

wm ·
(
δai (sm)− P (a | sm/i, J, h)

)
(2.65)

∂ log (PLi)
∂Jij(a, b)

=

M∑
m=1

wm · δbj(sm) ·
(
δai (sm)− P (a | sm/i, J, h)

)
, (2.66)

where the definition of the δ can be found in Section 2.2.1.

In [26] the authors introduce a l2-regularizer to the objective functions, which is the
sum of all squares of all parameters of the model. If this is subtracted from the pseudo
log-likelihood, one forces the inference process to make a trade-off between optimizing
the bare pseudo log-likelihood and using small absolute parameter values:
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l2i(J, h) = λJ
∑
j 6=i

∑
a,b

Jij(a, b)
2 + λh

∑
a

hi(a)2 (2.67)

The λJ and λh control the regularization strength for the couplings and the fields.
That a prior is necessary can be seen from an inspection of example of 2.65. If any

of the E
[
φβ(si, s/i)

]f
is 0 (for example if an amino acid is never present at residue

i) some parameters diverge in the inference process since the corresponding gradient
in Equation 2.63 is never 0 for finite parameter values (since Equation 2.58 cannot
assign a zero probability to any amino acid for finite parameter values). Another good
reason for the introduction of the prior is that if the structure of the coupling matrix
J reflects the contact map, one would assume most elements to be vanishing since
the number of contacts in a protein scales roughly with N [91], while the number of
parameters scales with N2.

The final functions gi(J, h) to be maximized is therefore

gi(J, h) = PLi(J, h)− l2i(J, h) (2.68)

These functions are maximized independently in [26]. This poses the problem that one
obtains several estimates for the couplings since couplings like Jij(a, b) appear both
in gi and gj . The easy solution that performs well for protein contact prediction is to
take the mean of both values.

The alternative strategy of maximizing

G(J, h) =

N∑
i=1

gi(J, h) (2.69)

is also feasible, but is slower and leads to a virtually identical performance for contact
prediction [27]. We therefore use only the former approach in this work.

Scoring and Contact Prediction Instead of using the Direct Information presented
in Section 2.2.2, the authors in [26, 27] decide to use the simpler Frobenius norm of
the matrix Jij to arrive at a contact score for residues i and j.

Sij =

√√√√ q,q∑
a=1,b=1

Jij(a, b)2 (2.70)

This may appear conceptually less appealing for two reasons: First, there is to our
knowledge no derivation that explains why the Frobenius Norm should be a good
measure for how much two residues are co-evolving (even though it is very intuitive
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that it should be at least some measure for this). Secondly, the Frobenius Norm is not
gauge invariant. Consider the simple gauge transformation.

Jij(a, b)→ Jij(a, b) + Cij (2.71)

for arbitrary Cij . This leaves the probability distribution itself unaltered, but an
arbitrary order of the Sij can be imposed by varying the Cij .

Nonetheless, the use of this score (with an AP correction, see below) has been shown
to lead to a better performance in terms of contact prediction be it for parameters
inferred with the pseudo-likelihood method [26], be it for parameters inferred within
the mean-field approximation [4].

As a last addition, the score is average product corrected (APC). This consists in the
transformation,

SAPCij = Sij −
Si·Sj·
S··

(2.72)

where the dot indicated to take the average over the corresponding index, i.e.

Si· =
1

N − 1

∑
j 6=i

Sij . (2.73)

This is the correction described in Section 2.1.1 and was introduced in [23]as an entropy
correction factor for mutual information. It is not clear why this improves prediction
when applied to the Frobenius Norm, but it does [27].

2.3 The Application to Protein Structure Prediction

A major goal of bioinformatics is the prediction of protein structure given a sequence.
That the amino acid sequence of a protein usually defines its structure is something
known as Anfinsen’s Principle [2], but the physico-chemical process leading from the
sequence to the final structure in vivo is generally unknown and probably complicated
[28].

Setting aside the question how the protein folds in vivo, methods for predicting the
final protein structure (or the arrangement of the individual proteins in a complex,
the inference of which is called docking) from the sequence data are the central field of
application for DCA [62,63,71,83]. The inferred residue contacts are used as constraints
for the final structure, limiting the space of conformations drastically a priori.

Protein structure prediction and docking algorithms usually use a coarse-grained model
of the protein, for example a representation of every amino acid as a bead on a string,
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several beads on a string or a bead for every heavy atom [96]. For this model of the
protein a Hamiltonian is defined and interactions between the parts ideally guide the
protein to the native state.

Many such algorithms have been designed, differing for example in the definition of
the force fields (for example Amber [92]) or the way the solvent is included.

The Hamiltonian can also be used to include prior information. Between residues that
are inferred to be in contact by the analysis of multiple sequence alignments one can
define a potential that pushes them together, facilitating the dynamics to find the
correct conformation.

An example is the work found in [83], a docking simulation using DCA inferred contacts
between proteins as inputs. Here, the authors analyze the bacterial two-component
signal transduction system (TCS) consisting of the protein pair Spo0B/Spo0F. Such
systems generally work by translating an external stimulus in a phosphorylation of a
response regulator by a histidine kinase [86]. The need for cooperation leads to co-
evolution in such systems, in the form of correlated residue mutations at the interface
between the two proteins.

The large amount of available sequence data for this specific pair of proteins make them
especially amenable to protein-protein residue interaction prediction based on DCA
(see Section 4 for a detailed description of the concept of protein-protein interaction
prediction). After the inference of residue contacts at the interface has been done
using the mean-field approximation (see Section 2.2.2), 6 of the inferred contacts are
used to constrain the following docking simulations. Given that a crystal structure for
the complex is available, the resulting structure can be compared to the inferred one,
assessing its quality. The quality can be measured by the Root Mean Square Deviation
(RMSD), which determines how much the inferred structure deviates on the mean for
the experimentally determined one. The authors of [83] conclude that an accuracy
similar to experiment is achievable by the docking simulations using DCA inferred
contacts as input. The authors used the same method for predicting the complex
of another TCS pair, which had no resolved structure at the time but was analyzed
experimentally later and with an (excellent) RMSD of 3.3 Å between the predicted
and the experimental structure.

Similar works with the same positive evaluation of the utility of DCA or related meth-
ods for the structure prediction of proteins are found in [44] (structure prediction for
membrane proteins), [62] (structure prediction using an algorithm originating in the
field of solving structures with constraints from NMR studies) and [71] (a combination
of inferred residue contacts with the popular structure prediction software Rosetta).

It should also be noted that the importance of predicted residue contacts for structure
prediction can be seen in the fact that many of the top-performing groups in the bian-
nual tournament Critical Assessment of Techniques for Protein Structure Prediction
(CASP) now use inferred protein contacts as input.
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3 Results: Improving Residue Contact Prediction

3.1 Faster Inference by Gaussian Modeling

This section describes an approach of modeling protein sequence data by using a
Gaussian approximation. This work has been published by the authors Baldassi C.,
Zamparo M., Procaccini A., Zecchina R., Feinauer C., Weigt M. and Pagnani, A. in
PLoS ONE [4]. Parts of this work will be re-used verbatim in this Section. The
journal’s copyright policy permits this explicitly.

The notation was adapted to the one used in Section 2.2.1 and the rest of the thesis.
Some points that have already been treated in the foregoing Sections are repeated in
order to make this section more accessible.

The work in [4] is not only concerned with the prediction of contacts within one protein
but also with the prediction of contacts between proteins. Since this will be the main
topic of Section 4, we will not discuss this part of the work here.

Overview Similar to [50], we considered a multivariate Gaussian model in which
each variable represents one of the q possible amino-acids at a given site, and aimed in
principle at maximizing the likelihood of the resulting probability distribution given
the empirically observed data (in particular, given the observed mean and correlation
values, computed according to a reweighting procedure presented Section 2.2.2 devised
to compensate for the sampling bias). Doing so would yield the parameters for the
most probable model which produced the observed data, which in turn would provide
a synthetic description of the underlying statistical properties of the protein family
under investigation. Unfortunately, however, this is typically infeasible, due to under-
sampling of the sequence space. A possible approach to overcome this problem, used
e.g. in Section 2.2.3 or in [50], is to introduce a sparsity constraint, in order to reduce
the number of degrees of freedom of the model. Here, instead, we propose a Bayesian
approach, in which a suitable prior is introduced, and the parameter estimation was
then performed over the posterior distribution.

A convenient choice for the prior is the normal-inverse-Wishart (NIW), which, be-
ing the conjugate prior of the multivariate Gaussian distribution, provides a NIW
posterior. Thus, within this choice, the posterior simply is a data-dependent re-
parametrization of the prior: as a result, the problem is analytically tractable, and
the computation of relevant quantities can be implemented efficiently. Furthermore,
by choosing the parameters for the prior to be as uninformative as possible (i.e. corre-
sponding to uniformly distributed samples), we obtained an expression for the posterior
which, interestingly, can be reconciled with the pseudo-count correction described for
the mean-field approach in Section 2.2.2. In the Gaussian framework, the pseudo-count
parameter has a natural interpretation as the weight attributed to the prior.

We then estimated the parameters of the model as averages on the posterior distri-
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bution, which have a simple analytical expression and can be computed efficiently (in
practical terms, the computation amounts to the inversion of a L(q − 1) × L(q − 1)
matrix), where L is the protein length and q = 21 (we slightly deviate from notation
in the rest of thesis, were N is reserved for protein length for reasons that will become
clear below). This yields an estimate of the strengths of direct interactions between
the residues of the alignments, which can be used to predict protein contacts.

Contact prediction between residues relies on the model’s inferred interaction strengths
(i.e. couplings), which are represented by q × q matrices; in order to rank all possible
interactions, we computed a single score out of each such matrix. As mentioned
above, these matrices are numerically identical to those obtained in the mean-field
approximation of the discrete (Potts) DCA model. We tested two scoring methods: the
so-called direct information (DI), introduced in Section 2.2.2, and the Frobenius norm
(FN) as computed in Section 2.2.3. The DI is a measure of the mutual information
induced only by the direct couplings, and its expression is model-dependent: in the
Gaussian framework it can be computed analytically and yields slightly different results
with respect to the Potts model (but with a comparable prediction power, see below).
The FN, on the other hand, does not depend on the model, and therefore some of the
results which we report here for the contact prediction problem are applicable in the
context of the Potts model as well. In our tests, the FN score yielded better results;
however, the DI score is gauge-invariant and has a well-defined physical interpretation,
and is therefore relevant as a way to assess the predictive power of the model itself.

Data and Methods Input data is given as multiple sequence alignments of pro-
tein domains. We directly use MSAs downloaded from the Pfam database version
27.0 [34, 77], which are generated by aligning successively sequences to profile hidden
Markov models (HMMs) [25] generated from curated seed alignments. We selected 50
domain families, which were chosen according to the following criteria: (i) each family
contains at least 2,000 sequences, to provide sufficient statistics for statistical infer-
ence; (ii) each family has at least one member sequence with an experimentally resolved
high-resolution crystal structure available from the Protein Data Bank (PDB) [5], for
assessing a posteriori the predictive quality of the purely sequence-based inference.
The average sequence length of these 50 MSAs is 〈L〉 ' 173 residues, the longest se-
quences are those of family PF00012 whose profile HMM contains 602 residues. The
list of included protein domains, together with their PDB structure, is provided in
Table 3.1.

Pfam ID Description PDB

PF00001 7 transmembrane receptor (rhodopsin family) 1f88, 2rh1

PF00004 ATPase family associated with various cellular activities (AAA) 2p65, 1d2n

PF00006 ATP synthase alpha/beta family, nucleotide-binding domain 2r9v

PF00009 Elongation factor Tu GTP binding domain 1skq, 1xb2

PF00011 Hsp20/alpha crystallin family 2bol

Table 3.1 – continues on next page
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Table 3.1 – continued from previous page

Pfam ID Description PDB

PF00012 Hsp70 protein 2qxl

PF00013 KH domain 1wvn

PF00014 Kunitz/Bovine pancreatic trypsin inhibitor domain 5pti

PF00016 Ribulose bisphosphate carboxylase large chain, catalytic domain 1svd

PF00017 SH2 domain 1o47

PF00018 SH3 domain 2hda, 1shg

PF00025 ADP-ribosylation factor family 1fzq

PF00026 Eukaryotic aspartyl protease 3er5

PF00027 Cyclic nucleotide-binding domain 3fhi

PF00028 Cadherin domain 2o72

PF00032 Cytochrome b(C-terminal)/b6/petD 1zrt

PF00035 Double-stranded RNA binding motif 1o0w

PF00041 Fibronectin type III domain 1bqu

PF00042 Globin 1cp0

PF00043 Glutathione S-transferase, C-terminal domain 6gsu

PF00044 Glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain 1crw

PF00046 Homeobox domain 2vi6

PF00056 Lactate/malate dehydrogenase, NAD binding domain 1a5z

PF00059 Lectin C-type domain 1lit

PF00064 Neuraminidase 1a4g

PF00069 Protein kinase domain 3fz1

PF00071 Ras family 5p21

PF00072 Response regulator receiver domain 1nxw

PF00073 Picornavirus capsid protein 2r06

PF00075 RNase H 1f21

PF00077 Retroviral aspartyl protease 1a94

PF00078 Reverse transcriptase (RNA-dependent DNA polymerase) 1dlo

PF00079 Serpin (serine protease inhibitor) 1lj5

PF00081 Iron/manganese superoxide dismutases, alpha-hairpin domain 3bfr

PF00082 Subtilase family 1p7v

PF00084 Sushi domain (SCR repeat) 1elv

PF00085 Thioredoxin 3gnj

PF00089 Trypsin 3tgi

PF00091 Tubulin/FtsZ family, GTPase domain 2r75

PF00092 Von Willebrand factor type A domain 1atz

PF00102 Protein-tyrosine phosphatase 1pty

PF00104 Ligand-binding domain of nuclear hormone receptor 1a28

PF00105 Zinc finger, C4 type (two domains) 1gdc

PF00106 Short chain dehydrogenase 1a27

PF00107 Zinc-binding dehydrogenase 1a71

Table 3.1 – continues on next page
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Table 3.1 – continued from previous page

Pfam ID Description PDB

PF00108 Thiolase, N-terminal domain 3goa

PF00109 Beta-ketoacyl synthase, N-terminal domain 1ox0

PF00111 2Fe-2S iron-sulfur cluster binding domain 1a70

PF00112 Papain family cysteine protease 1o0e

PF00113 Enolase, C-terminal TIM barrel domain 2al2

Table 3.1: 50 Pfam families used in the benchmarks, together with their associated
PDB entries. Table taken from [4]

Following [50], we discarded the sequences in which the fraction of gaps was larger
then 0.9. However, in [50], an additional pre-processing stage was applied, in which a
target sequence is chosen as the one for which prediction of contacts is desired, and
all residue positions in the alignment (i.e. columns in the alignment matrix) where the
target sequence alignment has gaps are removed. We did not find this pre-processing
step to improve the prediction, for either PSICOV or our model, and therefore all
results presented in this section do not include this additional filtering.

As written above, the input data were MSAs. An MSA provides a M ×L-dimensional
array D = (sml )

m=1,...,M
l=1,...,L : each row contains one of the M aligned homologous protein

sequences of length L. Sequence alignments are formed by the q = 21 different symbols,
which contain 20 amino acids and one gap symbol, see Section 1.2.

Here we consider a modified representation, similar to that used in [50] and similar to
the representation found in Equation 2.33 in Section 2.2.1. This turns out to be more
practical for the multivariate modeling we are going to propose. The MSA is trans-
formed into a M×(Q · L)-dimensional array X = (xmi )

m=1,...,M
i=1,...,QL over a binary alphabet

{0, 1}, with Q = q− 1. More precisely, each residue position in the original alignment
is mapped to Q binary variables, each one associated with one standard amino-acid,
taking value one if the amino-acid is present in the alignment, and zero if it is absent;
the gap is represented by Q zeros (i.e. no amino-acid is present). Consequently, at most
one of the Q variables can be one for a given residue position. For each sequence, the
new variables are collected in one row vector, i.e. xm(l−1)Q+a = δal (sm) in the notation
of Equation 2.33.

Denoting the row length of X as N = QL, we introduce its empirical mean x =

(xi)i=1,...,N and the empirical covariance matrix C (X,µ) =
(
C (X,µ)ij

)
i,j=1,...,N

for

given mean µ = (µi)i=1,...,N :

xi =
1

M

M∑
m=1

xmi , (3.1)

Cij (X,µ) =
1

M

M∑
m=1

(xmi − µi)
(
xmj − µj

)
(3.2)
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The empirical covariance is thus C = C (X,x). Note that the entry xi, with i =
(l − 1)Q + a, measures the fraction of proteins having amino-acid a ∈ {1, . . . , Q}
at position l ∈ {1, . . . , L}. Similarly, the entry Cij (X, 0) of the correlation matrix,
with i = (k − 1)Q + a and j = (l − 1)Q + b, is the fraction of proteins which show
simultaneously amino-acid a in position k and b in position l.

Gaussian Modeling We develop our multivariate Gaussian approach by approxi-
mating the binary variables as real-valued variables. Even though the former are highly
structured, due to the fact that at most one amino-acid is present in each position of
each sequence, we will not enforce these constraints on the model. Instead, we shall
rely on the fact that the constraint is present by construction in the input data, and
that as a consequence we have, for any residue position l and any two states a and b
with a 6= b:

C(l−1)Q+a,(l−1)Q+b = −x(l−1)Q+ax(l−1)Q+b < 0 (3.3)

i.e. two different amino-acids at the same site are anti-correlated. Therefore, we shall
let the parameter inference machinery work out suitable couplings between different
amino-acid values at the same site, which generate these observed anti-correlations.

The multivariate Gaussian model and the Bayesian inference of its parameters are well-
studied subjects in statistics, thus here we only briefly review the main ideas behind
our approach, referring to [38] for details. The multivariate Gaussian distribution
is parametrized by a mean vector µ = (µi)i=1,...,N and a covariance matrix Σ =
(Σij)i,j=1,...,N . Its probability density is

P (x|µ,Σ) = (2π)−
N
2 |Σ|− 1

2 exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
, (3.4)

|Σ| being the determinant of Σ, and it turns out that the Q×Q block

ekl (a, b) = −
(
Σ−1

)
(k−1)Q+a,(l−1)Q+b

(3.5)

(with k, l ∈ {1, . . . , L} and a, b ∈ {1, . . . , Q})

plays the role of the J in the GPM described in Section 2.2.1. Assuming for the
moment statistical independence of the M different protein sequences in the MSA, the
probability of the data X under the model (i.e. the likelihood) reads

P (X|µ,Σ) =

M∏
m=1

P (xm|µ,Σ) = (2π)
−NM2 |Σ|−M2 exp

[
−M

2
tr
(
Σ−1C (X,µ)

)]
, (3.6)

with C (X,µ) given by Eq. 3.2.

When the empirical covariance C is full rank, the likelihood attains its maximum at µ =
x and Σ = C, which constitute the parameter estimates within the maximum likelihood
approach. However, due to the under-sampling of the sequence space, C is typically
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rank deficient and this inference method is unfeasible. To estimate proper parameters,
we make use of a Bayesian inference method, which needs the introduction of a prior
distribution over µ and Σ. The required estimate is then computed as the mean of
the resulting posterior, which is the parameter distribution conditioned to the data.
As we have already mentioned, a convenient prior is the conjugate prior, which gives
a posterior with the same structure as the prior but identified by different parameters
accounting for the data contribution. The conjugate prior of the multivariate Gaussian
distribution is the normal-inverse-Wishart (NIW) distribution. A NIW prior has the
form p (µ,Σ) = p (µ|Σ) p (Σ), where

p (µ|Σ) = (2π)−
N
2 κ

N
2 |Σ|− 1

2 exp
[
−κ

2
(µ− η)

T
Σ−1 (µ− η)

]
(3.7)

is a multivariate Gaussian distribution on µ with covariance matrix Σ/κ and prior mean
η = (ηi)i=1,...,N . The parameter κ has the meaning of number of prior measurements.
The prior on Σ is the inverse-Wishart distribution

p (Σ) =
1

Z
|Σ|−

ν+N+1
2 exp

[
−1

2
tr
(
ΛΣ−1

)]
, (3.8)

where Z is a normalizing constant:

Z = 2
νN
2 π

N(N−1)
4 |Λ|− ν2

N∏
n=1

Γ

(
ν + 1− n

2

)
. (3.9)

The parameters ν and Λ = (Λij)i,j=1,...,N are the degree of freedom and the scale
matrix, respectively, shaping the inverse-Wishart distribution. The condition for this
distribution to be integrable is ν > N − 1. The posterior p (µ,Σ|X), proportional
to P (X|µ,Σ) · p (µ,Σ), is still a NIW distribution, as one can easily verify starting
from Eqs. 3.6, 3.7 and 3.8. The posterior distribution p (µ,Σ|X) is characterized by
parameters κ′, η′, ν′, and Λ′ given by the formulas

κ′ = κ+M,

η′ =
κ

κ+M
η +

M

κ+M
x,

ν′ = ν +M,

Λ′ = Λ +MC +
κM

κ+M
(x− η) (x− η)

T
.

(3.10)

The mean values of µ and Σ under the NIW prior are η and Λ/ (ν −N − 1), and,
similarly, their expected values under the NIW posterior are η′ and Λ′/ (ν′ −N − 1),
respectively. Our estimations of the mean vector and the covariance matrix, that with
a slight abuse of notation we shall still denote by µ and Σ for the sake of simplicity,
are thus

µ = η′ =
κ

κ+M
η +

M

κ+M
x (3.11)
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and

Σ =
Λ′

ν′ −N − 1
=

Λ +MC + kM
k+M (x− η)

T
(x− η)

ν +M −N − 1
. (3.12)

The NIW posterior is maximum at µ = η′ and Σ = Λ′/(ν′ + N + 1), with the conse-
quence that the maximum a posteriori estimation would provide the same estimate of
µ and an estimate of Σ that only differs from the previous one by a scale factor.

As a first attempt of protein contact prediction by means of the present model,
we choose η and Λ to be as uninformative as possible. In particular, since U =
Λ/ (ν −N − 1) is the prior estimate of Σ, it is natural to set η = (ηi)i=1,...,N and U =
(Uij)i,j=1,...,N to the mean and the covariance matrix of uniformly distributed samples,

which is easily obtained from Eqs. 3.1 and 3.2: therefore, we set ηi = 1/ (Q+ 1) for
any i, and U to a block-matrix composed of L × L blocks of size Q × Q each, where
the out-of-diagonal blocks are uniformly 0:

U(k−1)Q+a,(l−1)Q+b =
δ (k, l)

Q+ 1

(
δ (a, b)− 1

Q+ 1

)
, (3.13)

where k, l ∈ {1, . . . , L} and a, b ∈ {1, . . . , Q}, and δ is the Kronecker’s symbol. More-
over, we choose ν = N + κ + 1 in order to reconcile Eq. 3.12 with the pseudo-count-
corrected covariance matrix of [68] with pseudo-count parameter λ. Indeed, identifying
λ with κ/ (κ+M), this instance allows us to recast the estimate of Σ as

Σ = λU + (1− λ)C + λ (1− λ) (x− η)
T

(x− η) (3.14)

and J = Σ−1 becomes the same as in the mean-field Potts model. Manifestly from here,
the effect of the prior is enhanced by values of λ close to 1 while it is negligible when λ
approaches 0. Interestingly, the Gaussian framework provides an interpretation of the
pseudo-count correction as introduced in Section 2.2.2 in terms of a prior distribution,
which may allow improving the inference issue by exploiting more informative prior
choices.

Reweighting and Scoring In order to remove phylogenetic and experimental bias,
the reweighting scheme described in Section 2.2.2 was used.

For scoring we tested both Direct Information and the Frobenius Norm described
in Section 2.2.2 resp. 2.2.3, with Σ−1 playing the role of the couplings matrix in
the GPM model described in Section 2.2.1. It was found that the Frobenius Norm
performed better in predicting protein contacts and that for both scoring methods it
was advantageous to use the Average Product Correction described in Section 2.2.3.

The comparison of several competing methods and the two scoring schemes can be
found in Figure 3.1. We can summarize the information there that the method out-
performs the original mfDCA implementation [68] as well as PSICOV [50]. After
around 10 predictions, however, the performance of plmDCA [27] becomes best of all
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tested method. This is not surprising given the coarse approximations that have been
made in the Gaussian Modeling.

Another important aspect when interpreting the results is the running time. Table 3.2
lists the running time for several methods on proteins of varying length and sequence
counts. It can be seen that GaussDCA is several orders of magnitude faster than
plmDCA, at comparable (albeit slightly worse) predictive performance.

PF00014 PF00025 PF00026 PF00078
N 53 175 317 214
M 4915 5460 4762 172360

Gaussian DCA (parallel) 0.7 5.3 16.3 534.8
Gaussian DCA (non-parallel) 1.7 12.7 52.1 3583.4

PSICOV 11.7 1141.9 5442.7 10965.1
plmDCA 433.2 6980.7 37364.8 303331.0

Table 3.2: Running times in seconds for a representative sample of proteins with vary-
ing length (N) and sequences in alignment (M), using different algorithms.
Since the Gaussian DCA code is parallelized, we show two series of results,
one in which we used 8 cores and one in which we forced the code to run
on a single core, for the sake of comparing with the non-parallel code of
PSICOV and plmDCA. These benchmarks were taken on a 48-core cluster
of 2100.130 MHz AMD Opteron�6172 processors running Linux 3.5.0; PSI-
COV version 1.11 was used, compiled with gcc 4.7.2 at -O3 optimization
level; plmDCA was run with MATLAB®version r2011b. Gaussian DCA
timings shown are taken using the Julia version of the code, using Julia
version 0.2. Table taken from [4]

Summary of the residue contact prediction steps

To summarize the previous sections, here we list the steps which are taken in order to
get from a MSA to the contact prediction:

� clean the MSA by removing inserts and keeping only matched amino acids and
deletions;

� remove the sequences for which 90% or more of the entries are gaps;

� assign a weight to each sequence, and compute the reweighted frequency counts
C and x (see Eqs. 3.1 and 3.2, and Supplementary Materials);

� estimate the correlation matrix Σ by means of Eq. 3.14;

� compute Σ−1, and divide it in Q×Q blocks ekl (see Eq. 3.5);

� for each pair 1 ≤ k, l ≤ L, compute a score (DI or FN) from ekl, thus obtaining
an L× L symmetric matrix S (with zero diagonal);
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Figure 3.1: True positive rates in the top n predictions, were n is indicated by the
x-axis. PC is the pseudo-count parameter. The blue curves are the best
performance we were able to generate within the Gaussian Approxima-
tion. APC is Mutual Information with the Average Product Correction as
described in [23] and PSICOV is the method described in Section 2.1.2.
Figure and caption taken from [4]

� apply APC to the score matrix (i.e. subtract to each entry Skl the product of
the average score over k and the average score over l, divided by the overall
score average – the averages are computed excluding the diagonal), and obtain
an adjusted score matrix SAPC

kl ;

� rank all pairs 1 ≤ k < l ≤ L, with l − k > 4, in descending order according to
SAPC
kl .

3.2 Improving Contact Prediction by Modeling Gap Stretches

This section is a synopsis of the work on the improvement of contact prediction found
in Reference [29]. Here, the authors describe three aspects of contact prediction and
ways to improve them, namely the data, the model and the inference method. The
latter two points are the most interesting for us here since they deal with modeling
and inference while the first point is more a problem of pure bioinformatics.

Gaps in MSAs are the result of not finding a corresponding amino acid for an alignment
column, see Section 1.2. Their average distribution along the positions of an MSA and
the probability to find several of them consecutively is markedly different from other
amino acids. In Figure 3.2 the upper half shows the distribution of gap and non-gap
symbols in the PFAM PF00014 alignment. One notices that gaps are more frequent
at the borders of alignments. The lower half shows the distribution of stretches of
repeated symbols of a given length. Gaps are more likely to appear in longer stretches
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Figure 3.2: Upper half: Distribution of gap (red) and non-gap (grey) symbols along
the PFAM PF00014-alignment Lower half: The distribution of stretches
of the same symbol for gap (red) and non-gap (grey) symbols. The two
histograms have been normalized to have (both) an area of 1

and for example the probability to find a stretch of length 3 is not markedly different
from the probability to find a stretch of length 10.

The different statistics for gaps are a potential problem for DCA approaches using
the pairwise model in Equation 2.30. Long stretches of symbols would be rather
uncharacteristic for such a model to produce and it seems that higher order terms
are necessary to reproduce this specific behavior. This is interesting since one would
expect that adding appropriate higher order terms to the model might also lead to a
better inference of the pairwise terms and therefore possibly to a higher performance
in the inference of protein contacts. Evidence that gaps might indeed be a reason for
high ranking false positives can be found in Figure 3.3. Here the upper-left parts of
the panels show true and false positives in the first few predictions for two different
proteins. Grey dots represent true contacts, green dots true positives and red dots
false positives. One notices in both proteins an accumulation of false positives at
the C-terminus and N-terminus, where gaps in the alignment are especially frequent.
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This might for example be due to strong couplings representing spurious interactions
between gaps.

We therefore decided to add parameters for gap stretches to the model [29]. To this
end, we introduce indicator functions I li(s) that are defined to be 1 if in sequence s a
gap stretch of length l begins at residue i. Notice that these indicator functions are the
same objects as the Kronecker deltas defined for Equation 2.33. We recall the original
Potts-Hamiltonian of Equation 2.32,

−HPotts(s) =

N∑
i=1

N∑
j=i+1

Jij(si, sj) +

N∑
i=1

hi(si) (2.32 revisited)

and add a new term HGap taking into account gap stretches

HGap(s) = −
L∑
l=1

N−l+1∑
i=1

ξli · I li [s], (3.15)

where N is the length of the protein and L the longest gap stretch we would like to
model. Generally, one can set L to the longest gap stretch found in the alignment. We
notice that the final model consisting of the pairwise terms and the gap terms,

H = HPotts +HGap, (3.16)

is not expected to have much more parameters than HPotts only, since the additional
term scales roughly like NL, while the number of parameters in HPotts scales like
1
2q

2N2 in leading order.

In [29] the inference procedure of choice is the pseudo-likelihood method presented in
Section 2.2.3. This is a convenient choice since the method has already been shown
to perform excellently in the context of protein contact prediction [27]. Also, it has
the major advantage that the inclusion of the term 3.15 is not difficult with respect
to the inference procedure, while for example in the mean-field approach presented in
Section 2.2.2 it is not trivial to include such a term.

The full pseudo log-likelihood function to be minimized, including the l2-regularization
(see Section 2.2.3, reads:

logPLi =

M∑
m=1

wm

∑
j 6=i

Jij(s
m
i , s

m
j ) + hi(s

m
i ) +

L∑
l=1

∑
j

ξlj · I lj [sm]− logZi(s
m
/i)


− λJ

∑
j 6=i

∑
a,b

Jij(a, b)
2 − λh

∑
a

hi(a)2 − λξ
L∑
l=1

∑
j

(
ξlj
)2

(3.17)
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Figure 3.3: Influence of gap parameters on the performance of predicting contacts in
1JFU (left) and 1ATZ (right). Grey: True contacts according to the PDB
structures. Pale green: Contacts predicted with distance less than 5 along
the chain. Dark green: Contacts predicted with distance larger/equal
than 5 on the chain. Upper Triangles: Predictions without gap pa-
rameters. Lower Triangles: Prediction with triangles. Figure taken
from [29]
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The summation over the residue-index j of the gap-parameters ξ was not written
explicitly in order to lighten notation. Since we maximize the log pseudo-likelihood
independently for every position i, we want to have a dependence only on parameters ξlj
such that i− l+ 1 ≤ j ≤ i, i.e. parameters that depend on position i. Excluding j < 1
and j+ l− 1 > L we therefore have to sum from max(1, i− l+ 1) to min(N − l+ 1, i).

The parameter L is the length of the longest gap stretch that one would like to model.
This can be set to the longest gap-stretch that is found in the alignment. The param-
eters λJ ,λh and λξ are free parameters. The first two were fixed on the same value as
in [26], while λξ was set to 0.001 after some preliminary tests.

The derivatives with respect to the gap parameters are easily done using the general
relation 2.63.

∂ log (PLi)
∂ξlj

=

M∑
m=1

wm ·

(
I lj [s

m
i , s

m
/i]−

∑
si

P (si | sm/i, J, h)I lj [si, s
m
/i]

)
. (3.18)

The gradient descent can be done in what way preferred. For this work, the same
algorithms as in [26] were used. The resulting ξ can be discarded since their only
purpose is to improve the inference of the couplings.

The computation of residue interaction-scores was done the same way as described in
Section 2.2.3 and the lower triangles of Figure 3.3 shows some results for the same two
proteins for which the negative effects of gaps was discussed above. The introduction
of the gap parameters reduces strongly the number of errors made at the end of
the proteins (compare the upper triangles, which are the predictions without gap
parameters). Since this is were gaps are found mostly in the alignments, we can
speculate that the effect is in fact due to the removal of the influence of these gaps on
the couplings.

In order to get a more quantitative measure for the improvement in contact prediction
when using gap parameters, we run the algorithm on a test set of 729 proteins [29]. The
results can be seen in 3.4. The performance gain using gap parameters is especially
significant when using alignments created with HHBlits [79]. It is not surprising that
the effects of changes in the model depend on the way the input-data was created, since
this will influence the statistics of gaps and other amino acids strongly. It is in fact a
major result and of [29] that the way the input is generated will have a large effect on
predictive performance and should be optimized. These results and the performance
in PFAM alignments, used e.g. in [68] and [27], are summarized in Figure 3.5.

Also, as is discussed in the supporting information in [29], the measured performance
depends on the way a protein contact is defined. The gap parameters seem to have
an especially pronounced effect if the distance between two protein residues is defined
as the distance between their Cβ atoms and a contact is defined as two residue with
a distance < 8Å. The advantage of this more stringent criterion is that one would
expect less meaningless contacts in the resulting contact map, which will certainly
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Figure 3.4: Predictive Performance on the Main Test Set described in [29] (a set 729
alignments used in prior studies). Left Panel: Absolute contact rank.
The y-axis shows the mean fraction of true contacts in the first n predic-
tions, where n is indicated by the x-axis. Right panel: Relative contact
rank. The y-axis shows the mean fraction of true positives in the first n
predictions, where n depends on the protein length N and n = N ·f where
f is indicated by the x-axis. Figure taken from [29]. The methods are as
described in the text, PSICOV is described in Section 2.1.2.
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influence the predictive performance and also the relative improvement when using
gap parameters.

Another surprising result of [29] is that a comparable improvement in predictive per-
formance can be obtained by excluding couplings corresponding to gaps from the
calculation of the final score. This means to use instead of Equation 2.70 for the
calculation of the Frobenius Norm the alternative

S20
ij =

√√√√q−1,q−1∑
a=1,b=1

Jij(a, b)2. (3.19)

Using plmDCA with this modification has been termed plmDCA20 in [29]. This should
intuitively remove high ranking false positives due to large gap couplings and indeed
has a similar effect on the predictive performance as the introduction of gap parame-
ters. Further evidence for equivalence in effect is the fact that using gap parameters
and the alternative score does not lead to further improvement. This might make the
gap parameters look less interesting since it is considerably less cumbersome to imple-
ment 3.19 than higher-order terms. The interesting point of [29] is, however, that the
inclusion of higher-order terms can lead to an improvement in predictive performance.
Since this leads immediately to the question which other higher-order terms, besides
the ones corresponding to gap stretches, should be introduced, this opens a whole new
direction of research.
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4 Results: Inference of Protein-Protein Interaction
Networks

This section presents the main results of [31] by the authors Feinauer C, Szurmant
H., Weigt M. and Pagnani A.. Text and Figures are often reused verbatim but many
references to the introductory sections of this thesis and other alterations to the text
are introduced, in order to streamline the content with the rest of the thesis. The
journal’s copyright policy permits this explicitly.

Some key points already discussed in the foregoing sections are repeated, such that
the reader interested mainly in this section can follow it without having to read the
rest of the thesis. Since this section contains many tables, we added an extra section
to accommodate them in order to improve the readability.

4.1 Overview

Proteins are the major work horses of the cell. Being part of all essential biological pro-
cesses, they have catalytic, structural, transport, regulatory and many other functions.
Few proteins exert their function in isolation. Rather, most proteins take part in con-
certed physical interactions with other proteins, forming networks of protein-protein
interactions (PPI). Unveiling the PPI organization is one of the most formidable tasks
in systems biology today. High-throughput experimental technologies, applied for
example in large-scale yeast two-hybrid [47] analysis and in protein affinity mass-
spectrometry studies [43], allowed a first partial glance at the complexity of organism-
wide PPI networks. However, the reliability of these methods remains problematic
due to their high false-positive and false-negative rates [10].

Given the fast growth of biological sequence databases, it is tempting to design compu-
tational techniques for identifying protein-protein interactions [41]. Prominent tech-
niques to date include: the genomic co-localization of genes [19, 37] (with bacterial
operons as a prominent example), the Rosetta-stone method [61] (which assumes that
proteins fused in one species may interact also in others), phylogenetic profiling [74]
(which searches for the correlated presence and absence of homologs across species),
and similarities between phylogenetic trees of orthologous proteins [52, 72, 90, 100].
Despite the success of all these methods, their sensitivity is limited due to the analy-
sis of coarse global proxies for protein-protein interaction. An approach that exploits
more efficiently the large amount of information stored in multiple sequence alignments
(MSA) seems therefore promising.

When applied to two interacting protein families, DCA and related methods are able
to detect inter-protein contacts [45,70,93] and thereby to guide protein complex assem-
bly [18, 83]. This is notable since contact networks in protein complexes are strongly
modular: There are many more intra-protein contacts than inter-protein contacts.
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Moreover, DCA helps to shed light on the sequence-based mechanisms of PPI speci-
ficity [12,14,76].

Here we address an important question: Is the strength of inter-protein residue-residue
co-evolution sufficient to discriminate interacting from non-interacting pairs of pro-
tein families, i.e. to infer PPI networks from sequence information? A positive an-
swer would lever the applicability of these statistical methods from structural biology
(residue contact map inference) to systems biology (PPI network inference). An obvi-
ous problem in this context is the sparsity of PPI networks, illustrated by the bacterial
ribosomal subunits used in the following, see Figures 4.1 and 4.2: The small subunit
contains 20 proteins and 21 protein-protein interfaces (11% of all 190 possible pairs).
In the large subunit, 29 proteins form 29 interfaces (7% of all 406 pairs). We see
that while the number of potential PPI between N proteins is

(
N
2

)
, the number of

real PPI grows only linearly as O(N). Furthermore, the number of potentially co-
evolving residue-residue contacts across interfaces is much smaller than the number
of intra-protein contacts. In the case of ribosomes, only 5.8% of all contacts in the
small subunit are inter-protein contacts. In the large subunit this fraction drops down
to 4.5%. So the larger the number of proteins, the more our problem resembles the
famous search of a needle in a haystack. The noise present in the large number of non-
interacting protein family pairs might exceed the co-evolutionary signal of interacting
pairs.

It should also be mentioned that the ribosomal structure relies on the existence of
ribosomal RNA, which is not included in our analysis. We therefore expect many
of the small PPI interfaces to be of little importance for the ribosomal stability and
that only large interfaces constrain sequence evolution and thus become detectable by
co-evolutionary studies.

Ribosomal proteins and their interactions are essential and thus conserved across all
bacteria, and it appears reasonable to wonder whether this makes them a specialized
example of a protein complex more amenable to co-evolutionary bias. As a second and
smaller interaction network, we therefore considered the enzymes of the tryptophan
biosynthesis pathway comprising a set of seven proteins in which only two pairs are
known to interact (PDB-ID 1qdl for the TrpE-TrpG complex [58] and 1k7f for the
TrpA-TrpB complex [95]). Also here the PPI network is very sparse; most pairs are
not known to interact, but might show some degree of coordinated evolution due to
the fact that in many organisms these genes show a common spatial co-localization
in a single operon and also due to a number of gene fusion events, cf. the discussion
below. While widespread, the tryptophan biosynthesis pathway is not essential for
viability when environmental tryptophan is present.

In this Section we report the excellent performance of DCA in the prediction of protein-
protein interaction partners in the systems tested. In a first step, we analyze the
performance on data from an artificial model. This allows for a systematic analysis of
the performance of different approaches and of the influence of the number of sequences
in the alignment. With this artificial data set we are able to establish a lower-bound on
the number of sequences that would make our predictions on the PPI scale completely
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Figure 4.1: Contact map and protein-protein interaction network of the small
ribosomal subunit. The contact map and the protein-protein interaction
network for the small ribosomal subunit (proteins only), using a distance
cutoff of 8Å between heavy atoms. The upper diagonal part shows the
contact map, with red dots indicating intra-protein contacts, and blue
dots inter-protein contacts. The lower triangular part shows the coarse
graining into the corresponding protein-protein interaction networks, with
the color levels indicating the number of intra- resp. inter-protein contacts,
cf. the scales. The sparse character of both the contact network and the
interaction network is clearly visible. Figure taken from [31].
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Figure 4.2: Contact map and protein-protein interaction network of the large
ribosomal subunit. The contact map and the protein-protein interaction
network for the large ribosomal subunit (proteins only), using a distance
cutoff of 8Å between heavy atoms. The upper and lower parts show the
same information as Figure 4.1. Figure taken from [31].
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accurate if the generating model was the same model we use for inference. Given the
growth-rate of current protein sequence databases (notably UniProt [16]), we expect
that such a lower bound could be met in few years. In a second step, we apply the
method to the proteins of the bacterial ribosome and to the proteins of the trp operon,
and show that the results obtained for simulated data translate well to the biological
sequences of this test-set.

The general goal of the present work is to analyze each of the
(
N
2

)
possible pairs of

multiple sequence alignments from a given set of N single-protein family alignments,
and to extract a pairwise score that measures the co-evolution between the proteins in
the alignments. A high co-evolutionary score is then taken as a proxy for interaction.
In the spirit of [29] we begin by describing consecutively the data generation and
matching, the model used for analyzing data and the inference and scoring mechanism.

4.2 Data Extraction and Matching Paralogs

4.2.1 Data Extraction for Real Proteins

The input data is given by N multiple sequence alignments Dp consisting of Mp se-
quences of length Lp for every protein family p. These alignments are extracted from
UniProt [16] using standard bioinformatics tools, in particular Mafft [54] and HM-
Mer [35].

For all proteins of the small ribosomal subunit (SRU) and the large ribosomal subunit
(LRU) the sequence names were extracted from the corresponding PFAM alignments
[34]. Using these names, the following procedure was used to create the alignments for
the single proteins:

1. Extract sequences corresponding to names from Uniprot [16]

2. Run MAFFT [55] on them using mafft --anysymbol --auto

3. Remove columns from the alignment that contain more than 80% gaps

4. Create an Hidden Markov Model (HMM) using hmmbuild from the hmmer suite
[35]

5. Search Uniprot using hmmsearch [35]

6. Remove inserts

7. If there exist in one species two or more sequences that are more than 95%
identical, remove all but one.

The number of sequences for the single files can be found in Table 4.1

The alignments for the proteins of the Trp Operon where constructed analogously with
some modifications to ensure that only full-length sequences where extracted. Also,
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Figure 4.3: Intra-Protein Sensitivity Plots. On the alignments for the single ribosomal
proteins the plmDCA algorithm was run and an ordered list of residue
pairs obtained. For every number n on the abscissae the fraction of the
number of true positives (the sensitivity) in the first n pairs on this list
was calculated for every protein. The plot shows the mean of these values
for the Gaussian algorithm of [4] and the plmDCA algorithm run on the
proteins of the large and small ribosomal subunit. Figure taken from [31].

we chose the linsi program of the MAFFT package to create the initial MSAs. The
number of sequences for the Trp alignments can be found in Table 4.2.

As an assessment of quality for the alignments, sensitivity plots using the pdb files
2Z4K and 2Z4L were made. Figure 4.3 shows results for contact predictions based on
the GaussDCA [4] and plmDCA algorithm [26].

4.2.2 Matching Paralogs

For the analysis we imagine that two proteins that interact are drawn for every species
together from some probability distribution. This joint distribution takes into account
that the proteins are under selective pressure to maintain the interaction and that their
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evolution is therefore not independent. The samples on which we infer the probability
distribution are therefore made from both and as input data we need a concatenated
MSA. The problem of generating a concatenated alignment from two MSAs of two
different protein families (say MSA1 and MSA2) is then to decide which sequence
from the first alignment should be concatenated to which sequence from the other
alignment. This means to find for any protein p1

i in MSA1 a matching partner p2
j

in MSA2 belonging to the same species. The problem is trivially solved in the case
when no paralogs are present and each species has one and only one sequence in
each individual MSA. In this case we can simply concatenate these two sequences
(we term this case matching by uniqueness). The problem is that species often have
several paralogs, see Figure 4.4. In this case, given that we would like to observe a
co-evolutionary signal between protein interaction partners, one would like to match
sequences of proteins that are (possibly) interacting.

As long as prokaryotes are concerned, it has been observed that proteins are more
likely to interact if their genes are co-localized on the DNA [12, 93]. This suggests
to try to match proteins that are close on the genome when creating a concatenated
MSA.

As a proxy to the genomic distance we use a distance between Uniprot accession
numbers (UAN). This UAN consists of a 6 digit alphanumeric sequence for every
sequence and can be extracted from the sequence annotation, e.g. the ”D8UHT6” part
of the sequence annotation ”D8UHT6_PANSA”.

We define the distance between UANs as follows: Different positions in the UAN
can take on different values, some only numeric (0-9) and some alphanumeric values
(0-9,A-Z). We define for every position i ∈ 1 . . . 6 the number Bi as the number of
different values position i can take, i.e. Bi = 10 for the numeric positions and Bi = 36
for the alphanumeric positions.

We further map the possible single position values in the UAN to the natural numbers
in ascending order, i.e. we assign to the numeric symbols 0 − 9 the natural numbers
0−9 and to the letters the natural numbers following 9 (so to A we assign 10, to B we
assign 11 etc.). This leads for example for the UAN L9XG27 to the numeric sequence
A = (21, 9, 33, 16, 2, 7).

Now we can define a unique number N for any UAN that has been mapped to the
sequence of natural numbers Ai as

N = A6 +

5∑
i=1

Ai

 6∏
j=i+1

Bj

 (4.1)

The distance between two UANs that have been mapped to the numbers N1 and N2

can now be defined as
D12 = |N1 −N2| (4.2)

This procedure induces a distance Dij for any sequence pi ∈ MSA1 and pj ∈ MSA2,
where both pi, pj belong to the same species. In this way we define a complete weighted
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bipartite graph, and the problem of finding the proper pairing can thus be translated
into a minimum weighted bipartite matching problem. This problem can be read-
ily solved using a standard linear programming techniques. Finally we discard from
the optimal solution sequence pairs whose distance is above a given threshold of 100
(manually optimized on the small ribosomal subunit). In the cases we analyzed, such
a threshold moderately increases the quality of the prediction of interaction partners.

MSA1 MSA2

species 1

species 2

species 3

⇡

Figure 4.4: Concatenating two multiple sequence alignments Figure Caption
Sketch of the matching procedure that allows us to concatenate two dif-
ferent MSAs, here MSA1,MSA2. π represents the optimal permutation
of the sequences on the second MSA computed using a standard linear
programming routine. Figure taken from [31].

The average number of paralogs per species varies from system to system: For both
ribosomal subunits the proteins have between 1.5 and 3 paralogous sequences per
genome. The trp proteins on the other hand have considerably more paralogous se-
quences and the number of such sequences per genome varies between 4 and 24. This
means that especially in the trp operon the matching procedure has the potential to
generate much larger alignments than the competing approach of excluding species
with paralogous sequences. In fact, using this last approach (which corresponds to
setting our threshold parameter to 0) reduces the number of sequences in the align-
ments on the average by about 10% for the ribosomal proteins and by about 85% for
the proteins of the trp operon (see Tables 4.3,4.4,4.5,4.6 and 4.7).

Note that using paralogs may be dangerous since after duplication different paralogs
often evolve different functions, and thus lose part of their interactions or gain others.
However, our matching strategy based on genomic vicinity excludes proteins coming
from isolated genes; it identifies mostly protein pairs coded in gene pairs co-localized
inside an operon. It is therefore more likely that the two maintained interaction, when
also the ancestral protein pair before duplication was interacting. We will show evi-
dence that, in the interacting protein systems investigated here, this strategy leads to
a reinforced co-evolutionary signal. However, an independent and direct test whether
protein pairs included in the alignment actually interact would constitute a big step
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forward.

Let us recall that the problem of finding a good matching between sequences has
already been studied in the past using different strategies [12,76]. Unfortunately, both
methods are computationally too demanding to be used in a case, where hundreds or
thousands of protein family pairs have to be matched.

4.2.3 Creating Simulated Data

In order to test the approach in a more controlled setting and to assess the effect of
different sampling depths, we generated data from an artificial protein-protein network.
As the basis for the simulated data we used a fictitious protein complex consisting of
5 proteins. Each protein has a length of 53 residues. The individual contact map of
each one is given by the bovine pancreatic trypsin inhibitor (PDB ID 5pti [98]), which
is a small protein performing well for the prediction of internal contacts by DCA.
Each Pi has 551 internal contacts. Moreover, each protein interacts with two others
in a circular way. The inter-protein contact matrices between Pi and Pi+1 (as well as
between P1 and P5) are random binary matrices with a density of 10% of the internal
contacts. This models the sparsity of the inter-protein contacts as compared to the
intra-protein contacts. A contact map for the artificial complex can be found in Figure
4.5. There are no contacts between other pairs of proteins.

In order to define a probability distribution from which we can draw the samples that
make up the artificial data, we used the model described in Equation 2.30. As described
in the next paragraph, such a model can be used to described inter-protein co-evolution
by using a part of the couplings to describe the co-evolution of residues within one
protein and the other part to describe co-evolution of residues in different proteins (see
Section The Generalized Potts Model for Protein-Protein Interaction below).

In order to define as realistically as possible the coupling parameters of the Potts model
used for generating the artificial sequences, we used the Pfam protein family PF00014
of the pancreatic trypsin inhibitor [34]. Note that a member of this family was also used
to define the structure. The couplings describing the co-evolution within the single
proteins were directly extracted from the Pfam MSA using DCA. For the couplings
corresponding to the co-evolution between the proteins, we used a random subset of
the internal parameters and used them to couple sites that are in contact according
the contact map as defined above. Non-contacting pairs of sites remain uncoupled
between artificial proteins. Using this model, a joint MSA D12345 of sequences of
length 265 = 5× 53 was generated using standard MC simulations.

The generation of the simulated data contains many steps. To give a more detailed
account, we repeat those steps in a point by point list:

1) First, a contact map was defined. This contact map contains the information which
residues are in contact. This includes internal residue contacts (where both residues
belong to one of the 5 proteins) and inter-protein residue contacts (where one residue

DISAT, Politecnico di Torino Christoph Feinauer



4.2 Data Extraction and Matching Paralogs 59

50 100 150 200 250

50

100

150

200

250

Figure 4.5: Contact map of the artificial protein complex. Figure taken from [31].
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belongs to one protein and the other to a different protein). The contact map is
therefore a binary, symmetric matrix of size Nall ×Nall with Nall = N1 +N2 +N3 +
N4 +N5 where Ni is the number of residues in the ith protein. As written above, we
decided to use the Kunitz domain (PF00014) as a model for the proteins and set all
Ni = 53. The 53 × 53 submatrices that define the contacts within each protein were
defined by extracting the contacts of the PDB structure 5pti of the Kunitz domain.
This implies that the internal structure of every protein is the same.

We defined as contacting proteins the protein pairs 1−2, 2−3, 3−4, 4−5 and 1−5. For
the 53× 53 submatrices that define the contacts between contacting protein pairs we
used random binary matrices with 10% of the number of internal contacts. This was
done individually for each contacting protein pair such that no two contact matrices
between two proteins were the same. For non-contacting protein pairs all entries of
the contact matrices were set to 0.

The resulting contact map can be seen in Fig. 4.5.

2) Couplings for every contact in the contact map were defined. As a basis for this,
couplings and fields inferred from the PF00014 PFAM alignment (Kunitz Domain)
were used. This inference was done using a masking with the PDB structure, such
that only couplings corresponding to PDB-contacts were allowed to differ from zero.
Given that the same PDB-contacts were used to define the contacts within one protein
in the artificial complex, we could use the couplings thus inferred without change for
the couplings within the artificial proteins.

Then we defined the couplings for residue contacts between two proteins. For every
such a residue contact we chose randomly a coupling of an internal contact as inferred
from the Kunitz domain alignment and assigned it to the residue contact.

Notice that the ’coupling’ between two sites i and j is actually a 21×21 matrix Jij(a, b)
where a and b can be any of the 21 amino acids. Given that the internal structure
of these matrices might be important we decided to treat the matrices Jij as single
entities and not change their internal structure.

The fields for every residue, a vector of length 21 for every of the 5 · 53 residues, were
randomly chosen from the inferred fields.

From these couplings and fields, sequences were generated by standard MC and inferred
by plmDCA. Interestingly, a crude comparison between the histogram of the scores in
the artificial model seem to be very close to that obtained for instance for the LRU
case as shown in Fig. 4.6.

4.3 DCA for Protein-Protein Interaction Networks

Here we repeat some points presented in Section 2.2.1 and 2.2.3. This should enable
the interested reader to follow this Section independently of the others. We nonetheless
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Figure 4.6: Histograms of interaction scores resulting from the analysis of the LRU and
the artificial complex (combined strategy). Both intra- and inter-protein
scores are included. The plots are normalized such that the area of all bars
of a given color sums to one. The data is shown both on a logarithmic
(left) and on a linear scale (right). Figure taken from [31].

stress that the model and the inference based on pseudo-likelihoods are described in
much more detail in the mentioned Sections.

4.3.1 The Generalized Potts Model for Protein-Protein Interaction

We now repeat the central points of Section 2.2.1 necessary to understand the rest
of this section. Within DCA, the probability distribution over amino acid sequences
s = (s1, ..., sN ) of (aligned) length N is modeled by the generalized Potts model, or
pairwise Markov Random Field,

P (s | J, h) =
1

Z(J, h)
exp

 N∑
i=1

N∑
j=i+1

Jij(si, sj) +

N∑
i=1

hi(si)

 , (2.30 revisited)

which includes statistical couplings Jij(si, sj) between residue pairs and position-
specific biases hi(si) of amino-acid usage [93]. The function of the parameters Z(J, h)
is the normalization of P (s | J, h), which is a probability distribution over all amino-
acid sequences of length N . The variable si represents the amino acid found at position
i in the sequence and can take as values any of the q = 21 different possible letters in
an MSA (gaps are treated as a 21st amino acid). The model parameters are inferred
using MSAs of homologous proteins.
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In the case of two concatenated protein sequences (s, s′) = (s1, ..., sN , s
′
1, ..., s

′
N ′), we

write the joint probability distribution in the form

P (s, s′) =
1

Z
e−H(s)−H′(s′)−Hint(s,s′), (4.3)

where N is the length of the first protein and N ′ is the length of the second protein.
This is of course nothing else than Equation 2.30, written for a protein sequence of
length N + N ′, where the Hamiltonian has been split into three parts: One in which
the Jij appear for which i ≤ N and j ≤ N (the term H), one for which i > N and
j > N (the term H ′), and one for which i ≤ N and j > N (the term Hint). The
function

Hint(s, s′) = −
∑

i∈s,j∈s′
Jij(si, s

′
j) (4.4)

describes the co-evolutionary coupling between the two protein families. In the last
expression, si is the ith amino acid in sequence s, and s′j the jth amino acid in se-
quence s′. The sum runs over all inter-protein pairs of residue positions. The q × q
matrices Jij in this term quantify how strongly sites between the two proteins co-evolve
in order to maintain their physicochemical compatibility. The matrix contains a real
number for each possible amino acid combination at sites i and j and contributes to
the probability in Equation 4.3 depending on whether an amino acid combination is
favorable or not. The strongest inter-protein couplings are enriched for inter-protein
contacts, see [70, 93]and Section 2. The same kind of model can be used to predict
the interaction between more than two proteins, with a corresponding number of in-
teraction terms. However, the number of parameters in the model is proportional to
(N1 +N2 + ..+NK)2 for K proteins while the number of samples in the concatenated
MSA Dp1,....pK becomes smaller because one has to find matching sequences for K
proteins simultaneously. This leads us to consider the case K > 2 only for artificial
proteins where the total length and sample size are controllable.

4.3.2 Inference and Scoring

Following [27], the parameters of the model were inferred by maximizing pseudo-
likelihood functions. This is an alternative to directly maximizing the likelihood and
considerably faster.

The inference proceeds by considering the conditional probability distribution

Pi(si|s/i) =
exp

(∑
j 6=i Jij(si, sj) + hi(si)

)
∑21
a=1 exp

(∑
j 6=i Jij(si, a) + hi(a)

) (4.5)
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Given a data set D we can thus maximize the conditional likelihood corresponding to
site i by maximizing

Li(Ji, hi) =
1

M

M∑
m=1

wm logPi(s
m
i |sm/i) , (4.6)

as a function of the J and h that are connected to site i. The wm are sequence
weights that are used to correct for biased sampling and phylogenetic bias (see Section
2.2.2. As customary in many maximum-likelihood inference techniques, we add to
the maximization an L2 regularization term, so that eventually the extremization
procedure turns out to be:

{J∗i , h∗i } = argmax
Ji,hi

{Li − λJ
∑
j 6=i

‖Jij‖2 − λh‖hi‖2} , (4.7)

with ‖Jij‖2 =
∑21
a,b=1 J

2
ij(a, b), and ‖hi‖2 =

∑21
a=1 h

2(a). We refer to the original pa-
per [27] for the details of the implementation, and mention again that a more detailed
explanation can be found in Section 2.2.3. We also add that beside the original MAT-
LAB [64] implementation available here, we developed an efficient implementation of
the pseudo-likelihood implementation in a new open-source language called Julia [7].
The package can be downloaded here.

Given that the model is mathematically equivalent to the one used in [27] we can use
the output of the algorithm (plmDCA) with default parameters as presented there
directly for our purposes. This output consists of scores FAPCij that quantify the
amount of co-evolution between sites i and j in the alignments and are defined in
Equation 2.72. In order to quantify co-evolution between proteins, we took the FAPCij

corresponding to inter-protein site pairs (i.e. i in s and j in s′) and calculated the
mean of the 4 largest. These quantities, a real number for every protein pair, are
used to rank protein-protein interaction partners. The number 4 was chosen because
it performed well in the small ribosomal subunit, which we used as a test case when
designing the algorithm. Subsequent tests on larger systems showed that any number
between 1 and 6 performs almost equally well, as can be seen in Figure 4.13.

The list of protein pairs ordered by this score was used for prediction. The first few
predictions are shown in Table 4.8. For completeness, we show the same table but
with the score calculated by the Gaussian approximation of [4] in Table 4.9. Finally
in Table 4.11 we display for the LSU the number of intra/inter-protein contacts, while
in Table 4.12 we do the same for the LRU.

Table 4.10 shows the interaction scores for the protein pairs of the Trp Operon.
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4.4 Inference Results

4.4.1 Simulated Network

As a first test of our approach, we use simulated data generated by Monte Carlo (MC)
sampling of a Potts model of the form of Equation 4.3, see Section 4.2.

The main simplifying assumptions in this context are: (i) We assume intra- and inter-
protein co-evolution strengths to be the same. (ii) We assume the distribution of
inter-protein residues contacts within the possible contacts to be random. (iii) We
assume the sequences to be identically and independently distributed according to
our model. This model includes the assumption that non- contacting sites have zero
couplings. The number of artificial sequences needed for a good performance of our
method should therefore be taken at most as a lower bound for the number of biological
sequences needed for a comparable performance.

In panel A of Figure 4.7 we show the architecture of our artificial protein complex. It is
composed of five fictitious, structurally identical proteins P1, ..., P5, each one consisting
of 53 residues. In order to simulate co-evolution between the proteins, we generate
a joint MSA D12345 for all 5 proteins with a model that contains couplings between
inter-protein site pairs. These couplings are modeled in a way to resemble couplings
inferred from real proteins (see Section 4.2).

To assess our capability to infer the PPI network of panel A from such data, we adopted
two different strategies which we called combined and paired in panel B of Figure 4.7.
The combined strategy uses plmDCA on the full-length alignments of length 265 and
models the interaction between all proteins pairs simultaneously. Given that in this
artificial setting we use the same model to generate the data as to analyze it, the
approach is guaranteed to infer the model correctly for a large number of analyzed
sequences and therefore to assign a higher interaction score to any interacting protein
pair than to any non-interacting pair.

To assess the coupling strength between two proteins, we average the four strongest
residue coupling strengths between them. This leads to a score oriented toward the
strongest signal while also reducing noise by averaging. In panel B of Figure 4.7 we
show the results for MSA sizes M = 2000, 4000, 24, 000 while intermediate values are
reported in Figure 4.8. The two lower figures - M = 2000, 4000 - represent the lower
and upper bound of what we can currently obtain from databases for the proteins
analyzed by us. The largest value M = 24, 000 is what we expect to be available in a
few years from now, seen the explosive growth of sequence databases. The thickness
of each link in Fig. 4.7 is proportional to the inferred inter-protein interaction score.
The five strongest links are colored in green when they correspond to actual PPI
according to panel A, and in red when they correspond to non-interacting pairs. For
increasing sample size the predictions become more consistent and for M = 24, 000
any interacting protein-pair has a higher interaction score than any non-interacting
pair.
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Figure 4.7: Residue-residue structure of both artificial and ribosomal com-
plex A Architecture of the artificial protein complex. Arcs width are
proportional to the number of inter-protein residue contacts. B Inferred
PPI network for both paired and combined strategy for different number
M of sequences generated from the artificial model. Green arcs are true
positives, red false positives, gray low-ranking predictions. Arc widths are
proportional to the inter-protein interaction score. C SRU architecture
(same color code as A). D Inferred PPI network (same color code as B).
E Same as C for LRU. F Same as D for LRU. Arc width in panels C-F is
provided by the number of inter-protein contacts, as a measure of interface
size. It becomes obvious that mainly large interfaces are recognized by our
approach. Figure taken from [31].

Due to the running time of plmDCA only alignments for sequences of total length L .
1000 can be analyzed. This is exceeded already by the sum of the lengths of the proteins
of the small ribosomal subunit. Additionally, creating a combined multiple sequence
alignment for more than two proteins would lead to very low sequence numbers due to
the necessary matching (see Section 4.2). Therefore, using the combined strategy is not
generally applicable. In the paired strategy we therefore analyze each pair of proteins
separately. This means that plmDCA is applied to all

(
N
2

)
protein-pair alignments

Dab, 1 ≤ a < b ≤ N . In panel B of Fig. 4.7 we find that the paired strategy is also
able to detect the correct PPI network for large enough M . We observe, however,
that the performance of the paired strategy is slightly worse. Couplings between
non-interacting proteins are estimated significantly larger than using the combined
strategy for large M . Even in the limit M → ∞ we do not expect these links to
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disappear: Correlations between, e.g., P1 and P3 are generated via the paths 1− 2− 3
and 1 − 5 − 4 − 3, but in the paired strategy these correlations have to be modeled
by direct couplings between P1 and P3 since the real direct coupling paths are not
contained in the data.

After having answered the ’who-with-whom’ question for the artificial protein network,
we address the ’how’ question of finding inter-protein contact pairs. Figure 4.9 panel A
displays individual residue contact pairs within and between proteins in the artificial
complex. Panel B shows the 10 strongest intra-protein couplings for each protein and
the 10 strongest inter-protein couplings inferred by plmDCA (M = 4000, combined
strategy). Green links correspond to contact pairs and red links to non-contact pairs.
We see that the intra-protein prediction is perfect, whereas a few errors appear for
inter-protein predictions in agreement with the results of Figure 4.7.

Finally, in Table 4.13 we compare the ranks of the strongest inter-protein residue
interaction scores in the generating model and the inferred model. The first column
represents the rank of the inter-protein residue interaction in the generating model,
the second column the rank of the same residue interaction in the inferred model.
The model was inferred with the combined strategy and with 4000 sequences. The
numbering is treating the complex as one large protein.

4.4.2 The PPI network of bacterial ribosomes

As a more realistic test we apply the method to the bacterial large and small ribosomal
subunits (LRU, SRU). To define contacts and protein interaction partners we used
high-resolution crystal structures with PDB-IDs 2z4k (SRU) and 2z4l (LRU) [9]. The
contact network is summarized by the contact maps in Figures 4.1 and 4.2. The
ribosomal RNA is ignored in our analysis.

Panels C,E of Figure 4.7 display the architectures of both SRU and LRU. The SRU
(LRU) complex consists of 20 (29) proteins of lengths 51-218 (38-271); 21 (29) out of(

20
2

)
= 190 (

(
29
2

)
= 406) pairs are in contact. The interfaces contain between 3-209

(1-229) residue pairs. The width of the inter-protein links in the PPI network Figure
4.7 in panels C,E are proportional to these numbers. The number of contacts within
the individual proteins ranges from 297 to 2337 (303-2687). Globally, there are 22644
(30555) intra-protein and 1401 (1,439) inter-protein contacts, so the contacts relevant
for our study comprise only 5.8% (4.5%) of all contacts.

Fig. 4.7 panel D shows the inferred SRU PPI architecture. As expected, the biological
case is harder than the artificial case where the data are independently and identically
distributed according to the generating model. Even though the histograms of the
inferred interaction scores for both cases are very similar (see Figure 4.6), biological
data are expected to show non-functional correlations due to the effect of phylogeny
or sequencing efforts which are biased to model species and known pathogens.

Nonetheless, among the top ten predicted interacting protein pairs the method makes
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Figure 4.8: (Caption on following page.)
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Figure 4.8: Inferred protein network for different sample sizes; the line-thickness is
proportional to the inferred interaction scores between the proteins (mean
of the 4 highest residue interaction scores). The thickness has been nor-
malized in the sense that the scores have been divided by the mean of the
scores of the network. The color code is applied for the first 5 predictions
and shows a green line if the prediction is a true positive and a red line if
the prediction is a false positive. Predictions after the first 5 are grey.
Combined Analysis: The complete sequences in their whole length were
used for the inference and calculation of the scores
Paired Analysis: Every protein family was independently cut out of the
generated sequences and thus a MSA for only this protein created. These
single MSAs were then paired for all protein pairs and used for inference
and calculation of the scores. Figure taken from [31].

only three errors (true-positive rate 70% as compared to 21/190 ' 11% true PPI be-
tween all protein pairs, with an overall area under ROC curve (AUC) of 0.69, see Figure
4.15). The method spots correctly the pairs with larger interaction surfaces whereas
the small ones are lost. Two of the false-positive (FP) predictions include protein
RS21, which has the smallest paired alignments with other proteins (M between 1468
and 1931). Also the third FP, corresponding to the pair RS4-RS18, is probably due to
a small MSA with M = 2064. At the same time, the interaction of RS21 with RS11,
which is one of the largest interfaces (199 contacts), is still detected despite the low
M = 1729. The same procedure for the LRU (406 protein pairs) performs even better:
9 out of the 10 first PPI predictions are correct (see Figure 4.7 panel F), and the AUC
is 0.81.

The results on the residue scale for both SRU and LRU are depicted in panels D and F
of Figure 4.9. Shown are the first 20 intra-protein residue contact predictions for each
protein (excluding contacts with linear sequence separations below 5 to concentrate on
non-trivial predictions) and the first 20 inter-protein residue contact predictions. In the
SRU case of panel D for example, the results are qualitatively similar to the artificial
case, albeit with a slightly reduced true-positive rate of 60% among the first 20 inter-
protein residue contact predictions (compared to the ratio of 1401 actual inter-protein
residue contacts and 2,403,992 possible inter-protein residue contacts, i.e., 0.058%).
Again 3 out of the 8 false positives are related to RS21, which due to the smaller MSA
size is also the only one having a considerable false-positive rate in the intra-protein
residue contact prediction. About 95% of the displayed 400 highest intra-protein
residue contacts are actually contacts (see Figure 4.3). Analogous considerations with
a somewhat larger accuracy (85%) hold for LRU as displayed in Figure 4.9 panel F.
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4.4.3 The PPI network of the tryptophan biosynthetic pathway

As a distinct test case for our methodology we analyzed the 7 enzymes (TrpA, B,C,D,E,F,G)
that comprise the well characterized tryptophan biosynthesis pathway. In contrast to
the ribosomal proteins, these enzymes are only conditionally essential in the absence of
environmental tryptophan and their genes are only expressed under deplete tryptophan
conditions. In this particular system, only two protein-protein interactions are known
and resolved structurally: TrpA-TrpB (PDB-ID 1k7f [95]) and TrpG-TrpE (PDB-ID
1qdl [58]). Whereas the TrpG-TrpE pair catalyzes a single step in the pathway and
their interaction is thus essential for correct functioning, the TrpA-TrpB pair catalyzes
the last two steps in tryptophan biosynthesis. Both enzymes function in isolation but
their interactions are known to increase substrate affinity and reaction velocity by up
to two orders of magnitude. All other proteins catalyze individual reactions, but one
might speculate that the efficiency of the pathway could benefit from co-localization
of enzymes involved in subsequent reactions. Interestingly, the Pfam database [34] re-
ports that in many species pairs of genes in the operon appear to be fused, suggesting
that some of the fused pairs are actually PPI candidates. An example is the TrpCF
protein, which is fused in Escherichia coli and related species (but not in the majority
of species).

After applying our method to all 21 protein pairs we find elevated interaction scores
only for TrpA-TrpB and TrpE-TrpG, which are the only known interacting pairs (see
Figure 4.10 and Table 4.10 for the interaction scores of all pairs). Those two pairs have
interaction scores of 0.375 and 0.295, while the other pairs are distributed between
0.071 and 0.167. Even though we do not define a significance threshold for prediction
(see Section 4.4.4), these two pairs would be discernible as interesting candidates even
if we did not have the 3D structures.

We speculate therefore that the fusions in many species do not imply strong inter-
protein co-evolution. To further investigate this aspect, we took a closer look at the
protein pair TrpC-TrpF. For this protein pair, a high resolution structure of a fused
version exists (PDB-ID 1pii [97]). We ran our algorithm on the complete multiple se-
quence alignment, the multiple sequence alignment with fused sequence pairs removed
and only on the fused sequences. In none of these cases did we observe a statistically
significant interaction score or a statistically significant prediction of inter-protein con-
tacts present in the structure of the fused protein.

Our results are corroborated by the finding that all scores measuring the co-evolution
between a ribosomal protein and an enzyme from the tryptophan synthesis pathway
are small (see the following subsection). No indication for an interaction between the
two systems is found, as to be expected from the disjoint functions of the two systems.

DISAT, Politecnico di Torino Christoph Feinauer



4.4 Inference Results 70

4.4.4 Inference in a Network Combining All Tested Proteins

It is interesting to assemble a larger-scale system out of the three systems (SRU, LRU,
Trp). To this end, we created all possible pairings between the proteins used in the
present study (SRU vs. RU, SRU vs. Trp, LRU vs Trp, SRU vs SRU, LRU vs. LRU,
and Trp vs. Trp). This leads to a total of 1540 pairs, out of which only 49 pairs
are known to interact (which we defined as true positives). We present the findings
in Figure 4.15 and in Figures 4.12,4.13 and 4.14. Figure 4.12 shows the true-negative
rate, which is the fraction of true negatives in the indicated number of predictions with
the lowest interaction scores. As it can be seen our scoring produces a false negative
just after 420 true negatives.

Figures 4.15 and 4.13 show true positive rates for the complete system and the in-
dividual systems. We also show true positive rates for alternative ways to calculate
the interaction score between protein pairs, i.e. a different number of inter-protein
residue-residue interaction scores to average. We notice that in the complete system
the performance is similar to the performance in individual systems. All of the 10
highest-scoring protein pairs are known to interact, and 75% of the first 20 protein-
pairs. After these first 20 pairs, the true positive rate drops to around 45% in the
first 40 predictions. This is analogous to the case of protein contact prediction, where
methods based on the same model are able to extract a number of high confidence
contacts but see a large drop in performance afterwards [68]. The area under the AUC
for the whole system is 0.83 (see Fig. 4.15). This is stable when averaging different
numbers of residue-contact scores to arrive at a protein-protein interaction score, but
the performance seems to worsen when using more than 6. This is probably because
only a few inter-protein residue contacts have a large score and averaging over too
many only adds noise. It can also be seen that averaging over 4 performs very well
in the small ribosomal subunit, which is why we have chosen this value for the large
part of the analysis. On the larger-scale system, though, any number between 1 and
6 performs almost identically.

A further question is whether it is possible to define a threshold allowing to reliably
discriminate between interacting and non interacting pairs in terms of the interaction
score. Figure 4.14 shows two normalized histograms of the interaction scores. The
rightmost tail of the interacting pairs distribution is well separated from the rightmost
tail of non-interacting one, but the highest scores of non-interacting pairs are strongly
overlapping with the lowest scores of the interacting ones. The situation is therefore
analogous to what is observed in the case of the inference of contacts within single
protein families [4,27,68,93], where the same technique is known to produce relatively
few high confidence contacts in the topmost scoring residue pairs. To conclude, while
high scores seem to reliably predict interacting pairs, and low scores non-interacting
pairs, there is a large gray zone prohibiting a clear discrimination between interacting
and non-interacting pairs.
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Figure 4.9: Architecture and inferred protein-protein interaction network of
the artificial protein complex A Residue-residue interaction structure
of the generating model for the artificial data. Colored arcs represent the
protein chain. Non-zero couplings in the coupling matrix of the gener-
ating model are represented as curves between the nodes. The width of
the curves is proportional to the interaction score. Only the 10 strongest
intra/inter-protein scores are shown. B Same as A, but based on the in-
ferred couplings. Green arcs are true positives, red false positives. Note
that not all green arcs have a corresponding arc in A due to our choice
to display only the 10 strongest couplings, which not always correspond to
the strongest score. C Same as A for SRU. All links represent a contact in
the PDB structure and have equal width. D Same as B for SRU. E Same
as C for LRU. All links represent a contact in the PDB structure and have
equal width. F Same as D for LRU. Figure taken from [31].
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A B

Figure 4.10: Tryptophan biosynthesis pathway A Architecture of the known
protein-protein interaction among the 7 enzymes which are coded in the
Trp operon. The widths of the arcs are proportional to the number of
inter-protein residues (which in this case is almost equal for the two in-
teracting pairs). B Inferred PPI network, here the width of the arcs is
proportional to the interaction score. Green arc correspond to the protein
pairs for which a known structure exist. Figure taken from [31].
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Figure 4.11: Efficacy of the different matching procedures True-positive rates
for inter-protein residue contact prediction for different matching pro-
cedures. Shown are means for all protein pairs that have at least 100
residue pairs in contact. The ribosomal and the trp proteins were tested
independently. The red curves correspond to a matching including only
protein sequences without paralogs inside the same species (”matching
by uniqueness in genome”). The low performance of this approach on
Trp proteins is due to a very low number of species without homologs,
which leads to very small matched alignments. The blue curves show the
results for our matching procedure as described in the text. The green
curves correspond to alignments that have been obtained by first applying
our matching procedure and then randomizing the matching within indi-
vidual species. The definition of ”contact” was the same as used above
(a distance of less than 8.0Å between two heavy atom in the residues).
Figure taken from [31].
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Figure 4.12: True negative rate; all possible protein pairs between RS,RL and Trp
proteins are considered and the protein-protein interaction score is defined
as the average of the 4 largest interaction scores on the residue level (as in
the main paper). The true negative rate is the fraction of true negatives
in the N pairs with the lowest interaction score, where N is the value
indicated by the x-axis. Figure taken from [31].
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Figure 4.13: True positive rates at a given number of predictions; All: All possible
protein pairs between RS, RL and Trp proteins are considered; RS: Pro-
tein pairs within the small ribosomal subunit; RL: Protein pairs within
the large ribosomal subunit; Trp: Protein pairs of the Trp operon. Differ-
ent lines indicate a different number of averaged inter-protein scores on
the residue level to get a protein-protein interaction score. Figure taken
from [31].
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Figure 4.14: Histograms of interaction scores in the network comprising all possible
protein pairs between RS, RL and Trp proteins. The protein-protein
interaction scores were calculated averaging the 4 largest inter-protein
residue interaction scores (as in the main paper). The histogram shows
true positives and true negatives separately. Both histograms are normal-
ized. Figure taken from [31].
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4.5 Conclusion

To conclude this Section, we have shown that DCA performs excellently in the systems
tested when used to predict protein-protein interaction partners. In the small and
large ribosomal subunit our tests resulted in a true positive rate of 70% and 90% in
the first 10 predictions (AUC of 0.69 and 0.81) while in the trp operon the two largest
interaction scores corresponded to the only two interactions experimentally known
(AUC 1). The performance is summarized in Figure 4.15. The figure shows both the
high quality of the first predictions, but also a drop in performance after a fraction
of all interacting pairs (about 40% in our test case). This is analogous to the case of
protein contact prediction by DCA and related methods, where the performance drops
after a limited number of high-confidence predictions [68]. In the same context and
with the same caveat, an excellent performance in predicting inter-protein contacts on
the residue level has been shown. The artificial data have shown that the performance
of our approach depends crucially on the size of the alignments. Only for very large
MSA (M = 24, 000 sequences in our data) a perfect inference of the artificial PPI
network was achieved. MSA for real proteins pairs are typically much smaller. Even for
pairs of ribosomal proteins, which exist in all bacterial genomes, only about 1500-3200
sequence pairs could be recovered. This places these data towards the lower detection
threshold of PPI. We therefore expect the performance of the presented approach to
improve in the near future thanks to the ongoing sequencing efforts (the number of
sequence entries in Uniprot [16] has been growing from about 10 millions in 2010 to
90 millions in early 2015) and improved inference schemes. The strong performance
of the same algorithm on different and dissimilar systems naturally prompts us to
expect that the approach can be used to detect interactions experimentally unknown
so far. In fact, if we trust our results on the trp operon we can already draw some
speculative biological inferences. While there are many high-resolution structures of
the ribosome available, one might have expected that in the trp operon there could
be more transient previously unreported interactions in the tryptophan biosynthesis
pathway beyond the two interactions that have been structurally characterized. As
mentioned, various enzyme fusions can be observed in the databases, suggesting that
there is an evolutionary benefit to co-localizing the enzymes of the pathway in the cell.
An obvious benefit of such co-localization would be that the pathway intermediates do
not have to diffuse throughout the cell from one enzyme component to the next. In
the tryptophan biosynthesis pathway in particular, there are numerous phosphorylated
intermediates that need to be protected from unspecific cellular phosphatase activity.
Organizing the enzymes in the pathway in a multi-protein complex would seem like
an efficient way to protect the intermediates from decay. However, our data indicate
that the only statistically relevant co-evolutionary signals that can be observed are
restricted to the known strong interactions between TrpA with TrpB and TrpE with
TrpG. This could be interpreted in a number of ways: (i) The most obvious explanation
is that there are no additional protein-protein interactions beyond those that are known
and that no multi-enzyme complex exists for the tryptophan biosynthesis pathway.
Alternatively (ii) it seems plausible that there are numerous structural solutions to
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form a tryptophan biosynthesis complex and that there is no dominant structure from
which a co-evolutionary pattern can be observed in the sequence databases. Lastly
(iii) it is not out of question that the enzymes of the pathway do not directly form a
complex but that they are jointly interacting with an unidentified scaffold component.
Of course we cannot exclude that our method is not able to capture other potentially
present interactions.

Figure 4.15: Performance Summary The plots illustrate the performance in pre-
dicting protein interaction partners. The left panels show the fraction of
true positives among the first n PPI predictions, with n being the number
indicated on the horizontal axis (solid lines). The dashed lines show the
best possible (upper dashed line) and the mean of a random prediction
(lower dashed line). The right panels show ROC-curves, which indicate
the dependence of the true-positive predictions (TP/P) from the false
positive predictions (FP/N). The area under the curve (AUC) is a global
global measure for the prediction quality; it is 1/2 for a random, and 1 for
a perfect prediction. A protein pair is identified as an interacting (true
positive) pair, if at least one PDB structure with at least one inter-protein
contacts exists. Figure taken from [31].

From a methodological point of view, one possible algorithmic improvement is creating
better MSAs for protein pairs. The vast majority of protein families show genomic
amplification within species. This raises the issue of which sequence in one MSA
should be matched with which sequence in the other MSA when concatenating the
two MSAs, as shown in Fig. 4.4. In the absence of prior knowledge and as long
as only prokaryotes are concerned, we showed that it is possible to use the simple
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criterion of matching by genomic proximity. This criterion is based on the observation
that two sequences are more likely to interact if they are genomically co-localized.
Our results have shown that in the case of the ribosomal network better inference
results can be obtained by using this matching criterion than by using a random
matching or using a conservative matching taking only species with a single sequence
in both MSAs into account, see Figure 4.11. However, we found it beneficial for
the predictive performance to introduce a threshold distance above which we simply
discarded candidate sequences. This is not based on biological principles.

We believe that our naive matching strategy can be improved substantially. Even if
closeness of sequence pairs on the genome is a good proxy for interaction in some cases,
for example if they belong to the same operon, excluding all distal pairs is a very crude
criterion. This criterion is known to be erroneous in many cases, for example in the
bacterial two component signal transduction system [12,14,76]. It would therefore be
interesting to include the matching into the inference procedure itself, e.g. to find a
matching that maximizes the inter-protein sequence covariation, see [12] for a related
idea. However, for highly amplified protein families this leads to a computationally
hard optimization task. Simple implementations get stuck in local minima and do not
lead to improvements over the simple and straight-forward scheme proposed here.

4.6 Tables

All tables in this section are taken from [31].
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L M P S
RS2 219 6053 1.743 5.978
RS3 216 6235 1.716 7.761
RS4 171 8522 2.175 11.305
RS5 164 5075 1.678 5.845
RS6 105 4132 1.563 6.630
RS7 147 5733 1.595 4.962
RS8 127 5761 1.700 5.992
RS9 127 4983 1.663 5.917
RS10 100 4560 1.511 4.232
RS11 120 5136 1.520 4.019
RS12 124 5607 1.581 4.036
RS13 116 5729 1.856 5.763
RS14 96 5555 1.689 4.780
RS15 89 5361 1.646 6.036
RS16 83 4463 1.507 5.851
RS17 82 4774 1.616 5.481
RS18 73 4512 1.483 4.879
RS19 89 5364 1.537 4.700
RS20 88 3848 1.676 7.460
RS21 65 3209 1.456 4.188

L M P S
RL3 205 6077 2.025 6.522
RL4 198 5671 1.906 6.810
RL5 177 5032 1.636 6.245
RL6 178 5308 1.765 6.894
RL9 149 4199 1.698 7.621
RL11 141 5027 1.683 5.517
RL13 147 5091 1.717 6.458
RL14 120 5145 1.528 4.358
RL15 140 5926 1.964 6.754
RL16 133 5673 1.604 4.904
RL17 121 4345 1.612 7.637
RL18 111 4961 1.674 6.570
RL19 116 4079 1.511 6.454
RL20 119 4476 1.554 5.864
RL21 102 4123 1.551 6.486
RL22 108 6378 1.918 5.790
RL23 87 5632 1.711 6.292
RL24 99 9062 3.073 12.820
RL25 186 3272 1.680 6.109
RL27 89 3989 1.486 5.419
RL28 74 4051 1.584 5.694
RL29 66 4456 1.540 6.024
RL30 60 4356 1.671 5.313
RL32 60 4206 1.463 4.997
RL33 49 4604 1.678 4.943
RL34 45 3195 1.346 4.280
RL35 65 3691 1.502 5.889
RL36 38 3779 1.408 3.103

Table 4.1: Alignment sizes (M) and lengths (L) for proteins of the small (RSXX) and
large (RLXX) ribosomal subunit. (P) indicates the average number of par-
alogs per species and (S) the standard deviation of this number.
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L M P S
TrpA 259 10220 4.457 32.604
TrpB 399 46557 16.992 145.826
TrpC 254 10323 4.536 39.868
TrpD 337 17582 7.130 59.693
TrpE 460 28173 11.749 124.933
TrpF 197 8713 4.122 32.400
TrpG 192 78265 24.713 187.331

Table 4.2: Alignment sizes (M) and lengths (L) for proteins of the Trp Operon. (P)
indicates the average number of paralogs per species and (S) the standard
deviation of this number.

RL2 RL3 RL4 RL5 RL6 RL7 RL8 RL9 RL10 RL11 RL12 RL13 RL14 RL15 RL16 RL17 RL18 RL19 RL20 RL21

RL2 2914 2537 2458 2224 2825 2833 2491 2457 2839 2664 2342 2511 2748 2462 2373 2515 2842 2109 1740
RL3 2947 2719 2430 3109 3223 2531 2680 3097 2922 2577 2992 2694 2645 2686 2659 3213 2123 1907
RL4 2411 1837 2719 2812 2214 2314 2802 2528 2463 2522 2319 2064 2354 2182 2765 1774 1468
RL5 2231 2613 2736 2508 2607 2623 2410 2532 2517 2381 2221 2699 2142 2657 2127 1743
RL6 2206 2251 2216 2200 2204 2041 2117 1938 2169 2430 2226 2590 2263 2116 1931
RL7 3001 2469 2580 2914 3172 2452 2753 2650 2414 2524 2483 2937 2089 1711
RL8 2539 2782 3098 2831 2654 3004 2707 2494 3037 2497 3402 2114 1786
RL9 2466 2564 2348 2400 2284 2383 2204 2469 2188 2489 2103 1755
RL10 2579 2423 2460 2443 2378 2212 2711 2144 2784 2100 1734
RL11 2810 2618 2849 2694 2417 2604 2497 3008 2083 1729
RL12 2295 2646 2507 2224 2369 2303 2828 1925 1542
RL13 2395 2188 2174 2502 2117 2564 2060 1712
RL14 2420 2169 2510 2398 2920 1804 1529
RL15 2417 2348 2461 2679 2115 1753
RL16 2212 2532 2474 2116 1925
RL17 2127 2918 2097 1735
RL18 2484 2043 1867
RL19 2096 1767
RL20 1683
RL21

2520 2740 2370 2439 2191 2612 2726 2348 2424 2633 2463 2349 2453 2422 2306 2447 2328 2689 2036 1738

Table 4.3: Matched Alignment Sizes for Small Ribosomal Subunit, at threshold 100

RL2 RL3 RL4 RL5 RL6 RL7 RL8 RL9 RL10 RL11 RL12 RL13 RL14 RL15 RL16 RL17 RL18 RL19 RL20 RL21

RL2 2594 2143 2343 2149 2608 2611 2342 2333 2592 2379 2095 2256 2533 2318 2303 2311 2599 2051 1692
RL3 2219 2373 2371 2615 2628 2363 2348 2579 2406 2097 2267 2535 2506 2341 2444 2656 2057 1871
RL4 1895 1722 2178 2140 1893 1888 2117 2010 1707 1886 2072 1877 1858 1877 2146 1653 1394
RL5 2156 2356 2364 2344 2333 2322 2156 2078 1984 2313 2160 2320 2084 2319 2069 1707
RL6 2135 2189 2153 2146 2134 1960 2063 1840 2138 2376 2150 2251 2180 2071 1879
RL7 2617 2327 2326 2596 2494 2088 2267 2536 2304 2304 2310 2605 2043 1665
RL8 2338 2341 2623 2379 2113 2302 2570 2385 2336 2333 2669 2057 1743
RL9 2323 2324 2156 2071 1996 2315 2155 2303 2102 2320 2057 1700
RL10 2327 2153 2090 1996 2301 2159 2302 2096 2330 2055 1693
RL11 2386 2091 2280 2559 2318 2291 2318 2596 2040 1685
RL12 1920 2145 2324 2094 2120 2069 2395 1866 1508
RL13 1806 2077 2091 2052 2054 2086 2003 1661
RL14 2213 2037 1980 2109 2290 1735 1485
RL15 2316 2287 2304 2539 2043 1697
RL16 2149 2451 2373 2066 1877
RL17 2077 2321 2047 1687
RL18 2308 1998 1827
RL19 2033 1734
RL20 1617
RL21

2329 2383 1930 2193 2109 2335 2355 2189 2186 2325 2154 2013 2046 2299 2211 2170 2175 2342 1977 1691

Table 4.4: Matched Alignment Sizes for Small Ribosomal Subunit, at threshold 0
(matching by uniqueness)
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RL2 RL3 RL4 RL5 RL6 RL9 RL11 RL13 RL14 RL15 RL16 RL17 RL18 RL19 RL20 RL21 RL22 RL23 RL24 RL25 RL27 RL28 RL29 RL30 RL32 RL33 RL34 RL35 RL36

RL2 2699 2720 2875 2824 2142 2505 2461 3077 2658 3101 2438 2672 2190 2509 2174 2957 3075 2435 1739 2164 1932 2904 2471 2296 2163 1970 2094 2328
RL3 2789 2626 2923 2149 2382 2395 2873 2604 2626 2456 2649 2184 2161 2164 3132 2661 2338 1733 2184 1964 2591 2290 2033 1902 1993 2108 1984
RL4 2639 2709 2167 2407 2418 2637 2676 2647 2438 2871 2209 2167 2168 2788 2695 2805 1747 2195 1962 2652 2333 2040 1894 2001 2134 2011
RL5 2902 2232 2492 2498 2799 2692 3134 2608 2775 2312 2327 2309 2688 3035 2483 1773 2299 2014 2744 2389 2164 1945 2084 2203 2136
RL6 2216 2551 2506 3043 2768 2839 2651 2828 2283 2277 2275 2990 2773 2495 1785 2286 2005 2828 2455 2114 1937 2039 2207 2101
RL9 2154 2156 2168 2161 2174 2191 2238 2283 2224 2237 2153 2165 502 1792 2259 2025 2230 1877 2099 1810 2106 2190 1768
RL11 2422 2492 2375 2468 2223 2499 2217 2179 2174 2370 2539 2314 1732 2187 1973 2457 2131 2040 2024 1991 2133 1777
RL13 2491 2482 2498 2246 2493 2208 2197 2198 2340 2482 1127 1755 2217 1980 2445 2110 2053 1852 1999 2155 1800
RL14 2643 3080 2465 2752 2232 2574 2227 3166 3012 2328 1735 2208 1989 2606 2241 2345 2181 2003 2126 2345
RL15 2616 2509 2740 2189 2169 2160 2714 2700 2354 1760 2196 1964 2706 2388 2024 1848 1970 2109 2040
RL16 2488 2730 2240 2564 2229 2812 3348 2314 1759 2213 1991 2610 2259 2372 2191 2012 2142 2325
RL17 2755 2385 2176 2341 2465 2530 2207 1726 2380 2146 2689 2180 2190 1917 2131 2181 2302
RL18 2422 2223 2369 2734 2739 2934 1772 2417 2170 2886 2454 2227 1975 2176 2216 2193
RL19 2331 2437 2188 2262 580 1774 2507 2277 2434 1913 2361 1906 2225 2315 1948
RL20 2311 2483 2518 411 1787 2297 2011 2248 1868 2450 2161 2048 2477 2152
RL21 2202 2242 542 1754 2692 2163 2380 1887 2258 1890 2177 2259 1913
RL22 2942 2380 1739 2208 1970 2595 2251 2297 2160 1989 2120 2294
RL23 2405 1748 2254 2007 2727 2397 2381 2221 2044 2152 2337
RL24 391 503 528 2459 2093 449 1111 522 437 1468
RL25 1770 1595 1745 1547 1649 1564 1598 1761 1362
RL27 2234 2427 1915 2300 1928 2232 2295 1931
RL28 2148 1719 2185 1935 2015 2039 1750
RL29 2584 2223 1957 2163 2251 2160
RL30 1765 1579 1732 1851 1738
RL32 2183 2074 2130 2132
RL33 1741 1819 1921
RL34 2089 1779
RL35 1800
RL36

2485 2378 2390 2471 2486 2067 2257 2214 2494 2365 2492 2336 2497 2172 2189 2148 2469 2514 1604 1664 2168 1953 2459 2086 2101 1918 1961 2064 1993

Table 4.5: Matched Alignment Sizes for Large Ribosomal Subunit, at threshold 100

RL2 RL3 RL4 RL5 RL6 RL9 RL11 RL13 RL14 RL15 RL16 RL17 RL18 RL19 RL20 RL21 RL22 RL23 RL24 RL25 RL27 RL28 RL29 RL30 RL32 RL33 RL34 RL35 RL36

RL2 2144 2173 2333 2307 2079 2277 2286 2568 2115 2547 2041 2313 2120 2325 2095 2325 2552 217 1698 2100 1895 2257 1964 2182 1875 1918 2052 1900
RL3 2139 2179 2162 2087 2152 2169 2165 2102 2168 2033 2178 2126 2109 2095 2112 2177 177 1703 2115 1899 2140 1851 1965 1651 1933 2068 1648
RL4 2205 2188 2099 2175 2191 2190 2118 2197 2045 2207 2140 2119 2102 2117 2193 189 1704 2126 1912 2170 1865 1978 1663 1944 2075 1652
RL5 2425 2176 2316 2319 2388 2151 2370 2162 2379 2255 2257 2221 2150 2369 221 1735 2235 1960 2394 2038 2093 1727 2005 2161 1771
RL6 2164 2307 2310 2344 2149 2337 2134 2368 2221 2214 2187 2130 2324 221 1725 2204 1949 2379 2016 2045 1694 1981 2144 1713
RL9 2088 2106 2110 2095 2122 2142 2178 2232 2176 2187 2102 2119 167 1735 2224 1967 2181 1824 2059 1697 2018 2147 1720
RL11 2305 2317 2117 2300 2061 2319 2143 2129 2115 2109 2299 219 1693 2133 1922 2289 1978 1994 1672 1938 2074 1668
RL13 2312 2130 2306 2064 2323 2152 2141 2129 2121 2305 205 1713 2145 1918 2292 1984 1988 1670 1952 2090 1668
RL14 2146 2600 2089 2349 2165 2392 2155 2388 2606 217 1710 2151 1940 2318 2012 2259 1941 1961 2085 1998
RL15 2166 2062 2162 2137 2120 2107 2120 2132 181 1713 2127 1917 2110 1842 1975 1657 1936 2073 1653
RL16 2089 2335 2171 2370 2144 2347 2539 216 1724 2155 1935 2304 2001 2226 1902 1963 2095 1931
RL17 2302 2346 2146 2280 2049 2121 222 1677 2337 2099 2305 1798 2155 1724 2094 2144 1802
RL18 2366 2177 2310 2144 2381 293 1731 2366 2127 2521 2056 2177 1774 2126 2166 1821
RL19 2260 2370 2138 2208 235 1748 2438 2156 2392 1875 2248 1816 2190 2260 1889
RL20 2231 2345 2379 174 1737 2226 1960 2197 1840 2294 1952 2003 2177 2011
RL21 2125 2179 224 1720 2367 2089 2317 1838 2191 1777 2130 2203 1849
RL22 2373 170 1707 2132 1917 2107 1810 2215 1908 1946 2081 1936
RL23 227 1716 2187 1955 2351 2006 2289 1957 1988 2107 1999
RL24 116 238 211 288 169 224 180 207 182 195
RL25 1733 1539 1713 1517 1602 1474 1566 1704 1323
RL27 2164 2376 1863 2243 1814 2194 2236 1879
RL28 2109 1654 2036 1697 1980 1989 1685
RL29 2052 2188 1771 2132 2210 1835
RL30 1724 1427 1711 1821 1441
RL32 1988 2048 2084 2033
RL33 1655 1708 1693
RL34 2051 1730
RL35 1763
RL36

2095 1980 1996 2107 2084 2000 2040 2046 2138 1975 2127 2019 2141 2100 2088 2062 2040 2144 207 1613 2090 1878 2132 1785 2018 1695 1904 1998 1722

Table 4.6: Matched Alignment Sizes for Large Ribosomal Subunit, at threshold 0
(matching by uniqueness)
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P1 P2 tr=100 tr=0
TrpC TrpG 4272 18
TrpE TrpF 2519 830
TrpA TrpD 2823 743
TrpD TrpG 6249 28
TrpB TrpF 3643 95
TrpB TrpD 3737 95
TrpB TrpG 8053 41
TrpE TrpG 5324 8
TrpD TrpF 2819 695
TrpC TrpF 3825 1578
TrpA TrpC 3198 1546
TrpC TrpD 3392 748
TrpA TrpF 3357 1433
TrpA TrpE 3118 905
TrpD TrpE 2681 482
TrpB TrpC 3326 82
TrpB TrpE 3911 53
TrpC TrpE 2976 930
TrpF TrpG 3635 32
TrpA TrpB 4374 95
TrpA TrpG 4646 22

Table 4.7: Matched Alignment Sizes for Trp for different matching thresholds (thresh-
old 0 corresponds to matching by uniqueness)
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P1 P2 Score Interacting
RS10 RS14 0.618890 1
RS18 RS6 0.422457 1
RS14 RS3 0.394753 1
RS10 RS9 0.347508 1
RS13 RS19 0.317640 1
RS13 RS21 0.306248 0
RS11 RS21 0.296700 1
RS14 RS19 0.291335 1
RS12 RS21 0.290965 0
RS16 RS4 0.287438 0
RS21 RS7 0.287102 0
RS13 RS15 0.284783 0
RS12 RS16 0.283105 0
RS19 RS21 0.282142 0
RS10 RS18 0.279595 0

P1 P2 Score Interacting
RL20 RL21 0.576795 1
RL14 RL19 0.514107 1
RL15 RL35 0.440323 1
RL15 RL21 0.439233 1
RL17 RL32 0.425920 1
RL20 RL32 0.421733 1
RL23 RL29 0.414060 1
RL13 RL20 0.334348 1
RL19 RL3 0.328640 1
RL30 RL34 0.326368 0
RL22 RL32 0.324540 1
RL16 RL36 0.318915 1
RL16 RL33 0.313083 0
RL33 RL36 0.307188 0
RL27 RL34 0.306283 0

Table 4.8: Ordered List of Interaction Candidates SRU (left) and LRU (right) based
on plmDCA scores; the fourth column indicates whether the protein pair is
indeed interacting

P1 P2 Score Interacting
RS10 RS9 1.123465 1
RS10 RS14 1.102428 1
RS12 RS21 1.079407 0
RS13 RS18 1.029537 0
RS14 RS17 1.001716 0
RS12 RS15 0.997813 0
RS18 RS6 0.963688 1
RS11 RS13 0.943144 0
RS19 RS21 0.942921 0
RS15 RS18 0.938286 0
RS14 RS15 0.933949 0
RS13 RS15 0.933337 0
RS13 RS19 0.918528 1
RS18 RS21 0.918101 1
RS10 RS13 0.917482 0

P1 P2 Score Interacting
RL20 RL21 1.665182 1
RL14 RL19 1.430611 1
RL15 RL21 1.333611 1
RL15 RL35 1.134808 1
RL23 RL29 1.086992 1
RL20 RL32 1.037364 1
RL22 RL32 1.029724 1
RL30 RL34 1.008776 0
RL17 RL32 1.002790 1
RL34 RL36 0.983223 0
RL21 RL2 0.977507 0
RL21 RL34 0.958441 0
RL18 RL34 0.942494 0
RL36 RL6 0.925895 1
RL33 RL36 0.898444 0

Table 4.9: Ordered List of Interaction Candidates SRU (left) and LRU (right) based
on Gaussian scores; the fourth column indicates whether the protein pair is
indeed interacting
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TrpA TrpB 0.375
TrpE TrpG 0.295
TrpA TrpC 0.167
TrpA TrpF 0.162
TrpC TrpF 0.146
TrpA TrpD 0.144
TpC TrpD 0.141
TrpB TrpF 0.136
TrpC TrpE 0.135
TrpD TrpF 0.135
TrpB TrpC 0.132
TrpA TrpE 0.126
TrpC TrpG 0.121
TrpB TrpD 0.120
TrpE TrpF 0.115
TrpD TrpE 0.107
TrpF TrpG 0.107
TrpA TrpG 0.104
TrpD TrpG 0.100
TrpB TrpE 0.096
TrpB TrpG 0.071

Table 4.10: Ordered List of Interaction Scores for the Trp Operon based on plmDCA
scores
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SRU Intra-Protein
SEP=0 SEP=5

RS2 2337 1610
RS3 2217 1494
RS4 1728 1152
RS5 1684 1175
RS6 1002 666
RS7 1494 982
RS8 1334 903
RS9 1240 799
RS10 878 557
RS11 1220 822
RS12 1136 731
RS13 1024 623
RS14 790 440
RS15 823 489
RS16 685 436
RS17 733 487
RS18 482 293
RS19 748 482
RS20 792 464
RS21 297 110
SUM: 22644 14715

SRU Inter-Protein
RS2 RS5 4
RS2 RS8 3
RS3 RS5 17
RS3 RS10 105
RS3 RS14 209
RS4 RS5 84
RS5 RS8 120
RS6 RS18 150
RS7 RS9 19
RS7 RS11 46
RS8 RS12 12
RS8 RS17 28
RS9 RS10 28
RS9 RS14 7
RS10 RS14 150
RS11 RS18 20
RS11 RS21 199
RS12 RS17 34
RS13 RS19 80
RS14 RS19 50
RS18 RS21 36
SUM: 1401

FRACTION SEP=0 0.058
FRACTION SEP=5 0.087

Table 4.11: Left table: number of intra-protein contacts below 8Å of all residues
(SEP=0 column), and considering only those with a distance on the se-
quence of at least 5 residues (SEP = 5 column) for the SRU. Right ta-
ble: number of inter-protein contacts below 8Åfor the SRU. Fractions are
defined as #Intra

#Intra+#Inter where #Inter is computed assuming SEP=0,5
respectively.
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LRU Intra-Protein
SEP=0 SEP=5

RL32 324 157
RL33 399 256
RL34 303 145
RL35 495 268
RL36 332 208
RL2 2687 1801
RL3 1931 1263
RL4 1869 1199
RL5 1887 1257
RL6 1811 1217
RL9 1360 855
RL11 1390 903
RL13 1464 959
RL14 1266 869
RL15 920 481
RL16 1343 915
RL17 1194 767
RL18 1150 777
RL19 1043 669
RL20 1045 600
RL21 915 600
RL22 1085 720
RL23 735 461
RL24 386 233
RL25 893 597
RL27 692 442
RL29 538 303
RL30 511 321
RL28 587 351
SUM: 30555 19594

LRU Inter-Protein
RL32 RL17 78
RL32 RL20 17
RL32 RL22 73
RL33 RL35 21
RL35 RL15 149
RL35 RL27 1
RL36 RL6 10
RL36 RL16 1
RL3 RL13 20
RL3 RL14 34
RL3 RL17 21
RL3 RL19 123
RL4 RL15 83
RL4 RL20 6
RL9 RL28 63
RL13 RL20 118
RL13 RL21 8
RL14 RL19 191
RL15 RL20 2
RL15 RL21 24
RL16 RL25 53
RL16 RL27 9
RL17 RL22 12
RL18 RL27 12
RL20 RL21 229
RL23 RL29 81
SUM: 1439

FRACTION SEP=0 0.045
FRACTION SEP=5 0.068

Table 4.12: Left table: number of intra-protein contacts below 8Å of all residues
(SEP=0 column), and considering only those with a distance on the se-
quence of at least 5 residues (SEP = 5 column) for the LRU. Right ta-
ble: number of inter-protein contacts below 8Åfor the LRU. Fractions are
defined as #Intra

#Intra+#Inter where #Inter is computed assuming SEP=0,5
respectively.
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Original Rank Inferred Rank
1 101
2 13806
3 10658
4 64
5 4
6 9575
7 1
8 15890
9 6712
10 1035
7 1
32 2
41 3
5 4
11 5

11473 6
22464 7

53 8
1877 9
26 10

Table 4.13: Original vs. inferred rank for the 10 largest original inter-protein residue
interaction scores and the 10 largest inferred inter-protein residue interac-
tion scores
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5 Some Preliminary Results and Outlook: Energy
Landscapes and Folding Prediction

In this short Section, we will introduce the topic of fitness landscapes. We will show
how the machinery of the preceding sections can be used to reason in this context
and show some preliminary results based on data published in [85], that will hopefully
lead to further research. This also means that this section is necessarily more sketchy
than the other ones, and contains a considerable amount of speculation. The outlook,
however, is in our opinion encouraging and at the end we will try to give a short
perspective on where one could go from here.

5.1 Energy Landscapes and Mutation Analysis

The improvement of genotype-fitness maps has emerged as an important field of biolog-
ical sequence analysis [21] and has given major contributions for example in the design
of immunogenes for HIV [32], in the assessment of the significance of protein mutations
in cancer [80] and the exploration of evolutionary pathways between homologs [94].

A central factor that makes fitness landscapes interesting is epistasis [17], which means
that the effect of a mutation is not independent of the background in which it occurs.
Thus it seems that global probabilistic models, as used extensively in this thesis,
are suited to describe the fitness landscape of proteins. In fact, in many ways the
Potts Model of Equation 2.30 can be seen as one of the most simple models to take
epistasis into account. Additionally, many works already use models very similar or
even identical to our model for modeling the fitness landscape [32].

Another encouraging factor is that more and more large-scale data is being published.
Mutant libraries of modern experiments contain up to several hundred thousand se-
quences [75], and statistical methods and models are needed to analyze this data.

Recently, it has been shown in the context of beta lactamase TEM-1 that the energy of
the Potts Model used in DCA (see Equation 2.30), trained on homologous sequences,
is very well correlated to the capability of the proteins to confer antibiotic drug resis-
tance (measured as minimum inhibitory concentration) [33] and in fact outperforms
established methods.

Given that the methods was originally designed to capture structural information, it is
not unreasonable to speculate that most of this success in predicting fitness (or proxies
thereof) of proteins is actually a prediction whether the protein will fold correctly to
exert its function (not excluding, of course, that the pairwise distribution might capture
other biologically relevant information).

Another interesting experimental information would therefore be the binary infor-
mation whether a given protein sequences folds or not. This information could be
compared to the energy of the sequences in the Potts Model, and if a good correlation
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is observed, the Potts Model could be used to predict the folding properties of new
sequences. In the next sections we will try to lay the groundwork for this, based on the
work and data found in [85]. There the authors created, based on a set of homologous
proteins of the WW-domain (a small protein domain implicated in protein-protein in-
teraction [46]), a set of new sequences and assessed their folding properties. We used
this data as a test set and will show positive evidence that the prediction of folding
properties is indeed possible in the context of DCA.

5.2 Preliminary Results on the WW-Domain

5.2.1 Creating Artificial Protein Sequences by Simulated Annealing

We are now going to report some ideas and results presented in [85]. There, artifi-
cial protein sequences for the WW-domain (Pfam PF00397) were created based on a
MCMC algorithm, using an MSA of homologous sequences. This is of interest, since
the technique presented there allows to sample from a distribution for which one does
not know the parameters explicitly, based on the MSA. However, as shown in [8], this
distribution is the Potts Model of Equation 2.30 which we used extensively in the
preceding sections. This led us to consider this model to analyze the specific data
published in [85].

The work presented in [85] is concerned with the creation of artificial proteins. As de-
scribed in Section 1.2, a Multiple Sequence Alignment (MSA) of the protein sequences
of a protein family contains many (several thousand in the cases interesting for us)
amino acid sequences that fold into a similar structure. The authors now ask whether
one can produce new protein sequences with a similar structure as the ones in the MSA
with solely the information given in the MSA. Furthermore, they pose the question
what information in the MSA is important for such a method of protein design.

The underlying idea is that covariances are enough. This means that in order to create
a new set of protein sequences similar in structure to the ones in MSA Z, one could
create a new MSA Ẑ in which the covariances

Cij(a, b) = fij(a, b)− fi(a)fj(b) (5.1)

are the same as in Z. We recall that with fi(a) we mean the frequency of observing
amino acid a at residue i in the data and with fij(a, b) the frequency of co-occurrence
of amino acid a at residue i with amino acid b at residue j, see Section 2.2.1 and
specifically Equation 2.37. Of course, even if we assume that the new MSA Ẑ has the
same number of sequences as the old one Z, there are many possible Ẑ that have the
correct covariances.

The authors therefore use a probabilistic method to generate one single new MSA Ẑ,
using MCMC with simulated annealing.
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The basic idea is to take the original multiple sequence alignment Z and calculate the
covariance matrix, denoted by Cemp.

Now the authors shuffle all symbols within the columns randomly. This means that
for a fixed i the symbols Zmi get assigned a random new m. The new MSA is denoted

by Ẑ.

Notice that this leaves the frequency fi(a) of any symbol a at some position i unchanged
but leads to new covariances Ĉ that are approximately zero.

For the new covariance matrix Ĉ an energy function χ2 is now defined that measures
the distance to the original covariance matrix C:

χ2
(
Ĉ
)

=
∑
i<j

q,q∑
a,b

(
Ĉij(a, b)− Cij(a, b)

)2

. (5.2)

This energy function reaches its minimum if and only if the covariances in the new
alignment Ẑ are the same as in the old alignment Z. In order to arrive at such a Ẑ
an MCMC method with simulated annealing is employed.

The basic move is a random exchange of two symbols within a column. This means
that randomly a position i and two sequences m1 and m2 are chosen. Exchanging

the symbols Zm1
i and Zm2

i for each other leads to a new covariances matrix
ˆ̂
C and

therefore to an energy change

∆χ2 = χ(
ˆ̂
C)2 − χ(Ĉ)2 (5.3)

The move is accepted if ∆χ2 < 0 or if for a random number ξ ∈ [0, 1]

ξ < exp

(
− 1

T
∆χ2

)
(5.4)

The temperature T is lowered during the simulation in order to find states with smaller
and smaller energies.

At the end of the annealing procedure, the MSA Ẑ should have similar covariance to
the original MSA Z but will generally differ in any higher-order moments.

The most important result of [85] is that many sequences produced by this technique
indeed fold into a structure similar to the proteins in the original alignment. This is
somewhat surprising because understanding of protein folding and protein structure
prediction from sequence information alone is one of the outstanding problems in
biophysics and bioinformatics [22]. Here the authors show that even though there
is no general method known on how to arrive from the sequence of a protein to its
structure, the creation of a new sequence with a given structure is a relatively easy
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Figure 5.1: Characteristics of the MC algorithm run on the protein PF00397. The
x-axis represents the iterations (MC-Steps) and the y-axis the numerical
values of the characteristics: The acceptance rate (green), the temperature
(red) and the energy χ2 called X2 in the plot (blue). Notice the log-scale
on the y-axis. The acceptance rate stops being plotted when it drops below
10−2.

task (with a reasonable success rate). Additionally, a quite low amount of extracted
evolutionary information is necessary for this task: covariances are enough.

In a follow-up paper, the authors show that many of these designed proteins not only
have a similar structure as the original proteins but are also functional [82].

Our version of the algorithm can be found in Algorithm 1, and some characteristics a
run on the WW-domain (Pfam PF00337) with 2 · 109 MC steps in Figure 5.1.

An interesting aspect is the problem that for low sequence numbers the algorithm sim-
ply reproduces the original alignment: For small M , the energy χ2 drops to zero after
some iterations and the resulting MSA Ẑ is equal to the original alignment Z. This
works for subsets of size of about Msubset ≈ 150, so for that number of sequences the(
N
2

)
q2 numbers defining the covariance matrix determine the data probably uniquely.

DISAT, Politecnico di Torino Christoph Feinauer



5.2 Preliminary Results on the WW-Domain 93

The problem can be quantified by a measure of sequence similarity between Z and Ẑ.
For this, for every sequence of Ẑ the minimal Hamming Distance to any sequence in
the original alignment Z was determined. The mean θ of all these values gives the
average Hamming Distance of the sequences in Ẑ to their most similar sequence in
Z. The quantity τ = 1− θ

N then represents the average maximal sequence similarity.
The authors in [85] report this average maximal sequence similarity for the data-set
they produced to be θ = 0.58 with a standard deviation of 0.07, while for our data-se
we found θ = 0.74 with a standard deviation of 0.1. These differences could arise
from a different original data-set (we used the publicly available Pfam data-set [77]).
Given that small M result in a reproduction of the original alignment and therefore
at θ = 1.0, a larger data-set would probably result in a lower θ.

Another explanation is that maybe my annealing procedure finds lower energy states
than the one of the authors. Annealing too fast or stopping the algorithm before some
sort of saturation has been reached would also result in lower θ. Given that no details
of the annealing procedure of the authors are given, this is mere speculation, though.

Algorithm 1 Pseudo-code version of the algorithm presented in Sec. 2

Require: Z,Ẑ,dT ,T0,itermax,iterT
C ← get C(Z) . The get C function calculates the quantities defined by Eq. 5.1
Ĉ ← get C(Ẑ)
χ2 ← get χ2(C, Ĉ) . The get χ2 function calculates the quantity defined in Eq. 5.2
iter ← 0
while iter < itermax do

i← rand(1 : N)
m1 ← rand(1 : M)
m2 ← rand(1 : M)
∆χ2 ← get ∆χ2(C, Ĉ, Z, Ẑ, i,m1,m2) . The get ∆χ2 calculates the quantity

defined in Eq. 5.3
if rand() < exp (delta chi2) then

Ẑm2
i ↔ Ẑm1

i . The double-headed arrow means exchange of the values

Ĉ ← get C(Ẑ)
χ2 ← χ2 + ∆χ2

end if
iter ← iter + 1
if iterT mod iter == 0 then . Every iterT the temperature T gets changed

by dT
T ← T − dT

end if
end while
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5.2.2 Connection to the Generalized Potts Model

The procedure described above leads to protein sequence out of which a significant
percentage (around 30% according to the data in [85]) fold correctly. A problem is
that given the nature of the procedure there is no a priori measure which sequences
are candidates for good folding. The idea that is presented in this Section is to use
the probability of the Potts Model of Equation 2.30 as a score for correct folding.

A good reason why this should work is found in [8]. Here, the authors show that
for M → ∞ and T → 0 the distribution of the sequences in the new alignment Ẑ
should indeed converge to the maximum entropy model fitted to the covariances of
the original alignment Z. In retrospect, this is not surprising. The equality of the
covariances is the only constraint put on the alignment Ẑ, and thus one would expect
intuitively the least constraint model with respect to all other characteristics. But this
is nothing else than the maximum entropy model (see Section 2.2.1 for a discussion of
the maximum entropy principle). The equality is remarkable since it seems possible
to sample from the maximum entropy distribution without knowing it. Given that
maximum entropy distributions are very popular in theoretical biology, this technique
could be potentially useful [81].

A way to test this is to look at the energy spectrum of the two distributions with
respect to the Potts Model. To this end, we inferred the Potts Model of Equation 2.30
using plmDCA (see Section 2.2.3) using the original alignment Z. Using this model,
we can calculate the energy of the sequences coming out of the annealing procedure
Ẑ and another set of sequences, sampled from the same model. Figure 5.2 shows that
the two energy distributions are virtually the same, so we are confident in the result
of [8] (we added the spectrum of a set of random sequences, created by exchanging
amino acids in the alignment Z randomly).

Knowing the numerical values of the parameters J and h of the model 2.30 has nonethe-
less a strong advantage since they allow assign an energy to every sequence. Figure 5.3
shows that the lower energy regime is indeed strongly enriched for folding sequences,
when the data-set of [85] is analyzed. The Figure has two parts: The lower parts
shares the energy axis with the upper part and shows a bar for every sequence in the
4 data-sets of [85]: 1) CC sequences are created with the same algorithm as presented
above. 2) IC sequences are random sequences from a distribution that reproduces the
same single-site frequencies as the original alignment Z. 3) R sequences are random
sequences only reproducing the overall amino acid distribution in the alignment 4)
NAT sequences are natural sequences of the WW-domain. Grey bars correspond to
sequences that do not fold according to the criteria in [85], while red bars do fold.
Notice that some natural sequences do not fold. This is due to experimental problems
and can used as a rough indication on how sure we can be of the results on the other
sequences sets.

The upper part shows the energy spectra of different data sets in a Potts Model (see
Equation 2.30 inferred with plmDCA (see Section 2.2.3). The data sets mirror the
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Figure 5.2: Energy spectra for different data sets, normalized. X-axis: Energy, Y-axis:
Frequency of observation
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ones in the lower part: The blue spectrum stems from sequences sampled from the
inferred Potts Model, i.e. from a distribution that reproduces (approximately) the co-
variances in the Pfam alignment. The green spectrum stems from an independent site
model, i.e. one that reproduces only the single site amino acids frequencies. The red
spectrum corresponds to random sequences, which only reproduce the overall amino
acid distribution in the alignment.

Notice that only the CC and NAT sets contain any folding sequence. This is to be
expected and can be interpreted that interactions between residues, which are not
captured by an independent or random model, are important for structural features.
It is furthermore interesting that all sequences that fall in an energy region in which
the pairwise model still has a large probability but the independent model has a low
probability fold. If one therefore would search for good candidates for folding in a
set of sequences, one could select those sequences that would be typical for a pairwise
model but atypical for an independent model.

We can summarize this finding by saying that the Potts Hamiltonian is a good predictor
for the folding properties of sequences of the WW-domain.

5.3 Outlook

We have shown here that this kind of folding prediction works well for the WW-domain,
but more data is needed to asses the performance of the model in folding prediction
more rigorously. This data is expected to be available in the near future, when more
and maybe large-scale experiments probing energy landscapes become available.

This also leads to a new and different research direction. If the Generalized Potts
Model is good in predicting whether some sequence will fold or not, it should be also
interesting to synthesize sequences directly from samples from this distribution. This
would enable researchers to correlate the probability of a sequence in the Potts Model
in an unbiased way with their performance in the cell. This would allow to probe
in a more detailed way to what extend the pairwise distribution is actually a good
model for the fitness landscape. To answer this question, fitness data from sequences
that do not follow the Potts Model distribution may be misleading, since being a good
predictor for folding does not necessarily imply that the model is also a good generator.

If such experiments meet with success, this would lever the applicability of the model
from its original purpose of contact prediction to protein design [57].
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Figure 5.3: Upper part: Energy spectra of different sequence sets in the Potts Model
inferred on the Pfam-alignment PF00397. Potts Model Energy Spectrum:
Sequences drawn from the same Potts Model; Independent Model Spec-
trum: Sequences drawn from a model conserving single site frequencies
of the original alignment; Randomized Alignment Spectrum: Sequence re-
sulting from a random shuffling of all amino acids in the original alignment.
Lower Part: Energies of sequences from [85]. Red bars indicate folding
sequences according to the classification found there. Different data sets
are explained in the main text.
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6 Synopsis and Conclusion

In this work we have touched three major areas related to the statistical mechanics
approach to protein sequence data.

The first area, contact prediction, is the one that is responsible for the recent interest
in applying the kind of models used in this thesis to protein data. In this context
we have presented in Section 3.1 the work found in [4], which presents a fast and
accurate approach for contact prediction based on a Gaussian approximation. Such
fast approaches are needed since they make excellent building blocks for the emerging
meta-methods that begin to dominate for example in CASP [67]. In Section 3.2 another
work in the context of contact prediction was presented. It considers the possibility
to extend the pairwise model of Equation 2.30 with higher-order terms [29]. This
specific work is concerned with modeling long gap stretches, which appear in MSAs as
artifacts of the alignment process, and creates an encouraging outlook since it shows
that going beyond the pairwise model can lead to significantly better performance. It
is clear that the task at hand is now to find a process by which to choose which other
many-body interactions are advantageous to include.

The second area, protein-protein interaction network inference, represents the major
part of this thesis and the results presented here are based on [30]. The excellent
performance of the method in the systems tested is encouraging and motivates further
research. A major advance would be to test the approach on a large-scale data set
with several thousand possibly interacting proteins. Even though the major tasks in
this context (like data generation and validation of the results) might be challenging,
a large-scale test set would allow us to assess the performance of the method in detect-
ing unknown protein-protein interactions in a much more precise manner. Also, the
biological information coming from the analysis of such a test-set would certainly be
itself very interesting and lift the approach from a methodological exercise to actual
biological knowledge acquisition.

The third area, mutation analysis and energy landscapes, is a new field in which DCA
could give a major contribution. The preliminary data we have shown here (together
with recent works such as [33]) give evidence that the energy function of the Potts
Model can be used beyond its original purpose (the prediction of residue contacts)
and is a good predictor for the folding properties of sequences outside of the set the
model was inferred on (exemplified by the WW-domain data in [85]). This could be
exploited for example for protein design, the reconstruction of evolutionary pathways
between mutants or in medical applications [32].
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[15] Simona Cocco and Rémi Monasson. Adaptive Cluster Expansion for Inferring
Boltzmann Machines with Noisy Data. Physical Review Letters, 106(9), March
2011. arXiv: 1102.3260.

[16] The UniProt Consortium. Uniprot: a hub for protein information. Nucleic Acids
Research, 43(D1):D204–D212, 2015.

[17] Heather J. Cordell. Epistasis: what it means, what it doesn’t mean, and statis-
tical methods to detect it in humans. Human Molecular Genetics, 11(20):2463–
2468, October 2002.

[18] Angel E. Dago, Alexander Schug, Andrea Procaccini, James A. Hoch, Martin
Weigt, and Hendrik Szurmant. Structural basis of histidine kinase autophospho-
rylation deduced by integrating genomics, molecular dynamics, and mutagenesis.
Poc. Natl. Acad. Sci., 109(26):E1733–E1742, 2012.

[19] Thomas Dandekar, Berend Snel, Martijn Huynen, and Peer Bork. Conserva-
tion of gene order: a fingerprint of proteins that physically interact. Trends in
biochemical sciences, 23(9):324–328, 1998.

[20] David de Juan, Florencio Pazos, and Alfonso Valencia. Emerging methods in
protein co-evolution. Nature Reviews Genetics, 2013.

[21] J. Arjan G. M. de Visser and Joachim Krug. Empirical fitness landscapes and
the predictability of evolution. Nature Reviews Genetics, 15(7):480–490, July
2014.

[22] Ken A. Dill and Justin L. MacCallum. The protein-folding problem, 50 years
on. Science (New York, N.Y.), 338(6110):1042–1046, November 2012.

[23] S.D. Dunn, L.M. Wahl, and G.B. Gloor. Mutual information without the influ-
ence of phylogeny or entropy dramatically improves residue contact prediction.
Bioinformatics, 24(3):333–340, December 2007.

[24] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological
sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge
university press, 1998.

[25] S R Eddy. Profile hidden markov models. Bioinformatics, 14(9):755–763, 1998.

[26] Magnus Ekeberg, Tuomo Hartonen, and Erik Aurell. Fast pseudolikelihood max-
imization for direct-coupling analysis of protein structure from many homologous
amino-acid sequences. Journal of Computational Physics, 276:341–356, Novem-
ber 2014.
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