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Abstract

With the high interest in digital modulation techniques which are very sensitive to
the PA nonlinearity, modern wireless communication systems require the usage of
linearization techniques to improve the linear behavior of the RF power amplifier.
The powerful and cheap digital processing technology makes the digital predistortion
(DPD) a competitive candidate for the linearization of the PA. This thesis intro-
duces the basic principle of DPD, its implementation on FPGA and the adaptive
DPD system.

The linearization of 4 PAs with DPD technique has been introduced: for the hybrid
class AB PA operating at 2.6 GHz with a WiMAX testing signal, 33.7 dBm average
power, 29.6 % drain efficiency, 13 dB ACPR and 9 dB NMSE improvement have
been obtained; for the hybrid Doherty PA operating at 3.4 GHz with an I/Q testing
signal, 35.0 dBm average power, 36.8 % drain efficiency, 12 dB ACPR and 13 dB
NMSE improvement have been obtained; for the MMIC class AB PA operating at
7 GHz with an I/Q testing signal, 29.4 dBm average power, 25.7 % drain efficiency,
12 dB ACPR and 12 dB NMSE improvement have been obtained; for the two-stage
PA operating at 24 GHz with an I/Q testing signal, 23.5 dBm average power, more
than 14.0 % drain efficiency, 11 dB ACPR and 11 dB NMSE improvement have been
obtained.

The DPD algorithm has been implemented on FPGA with two methods based on
LUT and a direct structure with only adders and multipliers. The block RAM on
the FPGA board is chosen as the table in the LUT methods. The linearization per-
formance for these three methods is similar. The test PA is the hybrid Doherty PA
mentioned above and the test signal is the I/Q signal with 7.4 dB PAPR. 35.1 dBm
average power, 36.8 % efficiency, 11 dB ACPR and 11 dB NMSE improvement have
been obtained. The cost of logic resources for the direct structure method is the
largest with 1,172 flip-flops, while the number of flip-flops for the two LUT methods
is 263 and 583.

A new adaptive algorithm has been proposed in this thesis for the adaptive DPD
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system. This new algorithm improves the performance in extracting the model pa-
rameters in complex number domain. With the experimental data from a combined
class AB PA, the final accuracy of the model extracted by the new algorithm has
been improved from -20 dB to about -40 dB and the converge speed is faster.
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Abbreviation

ACPR Adjancent Channel Power Ratio
ADC Analog to Digital
CLB Configurable Logic Block
DAC Digital to Analog
DSP Digital Signal Processing
DUT Device Under Test
ETSI European Telecommunications Standards Institute
FPGA Field Programmable Gate Array
GaN Gallium Nitride
GPIB General Purpose Interface Bus
HEMT High Electron Mobility Transistor
IMD Intermodulation Distortion
LMS Least Mean Square
LUT Look Up Table
LS Least Square
MMIC Monolithic Microwave Integrated Circuit
NMSE Normalized Mean Square Error
OFDM Orthogonal Frequency Division Multiplexing
PA Power Amplifier
PAE Power Added Efficiency
PAPR Peak to Average Power Ratio
PCI Peripheral Component Interconnect
QAM Quadrature Amplitude Modulation
RFPA Radio Frequency Power Amplifier
RLS Recursive Least Square
RTL Register Transfer Level
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Chapter 1

Power Amplifier Overview

In a typical wireless transmitter system, the radio frequency power amplifier (RF
PA) is one of the most important components. A RF PA is a power device which can
convert DC supply into RF power. It is used to amplify the signal to a significant
power before transmitting it to the antenna. In the early days, RF power was gen-
erated by spark, arc and alternator techniques. From the late 1920s, vacuum tube
transmitters were dominant for several decades. At the end of the 1960s, discrete
solid state RF power devices began to appear. Since then, variety of new solid state
RF power devices, such as MOSFET, HEMT, HFET, HBT, became mature and
were used in industrial applications. These new devices have extended the working
bandwidth and have made high output power level available.

Linearity, power efficiency and bandwidth are the three figures of merit that need
to be considered when we design the PA for the modern wireless transmission ap-
plications. The original intention of PAs is to generate higher power, therefore, the
output power level, as well as the power gain, are the PA’s primary performance.
Moreover, to limit the power consumption, efficiency is also essential to be high.
Power efficiency is directly associated with the cost of the communication infras-
tructure.

On the other hand, high linearity is required to minimize the distortions caused
by the PA. Less distortion means higher integrity of the signal during the transmis-
sion process. However, the linearity has an inherent conflict with the efficiency. PA
with high linearity, like Class A PA, presents poor efficiency performance. Moreover,
efficient PA architectures, such as Doherty, envelope tracking, have severe linearity
problem. Therefore, linearity improvement techniques are needed for these high ef-
ficient PAs to guarantee the linearity.
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1 – Power Amplifier Overview

1.1 Power Gain and Efficiency

In general, a power amplifier is defined as a device that increases the power of an
arbitrary input signal. The added power is transferred to the output signal and is
taken from a DC supply [2]. Ideally, all supplied power should be converted into RF
power. However, it is not the case in reality and only part of the supplied power
can be converted into the output power. Power efficiency is introduced to indicated
how much of the supplied power is converted. The efficiency can be described in
two ways: drain efficiency and power added efficiency [3]. Drain efficiency is more
general and is defined as

ηd =
Pout

PDC

(1.1)

where Pout is the power delivered to the load and PDC is the power taken from the
supply. The drain efficiency does not take the input power into consideration. On
the other hand, the power added efficiency (PAE) regards the input power as a
power loss which should be subtracted from the output power. Therefor, the PAE
is defined as

PAE =
Pout − Pin

PDC

(1.2)

where Pin is the input power. Power added efficiency describes the performance of
the PA more accurately by including also the input power. It is also a function of
the power gain as show in equation (1.3). PAE is a reasonable description of PA’s
performance when the power gain is high. However, it could be negative for a PA
with a low power gain.

PAE =
Pout − Pout/G

PDC

(1.3)

where G = Pout/Pin is the power gain of the power amplifier. The power gain of a
two-port device, for instance a power amplifier, is the ratio of the output power to
the input power. It is usually represented in decibel as

GdB = 10 log10(
Pout

Pin

) (1.4)

In the meanwhile, the power itself can also be represented in decibel form, called
dBm, which is ratio between the power and 1 mW:

PdBm = 10 log10(
P

1mW
) (1.5)

Typically, the efficiency of a PA, both drain efficicy and PAE, reaches its maximum
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1 – Power Amplifier Overview

value at saturated power and decreases rapidly as the power decreases. However, at
high power region, the PA faces a linear problem. The nonlinearity will be discussed
in next section.

1.2 Power Amplifier Nonlinearity

In common sense, the word linearity describes a mathematical abstraction or rela-
tionship, f(x), which should satisfy the following two properties: homogeneity and
superposition.

Homogeneity : f(αx) = αf(x)
Superposition: f(αx+ βy) = αf(x) + βf(y)

where α, β are two constant numbers. If two quantities have a linear relation, they
will be proportional to each other, called homogeneity. Therefore, if a power am-
plifier is said to be linear, the output power level should have a constant gain over
each input power level and the characteristic of the PA should be a straight line.
However, it is not a straight line for a real PA and there is compression at high
input power level, as shown in Figure 1.1(b) the solid blue line. The nonlinear dis-
tortion of a power amplifier is caused mainly due to the output power limitation.
Therefore, the nonlinear behavior is more obvious when the output power tends to
the saturation.

Figure 1.1. (a) Amplitude as a function of time, the green line is the input am-
plitude, the solid blue line is the real output amplitude and the dashed blue line is
the ideal linear output amplitude. (b) AM/AM characteristic of a power amplifier,

dashed line is ideal linear case and the solid line is the real case

3



1 – Power Amplifier Overview

Figure 1.1 depicts clearly the nonlinearity of a PA in time domain. In Figure 1.1(a),
the green line is the input signal amplitude in time domain. If this signal passes
through a linear PA with constant power gain, the output will be the dashed blue
line. However, in real case, the output is the solid blue line. We can see that at
lower input power level the dashed and solid blue lines coincide, meaning that the
PA works with linear behavior. In the meanwhile, at some top peaks of the wave
(the highest point in Figure 1.1(a) as an example), where the input power level
is high, the solid line is lower than the dashed line, meaning that the PA is with
compression and is not linear with high input power.

1.2.1 Power Amplifier Classification

The class of operation of a PA has a significant effect on the linearity of the PA.
Class A amplifiers are the most linear while Class AB amplifiers are mildly nonlinear
and Class C, D ,E amplifiers have highly nonlinear behavior.

A Class A PA is defined as a PA in which output current flows for the full-cycle
(360◦) of the input signal. In other words, the transistor remains forward biased
during the whole input cycle. The class A amplifier is the most common and sim-
plest form of PA that uses the switching transistor in the standard common emitter
circuit configuration. The transistor stays always in “ON” state so that the current
flows throughout one complete cycle of the input signal, producing minimum dis-
tortion and maximum amplitude to the output.

A class B amplifier has zero DC bias so that the amplifier is not in its active region
when the input signal is in the range near to 0. In this way, class B amplifier has
a significant advantage over class A amplifier in that no current flows through the
transistor when there is no input signal at Base. Therefore, no power is dissipated in
the transistor when there is no signal present while class A amplifier stage dissipates
lots of heat even without input signal. However, there is a critical drawback of class
B amplifiers which is that they suffer from an effect commonly known as Crossover
Distortion [3].

The class AB amplifier is a compromise between the class A amplifier and the class
B amplifier. It uses two diodes between Base and Emitter to build a voltage differ-
ence or bias voltage. The class AB amplifier attempts to solve the distortion of the
crossover region that the class B amplifier exhibits at a cost of efficiency decrease.
Any input signal will make the transistor to operate normally in its active region,
minimizing or even eliminating the crossover distortion which is present in class B
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1 – Power Amplifier Overview

configurations. But the efficiency of class AB amplifier is smaller than that of class
B, with a value between that of class A and class B amplifiers.

In a class C amplifier configuration, the transistor being biased with negative volt-
age, the working point is far beyond the cut-off point. So it operates for less than
half of the input cycle and the resulting output signal is strongly non-linear. The
efficiency of a class C amplifier is very high, reaching ideally 100% in best cases,
however it generates strong crossover distortions too.

Figure 1.2. Comparison of output signals of different amplifier classes of operation

Figure 1.2 clearly illustrate the output signals for different classes of operation. The
gray area is where no signal is conducted.

Class D amplifiers [1] are switching mode amplifiers. They have at least two transis-
tors operating as switches to create a pulse width modulation (PWM) signal at the
output of the transistors. The generated signal is then low pass filtered passing the
first harmonic to the load. As the current is flowing just through the switched-on
active elements, the theoretical efficiency is 100% if the active devices are ideal.

5



1 – Power Amplifier Overview

Nevertheless, ideal transistors are not existed and there is also power loss due to
saturation, switching speed and junction capacitance. The real efficiency is less than
100%.

Class of operation Efficiency(%) Linearity
A 50 Good
AB Between Class A and Class B Between Class A and Class B
B 78.5 Moderate
C 100 Poor
D 100 Poor

Table 1.1. Comparison of different class of operation in terms of efficiency and
linearity

Table 1.1 summarizes the linearity situation of different classes of operation for a
PA. The linearity varies with different amplifier classed.

1.2.2 Distortion due to nonlinearity

Amplitude distortion

The nonlinear behavior of a PA can be modeled as a power series:

vo = a1vi + a2v
2
i + a3v

3
i · · · (1.6)

where a1, a2, a3 are coefficients and vi, vo are the input and output of the power am-
plifier, respectively. When the input signal has one single frequency, vi = V cos(ωt),
the vo will be

vo = a1V cos(ωt) + a2V
2cos2(ωt) + a3V

3cos3(ωt) + · · ·

=
1

2
a2V

2 + (a1V +
3

4
a3V

3)cos(ωt)

+
1

2
a2V

2cos(2ωt) +
1

4
a3V

3cos(3ωt) + · · ·

(1.7)

In (7.2), the output signal consists not only of the signal with the input signal fre-
quency but also of a DC component and the harmonic components. Even with a
ideal filter that can cancel the DC and harmonic parts, the amplifier gain is no
longer the linear gain a1, but is a1 +

3
4
a3V

2. This new gain is no longer constant
but is a function of input signal magnitude V . If a3 > 0, the amplifier will be with

6



1 – Power Amplifier Overview

gain expansion. In general, power amplifier has the feature of gain compression with
a3 < 0.

Intermodulation distortion
The intermodulation distortion is explained with a two-tone signal which is repre-
sented by:

vi = V1cos(ω1t) + V2cos(ω2t) (1.8)

where V1, V2 are the magnitudes of the two tones, and ω1, ω2 are their angle frequen-
cies. The PA’s nonlinearity is still modeled by a third order power series, expressed
as:

vo = a1vi + a2v
2
i + a3v

3
i · · · (1.9)

Therefore, the output of the PA as a function of input signal can be obtained by
substituting (1.8) in (1.9):

vo =
1

2
a2V

2
1 +

1

2
a2V

2
2

+

[(
a1 +

3

4
a3V

2
1 +

3

4
a3V

2
2

)
V1cos(ω1t) +

(
a1 +

3

4
a3V

2
2 +

3

4
a3V

2
1

)
V2cos(ω2t)

]
+

[
1

2
a2V

2
1 cos(2ω1t) +

1

2
a2V

2
2 cos(2ω2t)

]
+

[
1

4
a3V

3
1 cos(3ω1t) +

1

4
a3V

3
2 cos(3ω2t)

]
+ [a2V1V2cos((ω2 − ω1)t) + a2V1V2cos((ω2 + ω1)t)]

+

[
3

4
a3V

2
1 V2cos((2ω1 − ω2)t) +

3

4
a3V1V

2
2 cos((2ω2 − ω1)t)

]
+

[
3

4
a3V

2
1 V2cos((2ω1 + ω2)t) +

3

4
a3V1V

2
2 cos((2ω2 + ω1)t)

]
(1.10)

Equation (7.6) can be illustrated more clearly in Figure 1.3 which is the frequency
domain representation of the output signal. The output signal consists of the useful
signal, the DC component, harmonics and intermodulation products [6]. The useful
signal is the signal at the fundamental frequency. The harmonics and the second-
order intermodulation components can be canceled by filters. However, there are
third-order intermodulation components which are close in frequency to the funda-
mental frequency. These intermodulation distortions thus cannot be removed simply
by filters.

7



1 – Power Amplifier Overview

Figure 1.3. Frequency domain output of a nonlinear PA driven by a two-tone
signal

1.3 AM/AM and AM/PM Characteristics

AM/AM and AM/PM characteristics [7] are the basic curves to characterize the
linearity of the PA. They get their name from the fact that amplitude modulation
(AM) within the input signal results in amplitude and phase modulation (AM and
PM) in the power amplifier gain. In a more general case, one PA is well described
by four characteristics: amplitude to amplitude modulation (AM/AM) character-
istic, the amplitude to phase modulation (AM/PM) characteristic, the phase to
phase modulation (PM/PM) characteristic, and the phase to amplitude modulation
(PM/AM) characteristic. Since phase modulated signals are immune to the distor-
tions, only AM/AM and AM/PM characteristics are considered.

Let’s consider a PA with a modulated signal whose baseband input and output
signal x and y are

x = xI + jxQ

y = yI + jyQ
(1.11)

where xI , yI are the in-phase components and xQ, yQ are the quadrature compo-
nents. Therefore, the magnitude and phase of the instantaneous signal gain can be
expressed as

|G| = |y|
|x|

=

√
y2I + y2Q√
x2
I + x2

Q

(1.12)

∠G = tan−1

(
yQ
yI

)
− tan−1

(
xQ

xI

)
(1.13)

8



1 – Power Amplifier Overview

Figure 1.4. Sample AM/AM characteristic of a power amplifier

Figure 1.5. Sample AM/PM characteristic of a power amplifier

The AM/AM characteristic of PA can be obtained by plotting the amplitude of the
output signal as a function of the corresponding input signal. Similarly, the AM/PM

9



1 – Power Amplifier Overview

characteristic of the PA is the phase of the power gain as a function of the instan-
taneous input signal. Figure 1.4 and Figure 1.5 are an example of the AM/AM and
AM/PM characteristics, respectively. These two figures provide a very clear view of
the linearity of the PA.

1.4 Memory Effects

Memory effects [8–11] in a PA can be explained as that the output of the PA at time
to is a function not only of the input at time to but also of the inputs at some other
previous time instants. In other words, the past input signals also contribute to the
current output value. The influence of the past input signals is not infinite and the
memory depth describes how long of the past input signals that contribute. The
relation between the input and the output of a PA with memory can be expressed
as

y(to) = f (x(to), x(to − 1), · · · x(to − τ)) (1.14)

where the memory depth τ is a positive constant since every physical system is
causal. From (1.14), we can see that the outputs corresponding to the same input
value may be different since the past input signals may be different. Therefore, the
characteristics of the output signal as a function of input signal, both in magnitude
and phase, for a system with memory are not a single line as shown in Figure 1.4,
Figure 1.5.

Memory effect is mainly a result of energy storage in the device. A simple ex-
ample that exhibits memory is the RC circuit in which the current flowing in the
circuit depends on how much charge accumulated on the capacitor. The sources of
memory effects [8, 12–14] are not unique and they can be classified into two groups
according to the timescale of the occurrence: short-term memory effects and long-
term memory effects.

1.4.1 Short-Term Memory Effects

Short-term memory effects are those that occur with a timescale same with the RF
carrier frequency. The main sources of short-term memory effects are matching net-
work and device capacitance. The matching networks at both input and output of a
PA are essential to keep the maximum power transfer. However, these matching net-
works contain capacitors, inductors and transmission lines which present dynamic

10



1 – Power Amplifier Overview

properties. Therefore, the matching network should be carefully designed to reduce
the memory impact.

The transistors themselves have parasitic capacitance and inductance which will
contribute to the memory effect. These parasitic reactive components are associ-
ated with the charge transfer delay in the channel of the transistors. Therefore, the
transistor is usually modeled with reactive components in the small-signal model.
Generally, we should try to minimize the parasitic capacitance and inductance to
reduce the delay.

1.4.2 Long-Term Memory Effects

Similar to the short-term memory effects definition, the long-term memory effects
are those that occur with a timescale much longer. These kinds of sources in-
clude thermal effects [15] and charge trapping. The PA is not ideal 100% energy
transferred and some of the energy will be wasted as heat which will change the
temperature of the PA. This temperature change is relatively slow compared to the
carrier frequency. However, this change can still affect some temperature dependent
parameters, such as channel mobility, and the behavior of the PA will be different
even with the same input signal.

Charge trapping is mainly due to the imperfect semiconductor materials and pro-
cessing and these imperfections happen mainly at the interfaces of two dissimilar
semiconductors. Then the local potential will be disrupted. As a result, the charge
carriers may be trapped and released later, causing a change of current flow, if the
potential conditions are different. This will change the behavior of the PA, con-
tributing to the memory effects.
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Chapter 2

Power Amplifier Linearization
Techniques

RF power amplifiers are the main cause of the nonlinear behavior in the modern
wireless transmission system. Nowadays, spectrum efficient modulation techniques,
such as orthogonal frequency division multiplexing (OFDM), are required in modern
communication systems. However, these non-constant envelope modulation are very
sensitive to the nonlinearity. The signal with non-constant envelope generates inter-
modulation distortion (IMD) when it passes the PA. The IMD power will interfere
between adjacent channels which is an unwanted phenomenon.

Moreover,these efficient modulation techniques will lead to modulated signals with
high peak-to-average power ratio (PAPR). The PA should operate with power back-
off which will result with a drastically decreased efficiency. To ensure the high ef-
ficient operation, many techniques have been proposed in literature. Among them,
the Doherty amplifier [16] is one of the most promising techniques for high efficiency
operation with non-constant envelope modulated signal. It has several advantages in
terms of relative simplicity of implementations and cost effectiveness. However, the
linearity and efficiency of PAs usually present opposite performances. The Doherty
amplifier operates with high efficiency often at the cost of poor linearity. Therefore,
linearization techniques have to be used to compensate the nonlinear distortions
generated by PAs.

Various techniques are available for this purpose, such as feedforward, feedback and
analog predistortion. However these solutions suffer from complex circuitry and sta-
bility problems. The digital predistortion is one of the most useful and cost-effective
linearization techniques, due to the already existing digital signal processing devices.

12



2 – Power Amplifier Linearization Techniques

2.1 Power Back-off

Figure 2.1 shows the typical performance of a power amplifier, including the magni-
tude response, the power gain and the efficiency. From the figure, we know that the
PA is linear at the lower input power range while the linearity becomes worse with
higher input power. Therefore, the simplest way to improve the linearity of the PA
is to back-off the input power to the linear region. This is called the power back-off
technique [1].

Figure 2.1. Basic AM/AM characteristic of a power amplifier

Another explanation is more quantitative with mathematical equations. Since ev-
ery device with nonlinear characteristic can be expanded with Taylor series, we can
model the PA with the following expression:

vout = V0 + a1vin + a2v
2
in + · · · (2.1)

where V0 is the DC part which can be blocked in RF power amplifiers, vin and vout
are the input and output, respectively. Therefore, if the value of vin reduces to a real
low level, the linear term a1vin will dominate over the other power terms, leading to
a more linear characteristic.

The power back-off method is still widely used for low-power, small size PAs. How-
ever, when back-off to the linear region, the efficiency of the PA is degraded, es-
pecially for signals with high peak to average power ratio (PAPR). Therefore, the
power back-off solution has no effect to overcome the trade-off between linearity and
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efficiency. It improves the linearity by sacrificing the efficiency since the efficiency is
best at saturation (as shown in Figure 2.1). To obtain both linearity and efficiency,
other linearization techniques are needed.

2.2 LINC

LINC refers to Linear amplification using Nonlinear Components [17–20], which can
realize a linear amplification with high efficient nonlinear amplifiers. As illustrated
in Figure 2.2, the basic idea of LINC is to separate the amplitude modulated input
signal into two phase modulated signals. In this way, the non-constant envelope
modulation, which are very sensitive to the PA’s nonlinearity, will be replaced by
the constant envelope modulation. Therefore, the resulted modulated signals can be
amplified separately by two efficient PAs without any concern of distortion. These
two efficient PAs should be ideally identical, with same characteristics and the delay
in the two channels should also be matched. Finally, the amplified signals from
the two channels should be combined to produce the amplified replica of the input
signal.

Figure 2.2. The basic principle of LINC

Consider first a amplitude modulation signal:

Vin(t) = a(t)cos(2πfct+ φ(t)) (2.2)

where a(t) is the envelope of the signal. When passing this signal into the signal
separation component, it will be divided into two constant-amplitude signals V1(t)

14



2 – Power Amplifier Linearization Techniques

and V2(t), expressed as:

V1(t) = 0.5V cos(2πfct+ φ(t) + θ(t)) (2.3)

V2(t) = 0.5V cos(2πfct+ φ(t)− θ(t)) (2.4)

where θ(t) = cos−1(a(t)/V ), V is the maximum amplitude of a(t).

The concept of LINC has appeared since 1930s. However, at that time, the sep-
arated signals in LINC technique were not accurate since it was difficult to generate
the θ(t) with the analog circuits. The modern digital signal processing technique
can solve this problem and can make a significant improvement for the accuracy.
Nevertheless, there are still problems. For instance, the two channels should be
ideally matched.

2.3 Feedforward

Feedforward [21–25] is an old linearization technique which applies the feedback
correction at the output of the PA. It was first introduced by Howard Black in 1923
at Bell Telephone Laboratories. Figure 2.3 shows the basic principle of feedforward
technique.

Figure 2.3. Basic schematic of the feedforward technique

The input signal is first divided into two signals, one being amplified by the main

15



2 – Power Amplifier Linearization Techniques

amplifier as required, the other one being used as a reference with the same delay
with the main amplifier. The delayed reference signal is then subtracted from the
coupled signal from the main amplifier. Therefore, if there is no amplitude and
phase distortion, the subtraction procedure will have a zero value. Otherwise, there
will be a error signal after the subtraction. The error signal is then fed to the error
amplifier to be amplified back to the original level. The amplified error signal is
the compensation to the output signal from the main amplifier to get the linear and
amplified signal at the output of the feedforward system.

The feedforward technique can remove both the amplitude and phase distortions
of the PA and is immune to memory effects. Compared to the feedback technique,
the feedforward method can provide the same benefits of feedback technique without
the problem of bandwidth limitation. However, all theses come with costs. Firstly,
the error amplifier in Figure 2.3 should be linear since the gain errors introduced by
the error amplifier can not be compensated. Moreover, it should also be powerful
enough to amplify the error signal to the same level of the main signal. Secondly, the
delay lines must be carefully designed to produce the accurate delay and to match
the signals in the two channels. The linearization performance is highly dependent
on the precision of the signals matching in the two channels. Another aspect, the
feedforward technique works with poor efficiency and has high demand on the hard-
ware. In addition, feedforward can not linearize the PA operated at its saturation
power.

2.4 Feedback

Feedback technique [1,26], which is based on the knowledge of dynamic control sys-
tem, was also mentioned by Howard Black in 1927 after the failing of the feedforward
idea. It has been widely used in many systems since it has been mentioned. The
basic idea of feedback technique is that a part of output signal is fed back to the
input with a close loop. Therefore, the difference between feedforward and feedback
techniques is that the former compares the error signal at the output of the PA,
whereas the latter compares at the input. A general direct feedback linearization is
illustrated in Figure 2.4.

In Figure 2.4, a negative feedback loop is used to linearize the PA. The loop consists
of the PA with power gain G, a divider of gain 1/K and a comparator for signal
subtraction.
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Figure 2.4. General direct feedback system

A part of the output signal yout from the PA is fed back to the input passing through
the divider. The signal after the divider is

yr =
1

K
yout (2.5)

The error signal, xe, after the comparator is defined as

xe = xin − yr (2.6)

where xin is the input signal. Therefore, the output signal after the amplifier is

yout = Gxe (2.7)

Finally, combining all the equations, we will get a linear gain. Therefore, this close
loop can force the output signal to be a replica of the input which makes the PA
linear.

yout =
KG

K +G
xin (2.8)

This simple technique is widely used in applications with low frequencies, in which,
the time delay of the close loop is short enough and can be neglected. However,
at RF, this delay will be comparable to the signal frequency and cannot ignored.
In addition, at high frequencies, the phase of the PA gain varies rapidly with the
frequency and usually this can lead to oscillation. Therefore, the direct feedback
technique has a bandwidth limitation and works well only at low frequencies. To
overcome this restriction, an indirect feedback technique [27] is applied, as shown in
Figure 2.5.

In this technique, there are two peak detectors at both the input and output of the
RF PA. Both the input and output signals are captured and down-converted to the
IF frequency. Then the detected baseband signals are fed to a video differential
amplifier where an error correction signal is generated. Then this error signal, as a
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Figure 2.5. General indirect feedback system

driver, passes to a gain control of the amplifier. As a result, this loop will force the
output envelope to be identical to the input envelope.

This technique still has a problem: the high order intermodulation products can
not be corrected. This problem is inevitable because of the delay limitation of the
feedback systems. Despite their good linearization performance, feedback techniques
are still found a limited usage for the linearization of RF PAs.

2.5 Baseband Digital Predistortion

In these years, baseband digital predistortion (DPD) [28,29] becomes the preferred
choice for the linearization of RF power amplifier because of its relative simplicity
and good performance. Different from feedforward and feedback techniques, the
DPD technique is achieved by placing a nonlinear block, called Predistorter, just
in front of the PA as shown in Figure 2.6. The objective of this predistorter is to
produce an inverse behavior of the PA.

Figure 2.6. Digital transmitter with digital predistortion
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Digital predistortion is now gaining worldwide popularity. It has smaller size and
less cost compared to other linearization techniques. Digital predistortion can also
be a standalone device which makes it more convenient in industrial applications.
More details will be introduced in next chapter for digital predistortion.
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Chapter 3

Baseband Digital Predistortion

The aim of studying distortions [8], caused by nonlinearity of the power amplifier, is
to design a linearization architecture to minimize the distortions. There are many
techniques mentioned in the previous chapter, among which the digital predistor-
tion (DPD) is one of the most popular solution. The popularity of baseband DPD
is mainly associated with its flexible implementation and good accuracy due to the
implementation of digital signal processing techniques. Another attractive aspect is
that the entire DPD system can be encapsulate into one standalone block. This will
avoid redesigning the analog circuits when the DPD system is used.

FPGA is a good choice for implementing the DPD technique in wireless applica-
tions. It has many advantages in digital signal processing, including high speed
processing, flexible implementation, high reliability and parallelism computation.
Lookup Table (LUT) method is an efficient way to implement the predistorion func-
tion. The proposed DPD technique is not solely limited to FPGA and it can also
be implemented based on other commercial products.

This chapter introduces the basic principle of the digital predistortion technique
and the implementation issues of DPD for the RF wireless communication system.
Two DPD architectures, direct and indirect learning architecture, are compared.
With DPD, the PA has a significant improvement in linearity which can satisfy the
highly linearity requirement of high efficient power amplifiers. However, digital pre-
distortion also suffers from some problems, including the bandwidth expansion of
the signal and additional energy consumption.

20



3 – Baseband Digital Predistortion

3.1 Basic Principle

The basic idea of digital predistortion [5, 28–31] is to introduce a nonlinear com-
ponent, called Predistorter, just in front of the PA. The objective of this nonlinear
block is to produces the nonlinear behavior which is the reverse of the PA’s nonlinear
behavior in both magnitude and phase. In this way, the predistorter will counteract
the nonlinearity of the PA and the final behavior will be linear, as shown in Figure
3.1.

Figure 3.1. Basic principle of digital predistortion

Another interpretation of digital predistortion in frequency domain is to view the
predistorter as a generator of intermodulation distortion (IMD) products. Since the
PA is usually nonlinear, it will create IMD products. If the IMD products of the
PA and the predistorter have the equal amplitude and 180 degree out of phase, the
distortion will be cancelled, as shown in Figure 3.2 in which the downward arrow
means the anti-phase.

Figure 3.2. Frequency domain interpretation of digital predistortion
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In the following, the principle of DPD will be explained with mathematical equa-
tions. The predistorted signal, denoted as xDPD, is

xDPD = F (x), (3.1)

where x is the input signal. The predistorted signal can be expressed in another
form:

xDPD = GDPD(x) · x, (3.2)

where GDPD(x) can be seen as the nonlinear gain of the predistorter at point x, or
it is the slope of the transfer function between xDPD and x. The predistored signal
will be fed to the PA and the output signal will be

y = G(xDPD) = G(F (x)) (3.3)

which can also be expressed as

y = GPA(xDPD) · xDPD, (3.4)

where GPA(xDPD) is the nonlinear gain of the PA and also can be seen as the slope
of the transfer function between y and xDPD. Since the PA and the predistorter
have the opposite nonlinear behavior, under the assumption that the output signal
y is normalized by the power gain of the PA, we will have

GDPD =
1

GPA

(3.5)

The gain of the entire system, consisting of both predistorter and PA, can be derived
by

G =
dy

dx
=

dy

dxDPD

· dxDPD

dx

= GPA ·GDPD = 1

(3.6)

Therefore, the gain of the system is 1, a normalized constant, which means that the
system is linear.

We will offer an example with data measured from a real PA to demonstrate the
principle of the DPD. Figure 3.3 and Figure 3.4 illustrate the AM/AM and AM/PM
characteristics for the sample PA with memory (blue), a corresponding predistorter
(green) and the entire system with both PA and predistorter (red). In Figure 3.3,
the horizontal axis is the magnitude of the input signal to predistorter x and the
input to PA xDPD, while the vertical axis is the magnitude of the output signal from
predistorter xDPD and the normalized output from PA y/Go. As shown in Figure
3.3, the magnitude response of the PA is not a straight and the power gain is com-
pressed at high power region. The predistorter, on the contrary, produces the gain
expansion to compensate the compression. As a result, the resulting magnitude is
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Figure 3.3. Transfer functions for a sample PA with memory (blue), predistorter
suitable to obtain linear response (green), PA and predistorter(red)

Figure 3.4. Phase curves for a sample PA with memory (blue), predistorter
suitable to obtain linear response (green), PA and predistorter(red)

a straight line and the gain is flat, meaning that the PA is linear.

Meanwhile, in Figure 3.3 of the AM/PM characteristics, the horizontal axis is still
the magnitude of the input to predistorter x and the input to PA xDPD, while the
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vertical axis is the phase of the PA, the predistorter and the entire system. The
phase here means the phase difference between the output and input of the device.
Therefore, same to the theoretical principle, the phase of the PA and the predis-
torter is opposite to each other. Moreover, with the DPD, the resulting phase of the
whole system is nearly zero, leading to a linear response.

The basic principle of DPD can be explained in another more intuitive way with
Figure 3.5. Suppose that at the input, there is a signal with power at point x1. The
response at the output of the PA is with power at point y1. However, with an ideal
linear behavior, the output should be at point y2. Therefore, to obtain the power at
point y2, the input signal fed to the PA should have the power at point x2. It is the
job for the predistorter to convert the power from point x1 to the point x2 in order
to get the linear result from the PA.

Figure 3.5. Power amplifier output power vs input power

The DPD technique is implemented in digital domain, where digital signal pro-
cessing technique is applied to simplify the computation. Analog-to-digital (ADC)
devices are needed to convert the analog signal into digital domain. Then a model
is required to describe the predistorter and to generate the predistorted signal. The
detail on the modeling will be introduced in next chapter. The digital predistorted
signal should pass through a digital-to-analog (DAC) to be converted back to analog
signal. At last, the signal will be up-converted to the required frequency and is fed
to the PA.
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3.2 DPD implementation

Due to the fast improvements of digital signal processing techniques, the baseband
DPD has became the most adopted linearization technique. Figure 3.6 illustrates
the simplified implementation of the DPD system. The signal is firstly digitized
and then fed to the predistorter. The predistorter function is usually applied on a
digital signal processing unit (FPGA or DSP) where the input signal is processed
with a predefined algorithm. The predistorted signal is then converted back to ana-
log signal which will be modulated to the required frequency and fed to the power
amplifier.

Figure 3.6. Simplified block diagram of a DPD implementation in a transmitter

In Figure 3.6, there is a closed loop feedback which is for adaptive behavior of DPD.
Since the characteristic of a PA varies in many cases, including different bias supply,
changes in temperature, aging, it is essential to continuously update the predistorter
function. In an adaptive DPD system, a fraction of the output signal from the PA
is fed back by using a coupler. The feedback signal is demodulated to baseband and
digitized for extracting the DPD function. The detail of the adaptive algorithms
used in DPD will be discussed in chapter 7.

The input and output signals used to extract the predistoter function are the base-
band signal to PA and the baseband signal output from PA, respectively. Therefore,
the nonlinear behavior we get consists of all the nonlinear components in the chain
and the DPD can minimize the nonlinearity of all these nonlinear components.
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3.3 DPD Architecture

The basic principle of digital predistortion technique [5, 32] is to introduce a non-
linear component which has the inverse characteristic of the PA. Therefore, it is
essential to derive the inverse model with the input and output data of the PA. One
method employed in the DPD system is the model inverse.

The model inverse structure is to find an inverse function to be used as the model
of predistorter. There are two commonly used architectures: direct learning and
indirect learning.

3.3.1 Direct Learning Architecture

The direct learning architecture, as its name states, directly adjusts the predistorter
model parameters by using the feedback error e(n) with an adaption algorithm, as
shown in Figure 3.7. The error is the difference between the input signal x(n) and
the normalized output signal z(n), which are time aligned. Several adaption algo-
rithms [30–32] have been proposed for direct learning architecture. These algorithms
tune the parameters of the predistorter according to the feedback error in order to
minimize the feedback error. Since the error is zero for linear system, we will obtain
an approximately linear behavior at last with minimum feedback error.

Figure 3.7. Block diagram of the direct learning architecture

26



3 – Baseband Digital Predistortion

3.3.2 Indirect Learning Architecture

Indirect learning architecture [5,33–36], which introduces a post predistorter, is an-
other commonly used method in the model parameters extraction for predistorter.
Its basic schematic is depicted in Figure 3.8, in which x(n) is the input to PD, y(n)
is the output from PD and also the input to PA, z(n) is the normalized output from
PA, ŷ(n) is the output from the post predistorter block, the error signal e(n) is given
by e(n) = y(n)− ŷ(n). The post-inverse estimation block and the predistorter have
the identical nonlinear transfer function. The post-inverse estimation block gener-
ates the parameters of PD by minimizing the error signal e(n). Since that when the
PA is linear, x(n) = z(n) and thus y(n) = ŷ(n). Finally, the estimated parameters
are copied to the predistorter.

Figure 3.8. Block diagram of the indirect learning architecture

3.4 DPD problems

The major problem is the bandwidth expansion of the predistorted signal xDPD.
The predistorted signal xDPD usually has a wider bandwidth than the input sig-
nal x since the predistorter introduces the nonlinear distortion compensation. As a
result, the sampling rate of xDPD should be several times higher than the sample
rate associated with input signal x. This throws a higher requirement on digital-
to-analog converters (DACs). In return, the DAC speed limitation will restrict the
maximum bandwidth of the input signal.

Another concern is focused on energy consumption of the predistorter circuitry
which is usually several watt. The efficiency of a PA with DPD should also take
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the energy of the predistorter into consideration. Therefore, the DPD technique is
suitable for PAs that exceeds 10 W. The energy consumption is related to the size
of the hardware used to implement the predistorter. Therefore, the complexity of
the predistorter should not be too high in order to reduce the energy consumed in
predistorter.

The value of PAPR, which is defined as the ratio between the peak power and
the average power, will become larger after the predistorter since the predistorter
has a gain expansion. Therefore, the input power level should back-off by more than
the original PAPR from the saturation level.
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Chapter 4

Power Amplifier Behavioral
models

The basic principle of DPD is to add a nonlinear block just in front of the PA to
compensate the PA gain compression. This block produces the exact inverse non-
linearity of the PA. Hence, a model that can predict accurately the behavior of the
PA and the predistorter is required. Since RF PAs usually exhibit memory effects,
the model should be able to describe not only dynamic nonlinear behavior but also
memory effects. Behavioral model is the best choice, since it is built simply from
the observation of the input-output behavior of the device instead of the knowledge
of the device’s internal constitution. There are various behavioral models proposed
in the literature, such as the most comprehensive, full Volterra model and its sim-
plified versions, like memory polynomial model or generalized memory polynomial
model. Other polynomial function based models include rational function model,
Hammerstein model, Wiener model and so on. We should choose one among all
these models which is a tough work. The model selection is mainly based on model
accuracy, model computational complexity and model extraction technique. The
memory polynomial model is chosen at last due to its low complexity and satisfac-
tory accuracy.

The model extraction technique is another important aspect that need to be taken
into consideration. The most common solution is the least square (LS) technique
which requires that the model should be linear in its parameters. The LS method
can be adopted for memory polynomial model. Other extraction techniques, such
as least mean square (LMS), recursive least square (RLS), are also popular for DPD
systems. Different from LS method, the LMS and RLS techniques generate the
model parameters sample by sample with the input and output data.
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4.1 Behavioral models

One prerequisite to apply digital predistortion is to model the PA and predistorter
accurately which is determined by the model selected. There are mainly three basic
and different strategies for the device modeling: physical modeling, circuit model-
ing and behavioral modeling. Each of them has its advantage and drawback and is
applied in different fields.

Physical model is based on the device physics. Using a microwave metal-semiconductor
field-effect transistor (MESFET) as an example, the physical properties including
oxide thickness, doping density, carrier mobility and so on, are the basic knowledge
to build the physical model. They should solve the transport and Poisson equations
at a microscopic level. These kind of models are complex to extract that make them
inadequate in the real simulation.

Figure 4.1. A sample FET small-signal equivalent circuit model

Circuit modeling uses active passive components to model the behavior of the tran-
sistors or diodes. Figure 4.1 shows a typical small-signal equivalent circuit model of
a FET which consists both the intrinsic and extrinsic parts. These models can be
constructed from S-parameter or I-V characteristics. Circuit model can be used to
predict the time domain current or voltage of a PA, although they are never directly
measured.

On the contrary, behavioral modeling [37, 38], also called black-box modeling (Fig-
ure 4.2), does not require the knowledge of the internal constitution of the PA and
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Figure 4.2. Black-box modeling

relies only on the observation of input and output signal of the PA. The procedure
is to build and tune a mathematical expression in order to make the output of the
model coincided with the measured output of the PA with the same input signal.
Therefore, behavioral modeling is a more computationally efficient solution and it is
easier to implement the model with computational devices. Only the input and out-
put signals of the PA are required, instead of looking deep inside the PA’s internal
structure. The selection of a behavioral model is mainly based on the criteria of the
model accuracy, the computational complexity and the model extraction technique.
It is the ideal tool for the system level simulation and it can find a widespread use
in wireless communication systems.

Behavioral models can generally be divided into two groups according to the mem-
ory effects: memoryless models and models with memory. Each group has a variant
number of models with different complexity and performance which will be discussed
in the following sections.

4.2 Figure of Merit

One of the most critical requirements in DPD technique is to model the predistorter
accurately. It is essential to clearly evaluate the performance of the model. There-
fore, model performance evaluation criteria should be adopted to choose the proper
model. The most commonly used criteria are NMSE in time domain and ACPR in
frequency domain.

In the following sections, the test signal for the models is the LTE signal with
9.8 dB PAPR and a channel of 28 MHz. The device under test (DUT) is a wide-
band class AB amplifier whose characteristic is shown in Figure 4.3. It can be seen
clearly that this DUT exhibits memory effects since the characteristic behavior is
not a single line.
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Figure 4.3. AM/AM characteristic of the sample DUT.

4.2.1 NMSE

NMSE refers to Normalized Mean Square Error, which is an estimator of the overall
deviations between the predicted and measured values in time domain. Therefore,
it is the most straightforward approach and it is often expressed in decibels as fol-
lowing.

NMSE = 10 log10

(∑
k |yk − xk|2∑

k |xk|2

)
(4.1)

where xk is the experimental output instant of the DUT and yk is the output in-
stant obtained from the model. Therefore, the accuracy of the model is inversely
proportional to NMSE. In other words, the lower the NMSE is, the higher the model
accuracy is.

The NMSE can also represent the linearity of a PA with xk, yk being the input
instant and normalized output instant of the PA, respectively. In this case, -35 dB
of NMSE will mean that the PA has a very good linear behavior.
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4.2.2 ACPR

The adjacent channel power ratio (ACPR) is a frequency domain evaluation crite-
rion, which is defined as the power ratio between the total power of adjacent channels
and main channel. The main objective is to check the power distribution between
in in-band channel and adjacent channels. It is possible to quantify the error in
different frequency domain ranges. Its expression is given as

ACPR = 10 log10

(∫ f2
f1

|E(f)|2 df +
∫ f4
f3

|E(f)|2 df∫ f3
f2

|Edesired(f)|2 df

)
(4.2)

where |E(f)|2 is the power at one frequency f and frequency range (f1 f2) is the
lower adjacent channel and (f3 f4) is the upper adjacent channel and (f2 f3) is the
in-band channel. Therefore, the first and the second integral in numerator calculate
the lower and upper adjacent channel power, respectively while the denominator is
the in-band channel power. Figure 4.4 is an example of ACPR figure of an output
signal where the in-band frequency range is -14 MHz to 14 MHz.

Figure 4.4. ACPR figure of a sample PA output
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4.3 Even-order Terms in the Polynomial

In this chapter, all the models with power polynomials include only the odd-order
terms. Although, in [77], it is proved that it is beneficial to include both the odd- and
even-order terms for the models. However, most other published papers (e.g. [55,78])
consider only the odd-order terms. In this section, we will explain why only the odd-
order terms are considered for the modeling in our DPD with one example of a real
test power amplifier.

It would seem that all the terms in the polynomial should be used to deliver the
best representation of the PA magnitude and phase responses. However, when we
acquire the output signal from a PA in a real measurement, the signal is limited
to the frequency band of interest. Only the carrier and odd-order intermodulation
signals can be detected, while the even-order intermodulation signals will be filtered.
For this reason, the even-order terms would appear to be redundant.

We do the same test which has been done in [77] with the memory polynomial
model and our test PA data. We use the same three sets of polynomial orders for
comparison: K1 = {1, 3, 5, 7, 9}, K2 = {1, 3, 5} and K3 = {1, 2, 3, 4, 5}. The
three sets are compared quantitatively with the NMSE between the output signal
of the experimental data and the model which are shown in Table 4.1. K2 and K3

have the same largest polynomial order, 5. Therefore, the performance of the model
is better with both even- and odd-order terms if the largest polynomial order is the
same. However, if the number of the terms in a polynomial model is the same, K1

contains only the odd-order terms and has a better fit to the experimental data.

K1 K2 K3

NMSE (dB) -37.6 -35.2 -36.9

Table 4.1. Comparison of NMSE between 3 sets of polynomial orders

The same result can be seen in Figure 4.5. The x-axis is the input amplitude and
the y-axis is the output amplitude error between the experimental data and the
model. The magenta points stands for polynomial order of K1 = {1, 3, 5, 7, 9},
green for K2 = {1, 3, 5} and blue for K3 = {1, 2, 3, 4, 5}. K1 yields the best result
with slightly smaller error than K3 while K2 shows the worst fit to the experimental
data. We can conclude that the odd-order terms are enough for the modeling with
polynomial terms. Therefore, we only consider the odd-order terms in the memory
polynomial model and other models with power terms.
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Figure 4.5. Comparison between 3 sets of polynomial orders. The x-axis is
the input amplitude and the y-axis is the output amplitude error between the
experimental data and the model. K1 = {1, 3, 5, 7, 9}, K2 = {1, 3, 5} and

K3 = {1, 2, 3, 4, 5}.

4.4 Memoryless models

Memoryless behavioural modelling has many advantages, including easier computa-
tional implementation, relative efficiency in system simulations and its acceptable
level of accuracy in many situations. Therefore, it has been used for many years in
system level simulation.

Memoryless means that the output is only dependent on the current input and
the previous samples have on effect on the output. There is a one-to-one mapping
between present input and output signals. Therefore, if the PA is strictly memory-
less, it will only introduce amplitude distortion.

The most used memoryless model is polynomial function [39]. Others, including
Rapp model [42] and Ghorbani model [41] which are similar of the Saleh model [10],
are also introduced in the literatures. Look-up table (LUT) method is another
structure to model the memoryless systems, where the data are stored in a table in
advance.
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4.4.1 Memoryless polynomial model

The most natural and used memoryless model is the polynomial function [39], whose
equation is

y =
P∑

p=0

apx
p (4.3)

where x and y are the input and output signals, respectively, P is the polynomial
order and ap is the corresponding coefficients. The comparison between the experi-
mental data and the model is shown in Figure 4.6. The polynomial order is 4 with
only even order. As a result. the NMSE for this memoryless polynomial model is
-32.2 dB.

Figure 4.6. Measured and modeled AM-AM characteristics comparison for mem-
oryless polynomial model. The red represents the measured data and the green is

for the model.

There are other memoryless or quasi-memoryless models including Rapp model [42]
and Ghorbani model [41] which are similar of the Saleh model [10]. There are also
several other similar models based on power series, including Bessel Function Based
Model [43], Gegenbauer Polynomials Based Model [44] and Zernike Polynomials
Based Model [45].
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4.4.2 LUT model

The LUT model [28] is another basic behavioral model with momoryless nonlinear-
ity, which is relatively simple and easily implement. Different from the analytical
function-based model, the LUT model stores all possible values in a table in advance
and retrieve them later. It is a memory-cost model and the memory is used as the
table. In other words, the LUT model saves the computational complexity with
memory storage.

The simplest solution for LUT model is the one-to-one mapping, saving each possible
output signal in the table indexed by its corresponding input signal. This solution is
able to compensate any memoryless distortion. However, since every possible signal
has to be stored, the memory size required is huge. Another propose is to store only
the complex gain indexed by the magnitude of the input signal. There is a direct
relation between the input and output, expressed as:

y(n) = G(|x(n)|) · x(n), (4.4)

where G(|x(n)|) is the instantaneous complex gain, x(n) and y(n) are the input and
output signals, respectively. The complex gain G(|x(n)|) is calculate and stored in
a table. Figure 4.7 illustrates the operation of the LUT model based on complex
gain method, where |.| means the magnitude. Each input corresponds to a unique
complex gain and the output is the multiplication of the input and the correspond-
ing gain. Therefore, this model is suitable for real-time applications.

Figure 4.7. Look-up-table model

However, in the meantime, LUT model also suffers some problems. For instance,
extra memory resource is required to be as the tables, to store the complex gain.
And only a limit number of LUT entries can be implemented which will lead to the
quantization error.

LUT model can also used for PAs with memory effects. In memory LUT model [40],
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the complex gain is a function of the present and several preceding inputs instead
of just present input. Therefore, the LUT size is KM+1, where K is the size of
memoryless LUT and M is the memory depth. It faces a more severe problem in
memory size.

4.5 Models with memory

On the contrary, a model with memory is not only dependent on the current input
but also on a certain depth of previous samples, which makes the system dynamic.
Moreover, to accurately model the PA, some models with memory also depend on
previous output values. Most of the RF power amplifiers used in the modern wireless
communication systems exhibit the memory effects. Therefore, behavioral models
with memory are more and more important.

The most comprehensive memory model is the full Volterra model. Volterra model
is a polynomial expansion which can represent nonlinear systems with memory. It
is typically truncated to simplified structures, giving rise to several other memory
models with less complexity. Among them, the memory polynomial model is widely
used in the behavioral modeling.

4.5.1 Full Volterra model

The Volterra model [46,47] provides a general way to model a nonlinear system with
memory which is a combination of linear convolution and nonlinear power series. It
is considered as an extension of the Taylor series. In this model, the relationship
between the input and output signals is:

y(n) =
P∑

p=1

M∑
i1=0

· · ·
M∑

ip=0

hp(i1, · · · ,ip)
p∏

j=1

x(n− ij) (4.5)

where x(n) and y(n) are the input and output signals, respectively, hp(i1, · · · ,ip)
are the coefficients of the Volterra model, often called Volterra kernels, P is the
nonlinearity order of the model, and M is the memory depth.

We can improve accuracy of the model by increasing K and M . Unfortunately,
this high accuracy is obtained at the cost of unnecessary computational complexity
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since the number of parameters will grow exponentially. Nevertheless, the Volterra
model is well suitable for modeling dynamic nonlinear behavior.

4.5.2 Memory polynomial model

The memory polynomial model [36, 48–50] has been widely used as a behavioral
modeling in digital predistortion of PAs with memory effects for many years. It
corresponds to a reduction of the Volterra series in which only diagonal terms are
kept. It has a reasonable compromise between computational complexity and model
accuracy. The output waveform of the model is

y(n) =
M∑

m=0

P∑
p=0

ampx(n−m)|x(n−m)|p (4.6)

where x(n) and y(n) are the input and output signals, respectively, P is the nonlinear
order, M is the memory depth and amp are the model coefficients. The comparison
between the experimental data and the model is shown in Figure 4.8. The polyno-
mial order is 7 with only even order and the memory depth is 2. As a result, the
NMSE for this memory polynomial model is -35.6 dB.

Figure 4.8. Measured and modeled AM-AM characteristics comparison for mem-
ory polynomial model. The red represents the measured data and the green is for

the model.
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A variant of other memory polynomial models have been proposed in literature.
They are Orthogonal Memory Polynomial model [51], Non-Uniform Memory Poly-
nomial model [52,53], Envelope Memory Polynomial model [54].

4.5.3 Generalized Memory Polynomial Model

As mentioned above, the memory polynomial model is a simplified case of Volterra
model which eliminates all the cross memory parts. However, as the the signal
bandwidth has significantly increased, the memory polynomial model is not enough
and the introduction of the cross terms in the full Volterra model is needed. A
generalized form of the pth memory polynomial component in (4.6) can be written
as:

M∑
m=0

P∑
p=0

ampx(n)|x(n−m)|p, (4.7)

where we have inserted a local delay of m samples between the signal and its expo-
nential part. The delay in (4.7) could be both positive and negative. If we add both
these positive and negative local memory that close to the current memory to the
typical memory polynomial model in (4.6), it will come out the generalized memory
polynomial model [55].

y(n) =
Pa∑
p=0

La∑
l=0

aplx(n− l)|x(n− l)|p

+

Pb∑
p=1

Lb∑
l=0

Mb∑
m=1

bplmx(n− l)|x(n− l −m)|p

+
Pc∑
p=1

Lc∑
l=0

Mc∑
m=1

cplmx(n− l)|x(n− l +m)|p

(4.8)

where the first part is the same as memory polynomial model, while the last two
terms are the cross memory with both positive and negative time shifts. Pa and La,
Pb and Lb, Pc and Lc are the polynomial order and memory depth for the current,
positive and negative parts, respectively, Mb and Mc are the local memory that shift
from the current memory.

The generalized memory polynomial model can be seen as the advanced version
of the memory polynomial model. It has a better performance, in terms of reducing
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spectral regrowth, than the memory polynomial model. However, it suffers a prob-
lem of higher computational complexity.

Pa La Pb Lb Mb Pb Lb Mb

7 2 2 2 1 2 2 1

Table 4.2. Memory depth and polynomial order chosen

The comparison between the experimental data and the model is shown in Figure
4.9. The memory depth and the polynomial order are chosen as listed in Table 4.2.
As a result, the NMSE for the generalized memory polynomial model is -35.6 dB.

Figure 4.9. Measured and modeled AM-AM characteristics comparison for gener-
alized memory polynomial model. The red represents the measured data and the

green is for the model.

4.5.4 Dynamic Deviation Reduction-based Volterra Model

Dynamic deviation reduction-based Volterra model [56–58] is another modified and
simplified version of the Volterra model. In this model, the input data are organized
according to the order of dynamics involved. We remove the high order dynamics,
because the nonlinear effects can be ignored with high order dynamics for most PAs.
The property of linearity in the parameters has been reserved in this model.
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As mentioned above, the number of parameters increased exponentially with non-
linearity order and memory depth for Volterra model. However, for this model, the
situation is different and the number of parameters increases almost linearly. There-
fore, it is suitable to accurately model a PA with static strong nonlinearities and
with long-term linear and low-order nonlinear memory effects.

The expression for this model is

y(n) =
P∑

p=1

hp,0x
p(n)

+
P∑

p=1

[
xp−1(n)

M∑
i=1

hp,1(i)x(n− i)

]

+
P∑

p=2

[
xp−2(n)

M∑
i1=1

M∑
i2=i1

hp,2(i1,i2)x(n− i1)x(n− i2)

] (4.9)

where P is chosen as 7 and M is 2. The comparison between the experimental data
and the model is shown in Figure 4.10. As a result, the NMSE for the dynamic
deviation reduction-based model is -33.1 dB.

Figure 4.10. Measured and modeled AM-AM characteristics comparison for dy-
namic deviation reduction-based Volterra model. The red represents the measured

data and the green is for the model.
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4.5.5 Rational function

A rational function is mathematically defined as the ratio of two polynomial func-
tions, expressed as:

y(n) =
a0 + a1x(n) + · · · aIxI(n)

b0 + b1x(n) + · · · bJxJ(n)
(4.10)

where x(n) is the input and y(n) is the output of the rational function at instance
n, and the highest polynomial order, I and J , are not required to be equal.

It is expected that the rational function should be able to model the PA accu-
rately [59, 60]. However, (4.10) can not compensate the memory effects. In order
to include the memory effects, a new model based on the rational function was
proposed [61], where memory effects were included both in the numerator and de-
nominator, whose expression is:

y(n) =

∑Pn

p=0

∑Mn

mn=0 ap,mnx(n−mn)|x(n−mn)|p

1 +
∑Pd

p=0

∑Md

md=0 bp,md
|x(n−md)|p

(4.11)

where x(n) and y(n) are the input and output signals, respectively, Pn and Mn, Pd

and Md are the polynomial order and memory depth for the numerator and denom-
inator, respectively. The memory effects are described with absolute terms in the
denominator and with complex-envelope terms in the numerator.

The model expressed in (4.11) is more complex and less accurate than memory
polynomial model. Therefore, another version of rational function was proposed [62],
which replaces the absolute terms memory with the complex-envelop terms without
memory. The proposed model is given by

y(n) =

∑Pn

p=0

∑M
m=0 ap,mx(n−m)|x(n−m)|p

1 +
∑Pd

p=0 bpx(n)|x(n)|p
(4.12)

where x(n) and y(n) are still the input and output signals, respectively, M is the
memory depth, Pn and Pd are the polynomial orders in the numerator and denom-
inator, respectively, and ap,m and bp are the complex coefficients for the numerator
and denominator, respectively.

M , Pn, Pd are chosen as 2, 6, 2, respectively. The comparison between the ex-
perimental data and the model is shown in Figure 4.11. As a result, the NMSE for
the rational function based model is -35.8 dB.
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Figure 4.11. Measured and modeled AM-AM characteristics comparison for ra-
tional function model. The red represents the measured data and the green is for

the model.

4.5.6 Hammerstein Model

Hammerstein model [63,64] consists of two cascade stages, as shown in Figure 4.12.
The input signal first goes through the nonlinear block then passes the linear memory
block. For the nonlinear block, a general power series are used while for the linear
block we consider an FIR filter.

Figure 4.12. Hammerstein’s nonlinear model

The Hammerstein model is usually defined as:

u(n) =
P∑

p=0

apx(n)|x(n)|p (4.13)

y(n) =
M∑

m=0

bmu(n−m) (4.14)
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where y(n) is the output of the PA and u(n) is the intermediate output of the non-
linear block. P is the order of the memoryless polynomial.

If we combine the two equations, we obtain the following expression

y(n) =
M∑

m=0

bm

(
P∑

p=0

apx(n−m)|x(n−m)|p
)

(4.15)

From equation (4.15), we can find that the final expression of the Hammerstein
model is the same with the memory polynomial model if we combine each pair of
ap and bm into only one coefficient. Therefore, comparing to memory polynomial
model, the Hammerstein model has the same accuracy, but with more coefficients
to be extracted.

4.5.7 Wiener Model

On the contrary to Hammerstein model, the Wiener model [65,66] passes the linear
memory block firstly then goes through the nonlinear stage, depicted in Figure 4.13.
Wiener model is more complicated to estimate than Hammerstein model.

Figure 4.13. Wiener’s nonlinear model

For the nonlinearity we have considered power series as well as in the Hammerstein
model. Therefore, the expressions for Wiener model is described as

u(n) =
M∑

m=0

bmx(n−m) (4.16)

y(n) =
P∑

p=0

apu(n)|u(n)|p (4.17)

If we combine these two equations, we obtain
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y(n) =
P∑

p=0

ap

(
M∑

m=0

bmx(n−m)

)
|

M∑
m=0

bmx(n−m)|p (4.18)

From (4.18), the coefficients are not linear since the filter coefficients are integrated
in the power series. This makes the extraction of the coefficients more difficult. P ,
M are chosen as 2, 6,respectively. The comparison between the experimental data
and the model is shown in Figure 4.14. As a result, the NMSE for the Wiener model
is -33.1 dB.

Figure 4.14. Measured and modeled AM-AM characteristics comparison for
Wiener model. The red represents the measured data and the green is for the

model.

4.6 Model Parameters Identification technique

In the previous sections, we have introduced some behavioral models for the mod-
eling and predistortion of power amplifiers. All these models are just mathematical
equations with unknown coefficients. These coefficients can be extracted, using iden-
tification techniques, if we have the input and output data of the PA. The accuracy
of the model depends on the model type chosen. For example, if the PA exhibits
memory effects during the measurements, the memory model should be chosen to
make sure that the model can include these memory effects, while a memoryless
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model cannot predict accurately the memory effects of the PA.

Therefore, choosing the adequate model structure is certainly important. After
choosing a model, the model parameters have to be identified to fit the experimen-
tal data of the PA. The most common way is by solving a least square problem for
models with linear property in their coefficients. Other linear adaptive techniques,
including the recursive least square and least mean square algorithms, could also be
adopted to estimate the coefficients.

4.6.1 Least Square Method

Least square technique [4] is a general estimation method introduced by A. Legendre
in the early 1800’s. This method has been most used in data fitting. The basic idea
is to minimize the sum of the square residuals which is the difference between the
measured data and data obtained from the model. Therefore, the best fit means the
minimal residual.

The procedure is to adjust the parameters of a model to determine the best fit
for the data set. A simple data set consists of n points (x,y). The model function
has the form of f(x,β) where β contains the parameters need to be identified. The
final objective of this method is to find the parameters of the model which “best”
fit the data.

The linear model with several explanatory variables is given by the equation

y = β0 + β1x1 + · · ·+ βk−1xk−1 + ε (4.19)

where ε can be seen as the error between the data from experimental measurement
and model. If we have n pairs of data (x,y), (4.19) can be written in the matrix
form as: 

y1
y2
...
yn

 =


1 x11 · · · x1k−1

1 x21 · · · x2k−1
...

...
...

1 xn1 · · · xnk−1




β0

β1
...

βk−1

+


ε1
ε2
...
εn

 (4.20)

where the subscript n represents the observation number (in rows) while k refers
to the variable number (in columns). (4.20) can be represented in summary vector
notation by

y = Xβ + ε (4.21)
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where y is an n × 1 vector of output data, X is an n × k matrix of state values
derived from input data, β is a k × 1 vector of unknown parameters, ε is an n× 1
vector of unobserved disturbances.

Given a estimated parameter β, the difference between the measured output and
the model output is

ε = y −Xβ (4.22)

The criterion for the best model is to minimize the sum of the square of residuals
which is written as

J(β) =ε′ε

=(y −Xβ)′(y −Xβ)

=y′y − y′Xβ − β′X ′y + β′X ′Xβ

(4.23)

Due to the fact that the transpose of a scalar is the scalar itself, y′Xβ and β′X ′y
are identical. Therefore, the sum of the squares of residuals is

J(β) = y′y − 2y′Xβ + β′X ′Xβ (4.24)

The minimum J(β) is obtained by setting the first-order derivation of J(β) equal
to zero. According to the rules of matrix differentiation, the derivative is

∂J

∂β
= −2y′X + 2β′X ′X = 0 (4.25)

which is transposed to provide the so-called normal equations

X ′Xβ = X ′y (4.26)

Solving this for β, we obtain

β = (X ′X)−1X ′y (4.27)

where we assume that the inverse matrix of X ′X exists, which means the number
of measurements is larger than the number of parameters, and these measurements
are linearly independent.

4.6.2 Model Identification Examples using LS method

Most of the models introduced above are linear in their parameters which can be
identified using the least square technique. Here we choose two models as examples
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to implement the least square method.

The first model is the memory polynomial model whose expression is

y(n) =
M∑

m=0

P∑
p=0

ampx(n−m)|x(n−m)|p (4.28)

If we rewrite it as a vector equation

y = Xβ (4.29)

therefore, y = [y(0) y(1) · · · y(n− 1)]T , β = [β10 · · · βP0 · · · β1M · · · βPM ],
X = [x10 · · ·xP0 · · ·x1M · · ·xPM ], xPM = [xPM(0) · · · xPM(n − 1)]T . The least
square solution will be

β = (X ′X)−1X ′y (4.30)

Another model is the rational function model whose expression is

y(n) =

∑Pn

j=0

∑M
m=0 aj,mx(n−m)|x(n−m)|j

1 +
∑Pd

i=0 bix(n)|x(n)|i
(4.31)

The model can also be written as

y(n) =− y(n)

Pd∑
i=0

bix(n)|x(n)|i

+
Pn∑
j=0

M∑
m=0

aj,mx(n−m)|x(n−m)|j
(4.32)

It is clear that the model equation is linear in its parameters. Equation (4.32) can
be written in a matrix form as:

y = Xβ (4.33)

where y is the output with n points, β is the coefficient vector defined as

β = [b0, · · · , bPd
, a00, · · · , aPn0, a01, · · · , aPn1, · · · , aPnM ]T (4.34)

To easily express matrix X, we separate it into 2 parts as X = [X1 X2], where
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X1(n) =


−y(n)x(n) · · · −y(n)x(n)|x(n)|Pd

−y(n− 1)x(n− 1) · · · −y(n− 1)x(n− 1)|x(n− 1)|Pd

...
...

...
−y(n−N)x(n−N) · · · −y(n−N)x(n−N)|x(n−N)|Pd



X2(n) =

 x(n) · · · x(n)|x(n)|Pn · · · x(n−M) · · · x(n−M)|x(n−M)|Pn

x(n− 1) · · · x(n− 1)|x(n− 1)|Pn · · · x(n− 1−M) · · · x(n− 1−M)|x(n− 1−M)|Pn

.

..
.
..

.

..
.
..

.

..
.
..

.

..
x(n−N) · · · x(n−N)|x(n−N)|Pn · · · x(n−N −M) · · · x(n−N −M)|x(n−N −M)|Pn


where N is the number of data for the input or output. Therefore, using least square
solution, the parameters are

β = (X ′X)−1X ′y (4.35)

4.7 Model Comparison and Selection

There are various behavioral models that can be used in DPD system to simulate the
behavior of the PA or the predistorter. An evaluation metric should be adopted to
choose the proper model among a variety of behavioral models. Model performance,
model computational complexity and model parameter extraction technique are the
three main considerations for the model selection.

Model performance is straightforward and is based on the accuracy of the model.
Several criteria have been proposed for evaluating the accuracy. The NMSE is the
most common used metric in time domain while ACPR is the method in frequency
domain.

Model complexity is also essential since the model should be implemented in hard-
ware device in real applications. It is usually faster and more robust to use a model
with less complexity. In our case, since the models are simulated in the Matlab
software, we measure the time need to extract the model to indicate the complexity
of each model. Figure 4.15 shows the performance versus complexity relation of
each model mentioned in this chapter. In the figure, we can see that the memoryless
polynomial model is the simplest but with the lowest performance. The generalized
memory polynomial model has the best performance but with high complexity. The
memory polynomial model, in the contrary, is with mild complexity and high per-
formance.
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Figure 4.15. Comparison of behavioral models for PA.

As for model parameter extraction, the least square method is the simplest and it
requires that the model is linear for parameters. Among the models introduced in
this chapter, only the Wiener model can not implement the least square method.
These kinds of models, suffering from the problem of nonlinear parameter, requires
iterative process which will increase the complexity.

Figure 4.16. Comparison of measured and model output signal in time domain.
Red is the measured data and blue is the modeled data.
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Therefore, by considering the model performance, model complexity and the model
parameters extraction technique, we select the memory polynomial model as the be-
havioral model to simulate the PA and the predistorter. Figure 4.16 is a comparison
of the measured and model output signal in time domain for memory polynomial
model.
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Chapter 5

Software Simulation based on
Matlab

The basic idea of digital predistortion is to introduce a nonlinear component, called
Predistorter, in front of the PA to counteract the nonlinearity of the PA. One solution
of the predistorter is to reproduce the inverse characteristic of the PA. Therefore,
in basic, DPD is a mathematical algorithm and must be run on a device with com-
putational capability. This device can be a processor controlled by a software or
hardware logic resources like FPGA. A software testing environment based on Mat-
lab is recommended at the initial develop stage since Matlab can be recognized as an
ideal calculator with high computational accuracy during the computational proce-
dure of the algorithm. If the DPD algorithm can not achieve a proper linearization
performance in the ideal simulation, it will certainly not be able to linearize the
real system. The input and corresponding output data of a PA are needed for the
software simulation. After a successful validation in the ideal software environment,
we can implement the DPD algorithm to linearize a real PA and test it with real
instruments.

In this chapter, we will discuss some issues on how to simulate the digital pre-
distortion technique in software testing environment (Matlab software). The entire
system will be described, including the instruments used, the testbench and the
simulation procedures. To validate the wide capability of the digital predistortion
technique, several different PA architectures will be shown: a hybrid class AB PA,
a hybrid Doherty PA, a MMIC class AB PA and a two-stages PA. Promising results
have been achieved, indicating that our DPD algorithm works well in a wide range
of applications.
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5.1 Testbench Description

Figure 5.1 shows a block diagram of the experimental test bench for software simu-
lation. The components, along the data flowing direction, are PC, signal generator,
PA under test, attenuators and vector signal analyzer. All the components are in-
troduced in detail in the following.

Figure 5.1. Test bench with the most critical components for software simulation

1). PC
The PC acts as a processor to do the computational job which is controlled by the
software Matlab. Both the PA model and the predistorter are estimated in Matlab.
In other words, the entire DPD system can be ideally simulated in Matlab. Fur-
thermore, the signal generator and the vector signal analyzer are both controlled
by Matlab, including downloading original input signal to the signal generator and
reading output data of the PA from the vector signal analyzer. At last, the per-
formance of the DPD algorithm is evaluated in Matlab concerning the AM/AM,
AM/PM characteristics, the NMSE between the output and the input signals and
the ACPR of the output signal.

2). Signal Generator (ESG)
The signal generator used in our lab is the E8267D from Agilent Technologies, as
shown in Figure 5.1(a). The ESG contains both the RF signal generator and the
modulator. The modulation frequency can reach as high as 44 GHz. It supports
various modulation types, including AM, PM, PSK, QAM and custom IQ modula-
tion. The detail data sheet can be found in [67].
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The ESG can be controlled by Matlab remotely via General Purpose Interface Bus
(GPIB) and the programming scripts used can be found in [68]. An arbitrary IQ
signal in baseband is firstly generated in Matlab and then we download it to the
ESG with a unique GPIB address recognized by the Matlab scripts. The sampling
rate, power level, modulation frequency and filter type are all preset in the Matlab
scripts.

3). Vector Signal Analyzer (VSA)
The vector signal analyzer we use is the N9030A PXA Signal Analyzer from Agilent
Technologies, as shown in Figure 5.1(a). The PXA signal analyzer is the highest-
performance member of the X-Series, covering frequency range up to 50 GHz. The
maximum input power level is 30 dBm which should be treated very carefully and
attenuators should be added before the VSA for protection. The detailed data sheet
can be found in [69].

The VSA can also be controlled by Matlab remotely with GPIB connection and
the programming scripts can be found in [70]. It is helpful to read and store the
output data into a PC since it is easier to deal with the data with Matlab software.
The VSA is recognized by Matlab with its unique GPIB address. By selecting the
basic IQ mode of the signal analyzer and the corresponding center frequency, the
baseband IQ signal can be acquired in Matlab, together with other parameters, such
as sample rate.

4). Others
The DC supply is the 6624A from Keysight Technologies. It has four channels,
among which 2 of them are with range up to 20 V and the other 2 are with range
up to 50 V. The multimeters are the 34401A Digital Multimeter from Agilent Tech-
nologies. They have 10 measurement functions among which only DC voltage and
current channels are used in our measurements. The maximum input voltage is
1000 V and the maximum input current is 3 A which are enough for our measure-
ments. The attenuators are from Weinschel Corp, operating between DC and 18
GHz frequency and with 10 dB of attenuation.

5.2 Simulation Procedure

To start the simulation, all the instruments have to be connected together according
to Figure 5.1 where the ESG and the VSA are connected to the PC via GPIB.
Furthermore, the ESG and the VSA are synchronized by the 10 MHz reference
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frequency by connecting the 10 MHz OUT of ESG to the 10 MHz IN of VSA. Power
attenuators are inserted before the VSA to avoid damage to the VSA. There are
also DC bias circuit and the multimeters to measure the voltage and current at gate
and drain of the PA which are used for the efficiency calculation. The testbench has
been successfully prepared and the remaining test can follow the procedures which
are summarized in Figure 5.2.

Figure 5.2. Key procedures of DPD simulation

5.2.1 Attenuation Measurement

The attenuators should be selected according to the output power level of the PA
and the maximum input power level of the VSA. It is not accurate to directly read
the attenuation on the surface of the attenuator since the attenuation is frequency
dependent. Therefore, the value of the total attenuation should be measured at the
precise operation frequency of the PA. Suppose the power levels in decibel before
and after the attenuators are P1 and P2, respectively. The attenuation Patt will be
calculated as

Patt = P1 − P2 (5.1)

To measure the power before the attenuators, a coupler is used after the PA and
before the attenuators as illustrated in Figure 5.3. P1 and P2 can be read by the
VSA directly.

56



5 – Software Simulation based on Matlab

Figure 5.3. Solution for attenuation measurement

5.2.2 Output Data Acquirement

To do the predistortion, the characteristics of the PA should be obtained first. There-
fore, we should acquire the output data of the PA with a test input signal. The
adopted excitation can be any kind of signals. In our simulation, it is an IQ signal
with 256 quadrature amplitude modulation (QAM), 7.4 dB PAPR and a channel of
7 MHz and 28 MHz, or a WiMAX signal with 9.2 dB PAPR. The signal is created
in Matlab and downloaded into the signal generator. In the signal generator, the
baseband complex envelope signal will be up-converted to the required RF frequency
and fed to the DUT as shown in Figure 5.4. The initial power level of the modulated
signal from the ESG is recommended to be low to avoid any damage to the VSA.
We can roughly know the compression power by checking the output power when it
does not linearly increase with respect to the increase of the input power.

Figure 5.4. A simplified data path of a wireless system

After selecting a proper power level and setting the operation frequency and the
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correct bias voltages, the output data are ready to be measured. The RF output
signal will be down-converted to baseband and stored in the memory of the VSA.
The matlab scripts help us to move the output signal data from the VSA to the
PC. Due to the transmission path, there is some latency between the original input
signal and the obtained output signal. Therefore, time-alignment is required and
Matlab can do this perfectly thanks to a built-in function xcorr(x,y). This function
returns the cross-correlation of two discrete-time sequences x and y, determining
how long y is in late or in advance of x. And then y is time shifted to match x
according to the result of function xcorr(x,y). To increase the accuracy of the time
delay, the two signal data could be upsampled by 200 before applying xcorr(), and
then downsampled by 200.

5.2.3 DPD Builder

The captured output data of the PA are required for the model extraction. The
model chosen is the memory polynomial model, described in Chapter 4. The model
can be optimized by tuning the memory depth and the polynomial order. As my ex-
perimental experience, the more accuracy of the model, the better performance the
DPD will be. After the extraction of the coefficients for the PA model, the model
can be validated by comparing it with the experimental data. Moreover, we can
check the AM/AM, AM/PM characteristics of the PA with the output and input
data.

According to the pth-order post-inverse theory [71], the coefficients of the DPD
can be directly estimated from the measured input and output of the PA. The per-
formance of the DPD can also be optimized by adapting different memory depth
and polynomial order. The DPD model has been successfully built with memory
polynomial model. With the built PA and DPD model, we can test the performance
of the DPD in the software Matlab by checking the AM/AM, AM/PM character-
istics and the ACPR value of the PA with the DPD. Finally, the DPD algorithm
will be implemented to the real PA. The input signal will first go through the DPD
model where the signal has been predistorted before passing it to the ESG.

5.2.4 DPD Performance

The predistorted signal will be fed to the ESG as an excitation. Then the output
data of the PA is re-captured following the same output data acquisition procedures
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earlier described with the predistorted signal. The linear performance can be evalu-
ated qualitatively from the AM/AM, AM/PM figures. The AM/AM characteristic
is a straight line and the AM/PM characteristic is a flat line when the behavior
of the PA is linear. Furthermore, the linear performance can be described quan-
titatively by the NMSE value between the normalized output and input signals.
Generally, a value less than -30 dB for the NMSE indicates a very good linearity.
ACPR, introduced in Chapter 4, is another important criterion in frequency domain
to describe the linear behavior of the PA. The less power in adjacent channels, the
better linear behavior the PA is.

5.3 Ideal DPD Simulated in Matlab

Every circuit design starts from the software simulation. If the ideal simulation can
not satisfy the requirements, the design will certainly not be able to work properly
for real physical applications. Figure 5.5 is an example of a PA characteristic gener-
ated by the memory polynomial model, the magenta line being the PA magnitude
behavior and the blue line being the ideal linear behavior.

Figure 5.5. A normalized PA magnitude characteristic generated by the memory
polynomial model. The magenta line is the modeled PA magnitude behavior and

the blue line is the ideal linear behavior.
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Figure 5.6. Performances of DPD algorithm. (a) AM/AM performance: the ma-
genta, green and blue lines are the PA, DPD and PA with DPD magnitude behav-
ior, respectively. (b) AM/PM performance: the magenta, green and blue lines are

the PA, DPD and PA with DPD phase behavior, respectively.

Figure 5.7. Normalized power spectrum density: the magenta line is without DPD
and the blue line is with DPD.

The DPD algorithm, based on a memory polynomial model with polynomial order
of 6 and memory depth of 1, is employed to linearize the modeled PA characteris-
tic in an ideal software environment. Figure 5.6 illustrates the AM/AM, AM/PM
responses for the PA, the DPD and the PA with the DPD. Figure 5.6(a) is the
magnitude characteristic in which the magenta, green and blue lines are the PA,
DPD and PA with DPD magnitude behavior, respectively. And Figure 5.6(b) is the
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phase characteristic in which the magenta, green and blue lines are the PA, DPD
and PA with DPD phase behavior, respectively. From the figures of the magnitude
and phase behaviors, the DPD algorithm has successfully linearized the PA, result-
ing a straight magnitude response and a flat phase response.

Figure 5.7 compares the output power spectrum with and without predistortion
in which the magenta line is without DPD and the blue line is with DPD. The
spectrum are normalized to the 0 dB power level. It is clear that the power of the
adjacent channels has been reduced dramatically. The upper and lower ACPR has
decreased from -37.1 dB to -59.6 dB and from -36.7 dB to -60.9 dB, respectively.
Therefore, from the frequency domain criterion, the DPD algorithm works as well
with an improvement of around 23 dB for ACPR.

5.4 Experimental Results

In this section, various PA examples, both in hybrid and MMIC features will be
described. Figure 5.8 shows the realized experimental test bench for hybrid ampli-
fiers. However, due to the tiny size of MMIC PAs, a specific test bench with needle
probes to connect the PA is required for testing the MMIC PAs. The specific test
bench is shown in Figure 5.9.

Figure 5.8. Photograph of the DPD experimental test bench for hybrid power
amplifiers.
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Figure 5.9. Photograph of the test bench for MMIC power amplifiers.

5.4.1 Hybrid Class AB Amplifier

The device under test is a wideband class AB PA, exploiting N-section transformers
at the output matching network. The key aspect of the proposed technique is its
simplicity, making it a viable solution for wideband design. The amplifier CW char-
acterization shows Power Added Efficiency (PAE) from 46% to 75% and more than
10 W of output power in a 145.5% fractional bandwidth with the central frequency
at 2.2 GHz. The power amplifier has been realized exploiting a 10W GaN HEMT
active device mounted on a microstrip hybrid passive structure. The entire circuit
of the deigned PA is shown in Figure 5.10.

Figure 5.10. Schematic of the wideband Class AB PA

Figure 5.11 is the picture of the realized wideband PA. The device CGH40010 from
Cree has been selected in order to implement the power amplifier and verify the
established approach. The amplifier is fabricated on a Taconic substrate with cop-
per metallization (RF35 with ϵr = 3.5, substrate height H = 0.76 mm, and metal
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Figure 5.11. Picture of the realized wideband Class AB PA

thickness t = 0.035 mm), mounted on a brass carrier.

The linearity of this wideband PA has been tested using a WiMAX signal with
both 7 MHz and 28 MHz channel. The WiMAX signal has a 9.2-dB of peak-to-
average power ratio (PAPR). The test operation frequency is chosen as 2.6 GHz.
The spectrum mask, chosen according to the European Telecommunications Stan-
dards Institute (ETSI), is class 6LA for both cases. These spectrum masks limits are
necessary for inter-system regulatory and performance requirements. The amplifier
has been biased with: drain bias voltage of 28 V, gate bias voltage of -2.1 V, and
drain current of 200 mA. However, the linearity requirements are not satisfied, since
the mask compliance has been failed, see Figure 5.14 and Figure 5.15.

7 MHz 28 MHz
Pav

(dBm)
Pmax

(dBm)
Efficiency

Pav

(dBm)
Pmax

(dBm)
Efficiency

No DPD 33.7 41.1 29.6% 33.7 41.9 29.5%
With DPD 33.7 40.8 29.6% 33.6 41.5 29.5%

Table 5.1. Summary of the average power, maximum power and efficiency of the
PA with and without DPD.

To improve the linearity, a DPD algorithm based on a static odd-polynomial model
(5th order) has been adopted. Low memory effects have been manifested by the
PA, thanks to careful bias network design and accurate mounting for thermal dissi-
pation. Table 5.1 summarizes the average power, maximum power and efficiency of
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the PA with and without DPD. We can conclude from the table that the DPD do
not degrade the output power and efficiency performance of the PA since the output
average and maximum power and the drain efficiency remain almost the same.

Figure 5.12. Instantaneous magnitude and phase response for the 7 MHz channel
WiMAX signal: (a) AM/AM characteristic, (b) AM/PM characteristic.

Figure 5.13. Instantaneous magnitude and phase response for the 28 MHz channel
WiMAX signal: (a) AM/AM characteristic, (b) AM/PM characteristic.

Figure 5.12, Figure 5.13 are the instantaneous magnitude and phase responses with
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Figure 5.14. Normalized power spectrum density of the designed wideband PA
with a 7 MHz WiMAX test signal with 9.2 dB PAPR. The black line is the ETSI

emission mask.

Figure 5.15. Normalized power spectrum density of the designed wideband PA
with a 28 MHz WiMAX test signal with 9.2 dB PAPR. The black line is the ETSI

emission mask.

7 MHz and 28 MHz channel WiMAX signals, respectively. In both figures, the ma-
genta points represent the response of the PA and the blue points are for the PA

65



5 – Software Simulation based on Matlab

with DPD. The output of the PA excited by the 28 MHz channel WiMAX signal
displays more memory behavior than that of 7 MHz signal. However, in both cases,
the PA has been linearized with a more straight magnitude response and more flat
phase response as shown in the figures.

The resulting measured output power spectrum density with DPD is shown in Fig-
ure 5.14 and Figure 5.15. An ACPR of around 30 dBc is obtained without applying
digital predistortion for both cases. However, after employing the DPD algorithm,
an ACPR of 40 dBc is obtained. Moreover, the mask compliance with the ETSI
standards could be achieved for most adjacent channel.

Table 5.2 summarizes the linearization performance of the DPD concerning the
ACPR and NMSE, where the NMSE is evaluated between the normalized input and
output data of the PA. 13 dB improvement of both the lower and upper sideband
ACPR has been obtained for the WiMAX signal with 7 MHz channel while the
improvement is of 10 dB for the 28 MHz channel signal. The NMSE improvement
is around 9 dB.

7 MHz 28 MHz
ACPR (dBc)

NMSE
(dB)

ACPR (dBc)
NMSE
(dB)

Lower
Sideband

Upper
Sideband

Lower
Sideband

Upper
Sideband

No DPD -34.7 -35.1 -25.1 -34.5 -34.7 -24.1
With DPD -47.6 -48.6 -34.1 -43.9 -44.6 -32.9
Improvement 12.9 13.5 9.0 9.4 9.9 8.8

Table 5.2. Summary of performance improvements of the DPD algorithm in terms
of the ACPR and NMSE values.

If we back-off the operation power to the level where the linearity performance of
the PA without DPD is similar to that with DPD. The results are shown in Table
5.3. When the linearity performance with power back-off is similar to the DPD tech-
nique in terms of the NMSE value, the power level and the efficiency of the PA are
severely lowered. The average output power, maximum power and efficiency with 7
MHz channel WiMAX signal are 23.5 dBm, 32.3 dBm and 4.5%, respectively. In the
mean while, for the 28 MHz channel signal, the average output power, maximum
power and efficiency are 23.6 dBm, 33.9 dBm and 4.5%, respectively.
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7 MHz
1 2 3 4 5

Pav (dBm) 30.5 28.9 27.1 25.6 23.5
Pmax (dBm) 39.2 37.6 35.4 33.8 32.3
Efficiency 18.2% 13.5% 9.8% 6.9% 4.5%

NMSE (dB) -25.5 -26.5 -28.1 -30.7 -32.0

28 MHz
1 2 3 4 5

Pav (dBm) 30.7 28.9 27.4 25.4 23.6
Pmax (dBm) 40.1 38.6 37.2 35.4 33.9
Efficiency 18.9% 13.5% 10.2% 6.7% 4.5%

NMSE (dB) -25.2 -25.8 -27.0 -28.2 -30.0

Table 5.3. The power back-off performance: average power, maximum power and
efficiency.

5.4.2 Hybrid Doherty Amplifier

Another example is a hybrid power amplifier, more specifically a wideband Doherty
PA [16] designed for the 3 - 3.6 GHz frequency range (18% bandwidth) [72]. A sim-
ple technique based on wideband compensators inserted at the output of the peak
and main cells is adopted in this PA design. Moreover, second-harmonic tuning of
the main amplifier has been implemented at the upper bandwidth limit to help gain
equalization versus frequency. The active device exploited in the microstrip hybrid
circuit implementation is a packaged GaN HEMT on SiC (CGH40010 from Cree
inc.), with typical output power of 10 W in the selected band.

Figure 5.16 shows the complete schematic of the realized amplifier, also including the
wideband source input matching networks at the fundamental, that was designed to
minimize the input mismatch under large-signal conditions. The input splitter was
implemented as a branch line featuring a small imbalance between the main and
peak ports; as for the λ/4 transformer, the bandwidth achieved with this simple
solution was adequate.

The amplifier is fabricated on a Taconic substrate with copper metallization (RF35
with ϵr = 3.5, substrate height H = 0.76 mm, and metal thickness t = 0.035 mm),
and mounted on a brass carrier (see Figure 5.17). The PA is biased at VDS = 28 V
and VGS = −2.7 V for the main, and VDS = 28 V and VGS = −7 V for the peak.

The linearity of this hybrid Doherty PA has been tested using a 7 MHz channel
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Figure 5.16. Complete scheme of the Doherty amplifier.

Figure 5.17. Picture of the realized wideband Doherty PA.

I/Q signal with raised-cosine filter, roll-off of 0.2, 256-QAM modulation and PAPR
of 7.4 dB. The test operation frequencies is chosen as 3.4 GHz. The spectrum mask,
chosen according to the ETSI, is class 6LA.
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To improve the linearity, a DPD based on a memory polynomial model with polyno-
mial order of 6 and memory depth of 1 has been adopted. 0.8 dB power back-off has
been introduced to keep the spectrum within the mask limits. Table 5.4 summarizes
the average power, maximum power and efficiency of the PA with and without DPD.

Pav (dBm) Pmax (dBm) Efficiency
No DPD 36.1 42.4 39.1%
With DPD 35.9 42.8 39.2%
With DPD

(0.8 dB OBO)
35.0 42.0 36.8%

Table 5.4. Summary of the average power, maximum power and efficiency of the
PA with and without DPD.

Figure 5.18 is the instantaneous magnitude and phase response with a 7 MHz chan-
nel I/Q signal. In the figure, the magenta points represent the response of the PA
and the blue points are for the PA with DPD. The blue points form a straight line
in Figure 5.18(a) and the blue points are flat around 0 degree in Figure 5.18(b),
indicating that the PA has been linearized by the DPD algorithm.

Figure 5.18. Instantaneous magnitude and phase response for the 7 MHz channel
I/Q signal: (a) AM/AM characteristic, (b) AM/PM characteristic.

The resulting measured output power spectrum density with DPD is shown in Figure
5.19. An ACPR of around 33 dBc is obtained without applying digital predistortion.
In order to keep the spectrum within the mask limits, 0.8 dB of power back-off is
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introduced. After employing the DPD algorithm, an ACPR of 45 dBc is obtained.
Moreover, the mask compliance with the ETSI standards could be achieved by sac-
rificing a little output power.

Figure 5.19. Normalized power spectrum density of the designed PA with a 7
MHz I/Q test signal with 7.4 dB PAPR. The black line is the ETSI emission mask.

ACPR (dBc)
NMSE (dB)

Upper Sideband Lower Sideband
No DPD -33.7 -33.2 -20.5
With DPD -40.2 -41.0 -31.5
With DPD

(0.8 dB OBO)
-45.2 -47.6 -33.5

Table 5.5. Summary of the performance improvements of the DPD algorithm in
terms of the ACPR and NMSE values.

Table 5.5 summarizes the linearization performance of the DPD concerning the
ACPR and NMSE, where the NMSE is evaluated between the normalized input and
output data of the PA. 12 dB improvement of the upper sideband ACPR and 14
dB of the lower sideband ACPR have been obtained for the I/Q signal with 7 MHz
channel. The NMSE improvement is around 13 dB.
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5.4.3 MMIC Class AB Amplifier

The power amplifier under test is a combined class AB power amplifier [73] based
on Monolithic Microwave Integrated Circuit (MMIC) technology. It is realized on
TriQuint GaN HEMT on SiC MMIC for 7-GHz microwave backhaul applications.
This PA is designed to maximize the back-off efficiency while limiting amplitude and
phase distortion. A second-harmonic tuning strategy has been adopted in this class
AB PA, to relax the constraints on the resonant behavior of the output combiner.
Indeed, the back-off efficiency has been maximized, however linearity degradation
has been observed as well. The complete schematic is shown in Figure 5.20 and the
microscope photograph of the MMIC class AB amplifier is given in Figure 5.21.

Figure 5.20. Complete scheme of the harmonic tuned class AB amplifier.

Figure 5.21. Microscope photograph of the harmonic tuned MMIC amplifier.

The MMIC power amplifier is biased with 30 V drain voltage and 60 mA drain
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current. The linearity of this MMIC has been tested using a 7 MHz channel I/Q
signal with raised-cosine filter, roll-off of 0.2, 256-QAM modulation and PAPR of
7.4 dB. The test operation frequencies is chosen as 7 GHz. The spectrum mask,
chosen according to the ETSI, is class 6LA.

The base-band system is integrated in a real-time power measurement bench (Figure
5.9) and the bench is calibrated through standard scattering calibration, and with
a C.W. power calibration method [76]. Then, with a through under measurement,
the VSA is connected at the bench output, and a single tone test signal is applied
at the input.

To improve the linearity, a DPD based on memory polynomial model with poly-
nomial order of 4 and memory depth of 2 has been adopted. Table 5.6 summarizes
the average power, maximum power and efficiency of the PA with and without DPD.
We can conclude that the DPD do not degrade the output power and efficiency per-
formance since average and maximum output power and drain efficiency remain
almost constant with and without DPD.

Pav (dBm) Pmax (dBm) Efficiency
No DPD 29.3 35.7 25.3%
With DPD 29.4 36.4 25.7%

Table 5.6. Summary of the average power, maximum power and efficiency of the
PA with and without DPD.

Figure 5.22 is the instantaneous magnitude and phase response of the PA with a
7 MHz channel I/Q signal. In the figure, the magenta points represent the re-
sponse of the PA and the blue points are for the PA with DPD. The blue points
form a straight line in Figure 5.22(a) and the blue points are flat around 0 degree
in Figure 5.22(b), indicating that the PA has been linearized by the DPD algorithm.

The resulting measured output power spectrum density with DPD is shown in Figure
5.23. An ACPR of around 30 dBc is obtained without applying digital predistor-
tion. However, after employing the DPD algorithm, an ACPR of 45 dBc is achieved.
Moreover, the mask compliance with the ETSI standards is achieved.

Table 5.7 summarizes the linearization performance of the DPD concerning the
ACPR and NMSE, where the NMSE is evaluated between the normalized input and
output data of the PA. 12 dB improvement of both the upper sideband ACPR and
the lower sideband ACPR has been obtained for the I/Q signal with 7 MHz channel.
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Figure 5.22. Instantaneous magnitude and phase response for the 7 MHz channel
I/Q signal: (a) AM/AM characteristic, (b) AM/PM characteristic.

Figure 5.23. Normalized power spectrum density of the designed PA with a 7
MHz I/Q test signal with 7.4 dB PAPR. The black line is the ETSI emission mask.

The NMSE improvement is around 13 dB.
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ACPR (dBc)
NMSE (dB)

Upper Sideband Lower Sideband
No DPD -31.7 -31.8 -22.3
With DPD -43.6 -44.1 -34.3
Improvement 11.9 12.3 12

Table 5.7. Summary of the performance improvements of the DPD algorithm in
terms of the ACPR and NMSE values.

5.4.4 Two-stage Amplifier

The power amplifier under test is a MMIC Doherty power amplifier [74, 75] with
highly efficient driver stages on both the main and auxiliary branches, as shown in
Figure 5.24. The optimized driver stages are designed to boost gain with minimal
impact on power-added efficiency. Therefore, the output signal is the response of
both the driver and the Doherty PA, which can be seen as PAs with multi-stages.
The design of the Doherty PA is based on the 0.15 µm PWR pHEMT MMIC pro-
cess of TriQuint Semiconductors and Figure 5.25 is the microscope image of the
manufactured Doherty PA.

Figure 5.24. A Doherty PA with drivers for both main and auxiliary branches.

The devices are biased at 6 V drain voltage: in the main branch, the bias current is
20 mA for the driver and 100 mA for the power device; in the auxiliary branch, the
power device is biased with 30 mA while the driver is in class C, with -1.9 V gate
voltage. The test operation frequency is 24 GHz.

The linearity of this Doherty PA has been tested using an I/Q signal with both
7 MHz and 28 MHz channels. The I/Q signal is with raised-cosine filter, roll-off of
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Figure 5.25. Microscope image of the manufactured DPA.

0.2, 256-QAM modulation and PAPR of 7.4 dB. The spectrum mask, chosen ac-
cording to the ETSI, is class 6LA for both cases.

To improve the linearity, a DPD algorithm based on memory polynomial model
has been adopted. Since the test device exhibits a large memory effect, the memory
depth is chosen as 1 for 7 MHz case and 2 for 28 MHz case with the same polynomial
order of 6.

Figure 5.26 and Figure 5.27 are the instantaneous magnitude and phase responses
with 7 MHz and 28 MHz channel I/Q signals, respectively. In both figures, the
magenta points represent the response of the PA and the blue points are for the PA
with DPD. The memory effect is more noteworthy than in the previous three test
PAs, due to the complex stage PA architecture. Moreover, the output of the PA
excited by the 28 MHz channle I/Q signal displays more memory behavior than that
of 7 MHz signal. However, in both cases, the PA has been linearized with a more
straight magnitude response and more flat phase response as shown in the figures,
comparing to the characteristic with only PA.

The resulting measured output power spectrum density with DPD is shown in Fig-
ure 5.28 and Figure 5.29. An ACPR of around 30 dBc is obtained without applying
digital predistortion for both cases. However, after employing the DPD algorithm,
an ACPR of 40 dBc is obtained. Moreover, the mask compliance with the ETSI
standards could be achieved for most adjacent channel. The average power of this
PA with predistortion is 23.5 dBm and the drain efficiency is higher than 14% for
the input signals of both 7 MHz and 28 MHz bandwidth.

Table 5.8 summarizes the linearization performance of the DPD concerning the
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Figure 5.26. Instantaneous magnitude and phase response for the 7 MHz channel
I/Q signal: (a) AM/AM characteristic, (b) AM/PM characteristic.

Figure 5.27. Instantaneous magnitude and phase response for the 28 MHz channel
I/Q signal: (a) AM/AM characteristic, (b) AM/PM characteristic.

ACPR and NMSE, where the NMSE is evaluated between the normalized input and
output data of the PA. 11 dB improvement of both the lower and upper sideband
ACPR has been obtained for the I/Q signal with 7 MHz channel while the improve-
ment is 9 dB for the 28 MHz channel signal. The NMSE improvement is around 11
dB and 9 dB for the 7 MHz and 28 MHz cases, respectively.
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Figure 5.28. Normalized Power Spectrum Density of the designed wideband PA
with a 7 MHz I/Q test signal with 7.4 dB PAPR. The black line is the ETSI

emission mask.

Figure 5.29. Normalized power spectrum density of the designed wideband PA
with a 28 MHz I/Q test signal with 7.4 dB PAPR. The black line is the ETSI

emission mask.
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7 MHz 28 MHz
ACPR (dBc)

NMSE
(dB)

ACPR (dBc)
NMSE
(dB)

Lower
Sideband

Upper
Sideband

Lower
Sideband

Upper
Sideband

No DPD -29.5 -29.4 -19.6 -31.2 -30.7 -20.1
With DPD -40.4 -40.4 -30.8 -40.0 -39.3 -28.9
Improvement 10.9 11.0 11.2 8.8 8.6 8.8

Table 5.8. Summary of performance improvements of the DPD algorithm in terms
of the ACPR and NMSE values.

5.5 Conclusion

In this chapter, the simulation of a digital predistortion system based on memory
polynomial model has been introduced and validated. The DPD algorithm has suc-
cessfully linearized some PAs without degrading the output power and efficiency
performance. Different test bench setups were described for both hybrid and MMIC
PAs, including the instruments, the calibration. However, the procedures of the
DPD implementation are similar for hybrid and MMIC PAs.

The simulation results prove that the DPD algorithm works well for various types of
PAs excited by different input signals: different architectures, such as class AB PAs
and Doherty PAs, different technologies, such as hybrid PAs and MMIC PAs, dif-
ferent operation frequencies, such as 3.6 GHz, 7 GHz, 24 GHz. The DPD algorithm
can also linearize PAs with several stages. The test signals are WiMAX signal with
9.2 dB PAPR and I/Q signal with 7.4 dB PAPR, with both 7 MHz and 28 MHz
signal bandwidth. For all the tests, the improvement of the ACPR and NMSE can
reach 10 dB, with a best case being as high as 14 dB.
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Chapter 6

Hardware Implementation based
on FPGA

The solution introduced in the previews chapter, based on the software environment
(Matlab), is suitable for laboratory usage. However, it cannot be used for real-time
applications. In addition, another disadvantage of the software solution is the diffi-
culty in implementing the adaptive algorithm. Therefore, to address the industrial
requirements, commercial products should be used to replace the software in the
DPD test system. field-programmable gate array (FPGA) is a good choice for im-
plementing the DPD technique. It has many advantages in digital signal processing,
including high speed processing, flexible implementation, high reliability and par-
allelism computation. The proposed DPD technique is not solely limited to FPGA
and it can also be implemented based on other commercial products.

There are two critical points during the translation from software to hardware that
need to be taken into consideration: accuracy and speed. Both these two points
can be improved by the parallel operation mechanisms. The pipelined architecture
used in FPGA can reduce the propagation time and synchronize the I/Q signals in
different paths. There are two commonly used techniques to implement the DPD
algorithm into FPGA, namely, the lookup table (LUT) method and the direct struc-
ture with multipliers and adders. The LUT method stores the contents of a relation
in the memory in advance and retrieve it according to the input. This method saves
the logic resources at the expense of on-chip memory. In other hand, the direct
structure with multipliers and adders usually takes the advantage of the pipeline
architecture of the FPGA to increase the throughout. This method needs more
logic resources than the LUT method.
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6.1 FPGA Introduction

The FPGA concept starts from programmable read-only memory (PROM) and pro-
grammable logic devices (PLDs) with programmable capability. The first industrial
re-programmable logic device was manufactured by Altera in 1984. Another com-
pany, Xilinx, invented the first commercially viable field-programmable gate array
in 1985. Since then, the FPGA industry accelerates with an explosive development
and the potential benefit of using FPGA in telecommunication applications has been
discovered. Nowadays, a more recent product from Xilinx, Virtex-7, has round 2
million logic cells with a transceiver speed as high as 28.05 Gb/s. The high perfor-
mance and relative low price make FPGA competitive in various field applications.

An FPGA is an integrated circuit which is re-programmable by designers. It consists
of an array of configurable logic blocks (CLB), switch matrices for programmable
interconnections and on-chip memory. The FPGA board used in our laboratory is
an Xtreme DSP Virtex-4 Development kit made by Nallatech, as shown in Figure
6.1. The kit has two independent ADC channels and two DAC channels with 14-bit
resolution. A 105 MHz oscillator is the source of the clock or an external clock can
be brought to the board. The board is connected to the PC via Peripheral Com-
ponent Interconnect (PCI) in our experiments. Some important components on the
FPGA will be introduced in detail in the following sections.

Figure 6.1. Front view of virtex 4 board physical layout
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6.1.1 Configurable Logic Blocks

Configurable Logic Blocks (CLBs), sometimes referred to logic cells, are the fun-
damental logic components in FPGA for implementing the logic circuits, both se-
quential and combinatorial [79]. They are connected by the switch matrix which
can be programmable, as shown in Figure 6.2. All of the CLBs are identical and
each CLB contains 4 interconnected slices. Furthermore, each slice is made of 2
LUTs as logic function generator, 2 storage elements, multiplexers, carry logic and
arithmetic gates. For instance, the board used in our laboratory has in total 15,360
slices, 30,720 LUTs and 30,720 flip-flops.

In Virtex-4 FPGA, the LUT has 4 independent inputs, therefore, it is able to gener-
ate any four-input Boolean function. In addition, with the multiplexers, the LUTs
can be combined together to implement any function with five, six, seven or even
eight inputs in one CLB. There are two type of digital circuits that can be configured
as storage elements: D flip-flops and latches. In Virtex-4 FPGA, both of these two
circuits are used for storing bits.

Figure 6.2. Schematic of a FPGA components distribution.

81



6 – Hardware Implementation based on FPGA

6.1.2 ADC and DAC

The Virtex-4 FPGA boad has 2 independent ADC channels and 2 DAC channels [80]
as shown in Figure 6.1. The ADC channel has 14-bit resolution with 2’s complement
format and the data sampling rate is 105 MSample/s. The full scale range is -1.1
V to 1.1 V and the recommended maximum input signal magnitude is +/- 1 V to
guarantee the ADC performance. Several clock sources can be used for the ADC
sampling, including the 105 MHz crystal oscillator on the board and the external
input clock source.

In the other hand, the board has also two independent DAC channels with the
same 14-bit resolution and the same full scale range as the ADC channels. The
original input signal is digitized by the ADC and then predistorted in FPGA. Since
the final predistorted signal should be fed to the ESG, the digital signal has to pass
through the DAC to be converted back to be as analog signal. Both the 2 ADC
channels and the 2 DAC channels are connected with MCX connectors.

The DACs hardware operates for an input in offset binary where all ’0’ means the
lowest value and all ’1’ is the highest value. Moreover, there is an inverting op-amp
at the output of the DACs, converting all ’0’ to the highest value and all ’1’ to the
lowest value. However, the digital signal processed in FPGA is in 2’s complement
format. Fortunately, it is possible to convert the 2’s complement format to the offset
binary format directly with the following VHDL scripts, where ADC1, ADC1 are
the digital signals in 2’s complement and DAC1, DAC2 are in offset binary format
for the two channels.

DAC1 <= not (not ADC1(13) & ADC1(12 downto 0));
DAC2 <= not (not ADC2(13) & ADC2(12 downto 0));

6.1.3 Block RAM

The block RAM is a dedicated memory with single-port or dual-port, supporting
synchronous read and write. The Virtex-4 FPGA provides a large number of block
RAMs with each block RAM storing 18 Kbits data. In addition, more block RAMs
can be combined to a larger size without losing the speed. The board used in our
laboratory has 192 18-Kbits block RAMs. In Virtex-4 board, the block RAMs are
placed in columns, as shown in Figure 6.2.

Figure 6.3 is the dual-port block RAM data flow of Virtex-4 board [79]. DIA and
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DIB are the data input bus and ADDRA and ADDRB are the address bus. The
write operation is controlled by the write enable WEA, WEB. The write and read
operations are synchronous, therefore, clock CLKA, CLKB are required. At a clock
edge, the data will be stored at the address determined by the address bus. The
read operates in the same manner, reading data from the memory according to the
address of the address bus. Data can be written to one or both ports and read from
one or both ports.

Figure 6.3. Dual-port Block RAM Data Flow.

WRITE FIRST, READ FIRST, and NO CHANGE are the three different operation
modes. However, in our work, the block RAM can be seen as a read-only-memory
(ROM) to implement a function like LUT. The write operation is not necessary and
the content of the block RAMs can be initialized by a coe file. Why block RAM is
used here to implement the LUT function instead of the distributed memory? It is
because that the memory size need is large. The distribute RAM is configured with
LUTs of the logic blocks and distributed throughout the FPGA. Therefore, when
comes to large size memory, a huge amount of distribute RAMs are combined which
may cause larger wiring delay. Fortunately, block RAMs have no such delay when
more than one block are combined.
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6.2 FPGA Design Procedures

The software we use for FPGA design is the Xilinx ISE design suit. As illustrated
in Figure 6.4, the FPGA design procedures with Xilinx ISE include design entry,
design synthesis, design implementation and device programming. Each of the pro-
cedures can be verified by behavioral simulation, functional simulation and in-circuit
verification, respectively.

Figure 6.4. FPGA design flow chat.

In design entry stage, the required circuit is described by schematic or hardware de-
scription language (HDL). We choose the VHDL, which is more flexible and widely
used, to describe the design functionality. After creating the VHDL file, we can
turn to next procedure and synthesize the design. This procedure is to check the
VHDL code syntax and analyze the hierarchy of the design. The abstract VHDL
code will be turned into a netlist of logic circuits. The resulting circuit has to be
verified with the behavioral simulation to check if it works as intended. The be-
havioral simulation is performed to verify the RTL code. After synthesis, we can
run the implementation which includes translate, map, place and route. Translate
is to merge all the netlists and constrains into a Xilinx design file, map is to locate
the design circuit into the resources of the FPGA board and place and route is to
optimize the design to the time constrain. Finally, a bitstream file will be generated
in the device programming procedure. The bitstream file can be downloaded to the
FPGA board via software FUSE. The in-circuit verification can be done by software
ChipScope Pro.
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6.3 Implementation Methods

6.3.1 LUT method

LUT method is an efficient solution to implement the polynomial function in FPGA.
Although the input signal is generated randomly, the value of the signal is usually
limited in a range. Therefore, all the power terms with different orders can be
calculated in advance and stored in the memory at the address associated to the
magnitude of the complex-envelope input signal. In other words, the LUT entries
are indexed by the input signal magnitude. It is easy and fast to retrieve the value
in the LUT later with the utilization of few logic resources. Figure 6.5 depicts the
basic cell of LUT method for polynomial functions, where | · | means the magnitude
of the signal. The corresponding value of the polynomial is retrieved according the
address which is the square of the input signal magnitude.

Figure 6.5. Basic cell of LUT method for polynomial

A memory polynomial model is given as

y(n) =x(n)
[
a00 + a01|x(n)|2 + · · ·+ a0p|x(n)|2(p−1)

]
+

x(n− 1)
[
a10 + a11|x(n− 1)|2 + · · ·+ a1p|x(n− 1)|2(p−1)

]
+

...

x(n−m)
[
am0 + am1|x(n−m)|2 + · · ·+ amp|x(n−m)|2(p−1)

]
(6.1)

One conventional solution is to build LUTs for each of the polynomial terms, e.g.
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| · |2, | · |4,· · · , as the case in [81–83]. This method is more flexible since only the co-
efficients are need to be changed and the contents of the LUTs keep the same when
the test condition changes. However, more memory is required for implementing the
LUTs and extra multipliers and adders are needed to combine all the polynomial
terms into the final result. It is suitable for adaptive digital predistortion applica-
tions in which the model coefficients have to been updated repeatedly. Figure 6.6 is
an example architecture of this LUT method to compute the polynomial function,
where the complex signal x is left outside the LUT, since the LUT address is gener-
ated from magnitude and with the same magnitude x may have various values. The
coefficients in front of each polynomial term are ignored in the figure.

Figure 6.6. Architecture of LUT method to calculate polynomial

In the other hand, we can store even more terms in one LUT [84, 85]. In (6.1), all
the terms underline in each memory branch are associated to one input signal with
a certain memory depth. Therefore, all terms with the same memory depth can
be calculated and saved in one LUT in advance. With this approach, only M + 1
LUTs are needed, where M is the memory depth, and the number of multipliers
and adders will also be reduced. Consequently, the memory size required is less and
the complexity of the circuit is reduced. It is suitable for models with deep memory.
However, it will be specific for only one system and any change happening to the
system will cause the requirement of updating all the LUTs with new contents. Fig-
ure 6.7 is an example architecture of this LUT method to compute the polynomial
function.

As mentioned above, the block RAMs are employed to implement the LUTs. LUT
entries spacing has to be taken into consideration which can affect the performance
of the digital predistortion. Both uniform and non-uniform spacing have been dis-
cussed in the literature [88–90]. Non-uniform spacing with a so-called companding

86



6 – Hardware Implementation based on FPGA

Figure 6.7. Architecture of LUT method to calculate polynomial

function has been recognized to deliver the best linearization performance. The
most common companding functions are Cavers companding function [89], and a
more simplified sub-optimum companding function presented in [90].

However, the non-uniform spacing with companding function needs the information
of the probability density function of the signal and is usually with high computa-
tional complexity. Therefore, we choose the uniform spacing, due to its relatively
low complexity and good enough results in comparison to the non-uniform spacing.
The range of the test signal in our experiments is between -1 and 1 and we divide
it into 1024 intervals. The resolution of the Virtex-4 FPGA board is 14 bits and
therefore the total size of one LUT is 14 Kbits. Fortunately, the size of one block
RAM is 18 Kbits, enough for employing one LUT.

The CORE Generator software from Xilinx helps us to build the block RAM easily.
Figure 6.8 is the window of the CORE Generator for building single port block RAM
in Xilinx ISE. We should select ’Read Only’ and fill the Width blank with 14 and
Depth with 1024. The contents for each LUT is initialized with a coe file. We can
generate the corresponding LUT contents in Matlab and save it to a txt file. Then
we put the following two sentences at the beginning of the txt file and change the
extension name from txt to coe.

memory initialization radix = 10;
memory initialization vector =
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Figure 6.8. Window of CORE Generator for building single port block RAM

Finally, in CORE Generator, we should select the generated coe file and load it.
The LUT is successfully built with the block RAM. The VHDL code describing the
block RAM will be automatically generated in Xilin ISE software.

6.3.2 Direct Multiple and Add Method

Apart from LUT implementation, another method [86] to implement the mem-
ory polynomial model is a direct structure with multipliers and adders based on
Horner’s method [87]. This method maintains the high processing speed thanks to
the pipelined architecture of the FPGA. The Horner’s method is an algorithm to
calculate the polynomial in an efficient way. Given an polynomial

y(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · anxn . (6.2)

It can be re-ranged as

y(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + anx))). (6.3)

The new form of the function divides the polynomial into n stages, each of which has
the same functionality a+ bx. Pipeline structure is best suitable for the calculation
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of the multi-stage polynomial.

If we extend to the memory polynomial model with odd-order terms, the Horner’s
method works the same. For instance, a memory polynomial model with polynomial
order of 5 and memory depth of 0 is written as

y = a1x+ a2x|x|2 + a3x|x|4 + a4x|x|6 + a5x|x|8, (6.4)

which can be transformed as

y = x(a1 + |x|2(a2 + |x|2(a3 + |x|2(a4 + a5|x|2)))). (6.5)

It can be seen that the polynomial in (6.5) consists of several stages of the same
block function a + b|x|2. This block just deals with multiplication and summation
algorithms and it is simple to implement in VHDL code. Therefore, we can evaluate
a polynomial equation in the order implied by (6.5) using n pipelined stages. The
first stage computes a4 + a5|x|2 and passes the result and the value of x to the next
stage. The second stage uses the previous result as the b coefficient, adding a3 and
passing the result and x value to the third stage. The remaining stages continue
in the same manner. The data flow of the polynomial applying Horner’s method is
shown in Figure 6.9.

Figure 6.9. Basic idea of the direct multiple and add method

The proposed Horner’s method to calculate the polynomial can save the number of
multipliers which are one of the most complex and expensive components in FPGA.
Moreover, the throughout is the same with the data input, that is one input data
sampling with one calculated output data in one clock with some latency. In conclu-
sion, with Horner’s method and the pipelined architecture, the memory polynomial
model can be calculated with faster speed and less logic resources of the FPGA.
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6.4 Testbench Description and Experimental Pro-

cedures

The test bench for FPGA based digital predistortion, as shown in Figure 6.10, is
slightly different from that of software environment. In the software based simula-
tion, the predistorted signal is directly generated in Matlab and then downloaded
to the ESG. However, for FPGA implementation, the predistorted signal will be
generated by FPGA. Although it is still possible to produce the predistorted signal
in Matlab and directly store it in the memory of FPGA by bitstream file, to make
it more general, we follow the procedures of ADC and DAC. The ESG outputs the
original baseband signal to the FPGA via ADC channels and the digitized signal
enters the main part of the FPGA where it will be predistorted. The predistorted
signal coming out from FPGA via DAC will be converted back to be analog and is
fed back to the ESG where it will be modulated. Finally, the modulated predistorted
signal is sent to the PA as the excitation.

Figure 6.10. Real-time FPGA based digital predistortion setup

The preparatory procedures are the same with the software simulation. The coef-
ficients of the chosen memory polynomial model and the contents of the LUTs are
calculated offline in Matlab. Executable bitfile was generated with the Xilinx ISE.
FUSE System Software then downloaded the generated bitfile into FPGA via the
PCI interface to control the functionality of the FPGA.

The performance of the applied DPD algorithm will be evaluated with the same
criteria used in software simulation. Both time domain AM/AM, AM/PM charac-
teristics and frequency domain power spectrum density have been involved to check
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the linearization performance.

6.5 Experimental Results

The experimental setup for testing the FPGA based digital predistortion is shown
in Figure 6.11. As seen in Figure 6.11(b), the FPGA board is connected inside the
PC with PCI connector. There are two ports, I output and Q output, on the rear
panel of the ESG [91] from where comes out the original baseband signal. The signal
enters FPGA through the ADC channels and comes out from the DAC channels.
The predistorted signal returns back to the ESG via the two ports at the front panel
as shown in Figure 6.11(a).

The hybrid Doherty power amplifier [72], mentioned in the software simulation,
was chosen to test the FPGA implementation of the digital predistortion. The PA
is biased at VDS = 28 V and VGS = −2.7 V for the main, and VDS = 28 V and
VGS = −7 V for the peak at 3.4 GHz operation frequency. The test signal is a 7
MHz channel I/Q signal with raised-cosine filter, roll-off of 0.2, 256-QAM modula-
tion and PAPR of 7.4 dB.

The polynomial order and memory depth of the adopted memory polynomial model
were chosen as 6 and 1, respectively, for both the LUT methods and the direct mul-
tiple and add method. The standard emission mask for power spectrum is still the
class 6LA from ETSI.

6.5.1 Direct Multiple and Add Method

The RTL schematic, which is the register transfer level representation of the design
of the DPD system, can be viewed in Xilinx ISE software, as shown in Figure 6.12.
In the figure, A1 area is the input correction area since there is some DC offset at the
input of the ADC channels. A2 area consists of 4 D flip-flops to realize the FIR filter
with 1 delay for 2 channels. Furthermore, the A3 area is the main computational
part consists of 5 blocks with the same functionality to calculate a+b|x|2 as outlined
in Horner’s method. Therefore, 5 blocks in this design means polynomial order of 6
of the memory polynomial model. In addition, every block computes all the signals
with different memory delay. The following A4 and A5 areas combine all the values
to be the final I and Q signals. The last A6 converts the 2’s complement format
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Figure 6.11. Experimental setup of FPGA based DPD: (a) front, (b) back.

binary to offset binary with the reason mentioned above. The FPGA resources used
for this method are listed in Table 6.1.
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P = 6, M = 1 P = 6, M = 2
Flip Flops 1172 1680

Slices 753 1081
4 Input LUTs 752 998

DSP48 50 72

Table 6.1. FPGA resources utilization summary for direct multiple and add
method

The extra power consumption of DPD system is one of the biggest concerns of ap-
plying DPD algorithm. The power in watts can be estimated by the Xilinx Power
Analyzer, which is showed in detail in Table 6.2. It is clear in the table, the domi-
nant power consumption is the leakage power, in other words the static power, with
76% of the total power. Moreover, the static power remains almost the same for the
two memory polynomial models with different complexity. As a result, the power
consumption increases slightly with the increase of the model complexity.

P = 6, M = 1 P = 6, M = 2
Clock 0.05412 0.06571
Logic 0.00019 0.00019
Signals 0.00276 0.00367
DSPs 0.00000 0.00000
DCMs 0.08176 0.08176
IOs 0.00050 0.00050

Leakage 0.44300 0.44400
Total 0.582 0.595

Table 6.2. Power summary of the direct multiple and add method. All the power
values are in watts.

The hybrid Doherty PA has been linearized with the DPD system implemented in
FPGA with direct multiple and adder method. Figure 6.13 illustrates the AM/AM
and AM/PM characteristics of both the original PA and linearized PA responses,
where the magenta constellation represents the response of the PA solo and blue
constellation is for the PA with DPD system. In Figure 6.13(a), the blue points
form a more straight line and in the meanwhile, in Figure 6.13(b) the blue points
are more flat. Both of two blue lines indicate a more linearized performance of PA
with DPD algorithm in comparison with only PA. Quantitatively, the NMSE value
between the normalized output and input of the PA has improved from -20.5 dB
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without DPD to -31.3 dB with DPD.

Figure 6.13. Instantaneous magnitude and phase response for the 7 MHz channel
I/Q signal: (a) AM/AM characteristic, (b) AM/PM characteristic.

Figure 6.14. Normalized power spectrum density of the designed Doherty PA with
a 7 MHz I/Q signal. The black line is the ETSI spectrum emission mask.

In the frequency domain, the linearization performance is evaluated with the ACPR,
as shown in Figure 6.14. The out-band frequency power has been reduced and the
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power spectrum has achieved the compliance with the ETSI emission mask. The
ACPR improvements for upper and lower side band are from -33.7 dBc to -44.1 dBc
and from -33.2 dBc to -44.2 dBc, respectively.

Consequently, the DPD algorithm implemented in FPGA with direct multiple and
add method has successfully linearized the hybrid Doherty PA. 11 dB improvement
of NMSE and 11 dB of ACPR have been obtained. The average output power of
the linearized PA is 35.3 dBm with efficiency of 36.6%.

6.5.2 LUT Method

The results of the two methods with LUT are very close, therefore we introduce only
the results for one method, the one with fewer LUTs. The RTL schematic is shown
in Figure 6.15. In the figure, A1 area is the input correction area, functioning in the
same way with the previous implementation. A2 and A3 are the main LUTs, where
A2 is for the current signal and A3 is for the signal with one delay. Both A2 and
A3 have two independent LUTs in each area for representing separately the I and Q
signals. The blocks located just before A2 and A3 are the components to compute
the magnitude of the signal which will be the address to the block RAMs for data
retrieval. The following A4 adds all the values to be the final I and Q signals. The
last A5 converts the 2’s complement format binary to offset binary with the reason
mentioned above. The remaining small blocks are D flip-flops for storing data or
providing delay.

P = 6, M = 1 P = 6, M = 2
M1 M2 M1 M2

Flip Flops 263 583 311 737
Slices 265 531 333 666

4 Input LUTs 360 663 425 792
DSP48 14 32 20 44
16RAMs 4 8 6 12

Table 6.3. FPGA resources utilization summary for the two LUT methods

In spite of the similar linearization performance obtained, the FPGA resources used
by the two LUT methods are different, which are listed in Table 6.3, where M1
stands for the method with one LUT representing all the polynomial terms with the
same time state while M2 is the method with one LUT storing one polynomial term.
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Figure 6.15. RTL schematic of the designed DPD system with LUT method.

Two memory polynomial models with different memory depth and same polynomial
order have been compared. Obviously, M1 demands both less logic resources and
block RAMs, comparing to the M2 method. Moreover, the increment of FPGA
resources requirement is with a very small amount when the memory depth of the
model increases.

Table 6.4 records the power consumption in watts of each parts in FPGA for the
two LUT methods with two different model complexity. We can see that the leak-
age power is still the largest power consumption, consuming nearly 80% of the total
power.
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P = 6, M = 1 P = 6, M = 2
M1 M2 M1 M2

Clock 0.03544 0.04646 0.03876 0.04978
Logic 0.00019 0.00020 0.00019 0.00020
Signal 0.00105 0.00160 0.00103 0.00179
BRAM 0.00000 0.00000 0.00000 0.00000
DSP 0.00000 0.00000 0.00000 0.00000
DCM 0.08176 0.08176 0.08176 0.08176
IO 0.00050 0.00050 0.00050 0.00050

leakage 0.44300 0.44300 0.44300 0.44300
Total 0.562 0.573 0.565 0.577

Table 6.4. Power summary of the two LUT methods. All the power values are in
watts.

The hybrid Doherty PA has been linearized with the DPD system implemented
in FPGA with LUT methods. Figure 6.16 illustrates the AM/AM and AM/PM
characteristics of both the original PA and linearized PA responses, where the ma-
genta constellation represents the response of PA solo and blue constellation is for
PA with DPD system. In Figure 6.16(a), the blue points form a more straight line
and in the meanwhile, in Figure 6.16(b) the blue points are more flat near zero de-
gree. Both of two blue lines indicate a more linearized performance of PA with DPD
algorithm in comparison with only PA. Quantitatively, the NMSE value between the
normalized output and input of the PA has improved from -20.5 dB without DPD
to -31.0 dB with DPD.

In the frequency domain, the linearization performance is evaluated with the ACPR,
as shown in Figure 6.17. The out-band frequency power has been reduced and the
power spectrum has achieved the compliance with the ETSI standards. The ACPR
improvements for upper and lower side band are from -33.7 dBc to -43.8 dBc and
from -33.2 dBc to -43.6 dBc, respectively.

In conclusion, the results with the LUT method are very similar to the direct mul-
tiple and add method with almost the same improvements in NMSE and ACPR
values. The average output power of the linearized PA with LUT method is 35.3
dBm with efficiency of 36.1%.
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Figure 6.16. Instantaneous magnitude and phase response for the 7 MHz channel
I/Q signal: (a) AM/AM characteristic, (b) AM/PM characteristic.

Figure 6.17. Normalized power spectrum density of the designed Doherty PA with
a 7 MHz I/Q signal. The black line is the ETSI spectrum emission mask.

6.6 Comparison and Conclusion

The FPGA implementation of the digital predistortion has been tested with both
the LUT methods and the direct multiple and add method. The linearization of
a hybrid Doherty power amplifier has been successfully realized for both the two
methods with good results. The applied methods delivered similar linearization
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performance with utilization of different logic resources and block RAMs on the
FPGA. The resources used for different implementation methods are summarized in
Table 6.5, where M1 is the direct multiple and add method, M2 is the LUT method
with fewer LUTs and M3 is the LUT method with each LUT representing one poly-
nomial term.

P = 6, M = 1 P = 6, M = 2
M1 M2 M3 M1 M2 M3

Flip Flops 1172 263 583 1680 311 737
Slices 753 265 531 1081 333 666

4 Input LUTs 752 360 663 998 425 792
DSP48 50 14 32 72 20 44

Block RAMs 0 4 8 0 6 12
Power Consumption 0.582 0.562 0.573 0.595 0.565 0.577

Table 6.5. Summary of the FPGA resources utilization.

From the table , we can conclude that the direct multiple and add method uses
only the logic circuits resources of the FPGA and no memory resource. The LUT
methods save a large amount of logic resources at the expense of block RAMs as
look-up-tables. Moreover, M2 employs even less elements of the FPGA than M3 and
the resource usage increases less when the memory depth of the model increases. In
other hand, the circuit of M3 is more complex than that of M2, resulting more logic
resources and block RAMs requirements. However, the logic components used in M3
is still much less than M1, more than half less. In other aspects, M2 has a drawback
of flexibility, it is very specific and all the LUT contents should be updated with
new data with any change of the model. The power consumption is not a critical
factor since the value is almost the same for all three methods.

Furthermore, the linearization performance should also be compared with the Mat-
lab based results, as shown in Table 6.6. The average power and the efficiency
are nearly the same for all the methods. However, the linearization performance
degrades slightly for the FPGA implementation methods, especially for LUT meth-
ods. The main reason may be the DC offset at the input of the ADC channels of
the FPGA board in our laboratory which can not be compensated ideally. Another
possible reason may be the resolution of the 14 bits representation of the signal
which presents less accuracy compared to Matlab. Fortunately, in the frequency
domain, the power spectrum for all the DPD systems with different methods can
fulfill the requirement of the ETSI standard emission mask, as shown in Figure 6.18.
In the figure, magenta stands the PA without DPD, red is with Matlab DPD, green
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is with direct structure DPD, the blue is with LUT DPD and the ETSI standard is
the black line.

No DPD Matlab Direct Method LUT method
Average power (dBm) 35.1 35.0 35.2 35.2

Efficiency 36.8% 36.8% 36.6% 36.5%
NMSE (dB) -20.5 -33.5 -31.3 -31.0

Upper ACPR (dBc) -33.7 -45.2 -44.1 -43.8
Lower ACPR (dBc) -33.2 -47.6 -44.2 -43.6

Table 6.6. Comparisons of linearization performance.

Figure 6.18. Normalized power spectrum density comparison: magenta stands the
PA without DPD, red is with Matlab DPD, green is with direct structure DPD,

the blue is with LUT DPD and the ETSI emission mask is the black line.
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Chapter 7

Adaptive Predistorter Design

Digital predistortion has been verified, both in literature and in industrial applica-
tions, to be a sufficient technique for linearizing the power amplifier. It guarantees
a good linear behavioral of a PA operating at a relatively high power region, main-
taining high efficiency. In most papers and in the previous chapters on simulation
of the digital predistortion of this thesis, the PA under test is assumed to be a
time-invariant system, that is the PA characteristics do not change with the same
operation conditions. Therefore, the model extracted for the PA keeps the same for
the entire simulation procedures. However, in the real world, the PA behavioral may
change over time due to some reasons, for instance, the change of ambient temper-
ature, bias drifting or aging. Generally, the change of all these factors is irregular
and cannot be predicted in advance. We should adjust the model during the entire
operation time of the PA. In other words, an adaptive system is needed where the
parameters of the model should be extracted and updated continually in the system.

Due to the fact that the change of the PA behavior is very slow compared to the
model extraction time, the least square method can still be used for the extraction
of the model parameters in the adaptive system. A group of data should be collected
repeatedly for extracting the model with least square method. An extra memory
is required for storing the collected data. In other hand, adaptive algorithm, like
Least Mean Square (LMS) or Recursive Least Square (RLS), is preferred in the
adaptive digital predistortion system. The LMS and RLS techniques can be seen as
the adaptive filter to minimize the cost function with iteration. The RLS method
presents better performance, in terms of converge speed and the final accuracy, at a
cost of higher computational complexity than the LMS method. These two methods
can continually update the model parameters sample by sample with the input and
output data. The accuracy of the model with RLS is comparable with the least
square method, making it a proper choice for adaptive digital predistortion.
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7.1 Adaptive Algorithm

7.1.1 LMS

The LMS algorithm is one of the most widely used adaptive algorithms, mainly
due to its low computational complexity. It can be derived as an application of
steepest descent method [4]. Figure 7.1 is a general adaptive filter system, where
x(n), y(n) and d(n) are the input signal, the adaptive output signal and the desired
signal, respectively. Therefore, e(n) is the error between the desired signal and the
obtained adaptive signal. The adaptive algorithm makes use of this error to adjust
the coefficients of the adaptive filter to minimize the error. The adaptive filter is
assumed to consist of a linear combination of basis functions constructed with the
input signal, that is

Figure 7.1. General adaptive technique scheme.

y(n) =
N−1∑
i=1

ωixi(n) = ωTx , (7.1)

where x = [x0(n) x1(n) · · · xN−1(n)]
T is the vector of input signal basis with total

number of N and ω = [ω0 ω1 · · · ωN−1]
T is the adaptive filter coefficients. Generally,

x can be chosen as x0(n) = x(n), x1(n) = x(n− 1), · · · , xN−1(n) = x(n−N + 1).
The error signal will be

e(n) = d(n)− y(n) = d(n)−
N−1∑
i=0

ωi ∗ x(n− i) . (7.2)

The best filter is that the resulted error signal is with the minimum value. The
mean square value of e(n) is chosen as the cost function to be minimized:

J = E(|e(n)|2) = E(e(n)e∗(n)) , (7.3)

103



7 – Adaptive Predistorter Design

where E is the statistical expectation operator and the asterisk denotes complex
conjugation. In our case, the input data are complex numbers, thus the coefficient ω
will be also complex which, with the ith coefficient as an example, can be expressed
with real and imaginary parts:

ωi = ai + jbi i = 0,1, · · · (7.4)

Typically, the first order derivative is used to search for the optimal value which will
result the minimum error. Therefore, by applying the first order derivative to the
cost function J with respect to the coefficients vector, ω, of the adaptive filter, a
multi-dimension complex gradient vector ∇J is obtained, in which the ith element
is calculated as

∇iJ =
∂J

∂ai
+ j

∂J

∂bi

= E

[
∂e(n)

∂ai
e∗(n) +

∂e∗(n)

∂ai
e(n) +

∂e(n)

∂bi
je∗(n) +

∂e∗(n)

∂bi
je(n)

]
= − 2E[x(n− i)e∗(n)] i = 0,1, · · ·

(7.5)

where i is the input signal sample instance. The optimal value located at the moment
when ∇J = 0, that is for each sample instance during the iteration, the following
equation should be satisfied:

E[x(n− i)e∗(n)] = 0 i = 0,1, · · · (7.6)

Substitute (7.2) into (7.6),

E

[
x(n− i)

(
d∗(n)−

N−1∑
k=0

ω0kx
∗(n− k)

)]
= 0 i = 0,1, · · · (7.7)

where ω0k is the kth coefficient of the optimal coefficient vector of the adaptive filter.
Since, in general, the coefficients of the adaptive filter are determined numbers, ω0k

can be carried out of the expectation operator. (7.7) can be expanded and rear-
ranged as

N−1∑
k=0

ω0kE[x(n− i)x∗(n− k)] = E[x(n− i)d∗(n)] i = 0,1, · · · (7.8)

(7.8) should be valid for each x(n− i) with different i and we can rewrite (7.8) with
the matrix form as
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Rω = p (7.9)

whereR = E[x(n)xH(n)] and p = E[x(n)d∗(n)] with x(n) = [x(n), x(n−1), · · · , x(n−
N + 1)]T and the superscript H denotes Hermitian transposition. Therefore, R is a
matrix given by

R =


E[x(n)x∗(n)] E[x(n)x∗(n− 1)] · · · E[x(n)x∗(n−N + 1)]

E[x(n− 1)x∗(n)] E[x(n− 1)x∗(n− 1)] · · · E[x(n− 1)x∗(n−N + 1)]
...

...
. . .

...
E[x(n−N + 1)x∗(n)] E[x(n−N + 1)x∗(n− 1)] · · · E[x(n−N + 1)x∗(n−N + 1)]


and p is

p = [E[x(n)d∗(n)], E[x(n− 1)d∗(n)], · · · , E[x(n−N + 1)d∗(n)]]T

The equation (7.9) can be solved for ω by assuming that R is nonsingular, with the
result as

ω = R−1p , (7.10)

where R−1 is the inverse matrix of R. If matrix R and p are captured well, we
can replace them with their determined samples that means R = x(n)xH(n) and
p = x(n)d∗(n). Hence, a steepest descent based algorithm can be used to extract
the solution of (7.10) as

ω(k + 1) =ω(k)− µ
∂J

∂ω
=ω(k) + 2µ(p−Rω)

=ω(k) + 2µ(d(k)x(k)− x(k)xT (k)ω(k))

=ω(k) + 2µx(k)(d(k)− xT (k)ω(k)) ,

(7.11)

where µ is the step-size parameter. Therefore, the final result known as the least
mean square algorithm is

ω(k + 1) = ω(k) + 2µe(k)x(k) (7.12)

where µ is usually chosen with small real constant and k is the iteration number.
The error signal e(k) is the difference between the current desired value and the
value from the adaptive filter with the current coefficient ω(k), that is e(k) = d(k)−
xT (k)ω(k). Therefore, at each iteration, x(k), d(k), ω(k) are required to obtain the
new ω(k + 1). In general, when we iterate the LMS algorithm, the initialization of
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adaptive filter coefficient vector ω is chosen with a all-zero vector, that is ω = 0.
The LMS algorithm is summarized in Table 7.1.

Initialization
ω = 0

For the iteration, compute
e(k) = d(k)− xT (k)ω(k)
ω(k + 1) = ω(k) + 2µe(k)x(k)

Table 7.1. Summary of the conventional LMS algorithm.

7.1.2 RLS

The RLS algorithm is an extension of least square method where the least square
problem is computed in recursive form with new data samples. The architecture of
RLS algorithm can also be represented by Figure 7.1, in which the adaptive algo-
rithm is RLS method. Comparing with the LMS algorithm, RLS can achieve higher
accuracy with faster converge speed. However, the computational complexity of
RLS is also much higher than the LMS algorithm.

Similar to the LMS algorithm, the objective of RLS is also to adjust the adap-
tive filter coefficients such that the output signal from the filter will coincide as
much as possible with the desired signal. The objective function that we choose to
minimize is given by

J(n) =
n∑

i=0

λn−ie2(i)

=
n∑

i=0

λn−i
[
d(i)− xT (i)ω(n)

]2
,

(7.13)

where x is still chosen as the basis functions of a generic FIR adaptive filter with
x(n) = [x(n), x(n − 1), · · · , x(n − N)]T and e(i) is the error between the desired
signal and adaptive filter output signal at instant i. λ is called forgetting factor
which is chosen in the range between 0 and 1. Therefore, the error signals with
the instants far from the current input sample have reduced effect on the objective
function.
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To obtain the optimal value of the adaptive filter coefficients ω(n) which gives
the minimum objective function, we could differentiate the objective function J(n)
with respect to ω(n):

∂J(n)

∂ω(n)
= −2

n∑
i=0

λn−ix(i)[d(i)− xT (i)ω(n)] . (7.14)

The optimal vector ω(n) is found by forcing the first order derivative to be 0 in
(7.14). With some algebra computation, the final expression for the optimal ω(n)
is given by

ω(n) =

[
n∑

i=0

λn−ix(i)xT (i)

]−1 n∑
i=0

λn−ix(i)d(i)

=R−1(n)p(n) ,

(7.15)

where

R(n) =
n∑

i=0

λn−ix(i)xT (i)

=λ

(
n−1∑
i=0

λn−1−ix(i)xT (i) + λ−1x(n)xT (n)

)
=λR(n− 1) + x(n)xT (n) .

(7.16)

To avoid the matrix inversion computation of R−1(n) in (7.15), the matrix inversion
lemma [92], which is described as follow, has been used. Suppose that A and B are
two positive definite N-by-N matrices and have a relationship:

A = B−1 +CD−1CH , (7.17)

where C is N-by-M matrix and D is M-by-N matrix. Then the inversion matrix of
A can be expressed as

A−1 = B−BC(D+CHBC)−1CHB . (7.18)

(7.16) and (7.17) have the same relation if we make the following map between the
elements in the two equations:
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A = R(n)

B−1 = λR(n− 1)

C = x(n)

D = 1

Then, according the matrix inversion lemma in (7.18), we will get

R−1(n) = λ−1R−1(n− 1)− λ−2R−1(n− 1)x(n)xH(n)R−1(n− 1)

1 + λ−1xH(n)R−1(n− 1)x(n)
(7.19)

For simplicity, let

P (n) = R−1(n) (7.20)

and

k(n) =
λ−1P (n− 1)x(n)

1 + λ−1xH(n)P (n− 1)x(n)
(7.21)

Then, (7.19) can be rewritten as

P (n) = λ−1P (n− 1)− λ−1k(n)xH(n)P (n− 1) (7.22)

In the next, we should conclude the expression for ω(n). From (7.15), we know[
n∑

i=0

λn−ix(i)xT (i)

]
ω(n) = λ

[
n−1∑
i=0

λn−1−ix(i)d(i)

]
+ x(n)d(n) (7.23)

Using the definition of R(n) and p(n) in (7.15), we can get

R(n)ω(n) =λp(n− 1) + x(n)d(n)

=λR(n− 1)ω(n− 1) + x(n)d(n)

=

[
n∑

i=0

λn−ix(i)xT (i)− x(n)xT (n)

]
ω(n− 1) + x(n)d(n)

=R(n)ω(n− 1) + x(n)(d(n)− xT (n)ω(n− 1))

(7.24)

As defined above, P (n) = R−1(n), the final expression for ω(n) will be

ω(n) = ω(n− 1) + e(n)P (n)x(n) (7.25)
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where e(n) = d(n)− xT (n)ω(n− 1). Therefore, the RLS algorithm can be summa-
rized as

Initialization
P (0) = δI
where δ is a constant and I is the identity matrix.
ω(0) = 0

For the iteration, compute

k(n) = λ−1P (n−1)x(n)
1+λ−1xH(n)P (n−1)x(n)

e(n) = d(n)− xT (n)ω(n− 1)
ω(n) = ω(n− 1) + e(n)P (n)x(n)
P (n) = λ−1P (n− 1)− λ−1k(n)xH(n)P (n− 1)

Table 7.2. Summary of the conventional RLS algorithm

7.2 Adaptive Digital Predistortion Based on RLS

Figure 7.2 illustrates a general adaptive DPD system. According to the idea of
adaptive algorithm, the output data from the power amplifier should be sent back
continually with the same sample rate of the input signal. Hence, a coupler is applied
at the end of the PA and a small amount of power will be fed back. The feedback
signal should be down-converted to baseband by passing through the demodulator.
Moreover, an ADC will lead the feedback baseband signal into digital domain. The
coefficients of the model will be updated with the adaptive algorithm by comparing
the input and output signal.

The model used in our adaptive DPD system is the memory polynomial model with
odd-order terms. Therefore, the x(n) vector in (7.12) and (7.25) will be changed as
following

x(n) =[x(n), x(n)|x(n)|2, · · · , x(n)|x(n)|2(P−1), x(n− 1), · · · x(n− 1)|x(n− 1)|2(P−1),

· · · , x(n−M), · · · x(n−M)|x(n−M)|2(P−1)]T

(7.26)
where P and M are the polynomial order and memory depth of the memory polyno-
mial model, respectively. The ω vector in (7.12) and (7.25) will be the coefficients
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Figure 7.2. General adaptive DPD architecture.

of the memory polynomial model. The objective of the adaptive algorithm is to
update the memory polynomial model coefficients during each iteration according
to the error signal.

7.3 Simulation results with RLS algorithm

The adaptive algorithms, LMS and RLS, have been tested with a combined class
AB power amplifier [73]. A standard tuned load approach has been adopted in this
PA and it is fabricated with monolithic microwave integrated circuits (MMICs).
The related input and output signal of the PA have been acquired with the help
of Matlab and VSA. The data will be used to extract the model coefficient by the
adaptive algorithms.

Although the conventional adaptive algorithms, both LMS and RLS, work well for
real number signals, the situation becomes worse for complex-envelope signals, which
is the case in our experiment. Figure 7.3 shows the simulation results for the LMS
and RLS algorithms. The y-axis is the NMSE value which describes the difference
between the desired signal and predicted signal from the model. During each iter-
ation, the model coefficients will be replaced with new values and the NMSE value
will be calculated with the new model output data. In Figure 7.3, both the conver-
gence and the final accuracy are not acceptable. For conventional RLS algorithm,
it is even not converged and the NMSE is higher than -20 dB which is much higher
than the least square result. Although, for LMS algorithm, it can converge, the
NMSE is too high which is around -10 dB. The results are not usable in the real
applications. The adaptive algorithm should be modified for the complex signals
which will be discussed in next section.
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Figure 7.3. The performance of the conventional LMS and RLS algorithm.

7.3.1 Algorithm Modification for Complex Number

Indicated by Figure 7.3, the conventional adaptive algorithms are not suitable for
extracting the memory polynomial model in our case because of the bad performance
in complex number domain. We will modify the adaptive algorithms for complex
signals.

The memory polynomial model with polynomial order of 2 and no memory, for
simplicity, is given by

y(n) = a0x(n) + a1x(n)|x(n)|2 , (7.27)

where both x(n) and y(n) are complex-envelope signals and a0, a1 are complex co-
efficients. We can separate the complex signal into real and imaginary parts:

yI + jyQ = (a0I + ja0Q)(xI + jxQ) + (a1I + ja1Q)(xI + jxQ)|x|2

= (a0IxI − a0QxQ) + j(a0IxQ + a0QxI)

+ ((a1IxI − a1QxQ) + j(a1IxQ + a1QxI))|x|2

If two complex numbers are equal, both the real and imaginary parts of the numbers
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should be equal. Therefore,

yI = (a0IxI − a0QxQ) + (a1IxI − a1QxQ)|x|2

yQ = (a0IxQ + a0QxI) + (a1IxQ + a1QxI)|x|2 .
(7.28)

The complex model has been separated into two models with real signals. Hence,
during each iteration in the LMS and RLS algorithms, the conventional computation
will be processed 2 times for both real and imaginary signal samples. Moreover, the
coefficients ω and the basis functions x(n) in (7.12) and (7.25) should be rearranged
as

ω = [Re(ω0), Im(ω0), Re(ω1), Im(ω1), · · · , Re(ωN), Im(ωN)]

x1(n) =[Re(x(n)), − Im(x(n)), Re(x(n)|x(n)|2), − Im(x(n)|x(n)|2), · · · ,
Re(x(n)|x(n)|2(P−1)), − Im(x(n)|x(n)|2(P−1)), · · · ,
Re(x(n−M)), − Im(x(n−M)), · · · ,
Re(x(n−M)|x(n−M)|2(P−1)), − Im(x(n−M)|x(n−M)|2(P−1))]T

x2(n) =[Im(x(n)), Re(x(n)), Im(x(n)|x(n)|2), Re(x(n)|x(n)|2), · · · ,
Im(x(n)|x(n)|2(P−1)), Re(x(n)|x(n)|2(P−1)), · · · ,
Im(x(n−M)), Re(x(n−M)), · · · ,
Im(x(n−M)|x(n−M)|2(P−1)), −Re(x(n−M)|x(n−M)|2(P−1))]T

where Re(·), Im(·) are the real part and imaginary part of the complex number,
M and P are the memory depth and polynomial order of the model, respectively.
By applying this modification, the complex number model has been divided into
two real number models, for which the conventional adaptive algorithms have good
enough accuracy.

Figure 7.4 compares the performance of the conventional adaptive algorithms and
the proposed modified algorithms on the extraction of the memory polynomial
model. The data are still obtained from the combined class AB power amplifier.
In the figure, the proposed adaptive algorithms, both LMS and RLS, show a better
performance than the conventional algorithms. The proposed RLS algorithm has
the best results, converging with the fastest speed and obtaining the best accuracy.
The final NMSE value of the RLS algorithm can reach as high as -40 dB, which is
very low for the error between the desired signal and the modeled signal. Therefore,
the proposed RLS algorithm with two separated conventional RLS structures is the
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Figure 7.4. Comparison between the conventional LMS and RLS algorithm and
the modified LMS and RLS algorithm.

best choice for the adaptive DPD applications.

In conclusion, the conventional LMS and RLS algorithms have limited performance
in dealing with the complex signals. The model extracted by the conventional adap-
tive algorithms has poor accuracy and sometimes not converged. Modification has
been made to improve the performance of the conventional adaptive algorithm. The
complex model could divide into two real signal models by rearranging the input
signal vector and the coefficients of the adaptive filter. Better accuracy and faster
converge speed have been obtained for the proposed adaptive algorithms, especially
for the modified RLS algorithm. The final accuracy of the converged model has a
comparable NMSE value with that obtained from least square method.
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Chapter 8

Conclusion and Future Work

In modern wireless communication systems, as the demand for data continues to
increase in a limited frequency range, complex digital modulation techniques are
increasingly being used. However, these kinds of techniques are non-constant en-
velope modulation which are very sensitive to PA’s nonlinearity. In addition, the
modulated signal usually presents high PAPR. All these impose strict linearity re-
quirements for the RF power amplifier. For a typical PA, obviously, the simplest
solution is to back off the input power level to the linear region. This will degrade
the efficiency performance of the PA, especially for signals with high PAPR. There-
fore, in order to maintain both linearity and high efficiency, linearization technique
is needed.

Apart from power back-off solution, there are other linearization techniques, such as
feedforward, feedback method. Among all these techniques, the digital predistortion
has become a preferred choice due to its relative simplicity and good accuracy. The
basic idea of digital predistortion is to introduce a nonlinear block just in front of the
PA. This block, called Predistorter, produces the inverse nonlinear response of the
PA, both in magnitude and phase. In this way, the predistorter can counteract the
PA’s nonlinearity and the final behavior will be linear. Therefore, a model that can
predict accurately the behavior of the PA and the predistorter is required. Various
behavioral models were built and compared, including full Voterra model, memory
polynomial model, generalized memory polynomial model, Wiener model and ratio-
nal function model. Among these behavioral models, the memory polynomial model
was chosen to model the PA and the predistorter since it has a good compromise
between model accuracy and computational complexity. Moreover, since the mem-
ory polynomial model is linear in its parameters, least square method was applied
for the model parameters extraction.

The model has been determined and in next part of this thesis, the evaluation of
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DPD system was demonstrated with four PAs with different architectures: a hybrid
class AB PA, a hybrid Doherty PA, a MMIC class AB PA and a two-stages PA.
In the four tests, the linearity of the PAs had a significant improvement with the
DPD system and the output power and efficiency of the PAs remained the same.
In frequency domain, an emission mask (classes 6L) chosen according to the ETSI
was introduced to define the linearity requirement for the output power spectrum
density. For all the four PAs, the mask compliance could be achieved by the DPD
system.

The following chapter of this thesis was to extent the DPD system for real ap-
plications. Therefore, to address the industrial requirements, commercial products
should be used to replace the software in the DPD system. FPGA was selected which
is an integrated circuit containing a large amount of logic blocks and reconfigurable
interconnections. Two types of methods were discussed to implement the DPD sys-
tem on FPGA: one was based on LUT method, the other one was a direct structure
with only adders and multipliers. The block RAM on the FPGA was chosen to be
as the LUT due to its large memory size and flexible implementation. Although the
implementation methods were different, the final linearized performance was simi-
lar. The FPGA based DPD systems could also linearize the PA and fulfill the linear
requirements according to the ETSI spectrum emission mask.

The last part of the thesis was on the adaptive DPD system. Since the PA’s behavior
may change over time due to some reasons, such as change of ambient temperature
or aging, an adaptive system was required to keep the model accuracy where model
parameters should be calculated and updated continually. Besides the least square
method, least mean square (LMS) and recursive least square (RLS) techniques could
also adopted for the adaptive system. The objective of these two algorithms was to
update the model parameters sample by sample with the input and desired output
signals. Although the conventional LMS and RLS algorithms has a good perfor-
mance in real number applications, they presents a limited capability for models
with complex number. In our test with a hybrid Doherty PA, the conventional LMS
algorithm had a very poor accuracy and the RLS algorithm could not even con-
verge. Our propose was to separate the complex memory polynomial model into 2
models with only real number. In this way, we could process the conventional LMS
or RLS algorithm two times for the two separated models during each iteration. As
the result, the propose solution demonstrated a much better performance, especially
for the proposed RLS algorithm, which presented a fast converge speed and a high
accuracy.

The linearization of wideband and multi-band PAs are the two main future chal-
lenges for DPD technique. Nowadays, as the user number and the demand for data
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in wireless communication systems continue to increase, the signal bandwidth should
also increase to fulfill the requirements and the digital modulation will become more
spectral efficient. The resulting modulated signal usually presents wide bandwidth
and large PAPR. Moreover, the sampling rate and the digital system bandwidth
will increase correspondingly with the signal bandwidth. The digital predistortion
system will become more complex, with more complex model and more coefficients.
It will take more clock cycles to extract the model coefficients. In addition, the high
sampling rate will also pose requirements for ADC and DAC systems. As a result,
the high clock rate and high complexity will lead to more power consumption and
more expensive components.

Another trend to transfer signal in wireless communication system is to accommo-
date multi-band signal which means that the PA should be able to amplify signals
in multiple bands at the same time. The components of the distortions due to the
PA nonlinearity are more complex, including not only harmonics, but also intermod-
ulation distortions. Conventional behavioral models fail to predict the distortions
accurately. New architecture should be developed to compensate the nonlinearities
of multi-band transmitter.

Another challenge is on how to implement DPD system for low-power, small size
devices. In the literature, the DPD solutions are usually designed for medium or
high power amplifiers. Since the DPD system itself will consume some energy, the
efficiency of the whole transmitter will be reduced, making the DPD technique im-
proper for low-power PAs. Therefore, another open issue is on the implementation
of DPD technique for low-power PAs.
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