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Abstract—
YouTube relies on a massively distributed Content Delivery

Network (CDN) to stream the billions of videos in its catalog. Un-
fortunately, very little information about the design of such CDN
is available. This, combined with the pervasiveness of YouTube,
poses a big challenge for Internet Service Providers (ISPs), which
are compelled to optimize end-users’ Quality of Experience (QoE)
while having almost no visibility and understanding of CDN
decisions.

This paper presents YouLighter, an unsupervised technique
that builds upon cognitive methodologies to identify changes
in how the YouTube CDN serves traffic. YouLighter leverages
only passive measurements and clustering algorithms to group
caches that appear co-located and identical into edge-nodes.
This automatically unveils the YouTube edge-nodes used by the
ISP customers. Next, we leverage a new metric, called Pattern
Dissimilarity, that compares the clustering results obtained from
two different time snapshots to pinpoint sudden changes.

By running YouLighter over 10-month long traces obtained
from two ISPs in different countries, we pinpoint both sudden
changes in edge-node allocation, and small alterations to the
cache allocation policies which actually impair the QoE that the
end-users perceive.

Index Terms—Network Monitoring, Clustering, YouTube

I. INTRODUCTION

YouTube is one of the most popular and demanding Internet
services. It accounts for 1 billion users distributed world-wide,
who watch 6 billion hours of videos per month.1 Due to its
popularity and the nature of the content that it distributes,
the demanded load to handle is huge, and guaranteeing a
satisfactory Quality of Experience (QoE) for the users is a
challenging task to accomplish. To this end, YouTube lever-
ages a massive, globally distributed Content Delivery Network
(CDN), the Google CDN [1]. It consists of hundreds of edge-
nodes scattered in the Internet. Each edge-node hosts hundreds
of video servers, or caches, which can each potentially serve
any video any user may request [2].

Google, as many other Over-the-Top content providers,
places its edge-nodes close to users, usually at aggregation

A preliminary version of this paper has been presented at the 27th
International Teletraffic Congress (ITC27)

The research leading to these results has received patialy funding from
the European Union under the FP7 Grant Agreement n. 318627 (Integrated
Project ”mPlane”) and partially from Narus Inc., Sunnyvale, CA.

1https://www.youtube.com/yt/press/statistics.html

points directly peering with Internet Service Providers (ISPs).2

Hence, Google uses the ISP’s network as the “last mile” to
deliver YouTube videos. Despite this localized setup, once
a user requests a video playback, the CDN load balancing
algorithm directs the request to one of the caches, and there
is no mean to predict which cache, or even which edge-
node will be used [3], [4]. This is particularly critical for
the ISP, which on the one hand is compelled to deliver
YouTube videos to the customers without impairing the QoE,
while on the other aims at minimizing the delivery costs.
Hence, the ISP spends a significant effort in monitoring the
CDN infrastructure and designing ad hoc traffic engineering
policies for YouTube traffic [5]. However, the YouTube CDN
allocation policy frequently changes caches being used to
serve videos, and changes may involve modifications in the
infrastructure, e.g., the activation of a new cache, or in the load
balancing algorithm decision, e.g., a sudden switch of caches
to serve requests, or an eventual change on the path to those
caches, e.g., due to congestion, or route change. Conversely,
the ISP’s policies are often static and hardly cope with the
continuous evolution of the Google CDN: any sudden change
can make the ISP’s optimization obsolete, and thus ineffective,
possibly causing abrupt disruptions or QoE degradations. This
constitutes an issue for the ISP, as it sees its reputation degrade
when a change happens, even if Google caused it.

A. Our Contribution

In this paper, we present YouLighter, a novel methodology
to automatically monitor and pinpoint changes in how the
YouTube CDN serves traffic. YouLighter relies on an unsu-
pervised learning approach that, as such, does not require any
knowledge of the YouTube infrastructure. It builds upon a cog-
nitive approach, where automatic and unsupervised algorithms
are used to extract a model of the system status. YouLighter
only assumes that the ISP has deployed passive traffic probes,
which expose TCP flow level logs summarizing video requests
from users. Considering a given observation window of, say
one day, YouLighter aggregates these flow logs to constitute a
snapshot of the traffic exchanged with YouTube caches. Based
on DBSCAN [6], a well-established unsupervised machine
learning algorithm, YouLighter is able to automatically group

2https://peering.google.com/about/index.html

https://www.youtube.com/yt/press/statistics.html
https://peering.google.com/about/index.html
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thousands of caches into a bunch of edge-nodes using simple
features that characterize the network distance of caches from
the vantage point.

YouLighter periodically runs DBSCAN on consecutive
snapshots, extracting for each of them a model of the status
of the CDN. The problem becomes then how to compare the
two models to highlight eventual changes. We solve it with
some ingenuity, we summarize the corresponding models into
patterns, and compare them using the notion of Pattern Dis-
similarity, a metric similar to others presented in the literature,
but which satisfies our specific requirements (see Sec. II for
a detailed discussion). The bigger the distance between two
snapshots is, the more different the sets of YouTube caches to
serve ISP customers during the two periods of time are.

YouLighter highlights several kinds of changes, including
deviations from the typical behavior of edge-nodes possibly
induced by congestion arising in the network. In general,
YouLighter triggers alarms corresponding to sudden changes
happening in the YouTube CDN infrastructure which may be
responsible of QoE issues for ISP customers. Resulting alarms
are then offered to the ISP network administrator who can take
countermeasures to mitigate the problem.

We validate our methodology over traces we collect from
four different vantage points that we have deployed in two
ISPs in two different countries. First, we demonstrate that
the cognitive algorithms YouLighter adopts are effective at
identifying and grouping YouTube caches belonging to dif-
ferent edge-nodes. Second, we run YouLighter over different
collected snapshots considering a longitudinal dataset, which,
overall, accounts for more than 33 months of traffic. We
pinpoint several examples of sudden and previously undiscov-
ered changes in the YouTube CDN. For some of them, we
investigate the impact on the QoE of ISP customers, revealing
the sudden drop of average video download throughput to less
than 250 kb/s, which hampers even the possibility of watching
a video.

We believe that YouLighter is a promising tool for ISPs, net-
work administrators and researchers to monitor the YouTube
CDN and the traffic it generates. Importantly, thanks to its
design, YouLighter offers the capability of automating and
accelerating the troubleshooting procedures. In fact, ISPs may
use YouLighter to quickly react to changes possibly harming
customer’s QoE. For instance, ISPs may adopt traffic engineer-
ing algorithms to optimize routing to under-performing edge-
nodes, e.g., by means of BGP policies, or to implement DNS
policies overruling YouTube choices and re-directing traffic
from caches with bad QoE to changes with a good QoE. How-
ever, YouLighter’s task is limited to notifying the occurrence
of change events in the YouTube CDN. The investigation and
troubleshooting of issues notified by YouLighter are out of the
scope of this paper.

The remainder of this paper is structured as follows: Sec. II
discusses the related work. Sec. III describes the details of our
datasets, and shows the dynamicity of YouTube cache selection
policies. Sec. IV presents our methodology, introduces the
notion of Pattern Dissimilarity, and discusses YouLighter’s
complexity. Sec. V presents our results: First, we evaluate
the sensitivity of YouLighter’s parameters, and, second, we

show how effective YouLighter is at pinpointing changes in
YouTube CDN employing our traces. Sec. VII suggests some
countermeasures an ISP can use to improve users’ QoE in case
of changes. Finally, Sec. VIII concludes the paper.

II. RELATED WORK

A large body of work has analyzed the YouTube delivery
infrastructure and its evolution over time [1], [2], [3], [7],
[5]. They show YouTube is a highly dynamic system which
keeps changing over time due to continuous upgrades in the
infrastructure [1], [2] or due to the dynamicity of the cache
selection policies [3], [7]. Some of the findings are already
outdated. For instance, the load-balancing policy based on
HTTP redirections which is described in [3], [7] is no longer
in place, and YouTube dismissed the naming scheme described
in [2] at the end of 2011. In this work, we do not aim to offer
an updated view or characterization of YouTube. Instead, we
present a methodology that allows to automatically identify
changes in both the infrastructure, e.g., the appearance of
new edge-nodes, and in the day to day management of the
infrastructure, e.g., a change in the load-balancing algorithm
that may affect millions of customers.

Our contribution is in line with the body of works focusing
on anomaly detection, for which [8], [9] offer good surveys.
In particular, our work belongs to the family of studies
which addresses the problem of performing anomaly detection
in large scale operational networks. [10], [11] are notable
examples of supervised methodologies which leverage data
from passive probes, topology information, routing tables and
Simple Network Management Protocol (SNMP) logs to match
predictions to actual measurements to pinpoint deviations.

Other works propose methodologies to perform anomaly
detection on CDN infrastructures for video delivery specif-
ically [12], [13], [5]. Authors of [12] consider a collection
of video download sessions, out of which they extract mea-
surements for specific features, and manually set thresholds
to label degradation-affected sessions. Then, by applying
graph techniques, they identify clusters and outliers possi-
bly associated to performance issues. [13] analyzes different
CDN providers, among which YouTube. The paper presents
a characterization of the YouTube cache selection policy and
apply an anomaly detection system based on subnet usage
to detect unexpected cache selection in a time window of
minutes. Finally, [5] focuses on the YouTube case too and
proposes a methodology for anomaly detection which requires
a significant manual effort, and the paper mostly presents
results about the characterization of the YouTube service in
terms of traffic characteristics and QoE perceived by the
users. YouLighter differs from the supervised methodologies
described in above studies. In fact, YouLighter does not assume
any knowledge of a baseline, and leverages unsupervised
algorithms to automatically unveil changes on the YouTube
infrastructure. We design it with this specific requirement in
mind, as it has to target the YouTube CDN, for which the
ground truth is a moving target that is very difficult to know.

The application of cognitive and unsupervised machine
learning techniques – in particular clustering techniques – to
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perform anomaly detection based on network traffic is not new.
For instance, [14] proposes a flow-based anomaly detection
algorithm based on K-Means, while [15] uses DBSCAN to
group P2P sessions and identify anomalous clusters. However,
in all the cases, clustering is used to study the same given
dataset. Our goal is anomaly detection algorithm builds on the
comparison between clustering patterns obtained at different
times. The task of identifying anomalies by comparing clus-
tering results attained from different datasets (e.g., different
time snapshots, etc.) translates in the problem of measuring
the dissimilarity of two distinct patterns. The comparison
and quantification of the similarity obtained from evolving-
in-time clustering is addressed within a sub-domain referred
to as online clustering or streaming clustering. See [16],
[17] for notable examples. In particular, [16] defines a metric
to quantify the dissimilarity between consecutive clustering
patterns, namely the History Cost, which is similar to the
Pattern Dissimilarity presented in this work. However, the
History Cost is designed to compute the distance between
clustering patterns built by K-Means, for which the number
of clusters is constant across different patterns. Instead, the
Pattern Dissimilarity takes into account the case in which
the number of clusters across different patterns is different.
Another work which goes in a similar direction is [18]
whose authors propose to measure similarity between sets of
overlapping clusters from complex networks, in which groups
of nodes form tightly connected units linked to each other.
Since points are not embedded in a metric space, authors
of [18] define ad-hoc distances.

YouLighter differs also from techniques for the tracking of
moving clusters and objects as in [19], [20]. Indeed, their
goal is to track the movements of the same clustered objects
over time, e.g., a group of migrating animals. On the contrary,
YouLighter has no insights about the CDN infrastructure and it
cannot track single objects, which may disappear and reappear
freely.

Finally, other approaches as [21] measure the similarity
among sample distributions obtained at different time inter-
vals. However, directly relying on distributions to perform
the comparison considerably complicates the detection of the
edge-nodes behind the changes. And from the datamining
community evolutionary clustering techniques such as [16],
[17] have been used to study how clustering results evolve over
time. Instead, YouLighter extracts and compares clustering
patterns, which are simpler to process in an automatic manner,
and allow to immediately pinpoint the edge-nodes (i.e., the
clusters) responsible for possible deviations.

A preliminary version of this work has been presented [22].
In this extended version we present more thorough perfor-
mance analysis and sensitivity study of YouLighter algorithms,
present a complexity evaluation and discuss possible counter-
measures ISP can take to mitigate eventual problems.

III. DATASETS

We assume the ISP has instrumented the network with
passive probes, which collect statistics from traffic flows
carrying YouTube videos. In this work, we rely on passive

Fig. 1: The traffic monitoring setup we employ for this paper.

probes running Tstat 3 that we install in Points-of-Presences
(PoPs) of operational networks, as depicted in Fig.1. Clients
are located in one PoP, and connect to the backbone via a
router, where Tstat monitors the traffic. Tstat observes packets,
rebuilds each TCP flow, tracks it, and at the end of the flow,
logs detailed statistics. Tstat can classify TCP flows that carry
YouTube videos. For each request, it logs i) the anonymized
client IP address, ii) the server IP address, iii) the hostname
of the server,

iv) the TCP minimum Round Trip Time (RTT), v) the IP
Time-To-Live (TTL) of packets received by the client in the
PoP, vi) the amount of bytes the clients send and receive,
vii) the average download throughput, and viii) the time at
which the TCP connection starts.4 For more information we
address the reader to [23]. Note that Tstat can compute all
these metrics considering only TCP segments, and do not
require access to application payload. On the one hand, this
avoids any privacy issues. And other hand, it allows us to
collect all needed statistics even in presence of encryption,
e.g. when HTTPS is used, which nowadays represents more
than 50% of overall YouTube traffic [24].

Trace Period Volume Flows Caches
ISP1-A 01/04/2013 - 28/02/2014 138.7 TB 33,216,794 8,664
ISP1-B 01/04/2013 - 28/02/2014 152.9 TB 31,643,603 8,899
ISP1-C 01/04/2013 - 28/02/2014 134.8 TB 27,377,089 9,028

ISP2 01/03/2014 - 17/07/2014 48.3 TB 9,100,163 3,755

TABLE I: Traces considered in this study.

We have been collecting traffic logs since April 2013
by monitoring the traffic users generate when accessing the
Internet. We instrument four different PoPs. Three of them
are located in networks of the same ISP, and in two different
cities of the same country. We install the fourth one in a PoP
of a different ISP in a second country. Tab. I describes, for
each trace (or dataset), the time period, the total downloaded
volume, the number of unique videos and the number of
YouTube servers we observe. Notice that in total we monitor
the activity of more than 32,000 customers, and the maximum

3http://www.tstat.polito.it
4The RTT is measured as the time difference between the server acknowl-

edgement segment and the corresponding client data segment. Give a TCP
connection, the minimum RTT is computed among all valid samples. The
TTL is directly extracted from the IP header. Among all packets in a flow,
we take the minimum value seen.

http://www.tstat.polito.it
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Fig. 2: Rank of YouTube caches based on the number of flows.
February 2014, ISP1.

number of YouTube caches that ISP1 customers used at least
once is ∼9,000. The dataset overall covers more than 500 TB
of equivalent data.

A. YouTube Cache Naming Structure

We find that the YouTube infrastructure described in [2] is
no longer in use. During 2012, YouTube server hostnames
were in the form rx---ABCxxtxx.c.youtube.com,
where x are numbers, while ABC is a three-letter
code reporting the International Air Transport Associa-
tion (IATA) code of the closest airport. For instance
r7---fra07t16.c.youtube.com identified a single
cache, in Frankfurt. The hostname still resolves to a single
IP address, 74.125.218.182 in the example. Thus, we can
uniquely identify a cache by its hostname.5 All caches co-
located in the same edge-node share the same (obfuscated)
IATA code. This allows us to get coarse ground truth about
the location of servers.

We run some active experiments to cross-check if YouTube
specializes caches to serve some particular content, and we
verify that every cache can serve any video, at any resolution,
in any format, e.g., MPG4 or Flash, to any device, e.g., PC,
smartphones or tablets.

B. Characterization of the Load Balancing Policies

Every time a user starts a video playback, the player
starts a progressive download of the video content from the
specific cache the system provides in the HTML page.6 We
are interested in seeing which are the policies governing the
server allocation, such as (i) is there any “preferred” group of
caches? or (ii) are those stable over time?

Fig. 2 reports the rank of YouTube caches sorted by the
number of flows they serve. We consider February 2014 from
the ISP1 datasets. First, notice that we observe up to 3,800 in
ISP1-C, with ISP1-A reaching more than 2,500. Second, the
load each cache handles is very heterogeneous in all datasets;
few servers handle lots of requests, but there is a not negligible

5Starting from January 2013, YouTube obfuscates the IATA code using
a simple substitution cipher. The script to de-obfuscate YouTube encrypted
cache names is available at http://tstat.polito.it/svn/software/tstat/trunk/scripts/
decode yt sitename.pl. From October 2013, the youtube.com domain has
been replaced by the googlevideo.com domain. This information can be
used to identify YouTube flows even in presence of HTTPS [25].

6Load balancing policies are implemented at application layer. Indeed, the
web server chooses and encodes the cache hostname directly in the HTML
page served to the client.
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Fig. 4: Evolution over time of the rank of the top 10 mostly
used caches during February 2014, ISP1-A. The white dot
corresponds to the top cache of each day.

number of caches that serves a significant portion of flows. In
all three datasets, top 400 caches serve more than 1,000 videos,
and, to observe 95% of requests, one must consider about 313,
330, 342 caches in ISP1-B, ISP1-A, ISP1-C respectively.

We also notice that the rank is extremely dynamic over time.
For instance, we pick randomly four caches among the most
active caches in ISP1-A during the 1st week of February 2014.
We report in Fig. 3 the amount of traffic they generate over
time for the following seven days. As shown, the amount of
traffic a single cache handles changes widely over time, and
none of the monitored caches keeps a constant leading position
for a long period of time.

As one may expect this dynamicity to disappear when
reducing the focus, we monitor a larger pool of caches as
those in the rank in Fig. 2, and we recompute the same rank
on a daily basis. Then, we represent it using different colors
in Fig. 4. Each row represents the rank of the same cache for
different days in February. In case the rank is stable, one would
expect a row (a cache) to always assume the same color (rank).
Fig. 4 shows exactly the opposite. Indeed the top daily cache
(red square, highlighted by the white dot) randomly changes
every day (white line). Sometimes, the most used cache in a
day is not among the top-10 cache of the month (line jumps
outside). The top-10 caches in the monthly rank drops below
the 50th place during some days (gray color). Similarly, in the
first 19 days of February, the top-10 caches are concentrated
in the first 20 rankings; However, starting from February 20th
they fall around the 30th position (notice the concentration of

http://tstat.polito.it/svn/software/tstat/trunk/scripts/decode_yt_sitename.pl
http://tstat.polito.it/svn/software/tstat/trunk/scripts/decode_yt_sitename.pl
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yellow and orange boxes).
This shows that the server allocation policies adopted by

YouTube spread the load over several hundreds of caches, and
the choices are extremely dynamic over time if we observe
with the fine grained granularity of a single cache.

Since caches inside the same edge-node are all equiva-
lent, the intuition is to observe the system using the coarse
granularity offered by edge-nodes. However, edge-nodes are
unknown, they can change over time due to system upgrade,
maintenance operations, or redesign. Information that could
be available (e.g., the IATA code) may be not reliable, or may
be outdated by YouTube. This calls for cognitive systems that
can automatically identify presence of edge-nodes and to build
a model of the current status of the CDN. We thus design
an unsupervised machine learning algorithm to automatically
identify edge-nodes from just the observation of traffic flows.

IV. METHODOLOGY

Among cognitive approaches that try to extract models out
of data, cluster analysis (or clustering) represents a well known
set of unsupervised algorithms that have been successfully
used in the literature. Clustering algorithms group objects with
similar characteristics [26]. Objects are described by means
of features which map each object to a specific position in a
hyperspace. The similarity between two objects is based on
their distance. The closer the two objects are, the more likely
they are similar and thus should to be grouped in the same
cluster. Typically, the Euclidean distance is used.

The selection of the features plays a key role in the design of
clustering algorithms. In our scenario we would like to group
together caches based on the network position as seen from
a vantage point. Intuitively, the path between two caches in
the same edge-node and clients in the same PoP exhibits the
same properties, that from a network perspective translates in
same RTT and TTL. Conversely, the paths between two caches
in two different edge-nodes should present different RTT or
TTL. To confirm this intuition we perform the following
experiment. We consider three edge-nodes observed in ISP1-
A during December 12-18 2013. For each cache, we consider
all the flow directed to it and we compute the Cumulative
Distribution Function (CDF) of the RTT and the TTL extracted
from the flows. Then we summarize each CDF with the 5th,
20th, 50th, 80th, and 95th percentiles, and report the result
in Fig. 5. The x axis reports caches grouped together by
(anonymized) IATA code. On the y axis, for each cache,
we report the percentile values, shaded with different colors,
obtained from the per-cache CDFs. Fig. 5(a) and Fig. 5(b)
reports the results for RTT and TTL, respectively. Since
we sort caches based on their IP address and IATA code,
caches belonging to the same edge-node appear one close
the other. Three edge-nodes are present, E-2, E-6, and E-3.
Each hosts a variable number of caches, with E-3 being the
largest. As shown in Fig. 5(a), the caches in the same edge-
node exhibits very similar RTT percentiles, suggesting that
we can identify clusters of caches by considering the RTT
as a feature. However, E-2 and E-6 exhibit very similar RTT
percentile values. This fact clearly complicates the capability
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Fig. 5: Example of per-cache RTT percentiles and TTL
percentiles. Caches sorted by IP address, and grouped by
(anonymized) IATA code. December 12-18 2013, dataset
ISP1-A.

of a clustering algorithm to label them as different edge-nodes.
Similarly, when focusing on the TTL (Fig. 5(b)) we observe
that E-6 and E-3 show practically identical values. However, if
we put Fig. 5(a) on top of Fig. 5(b), we can easily distinguish
the three edge-nodes as they all exhibit different RTT and
TTL combinations, and E-2, E-3 and E-6 emerge clearly as
different edge-nodes. This simple example justifies our choice
to consider the multidimensional space obtained by combining
percentiles for both RTT and TTL features.

We acknowledge that The RTT and TTL samples might
be biased by issues due to the presence of congestion in the
network path to the caches. However, YouLighter’s aim is to
capture these kind of events as well, and notify them to the ISP,
which then will investigate further to troubleshoot the problem.
Anyhow, the correct working point of an ISP network should
be far from a regime affected by congestion, so we expect
congestion events to be due to actual changes in the CDN
infrastructure or in the network paths to the caches, rather
than in the ISP network.

A. Multi-dimensional Clustering

We leverage above intuition to design a clustering algorithm
to automatically find homogeneous groups of caches. We use
some ingenuity to characterize the path from client to each
cache, and then to cluster caches that exhibits similar paths.
We can split the process of our methodology into the following
steps:
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Step 1 - Passive monitoring of YouTube video flows: As
described in Sec. III, a passive probe provides the continuous
collection of YouTube traffic logs. We log the metadata of each
TCP connection, and we store logs in a database for further
processing.
Step 2 - Measurement consolidation and filtering: To ease
the monitoring procedure, we use a batch processing approach
that considers time windows of size ∆T . Thus, every ∆T
we generate a “snapshot”, and we aggregate and process
measurements in it. In the following, we indicate the n-th
snapshot as a superscript when needed, e.g., a(n) indicates the
metric a at snapshot n. The choice of the time granularity
at which a new snapshot is built is driven by the necessity of
finding a trade off between the amount of data to consider, and
the frequency at which the network administrator is expected
to be capable of reacting to anomalies.

We identify each cache x by its IP address. We then group
all flows in the same snapshot with the same server IP address
to obtain a table where columns correspond to the metric
(e.g., RTT, TTL, transmitted packets, etc.), and each row
corresponds to a sample, i.e., the tuple of measured values
observed within a TCP flow.

Since we are interested in the active caches, we discard
those with less than MinFlow = 50 samples. We define the
whole measurement snapshot n as X(n).
Step 3 - Feature selection and data normalization: Next,
we apply a feature selection driven by domain knowledge to
select the setM of metrics. In particular, as we are interested
in grouping caches according to the path properties, we choose
M = {RTT, TTL}. Then, for each cache x in the snapshot
X , and for each metric m ∈ M, we generate a Cumulative
Distribution Function (CDF). From the distribution, we extract
the vector Pm(x) = (pm,1(x), pm,2(x), . . . , pm,k(x)) contain-
ing k percentiles of m for cache x. Then, we translate the
percentile values obtained from the real space to an hypercube
space of unitary size. This is a standard approach which allows
the data analytics algorithm to work with a fixed parameter
configuration. We thus standardize percentiles following a
simple normalization:

minm = min (pm,i(x) ∀x ∈ X,∀i = 1, . . . , k) (1)
maxm = max (pm,i(x) ∀x ∈ X,∀i = 1, . . . , k) (2)

p̄m,i(x) =
pm,i(x)−minm
maxm −minm

(3)

Intuitively, Eq.(3) normalizes the percentiles of metric m so
that p̄m,i ∈ [0, 1].

At last, P̄m(x) = (p̄m,1(x), p̄m,2(x), . . . , p̄m,k(x)) repre-
sents the standardized vector of features for the metric m for
server x. Recalling thatM = {RTT, TTL}, we identify each
cache x ∈ X with a 2k-dimensional which is then normalized
in a space of edge 1 and features:

x̄ = (P̄RTT (x), P̄TTL(x)) (4)

and we transform the original set of caches X into a set of
points X̄ = {x̄}.
Step 4 - Clustering: Among different clustering algorithms
we employ the DBSCAN (Density-Based Spatial Clustering

of Applications with Noise) algorithm [6] to group together
caches based on their multi-dimensional features. We choose
DBSCAN because (i) it is able to handle clusters of arbitrary
shapes and sizes; (ii) it is relatively resistant to noise and
outliers; (iii) it does not require the specification of the number
of desired clusters (iv) it is a density based clustering algorithm
which perfectly fits our scenario. DBSCAN is a clustering
algorithm presented in 1996 [6] which exploits the notion
of dense area to clusterize elements. This characteristic is
particularly useful in our scenario since caches belonging to
the same edge-node should own similar metrics value lying
in a small region of the possible space. Even in presence
of small difference within the same edge-node, DBSCAN
has good performance as it can handle clusters of different
shape. Another important point is that DBSCAN requires only
two parameters: ε and MinPts. ε determines the maximum
allowed distance between any given point in a cluster and its
closest neighbour belonging to the same cluster, and MinPts
the minimum number of points required to form a cluster.
Based on that, it classifies all points as being (i) core points,
i.e., in the interior of a dense region; (ii) border points, i.e.,
on the edge of a dense region; or (iii) noise points, i.e., in
a sparsely occupied region. Noise points do not form any
cluster, while the algorithm puts in the same cluster any two
core points that are within ε of each other. Similarly, any
border point that is close enough to a core point is put in
the same cluster as the core point. The result of this process
is a collection C of clusters Cj ∈ C, also named as clustering:

C = {Cj} = DBSCAN(X̄) (5)

B. Highlighting Changes with the Pattern Dissimilarity

We are now interested in tracking the evolution of clusters
over time, for which, we adapt the methodology presented
in [16], as we discuss in Sec. I. As authors presented in [16]
compare two clusterings C1 and C2 obtained considering two
different datasets, i.e., snapshots in our case opens many
different scenarios. For instance, i) points that were present
in C1 may not be present in C2, and vice versa; ii) points
clustered into the same cluster in C1 can now belong to two
or more clusters in C2; and iii) the same points that form a
cluster in C1 can still form the same cluster, but can be placed
in another region in the clustering space in C2. In our case,
this corresponds to i) popular caches at snapshot n that are
not anymore used at snapshot n + 1, or ii) some caches at
snapshot n that were part of the noise are instead clustered at
snapshot n + 1, or iii) the path to caches suddenly changes
at snapshot n + 1, altering RTT and TTL. Since we do not
have any mean to label the clusters in two different clustering
results for instance by using a ground truth label. We can
not evaluate major changes, i.e., the presence of a totally new
cluster by simply evaluating the difference of clustering results
by comparing which clusters are shared between the snapshots.
Therefore, to evaluate the difference between the clustering,
we adapt the historic cost function presented in [16], and we
introduce the notion of Pattern Dissimilarity.

1) Clustering Patterns: We first map each cluster into
a single Centroid that summarizes it. For each cluster, a
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centroid is computed following the standard approach, i.e.,
it is the mean position of all the points in all of the coordinate
directions. Therefore, given a cluster C ∈ C, we consider the
centroid, or geometric center, x̂ whose components p̂m,i in the
i percentile of feature m are:

p̂m,i =
1

|C|
∑
x∈C

renorm(pm,i(x)) (6)

All centroids then form a pattern P̂ = {x̂}. The renorm()
function considers the re-normalization of features that is
needed if points in C1 and C2 went through different nor-
malization processes according to Eq.(3). In other words,
renorm() transforms the space defined by the centroids
obtained by two different snapshots in a common hypercube
space of unitary side. This normalization step is required since
normalizing over all snapshots is not possible because in an
online analysis system future snapshot are not known a priori.
In our case, assuming C1 = C(n), C2 = C(n+1), from Eq.(3)
for each m ∈M we have:

Minm = min
(
min(n)m ,min(n+1)

m

)
(7)

Maxm = max
(
max(n)m ,max(n+1)

m

)
(8)

renormm(a) =
a−Minm

Maxm −Minm
(9)

To better explain the need of this two-step normalization
process we describe a simple one-dimensional example. Con-
sider the case in which the first snapshot has values varying in
[0, 15], and the second snapshot in [2, 22]. We first perform a
per-snapshot normalization to run DBSCAN, so that we obtain
[0, 15]→ [0, 1] as by Eq.( 3). Similarly [2, 22]→ [0, 1] for the
second snapshot. Next, to compare these two snapshots, the
renorm() function will re-normalize the space in a common
space with [0, 22]→ [0, 1].

2) Centroid Distance: Given a centroid x̂ and a centroid
pattern P̂ , we define the Centroid Distance (CD) as the
distance between x̂ and its closest centroid in P̂ . Specifically,
we compute the closest centroid ŷ∗ ∈ P̂ such that d(x̂, ŷ∗) ≤
d(x̂, ŷ) ∀ŷ ∈ P̂ . d(x, y) can be any distance metric that is
valid in the feature space. In this work, we use the classic
Euclidean distance. Thus, the Centroid Distance CD of the
centroid x̂ from centroids in P̂ is

CD(x̂, P̂) = min
ŷ∈P̂

d(x̂, ŷ) (10)

Hence, the Centroid Distance couples centroids according
to a nearest neighbor principle.

3) Pattern Dissimilarity: At last, we define the Pattern
Dissimilarity - PD - as the sum of the Centroid Distance
among every centroid in the clusterings. Since the number of
clusters in P̂1 and P̂2 may be different, we need to symmetrize
the definition:

PD(P̂1, P̂2) =
∑
x̂∈P̂1

CD(x̂, P̂2) +
∑
x̂∈P̂2

CD(x̂, P̂1) (11)

Fig. 6 depicts the Pattern Dissimilarity computation consid-
ering a 2-dimensional space. From left to right, DBSCAN first
clusters the points (grey dots for the first snapshot, white for

Fig. 6: Example of Clusterings, Patterns and Centroid Distance
computations.
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Fig. 7: Pattern Dissimilarity for increasing noise e, for constant
and increasing number of centroids.

the second). Then, centroids emerge to form the patterns, and
we compute the Centroid Distance for each centroid. Finally,
the Pattern Dissimilarity is the sum of all Centroid Distances.

In the following, we consider two subsequent snapshots
n, and n + 1, compute the clustering C(n) and C(n+1), then
extract the patterns P̂(n) and P̂(n+1), and finally compute their
dissimilarity PD

(
P̂(n), P̂(n+1)

)
.

We note that we can base the Pattern Dissimilarity on
other similarity metrics different from the Euclidean distance,
e.g., the well known Cosine Similarity. However, as we show
in Sec. IV-C using the Euclidean distance lets the Pattern
Dissimilarity to inherit linear properties, and therefore to vary
proportionally with size of the changes. Observe also that
the design of the Pattern Dissimilarity offers a nice property
that is particularly desirable for troubleshooting purposes.
In particular, the Pattern Dissimilarity, which is a simple
sum of Euclidean distances, lets us immediately pinpoint the
centroids responsible for changes in the pattern. As we show
in Sec. VI, this aspect is crucial, as it allows us to design
an automatic procedure that i) captures changes in YouTube
CDN infrastructure, and ii) highlights the edge-nodes involved
in these changes.

C. Observations about the Pattern Dissimilarity

We run some numerical evaluation to gauge how the Pattern
Dissimilarity changes with respect to changes in the input
data. We consider two main sources of changes: i) centroids
that simply move from their position, and ii) the birth of new
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Fig. 8: Pattern Dissimilarity for increasing distance among
clusters d, for constant and increasing number of centroids.

centroids reflecting the generation of a new cluster in the data.

1) Changes within the same metric space: Consider first
that case where changes to samples leave samples within the
same metric space, i.e., min(n)m = min

(n+1)
m and max

(n)
m =

max
(n+1)
m .

For the first scenario, we generate a random pattern Ĉ1
of N = |Ĉ1| centroids. We randomly place centroids in the
unitary hypercube of edge 1 in RN according to a uniform
distribution. Then, we generate pattern Ĉ2 by taking the
centroids in Ĉ1, and repositioning them in a random sphere
of radius e centered in the centroid original position. Finally,
we compute PD(Ĉ1, Ĉ2). We repeat the experiment for 100
times, and compute the average and standard deviation of
the obtained values. Fig. 7(a) reports the average Pattern
Dissimilarity and its standard deviation for increasing values
of e, and for different values of N . As expected, curves pass
through the origin, and linearly grow with e. The larger is N ,
the higher is the average Pattern Dissimilarity and its standard
deviation.

For the second case, we run the same experiment while
also increasing the number of centroids. Thus |Ĉ1| < |Ĉ2|.
Fig. 7(b) shows the results. Notice the nice property of the
Pattern Dissimilarity for which the birth of new centroids
causes the Pattern Dissimilarity to grow by a factor that is
proportional to the number of new centroids. This is due to
definition in Eq.(11) in which no normalization is present.
This property is important, as it lets the Pattern Dissimilarity
nicely highlight the sudden birth (or death) of centroids i.e.,
edge-nodes in our scenario.

2) Changes to a larger metric space: Consider now the
that case where changes move part of the samples outside the
metric space at time n. In particular, let samples move/appear
with max(n+1)

m = dmax
(n)
m , d > 1.

Fig. 8 shows results. Starting with left plot, we consider the
case where 5 clusters are present at both time. At time n+ 1,
points of k clusters move in a different portion of the space,
being allowed to move is a space of diameter d bigger than the
original one. Results show that this change has a much greater

impact, see Fig. 8(a). In the figure, |P̂2| = x, y states that x
cluster still lie in the original space, and y lie in the upscaled
space. Intuitively, since points now move to a larger space,
the Pattern Dissimilarity of the cluster which lies outside the
original space let the Pattern Dissimilarity grow higher.

Fig. 8(b) consider the birth of new clusters, which lie in
the upscaled space of factor d. Also in this case, the Pattern
Dissimilarity grows much higher than when considering the
birth of clusters within the same space – cfr. Fig 7(b).

These simple experiment allows us also to select thresholds
to highlight important changes, rather than minor changes. For
instance, when samples move outside the original space, the
Pattern Dissimilarity is typically larger than 10. Conversely,
when changes move samples within the same space, Pattern
Dissimilarity is smaller than 10. This will be useful when
highlighting significant changes in real data.

D. Complexity

After evaluating different aspects of the methodology, the
last important part to analyze is its complexity. This step is
required to understand the feasibility of running YouLighter
in a real environment. To evaluate YouLighter complexity we
study the computational cost of the different steps. We assume
that the network has been instrumented to extract flow level
logs from passive observations of packets. In our work we
rely on Tstat a tool developed at Politecnico di Torino able to
perform live traffic monitoring up to few Gb/s using off-the-
shelf hardware [23], [27].

Assume to have N caches and a total number of YouTube
flows F . From our dataset, we always obtain N in the order
of 1,000 and F amounting to half billion flows in each week
of data from ISP1. Therefore, a one week long dataset can
be easily stored in memory of MB magnitude. Given the flow
level log, the first step consists in measurement consolidation.
It consists in grouping flows by cache and filter less used
ones. Using an hash-based data structure where the key is the
cache IP address, counting flows per cache has a complexity
of O(F ).

The second step consists in feature extraction and data
normalization for each flow. For each cache, empirical per-
centiles must be computed which entails sorting of flows.
Worst case complexity is O(F ln(F )) when N = 1 and all
flows belong to the same cache. Assuming instead that F flows
are equally split among N caches, the complexity becomes
O
(
N F

N ln( F
N )
)

= O
(
F ln( F

N )
)
.

The third step is running DBSCAN. According to authors
in [6], the algorithm complexity is O(N ln(N)). The output
consists in M clusters. The final step consists in computing
the Pattern Dissimilarity. Firstly, it requires to compute the
boundary values for the renorm function. This operation is
linear O(N) since it requires to find the minimum and max-
imum values of features. Secondly, it computes the centroid
of each pattern. For each the M patterns, each containing L
caches, we have a complexity of order O(ML). Assuming
L to be O( N

M ), the complexity reduces to O(N). The next
part has to deal with the centroid distance. This part has
a computational complexity of O(M2). Finally the Pattern
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Fig. 9: Examples of patterns for which the True Positive Rate ,
the Fragmentation Index, and the Pureness Index are not equal
to 1, and the optimal case in which they are all equal to 1.
Color represent the GT-label.

Dissimilarity is computed with a cost of O(M) since we have
to sum all pattern distances. Overall, YouLighter complexity is
thus dominated by the second step, i.e., O

(
F ln( F

N )
)
. For our

YouLighter implementation, we used Python program language
which took on average less than two minutes to perform all
computation for one week of data.

V. DBSCAN PERFORMANCE

In this section we first assess and tune the performance
of DBSCAN in order to identify edge-nodes. We next run
YouLighter over a longitudinal dataset to show its ability to
highlight sudden changes in the YouTube CDN.

A. Clustering Performance Metrics

We first evaluate the impact of the parameter settings on
the DBSCAN results. In particular, we aim to understand
how good is the matching between the clustering DBSCAN
returns and the edge-nodes we observe in the measurements.
To perform this analysis, we consider the snapshot X from
November 4th to November 10th, 2013, in trace ISP1-A. We
manually inspect the dataset, and, guided by the IATA codes,
we assign each cache a label corresponding to the edge-node
in the YouTube CDN. We manually cross-check labels by
inspecting server IP addresses and subnets, RTT and TTL
distributions to verify the accuracy of the labels. The result
is a ground truth label, GT-label, that we assign to each
cache. In total we find |X| = 620 caches serving more than
MinFlow = 50 flows, and belonging to 6 edge-nodes, each
identified by a different GT-label. Hence, the number of GT-
labels is NGT = 6.

We then run DBSCAN as described in Sec. IV-A, obtaining
the clustering C. Let NC = |C| be the number of clusters. We
next use the GT-labels to assign a label to caches by using a
majority-voting scheme: For each cluster Cj ∈ C, we assign
all caches x ∈ Cj the most frequent GT-label observed in Cj .
Caches whose assigned label matches the GT-label are the so
called True Positives (TP), whose number is NTP . Conversely,
caches whose assigned label is different from their GT-label
are False Positives (FP), whose number is NFP . |X| = NTP +
NFP . We compute the set of distinct labels assigned to clusters
in C, whose number is NL ≤ NGT . We do not assign any label
to the caches which DBSCAN classifies as noise points.

To validate the clustering we obtain with DBSCAN we
consider three different indices, as follows:

TPR =
NTP

|X| , µ =
NC

NL
, φ =

NL

NGT
(12)

1) The True Positive Rate (TPR ≤ 1), also known in the
literature as “Purity” [26] measures the ratio between TP
and the number of samples in the experiment. TPR =
1 means that all labels are identical to the GT-label.
TPR < 1 indicates the presence of i) mislabeled caches
(or FP), or ii) noise points (unlabeled points). Leftmost
sub-figure in Fig. 9 reports a simple example where the
clustering algorithm mislabels a cache for both the GT-
labels E-1 and E-4, thus leading to TPR < 1. Colors
represent the GT-label.

2) The Fragmentation Index (µ ≥ 1) is a custom metric
that captures the case when more clusters share the
same GT-label. When µ = 1, the number of clusters
is identical to the number of GT-labels and DBSCAN
assigns each cluster a different GT-label. When µ > 1
instead, we have more clusters which share the same
GT-label, i.e., DBSCAN splits an edge-node into two
or more clusters. Second sub-figure in Fig. 9 reports an
example where the clustering algorithm splits edge-node
E-1 in two different clusters, C-1 and C-2, thus leading
to µ > 1.

3) Pureness Index (φ ≤ 1) is also a custom metric that
measures the ability to identify all edge-nodes. When
φ = 1, DBSCAN assigns each GT-label to at least one
cluster, i.e., it correctly identifies all edge-nodes. φ < 1
indicates that some edge-nodes disappear into other
clusters (i.e., their GT-label is not the majority label
for any cluster). Third sub-figure of Fig. 9 reports an
example where the clustering algorithm groups together
edge-nodes with GT-labels E-3 and E-4 in cluster C-2,
thus leading to φ < 1.

Rightmost sub-figure in Fig. 9 also depicts the ideal clus-
tering result in which DBSCAN groups correctly the caches
for all the edge-nodes, i.e., one cluster for each GT-label
(edge-node), leading to the case in which all the clustering
performance indices, TPR, µ and φ, are equal to 1.

Finally, we use also the number of noise points as an index
of bad clustering results, i.e., the inability of DBSCAN to
group caches into edge-nodes.

B. DBSCAN Performance and Parameter Sensitivity

We run experiments to evaluate the impact of DBSCAN
parameters, i.e., the choice of the features, MinPts and ε.
For now, we set features as the 20th, 35th, 50th, 65th, 80th
percentiles for both the RTT and TTL distributions. MinPts
is typically not critical since it defines the minimum number of
caches in an edge-node DBSCAN needs to form a cluster. We
set it to 5. Instead, we must choose ε carefully: If too small,
a lot of fragmented clusters will emerge, or a large number
of points will not be able to form dense areas, increasing the
number of noise points; conversely, large values tend to create
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Fig. 10: Pattern Dissimilarity values and number of noise points for different traces from ISP1.
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(a) DBSCAN with percentiles as features.
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(b) DBSCAN with mean and standard deviation as features.

Fig. 11: DBSCAN with different feature settings. Performance
versus ε. 1st week of November, ISP1-A.

few, very large clusters, that aggregates caches from different
edge-nodes.

Fig. 11(a) reports the clustering indices when varying
ε ∈ [0.0 : 0.2]. As shown, we achieve the best performance
with values between 0.018 and 0.052 (in between the vertical
solid lines). For such values, all the three indices are equal or
very close to 1. Smaller values of ε increase the number of
noise points and artificially fragment edge-nodes into multiple
clusters. TPR decreases, while µ first increases, then decreases
due to caches DBSCAN labels as noise (more than 300 caches
fall in the noise for ε < 0.005). For ε larger than 0.052
DBSCAN merges edge-nodes into too few clusters, and both
φ and the TPR considerably decrease.

We repeat this analysis for other traces and for different
snapshots. We find ε ∈ [0.02 : 0.045] to give consistent results.
In the following we choose ε = 0.04.

We also run a set of experiments to choose which features to
use to capture the RTT and TTL distributions. We replace the

vector of percentiles Pm(x) in Eq.(3) with simple statistics,
e.g., the mean and the standard deviation. The goal of this
experiment is to verify whether we can replace the percentiles
with some measure which does not require us to build an
empirical distribution, a task which requires to collect a fairly
large number of flows per cache.

Fig. 11(b) depicts results for varying ε. Unfortunately,
DBSCAN shows a good clustering for a tiny interval of values
of ε, e.g., ε = 0.035. For ε > 0.035, DBSCAN merges edge-
nodes together, so that µ > 1 and φ < 1. By investigating
further, we observe that the mean and standard deviation vary
widely among caches in the same edge-node. This variability
is due to the tails of the distributions which include outliers,
e.g., very large RTT samples which bias the mean and standard
deviation, but have little or no impact on the percentiles.
Indeed, the percentiles of caches in the same edge-node are
very similar, except those that gauge the tail (see the 95th
percentiles in Fig.5). This suggests that the choice of the
percentiles to populate the vector Pm(x) is more robust with
respect to other simpler statistics. We run other experiments
with different percentile choices that we do not report for
the sake of brevity. We observe no significant differences if
we avoid considering percentiles in the tail. Similarly, we
observe that using both RTT and TTL gives better results than
considering RTT or TTL alone.

VI. YOULIGHTER’S HIGHLIGHTING CAPABILITY

In this section we run YouLighter over the four traces in
Tab. I to validate its capability of highlighting changes in
the YouTube CDN. The rationale is to let the ISP observe
macroscopic changes that may affect a large number of users,
and which may last for moderate time periods. We consider
∆T = 7 days, and we start a new snapshot at midnight
of every day. The choice of the time granularity is driven
by the nature of the anomalies that the ISP would like to
highlight. Indeed, with too small time scales, e.g., order of
hours, more alarms would be possibly raised due to the natural
control system of CDNs. At the same time, an anomaly that
lasts order of hours would possibly be not relevant for end-
users, since the system would return to normality in short
time. Snapshots form a sliding window that moves forward
every day, and aggregates statistics for the past seven days.
∆T = 7 days guarantees us to obtain a statistically significant
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amount of feature measurements for each of the caches in the
set responsible of carrying the 90% of traffic.

Fig. 10 shows the evolution of the Pattern Dissimilarity (red
solid curve, left y-axes) over time. It also depicts the evolution
over time of the number of caches that remain in the noise
after clustering (black dashed curve, right y-axes). From left
to right, plots refer to ISP1-B, ISP1-A and ISP1-C. X-axes
reports daily snapshots, starting from April 1st, 2013.7

As shown, the Pattern Dissimilarity is very good at high-
lighting events. Indeed, according to Sec. IV-C, a PD > 10
suggests that the clustering at time (n) is very different to the
one at time (n+ 1). Thanks to the data aggregation we obtain
with the clustering, we can easily analyze the highlighted
events, and quickly identify the edge-nodes involved in the
changes. We investigate these events, and verify that they
all correspond to sudden changes in the edge-nodes used
by YouTube in serving ISP customers. In the following, we
illustrate the most relevant ones, i.e., those with a PD > 50.

A. Large event, involving all ISP customers

We first investigate an event YouLighter highlights in three
different datasets. It starts on May 2nd (snapshot 27), May
7th (snapshot 32), and May 13th (snapshot 38) for ISP1-B,
ISP1-A and ISP1-C, respectively. Pattern Dissimilarity peaks
above 60. Starting from then, both PD and the number of
noise points are very large. This indicates an unstable behavior,
with many caches that DBSCAN cannot successfully group
together, and the clustering pattern that keeps changing day
by day, for more than 40 days.

To give the intuition of what happened, top plot of Fig. 12
shows the per-cache percentiles of the RTT that we measure in
ISP1-A before, during, and after the anomalous event. First, we
notice that most of the edge-nodes suddenly change: E-1, E-4,
E-5 and E-6 actually “disappear” from the clustering pattern,
and during the event, many previously unseen caches in edge-
node E-2 start serving lots of customers (observe the center
plot). Second, and more surprisingly, the path properties to
these new caches is by far different from paths to other caches
in E-2: the RTT percentiles are much larger (95ms versus 15ms
for the 50th percentile) and much more variable. Despite these
caches share the same IATA code (E-2), YouLighter identifies
two clusters since the path to reach caches differs. This is
clearly shown by the RTT percentiles, which makes them
like to be in two different locations, with the former possibly
being severely congested. We call these new cluster Bad-E-2,
in opposition to caches showing small RTT, i.e., Good-E-2.
While RTT distribution clearly allows us to identify a sudden
CDN change, the TTL measurements in the bottom plot of
Fig. 12 does not reveal any additional information with respect
to what RTT already does.

We now analyze the impact of such change on the Quality
of Experience the ISP customers perceive. We report in Fig. 13
the distributions of the download throughput obtained by
video retrieved by caches in E-3, the best edge-node to ISP
customers, Good-E-2 and Bad-E-2. The difference is striking:

7PoP referring to ISP1-C suffered an outage from mid July 2013 to the end
of September.
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Fig. 12: Per-cache RTT and TTL percentiles during the ISP-
wide anomaly in May 2013. Dataset ISP1-A.
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Fig. 13: Throughput distribution for flows served by E-3,
Good-E-2 and Bad-E-2 during the large anomaly we observe
in May 2013. Dataset ISP1-B.

while videos served by E-3 and Good-E-2 have throughput
that allows to enjoy YouTube with no major impact on the
QoE (>1,000 kb/s in 63% of the cases), the throughput for
Bad-E-2 caches is below 500 kb/s (250 kb/s) in 75% (40%) of
the cases, clearly not enough to enjoy a video with a satisfiable
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Format Good-E2 Bad-E2
144p 17.4% 31.7%
240p 18.3% 26.1%
360p 45.4% 35.7%
480p 14.5% 5.3%
720p 3.8% 1.0%

1080p 0.6% 0.2%
AAC128 80.3% 92.0%
AAC256 19.7% 8.0%

TABLE II: Fractions of video and audio DASH formats served
by Good-E-2 and Bad-E-2. Dataset ISP1-B.

QoE [28]. Tab. II corroborates above observation reporting the
fractions of video (and audio) formats seen in flows handled by
both Good-E-2 and Bad-E-2.8. For this analysis we consider
only DASH formats, as for these formats the cache delivering
the video automatically adapts the quality of the video stream
depending on the congestion it measures on the path to the
client. As shown, Good-E-2 serves larger fractions of high-
definition videos. Conversely, the share of videos encoded with
low-definition (144p and 240p) increases for Bad-E-2. This
confirms that Bad-E-2 experienced possible congestion during
the monitored period, severely impairing the QoE of the users.

By double checking this event with the ISP network sup-
port team, we confirm the incident involved most of their
customers, increasing dramatically the complaining at their
customer support. This confirms the pervasiveness of this event
upon ISP customers.

The accident reported above is an example which testifies
that changes in the CDN may raise issues in the video de-
livery, finally harming users’ experience. This highlights how
important for the ISP is to monitor and pinpoint changes in
the YouTube CDN. The task of measuring how the variability
of the CDN structure may impact on the QoE perceived by
the users is beyond the focus of this paper.

B. Other events for ISP1

We manually cross check other events, and find that some
of those affected only part of the ISP customers. This shows
that YouTube CDN allocates customers to edge-nodes using
a fine grained granularity, i.e., the load-balancing allows to
identify small groups of clients by using the client IP address
(or network). For instance, on October 2nd (snapshot 180) and
October 9th (snapshot 187) YouLighter highlights two sudden
changes in the ISP1-A and ISP1-C, as the Pattern Dissimilarity
peaks over 60. Inspecting the astral distances one by one, we
observe that the changes are due to 3 edge-nodes (E-4, E-5
and E-6) out of 7 that suddenly “appear” in snapshot 180 and
“disappear” in snapshot 187. The remaining four edge-nodes
then serve the videos for customers in ISP1-A and ISP1-C.
We analyze the impact of the presence of such caches on the
QoE by measuring the aggregate download throughput before,

8Observe that in our dataset only a tiny portion (∼1%) of requests
are HTTPS, and, thus, encrypted. For the wide majority of the cases, the
information about video and audio formats are exposed in plain text in HTTP
requests.
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during and after their permanence, but we do not appreciate
any significant change. Also in this case we double check
the event with the ISP support team and we confirm that the
change had no influence on the QoE as the customer support
did not receive any meaningful complaining in the considered
period.

C. Events in ISP2

As a last set of experiments, we run YouLighter on the ISP2
dataset, which we recall we collect in ISP2, a different ISP in a
different country. We run YouLighter with the same parameters
we tune for ISP1, i.e., without going through ε optimization.
Indeed we aim to check whether if the edge-node model that
DBSCAN creates is general and robust enough to work in a
completely different scenario.

We repeat the experiment of Fig. 10 for ISP2 dataset, and
we analyze the evolution of the Pattern Dissimilarity and
number of noise points. We report the results in Fig. 14. To
check if the clustering correctly identifies the edge-nodes, we
select five different snapshots at random among the ones where
YouLighter highlights no events. Again, we use the IATA codes
as ground truth, and we manually check IP address subnets,
RTTs and TTLs to see if some suspicious cache is present
in a cluster. The clustering results in perfect match with the
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(possible) edge-nodes in the ground truth. This despite edge-
nodes, path, and ISP in this dataset are completely different.

We then check two suspicious events. The first one oc-
curs from March 7th to March 10th, 2014 (snapshots 1-4,
PD > 60), and the second one happens on March 18th, 2014
(snapshot 12, PD > 50). We observe that the first anomaly
is due to a change in the network path to reach a small group
of caches in E-2. We observe that this deviation does not
influence the QoE perceived by the users. For the second event,
by comparing the clustering at snapshot 12 with the following
snapshot, i.e., snapshot 13 (March 19th), we observe a notable
change in the infrastructure of the YouTube CDN: as depicted
in Fig. 15 which compares the per-cache RTT percentiles, all
caches belonging to edge-node E-7 disappear. Also in this
case, the change has no evident impact on users’ QoE, as
the average download throughput does not vary. However,
we notice that the edge-node E-7 represents a much more
expensive route for the ISP2, since it is located in an remote
ISP for which no peering agreements are in place.

VII. COUNTERMEASURES

In this section, we present some possible techniques that
ISPs may consider to this end, leaving a thorough design and
analysis for future work.

Firstly, ISPs position allows them to partially control the
network routing of traffic. Thus, ISPs may employ traffic
engineering techniques to control YouTube traffic using both
intra- and inter-routing algorithm. By using BGP, ISPs may
reduce congestion by redistributing traffic among different
peering links [29]. By announcing via BGP reachability of
their network trough other Autonomous System (AS) the
ISP can influence YouTube cache allocation policy as well.
For instance, ISP1 used this technique to mitigate problems
highlighted in Fig. 13. In that specific case, ISP1 forced its AS
number to be seen as reachable through another ISP (ISP2),
located in a different country. This caused YouTube CDN to
change the cache allocation policy so that customers from the
ISP1 were directed to a edge-node located in the ISP2 country.
YouTube traffic was then coming from ISP2 to ISP1, through
a high-capacity and uncongested peering link, de facto solving
the congestion problem.

A second and more controversial solution would be using
DNS directly. By enforcing policies on its DNS servers, the
ISP may force a video request to be served by a specific
edge-node or even by a specific cache, overruling the de-
cision of the YouTube CDN. As explained in Sec. III-B,
as soon as a client requests a video, YouTube selects a
cache and returns the cache hostname to the client e.g.
r7---fra07t16.c.youtube.com. After receiving this
hostname the client sends a DNS query to the DNS server
(typically managed by the ISP) to retrieve the IP address
of the hostname. As a consequence, in case the ISP knows
that r7---fra07t16.c.youtube.com performance are
poor, the ISP DNS can return the IP address of a different
cache. This is possible since according to [3], [4], any cache
can serve any video. This solution, allows the ISP to select
which cache has to manage each request. Therefore the ISP

may potentially override YouTube load balancing policies.
Some drawbacks have to be faced. First, even if previous
studies discovered that any cache can serve any video, the
ISP can not be sure that its choice will not introduce a bigger
latency due to cache miss, that can cause a further redirection
to other caches. Second, the ISP can not control whether a
cache will be switched off for maintenance. Observe that an
ISP attempt to react to changes in the CDN infrastructure could
cause further reactions on YouTube’s side too. As such, careful
investigations must be done to design and study this kind of
policies.

VIII. CONCLUSIONS

In this paper we proposed a novel system, named
YouLighter, that leverages passive observation of network
traffic and unsupervised machine learning techniques to auto-
matically monitor and identify changes in the YouTube CDN.
Based on the well known DBSCAN clustering algorithm,
YouLighter is able to automatically group thousands of caches
into few edge-nodes. To then compare the results of clustering
obtained considering different snapshots collected in consecu-
tive time intervals, we propose the Pattern Dissimilarity which
allows to easily pinpoint changes in clusters.

YouLighter is validated using a large dataset of traces
reporting the activity of users regularly accessing YouTube.
Our results are excellent: we show that after a short and
simple tuning procedure to find the best setup for DBSCAN,
YouLighter can detect anomalous events that happened in
YouTube CDN. For instance, we could notice a large transfor-
mation in a crucial edge-node of YouTube CDN which notably
impaired the QoE perceived by the monitored ISP customers
for more than 40 days.

We believe that YouLighter may represent a promising
opportunity for ISPs, network administrators, developers and
researchers to monitor the traffic generated by YouTube CDN.
ISPs, for instance, may employ YouLighter to design automatic
traffic engineering policies or to promptly react when changes
in YouTube CDN impair the QoE of their customers.

Our ongoing efforts are focused on three directions: First,
we are working to automate the tuning of YouLighter’s pa-
rameters, and, thus, its whole operation process. Second, we
are developing an online deployment of YouLighter, capable
of detecting changes in YouTube CDN in real time. Third, we
are adapting it to consider other use cases.
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