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Abstract

Frequent itemset mining is an exploratory data mining technique that has fruitfully been exploited to extract recurrent
co-occurrences between data items. Since in many application contexts items are enriched with weights denoting their relative
importance in the analyzed data, pushing item weights into the itemset mining process, i.e., mining weighted itemsets rather than
traditional itemsets, is an appealing research direction. Although many efficient in-memory weighted itemset mining algorithms
are available in literature, there is a lack of parallel and distributed solutions which are able to scale towards Big Weighted
Data.

This paper presents a scalable frequent weighted itemset mining algorithmbased on the MapReduce paradigm. To demon-
strate its actionability and scalability, the proposed algorithm was tested on a real Big dataset collecting approximately 34
millions of reviews of Amazon items. Weights indicate the ratings given by users to the purchased items. The mined itemsets
represent combinations of items that were frequently bought together with an overall rating above average.
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I. I NTRODUCTION

The rapid evolution of industrial and scientific technologies prompts modern ICT architectures to deal with massive
amounts of data. For example, e-commerce platforms, socialnetwork systems, and search engines commonly need for
storing and processing terabytes of data. The acquired dataare large-scale, heterogeneous, and generated at high speed,
thus potentially complex to cope with [1]. For example, to plan promotions and advertisements e-commerce companies
continuously need to store and analyze millions of electronic transactions made by their customers as well as their degree
of satisfaction about their purchased items.

To support analysts in coping with Big Data there is a compelling need for smart large-scale data mining solutions.
Hence, in the last few years an increasing research interesthas been devoted to studying and developing supervised and
unsupervised data mining algorithms (e.g., classificationalgorithms [2], and clustering algorithms [3]) that are able to scale
towards Big Data. For instance, Mahout [4] and MLlib [5] are notable examples of MapReduce- and Spark-based scalable
machine learning and data mining suites.

Frequent itemset mining [6] is an exploratory data mining technique which has largely been used to discover valuable
correlations among data items. Frequent itemsets are patterns representing co-occurrences between multiple data items whose
observed frequency of occurrence in the source data (the support) is above a given threshold. Frequent itemsets have found
application in several application contexts, among which market basket analysis [6], census data analysis [7], and document
summarization [8].Since most traditional algorithms (e.g., Apriori [9], FP-Growth [10], Eclat [11]) are not designedto scale
towards Big Data, a significant research effort has currently been devoted to developing new large-scale itemset mining
algorithms (e.g., [12], [13], [14]).

In real-life applications items are unlikely to be equally important within the analyzed data. For example, items purchased
at the market have different prices, medical treatments have different urgency levels, and genes are expressed in biological
samples with different levels of significance. Hence, an appealing extension of traditional itemset mining algorithmsis
to push of item relevance weights into the mining process. Toallow treating items/transactions differently based on their
relevance in the frequent itemset mining process, the notion of weighted itemset has been introduced [15], [16], [17], [18].
A weight is associated with each data item and it characterizes its local significance within each transaction. Since, tothe
best of our knowledge, existing large-scale itemset miningalgorithms are unable to consider item weights during the mining
process, the problem of integrating weights into distributed-based algorithms is challenging.

This paper addresses the problem of extracting frequent itemsets from Big Weighted Datasets. Although there are many in-
memory weighted itemset mining algorithms available in literature (e.g., [15], [16], [17], [18]), to the best of our knowledge
no parallel and distributed solution for mining frequent weighted itemsets from Big Weighted Data has never been proposed



so far. We propose Parallel Weighted Itemset miner (PaWI), a new parallel and distributed framework to extract frequent
weighted itemsets from potentially very large transactional datasets enriched with item weights [19]. The framework relies
on a parallel and distributed-based implementation running on an Hadoop cluster [20]. To make the mining process scalable
towards Big Data, most analytical steps performed by the system are mapped to the MapReduce programming paradigm [21].
To efficiently perform frequent weighted itemset mining PaWIintegrates a variant of the BigFIM algorithm [12] which is
able to successfully cope with data enriched with weights. Furthermore, to allow experts to effectively explore the result of
the mining process, the proposed system allows us to rank itemsets by (i) weighted support, (ii) traditional support, and (iii)
a mix of the above. While the traditional support indicates the generic degree of interest of the considered combination of
items, the weighted support integrated in the PaWI frameworkindicates the average level of interest of the least interesting
item within each transaction.

For example, let us consider the frequent combinations of items purchased by e-commerce customers, which companies
may deem as interesting to drive promotions and advertising. If for each customer the items in the virtual basket are weighted
by a satisfaction rating, analysts can focus their attention only the combinations of items that are frequently bought together
with an overall rating above average.

To demonstrate the efficiency and effectiveness of the proposed approach we conducted experiments on a real dataset.
Specifically, the PaWI system was tested on a real Big dataset collecting approximately 34 millions of reviews of Amazon
items. Weights indicate the ratings given by users to the reviewed items. The mined itemsets, representing combinations
of items that were frequently reviewed together with an overall rating above average, were validated by a domain experts.
Furthermore, we also experimentally analyzed the scalability of the PaWI system with respect to the number of nodes.

The rest of the paper is organized as follows. Section II overviews most significant related works and compares them
with the proposed approach. Section III thoroughly describes the PaWI framework. Section IV experimentally evaluates
the effectiveness and efficiency of the proposed approach, while Section V draws conclusions and discusses the future
developments of this research.

II. RELATED WORK

This paper addresses two complementary research topics: (i) large-scale itemset mining and (ii) weighted itemset mining.
Large-scale itemset mining. Frequent itemset and association rule mining are widely exploratory data mining techniques
which were first introduced in [6]. To scale towards large datasets most significant efforts have been devoted to studying
parallel and distributed itemset mining strategies. For example, an Apriori-based [9] approach to mining frequent itemsets has
been presented in [22]. Since Apriori is known to be less scalable than projection-based and vertical algorithms on complex
datasets [10], many attempts to parallelize and distributedifferent itemset mining strategies have also been made (e.g., [12],
[13], [23], [24]). For example, BigFIM is an hybrid algorithm based on MapReduce [21], which combines principles from
both Apriori [9] and Eclat [11]. Solutions relying on FP-Growth-like strategies have also been proposed. For example, in [23]
the authors exploited a prefix-tree-like structures to drive the parallel itemset mining process. The mining process entails
the following steps: first, an horizontal subset of the data is analyzed and a local FP-Tree is built; then the itemset mining
process is performed on the local FP-Tree. Finally, the candidate pattern bases from different processing flows are then
merged together. In [24] an enhanced strategy for merging processing flows has been proposed, More recently, the Parallel
FP-Growth algorithm [13] parallelizes different instances of the recursive FP-Growth process on distributed machines. The
key idea is to partition the computation in such a way that each machine executes an independent group of mining tasks thus
reducing the communication between machines. To balance the computation load on different machines the authors in [25]
proposed to consider the support of singletons, while the works presented in [26] and [27] exploited clustering techniques
and data sampling to limit the computational complexity of each mining task. An attempt to discover misleading patterns
from Big datasets using MapReduce has been made in [14]. The idea is to compare frequent (unweighted) itemsets mined at
different abstraction levels to highlight potentially critical situations. Unlike all the aforesaid approaches, this paper addresses
weighted itemset mining instead of traditional itemset mining. To scale towards towards Big Data, the PaWI framework
relies parallel and distributed-based implementation running on an Hadoop cluster [20], where most mining steps are mapped
to the MapReduce programming paradigm [21].
Weighted itemset mining. In the traditional itemset and rule mining tasks items belonging to each transaction of the source
dataset are treated equally. To differentiate items based on their relevance within each transaction, in [15] the authors first
addressed the issue of mining more informative associationrules, i.e., the Weighted Association Rules (WAR). WARs are
association rules enriched with weights denoting item significance. Weights were introduced only during the rule generation
step after performing the traditional frequent itemset mining process. To improve the efficiency of the mining process,
the authors in [16] pushed item weights deep into the itemsetmining process by exploiting the anti-monotonicity of the
weighted support measure in an Apriori-based itemset mining process [9]. In [18] a FP-Growth-like weighted itemset mining



Table I
EXAMPLE OF UNWEIGHTED DATASET: ITEM BOUGHT BY CUSTOMERS

Customer id Purchased items
1 X, Y , Z
2 X, Y , Q
3 X, Y , Z
4 X, Y , Q
5 X, W , Z

algorithm process is presented. Unlike [15], [16], the algorithm proposed in [18] extracts infrequent (rare) itemsetsrather
than frequent ones. A parallel issue is the extraction of weighted itemsets and rules when coping with data not equipped
with preassigned weights. For example, to generate appropriate item weights, in [17] the dataset is modeled as a bipartite
hub-authority graph and evaluated by means of a well-known indexing strategy. The PaWI system specifically addresses the
problem ofmining frequent weighted itemsetsfrom data enrichedwith preassigned weights. Unlike [15], [16], [17], [18], it
focuses on designing a parallel and distributed approach which is able to cope with large-scale weighted datasets.

III. PARALLEL WEIGHTED ITEMSET M INING FROM BIG DATA

Parallel Weighted Itemset Miner (PaWI) is a new data mining environment aimed to analyze Big Data equipped with item
weights. The main environment blocks are briefly introducedbelow. A more detailed description is given in the following
sections.
Data preparation. To prepare the source data to the itemset mining process, data are acquired, enriched with item weights,
and transformed using established preprocessing techniques (e.g., data filtering). The result is stored into an HDFS data
repository (see Section III-A).
Weighted itemset mining. This step entails the extraction of all frequent weighted and unweighted itemsets from the
prepared datasets. To scale towards Big data, the extraction process relies on a parallel and distributed-based itemset miner
running on an Hadoop cluster [20] (see Section III-B).
Itemset ranking. To ease the manual exploration of most interesting patterns, the results of the weighted and unweighted
itemset mining process are compared with each other and mostinteresting patterns are selected based on a new quality
measure which combines traditional with weighted support counts (see Section III-C).

A. Data preparation

This step entails preparing data to the subsequent itemset mining process. The source data is acquired, stored in a
transactional dataset, and equipped with item weights. Atransactional datasetis a set of transactions [19]. Eachtransaction
is a set of (not repeated)items. Depending on the context of analysis, items may represent different concepts (e.g., products,
objects, places, stocks).

For example, let us consider the dataset reported in Table I.It is an example of (unweighted) transactional dataset consisting
of five transactions, each one representing a different customer of a e-commerce company. For each customer the list of
purchased items is known. For instance, customer with id 1 bought itemsX, Y , andZ. Note that each transaction, which
represent a distinct electronic basket, may contain an arbitrary number of items.

To consider the relative importance of the items within eachtransaction during the itemset mining process, items are
enriched with weights. A transactional dataset whose itemsare equipped with weights is denoted asweighted transactional
dataset[15]. Formally speaking, a weighted transactional datasetis a set of weighted transactions. Eachweighted transaction
is a set ofweighted items. A weighted item is a pair〈item, weight〉, where weight is the weight associated with the
correspondingitem.

For example, let us consider the weighted transactional dataset reported in Table II. It extends the traditional transactional
dataset in Table I by enriching items with the correspondingweights. More specifically, for each customer the rating (from
one to five) given to each purchased item is known. For instance, customer with id 1 rated itemX as 3, itemY as 1, and
item Z as 5.

The analyzed data are tailored to a weighted transactional data format. Furthermore, if need be, ad hoc preprocessing
steps are applied to the raw data to ensure high-quality results. For example, data filtering and discretization are examples
of commonly used preprocessing steps [19].

Data filtering entails discarding the items/transactions that are irrelevant for subsequent analyses. For instance, recalling
the previous example, duplicate entries of the same customer basket can be removed because they could bias itemset support
counts. To ensure the scalability of the knowledge discovery process, the PaWI system performs data filtering as a distributed
MapReduce job.



Table II
EXAMPLE OF WEIGHTED DATASET: ITEM RATINGS GIVEN BY CUSTOMERS

Customer id Purchased items and ratings
1 〈X, 3〉 〈Y, 1〉 〈Z, 5〉
2 〈X, 2〉 〈Y, 2〉 〈Q, 2〉
3 〈X, 4〉 〈Y, 2〉 〈Z, 5〉
4 〈X, 3〉 〈Y, 3〉 〈Q, 2〉
5 〈X, 2〉 〈W, 5〉 〈Z, 4〉

B. Weighted itemset mining

This step focuses on mining frequent weighted itemsets [15]from the prepared weighted dataset. Ak-itemset (i.e., an
itemset of lengthk) is a set ofk items. The traditional support value of an itemset in a transactional dataset is given by its
frequency of occurrence in the source dataset [6].

For example,{X,Y } is an itemset indicating the co-occurrence of itemsX and Y . If we disregard item weights, this
itemset has a support equal to 4 in Table I because it occurs infour out of five transactions, meaning that most of the users
purchased itemsX andY together.

The goal of this paper is to extend traditional large-scale itemset miners to successfully cope with Big weighted data.
Hence, for our purposes, the itemset support measure is extended, similar to [15], to the case of weighted data. As previously
done in [18], the weighted support of an itemsetI in a weighted transactional datasetT is defined as a linear combination
of the aggregation weights computed on each transaction inT . Its expression follows.

Definition 1: Weighted support. LetD be a weighted transactional dataset,I be a weighted itemset,〈ij , wj〉 be a arbitrary
weighted item such thatij ∈ I. Let T (I) be the subset ofD’s transactions containing all the items inI andf an arbitrary
aggregation function defined on item weights. The weighted support ofI in D is defined as

wsup (I,D) =
∑

tq∈T (I)

fj,k,z|ij ,ik,...,iz∈I(wj , wk, . . . , wz)

The weighted support is the summation of all the itemset aggregation weights derived by the aggregation functionf for
every transaction inT . An arbitrary aggregation functionf (e.g., min, max, average, mode) can be potentially applied to
aggregate item weights within each transaction. The choiceof f depends on the considered use cases. Hereafter, similar
to [18], we will considerf=min (i.e., the least weight of any item inI is considered), because, as discussed in Section IV,
the selected patterns are deemed as particularly useful foranalyzing real Big datasets.

Recalling the running example, let us consider an analysts who would like to discover the combinations of items that were
frequently bought together with an overall rating above average. To this aim, he may consider item ratings during support
computation by weighting itemset occurrences within each transaction by the least item rating. For instance, recalling the
weighted transactional dataset in table for customer with id 1 betweenX andY the item with least rating isY (rating equal
to 1), while for customer with id 5 isX (rating equal to 2). Hereafter we will denote asweighted supportthe support of
an itemset by considering item weights, whereas astraditional supportthe itemset support disregarding item weights. For
instance,{X,Y } has weighted support equal to 1+2+2+3+0=8 and traditional support equal to 4.

Given a weighted transactional datasetD and an (analyst-provided) minimum support thresholdminsup, the PaWI system
addresses the extraction of all frequent weighted itemsetsfrom D. To allow comparing weighted itemsets with traditional
ones (see Section III-C), PaWI allows experts to mine traditional itemsets as well. As discussed below, the support thresholds
enforced during weighted and unweighted itemset mining arepotentially different.

The weighted itemset mining process relies on a parallel anddistributed-based algorithm running on an Hadoop cluster [20].
To make the mining process scalable towards Big Data, the mining steps are mapped to the MapReduce programming
paradigm. MapReduce [21] is a parallel programming framework providing both a relatively simple programming interface
together and a robust computational architecture. MapReduce programs consist of two main steps. In the map step, each
mapper processes a distinct chunk of the data and produces key-value pairs. In the reduce step, key-value pairs from different
mappers are combined by the framework and fed to reducers as pairs of key and value lists. Reducers generate the final
output by processing the key/value lists.

To efficiently perform frequent weighted itemset mining with MapReduce PaWI integrates a variant of the BigFIM
algorithm [12] which is able to successfully cope with data enriched with weights. The exploitation of weights is challenging
because ad-hoc data structures must be used to efficiently maintain the weights associated with each item and transaction
by balancing the impacts on computational and communication costs. The following extensions have been proposed:



Distributed transaction splitting. BigFIM relies on two established itemset miners: Apriori [9] and Eclat [11]. We modified
the BigFIM algorithm to allow both Apriori and Eclat to successfully cope with weighted data. More specifically, our
algorithm generates an equivalent version of the source dataset that includes only transactions with equally weighteditems.
Let us assume that the weight of an equivalent transactiontq is w. Then, the occurrence of any itemset intq will be
weighted byw instead of by 1. Each transaction in the original dataset maycorrespond to a set of equivalent transactions in
the equivalent dataset. A formal definition of the equivalence set of weighted transactions is given in [18]. Note that since
two distinct transactions have disjoint equivalent sets the splitting process is straightforwardly parallelizable.
Weighted support counting. Since items are equipped with weights, traditional supportcounting is replaced with weighted
support counting, according to Definition 1. To accomplish itemset support counting different strategies are adopted according
to the algorithm used. Specifically, to perform Apriori-based weighted itemset mining, itemset supports are counted by
generalizing the word counting problem for documents [21] to weighted itemsets, i.e., each mapper receives a disjoint
subset of dataset transactions (i.e., the documents) and reports the items/itemsets (i.e., the words) for which the weighted
support count is performed. A reducer combines all partial weighted support counts and reports only the items/itemsets
whose weighted support is above the threshold. These frequent weighted itemsets are redistributed to all mappers to act
as candidates for the next step of breadth-first search [9] and then the procedure is repeated to mine weighted itemsets of
higher length.

To perform Eclat-based weighted itemset mining, each mappers builds the weighted tidlist of the itemsets related to
a subset of transactions. The weighted tidlist of an arbitrary item ij consists of all pairs (transaction id, weight) such
that the transaction related totransaction id contains itemij with weight weight. For example, let us assume that a
mapper receives the transactions contained in the dataset in Table II. For itemZ it generates the following weighted
tidlist: {(cid1,5),(cid3,5),(cid5,4)}. The weighted tidlist consists of all pairs (customer id, weight) for which the transaction
related tocustomer idcontain itemZ with weight weight. For instance, the transaction corresponding the electronic basket
of the customer with id 1 contains itemZ with weight 5. A reducer combines all partial weighted support counts and reports
only the items/itemsets whose weighted support is above thethreshold. Note that the equivalent transaction weights are not
stored in the distributed cache, because Big datasets may potentially consist of millions of transactions.

C. Itemset ranking

The manual exploration of all the itemsets (weighted or not)mined from Big data is practically unfeasible. Hence, to
support the knowledge discovery process experts may would like to access only a subset of most interesting patterns. This
step focuses on ranking the mined itemsets according to their level of significance in the analyzed data.

To filter and rank the mined itemsets, the support measure is the most commonly used quality index [6]. To cope with
weighted data, for each candidate itemset the PaWI system computes both the traditional and weighted support measures.
While the traditional support value indicates the observed frequency of occurrence of the considered combination of items in
the source dataset, in weighted support counting itemset occurrences are weighted by the least item weight (see Definition 1).

To select itemsets whose average least item weight is maximal the PaWI system combines the weighted and traditional
support measure in a new measure called AW-sup, i.e., theAverage Weighted support. The AW-sup measure is defined as
the ratio between the weighted itemset support and the traditional itemset support. It indicates the average per-transaction
weight of the least weighted item. Selecting top interesting itemsets based on this measure is potentially interestingin real
applications.

For example, let us consider again the example dataset in Table II. According to Definition 1, itemset{X,Y } has weighted
and traditional support values equal to 8 and 4, respectively. Since transactions represent electronic baskets, the weighted
itemset support indicates the overall least item rating computed on the subset of customers who bought both itemsX and
Y , while the traditional support measure indicates the simple frequency of occurrence of the combinations of items in the
electronic basket dataset. The AW-sup value of{X,Y } is 2, meaning that, on average, for each electronic basket containing
itemsX andY both items have been rated at least 2. Ranking the mined itemsets by decreasing AW-sup allows experts to
consider first the combinations of items that got maximal average ratings. Note that this statistics cannot be straightforwardly
computed based on simple averages, because (i) it considersonly the electronic baskets containing bothX andY , (ii) for
each basket it selects the rating of the least weighted item betweenX andY .

Itemsets not satisfying the traditional support thresholdare discarded because they represent combinations of itemsthat
rarely occur in the analyzed data. The setting of the minimumweighted support threshold is driven by the average rating of
the selected items. More specifically, we are interested in exploring the frequent combinations of items with rating above
average, i.e., the itemsets whose AW-sup is above a minimum threshold.



IV. EXPERIMENTAL EVALUATION

To assess the effectiveness and efficiency of the proposed approach, we performed a set of experiments on a real dataset [28]
collecting approximately 34 millions of Amazon reviews.
Amazon reviews dataset. The Amazon reviews dataset consists of approximately 34 millions of Amazon reviews spanning
over a time period of 18 years (from June 1995 to March 2013). The number of users who made at least one review is more
than 6 millions and the number of reviewed items is greater than 2 millions. In our context, each transaction consists of aset
of items reviewed by a given user. The weight associated witheach item is the rating (i.e., the number of stars) given by the
user in her/his review. Hence, the transactional version ofthe Amazon dataset consists of more than 6 millions of transactions.
The average transaction length (i.e., the average number ofreviews per user) is 4.1. To generate the transactional version of
the dataset a MapReduce-based preprocessing step was applied to the original data. Then, a MapReduce job was applied to
merge the reviews performed by the same user. More specifically, the reduce created a set of pairs (user identifier, review)
and the reducer generated for each user the list of her/his reviews. The itemsets mined from the Amazon dataset represent
combinations of items that are frequently rated together with high overall rating. This information could be exploitedto
improve, for instance, the quality of the traditionalfrequently bought togetherapproach which disregards item ratings.

The experiments were performed on a cluster of 5 nodes running Cloudera’s Distribution of Apache Hadoop (CDH5.3).
Each cluster node is a 2.67 GHz six-core Intel(R) Xeon(R) X5650 machine with 32 Gbyte of main memory running Ubuntu
12.04 server with the 3.5.0-23-generic kernel. All the reported execution times are real times obtained from the Cloudera
Manager web control panel.

The performed experiments aimed at: (i) analyzing the characteristics and usefulness of the mined weighted itemsets
(Section IV-A) and (ii) evaluating the scalability of PaWI with respect to the number of nodes (Section IV-B).

A. Result validation

Our approach allows experts to pinpoint combinations of highly rated items purchased together by Amazon customers. To
demonstrate the effectiveness of our approach compared to traditional methods, we mined all the itemsets whose AW-sup
is above 4 (i.e., average number of stars>4) from the Amazon dataset. In the performed experiments we set the traditional
minimum support threshold to 0.005% (i.e., the combinations of items reviewed by at least 223 users) and the minimum
weighted support threshold to 4·0.005%=0.020% (i.e., the frequent combinations of items whose average rating is above 4).
Our assumption is that considering item rates during itemset mining significantly changes the final ranking of the extracted
combinations of items.

Table III summarizes the mining result, which consists of 22highly rated itemsets composted of at least two items each1,
For each itemset we reported (i) the AW-sup, (ii) the itemsetraking based on AW-sup (the itemset with top AW-sup ranked
first), (iii) the traditional (unweighted) support, and (iv) the raking based on traditional unweighted support (the itemset
with top support ranked first). The achieved results confirm that the itemset ranking significantly changes considering the
AW-sup measure rather than the traditional support. The ranking based on AW-sup appears to be the most reliable, because
it placed first the highly rated combinations of items. To better highlight the difference between the two rankings, the chart
in Figure 1 plots the itemset ranking based on traditional support (y-axis) versus the ranking based on AW-sup (x-axis).
Figure 1 highlights that the top itemset selected by using the AW-sup measure is ranked 9th if the traditional support
is considered. Similar ranking gaps appear for the other itemset rankings. For example, the top ranked itemset based on
AW-sup is composed of the first episode or Season 1 and 2 of the Downton Abbey series (see Table III). It indicates that
many users watched and the first part of the two Seasons and theoverall rating is high (the average number of stars is
at least 4.847). This itemset represents an expected situation, because the audience of the first season of a series is likely
to watch the first episode of the next season as well. Based on the traditional support measure, this itemset ranked only
ninth out of twenty-two. Hence, considering item ratings instead of simple item frequency counts allows us to differentiate
between preferred combinations of items and not. Note that itemsets may represent also combinations of three or more
items. For instance,{[A Storm of Swords: A Song of Ice and Fire Book III], [A Clash ofKings #392 (A Song of Ice
and Fire Ser. Bk. 2)], [A Game of Thrones: A Song of Ice and FireBook I]} is an example of 3-itemset mined by our
approach. These types of correlations are particularly interesting because they often disregarded by traditional data analysis
tools (e.g., the original Amazon recommender system considered only the correlations between pairs [29]) or approximated
from lower-order correlations among items.

B. Scalability with the number of cluster nodes

We evaluated the scalability of the proposed architecture by measuring the execution time spent while increasing the
number of Hadoop cluster nodes. We performed the experiments on a small cluster consisting of 5 nodes. Figure 2 reports

1In our analyses we did not consider singletons because we areinterested in analyzing the correlations between multiple items.



Table III
FREQUENT ITEMSETS

Itemset AW-sup Ranking Traditional Ranking
based on support based on
AW-sup traditional support

{[Downton Abbey: Season 1 Episode 1 ”Downton Abbey: Episode 1 - HD”:Amazon Instant
Video], [Downton Abbey: Season 2 Episode 1 ”Original UK Version Episode1 Part One”:

Amazon Instant Video]}
4.847 1 333 9

{[Firefly: The Complete Series (2002)], [Serenity (Widescreen Edition) (2005)]} 4.734 2 447 2
{[Measure of a Man], [Bridge Over Troubled Water/This Is The Night]} 4.684 3 244 16

{[Master of Puppets], [Ride the Lightning]} 4.651 4 272 13
{[Harry Potter And The Prisoner Of Azkaban (Turtleback School & Library Binding

Edition)], [Hari Potta to kenja no ishi (Harry Potter and the Philosopher’s Stone (Japanese
Edition)]}

4.623 5 427 5

{[Harry Potter and the Chamber of Secrets], [Hari Potta to kenja no ishi (Harry Potter and
the Philosopher’s Stone (Japanese Edition)]}

4.599 6 579 1

{[The Lord of the Rings: The Two Towers (Widescreen Theatrical Edition) (2003)], [The
Lord of the Rings: The Return of the King - VHS (2003)]}

4.597 7 303 11

{[The Lord of the Rings: The Return of the King - VHS (2003)], [The Lord of the Rings:
The Fellowship of the Ring (Two-Disc Widescreen Theatrical Edition) (2002)]}

4.567 8 268 15

{[Abbey Road], [Sgt. Pepper’s Lonely Hearts Club Band]} 4.547 9 236 20
{[Harry Potter And The Prisoner Of Azkaban (Turtleback School & Library Binding

Edition)], [Harry Potter and the Chamber of Secrets]}
4.546 10 434 4

{[A Storm of Swords: A Song of Ice and Fire Book III], [A Game of Thrones: A Song of
Ice and Fire Book I]} 4.526 11 325 10

{[Master of Puppets], [...And Justice For All]} 4.513 12 240 18
{[A Clash of Kings #392 (A Song of Ice and Fire Ser. Bk. 2)], [A Game of Thrones: A Song

of Ice and Fire Book I]} 4.494 13 437 3

{[The Lord of the Rings: The Two Towers (Widescreen Theatrical Edition) (2003)], [The
Lord of the Rings: The Fellowship of the Ring (Two-Disc Widescreen Theatrical Edition)

(2002)]}
4.489 14 405 6

{[Harry Potter And The Prisoner Of Azkaban (Turtleback School & Library Binding
Edition)], [Hari Potta to kenja no ishi (Harry Potter and the Philosopher’s Stone Japanese

Edition)], [Harry Potter and the Chamber of Secrets]}
4.469 15 343 8

{[A Storm of Swords: A Song of Ice and Fire Book III], [A Clash of Kings #392 (A Song of
Ice and Fire Ser. Bk. 2)]} 4.459 16 303 12

{[Hari Potta to kenja no ishi (Harry Potter and the Philosopher’s Stone Japanese Edition)],
[Harry Potter & the Order of the Phoenix]}

4.458 17 240 19

{[A Storm of Swords: A Song of Ice and Fire Book III], [A Clash of Kings #392 (A Song of
Ice and Fire Ser. Bk. 2)], [A Game of Thrones: A Song of Ice and Fire Book I]}

4.446 18 224 21

{[Lover Eternal (Black Dagger Brotherhood Book 2)], [Dark Lover (Black Dagger
Brotherhood Book 1)]} 4.429 19 224 22

{[Master of Puppets], [Metallica]} 4.239 20 243 17
{[Kill Bill: Vol. 2 - VHS], [Kill Bill: Vol. 1 - VHS (2003)] } 4.123 21 269 14

{[Harry Potter & the Order of the Phoenix], [Harry Potter and the Half-Blood Prince (Book
6)]} 4.112 22 365 7
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Figure 1. AW-sup vs traditional support.

the execution time achieved by setting the traditional minimum support threshold to 0.005% and the minimum weighted
support threshold to 0.020%. The achieved results show thatour approach scales roughly linearly in the number of nodes
and the speedup approximately corresponds to the number of cluster nodes. The execution time of the proposed algorithm
was approximately 8 minutes when all the five nodes were used at the same time. Hence, the execution time was quite
small, despite we tested our system on a relatively small cluster. We performed also a set of experiments to evaluate the
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Figure 2. Execution time with respect to the number of cluster nodes on the Amazon dataset.

impact of the minimum support thresholds (weighted and traditional) on the number of mined itemsets and the execution
time of the proposed algorithm. The results, not reported here due to the lack of space, meet the expectations, i.e., boththe
number of itemsets and the execution time increase super-linearly while decreasing the minimum support threshold.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a parallel and distributed solution to the problem of extracting frequent itemsets from Big Weighted
Datasets. The proposed system, running on an Hadoop cluster, overcomes the limitations of state-of-the-art approaches
in coping with datasets enriched with item weights. The experiments, performed on a real Amazon dataset, confirm the
actionability of the mining result in real context. Future works will entail the application of the proposed approach to
recommender systems. For example, discovering combinations of items that were frequently bought together with an overall
rating above average could be useful for recommending additional items beyond those already purchased by a given user.
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