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A Flexible Framework for the Automatic
Generation of SBST Programs

Andreas Riefert, Member, IEEE, Riccardo Cantoro, Member, IEEE, Matthias Sauer, Member, IEEE,
Matteo Sonza Reorda, Fellow, IEEE, and Bernd Becker, Fellow, IEEE

Abstract— Software-based self-test (SBST) techniques are used
to test processors and processor cores against permanent faults
introduced by the manufacturing process or to perform in-
field test in safety-critical applications. However, the gener-
ation of an SBST program is usually associated with high
costs as it requires significant manual effort of a skilled engi-
neer with in-depth knowledge about the processor under test.
In this paper, we propose an approach for the automatic
generation of SBST programs. First, we detail an automatic
test pattern generation (ATPG) framework for the genera-
tion of functional test sequences. Second, we describe the
extension of this framework with the concept of a validity
checker module (VCM), which allows the specification of con-
straints with regard to the generated sequences. Third, we
use the VCM to express typical constraints that exist when
SBST is adopted for in-field test. In our experimental results,
we evaluate the proposed approach with a microprocessor
without interlocked pipeline stages (MIPS)-like microproces-
sor. The results show that the proposed method is the first
approach able to automatically generate SBST programs for both
end-of-manufacturing and in-field test whose fault efficiency
is superior to those produced by state-of-the-art manual
approaches.

Index Terms— Automatic software-based self-test (SBST),
functional ATPG, microprocessor test, SBST, SBST for in-field
test.

I. INTRODUCTION

TESTING microprocessors for permanent faults emerg-
ing during the manufacturing process or during the

operational phase is a complex task, regardless whether the
processor is a standalone device or a core within a system
on a chip. The most suitable solution depends on the spe-
cific scenario and on the specific technology. In some cases,
design for testability (DfT) perfectly fits the requirements.
In other cases, it is necessary to complement DfT solutions
with other techniques, e.g., functional test.1 For example,
the adoption of some recent technologies makes the test of
delay defects particularly important, which sometimes can
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1In this paper, we denote a test, which can only control the functional inputs

and can only observe the functional outputs as a functional test.

hardly be detected using traditional DfT solutions (e.g., scan).
There are also cases, in which DfT is simply not feasible. For
example, when the in-field test of a board or system must
be developed by a system company, sufficient information
about any DfT structure is often not made available by the
device providers, and functional test becomes the only feasible
solution.

When processors are considered, functional test typically
takes the form of software-based self-test (SBST) [1]: the
processor is forced to execute a given test program, and
faults are detected by looking at the results produced by
the program (e.g., in terms of values written in memory).
Unfortunately, functional test suffered in the past from the fact
that the complexity for generating suitable test stimuli may be
prohibitively high. When considering a processor, the task of
developing suitable test programs was mainly performed in a
manual manner, thus raising significant concerns in terms of
required cost and time.

Several functional test approaches have been proposed for
microprocessors over the last three decades [2]–[5]. In the
last decade, functional approaches have also been increasingly
adopted by industry [6]–[8]. In the recent years, the growing
adoption of processor-based systems in safety-critical appli-
cations significantly increased the need for effective solutions
for their in-field test. Furthermore, the emergence of standards
and regulations (e.g., IEC 61 508 for industrial safety-
related systems, ISO 26 262 for automotive applications, and
DO-254 for avionics) further pushed industries and researchers
to focus on the in-field test of such systems. As a result,
several works dealt with the development of techniques for
writing effective test programs for whole processors or for
some popular components within a processor. For example,
the method described in [9] allows to write test programs
able to effectively test caches, while in [10], an approach
was proposed that focuses on the test of branch prediction
units. In [11], a technique is described for the test of memory
management units. In addition, functional ATPG tools based
on formal methods, such as satisfiability (SAT) and bounded
model checking (BMC), have been proposed [12]–[14].
However, these approaches struggled with the complexity of
handling a complete processor within a BMC formula. For
example, in [12], this is handled by generating module level
tests and mapping them to instructions. This is often not
possible as module level tests may require nonfunctional
system states. While often stuck-at faults are considered, also
methods for the functional test of delay faults have been devel-
oped [15], [16]. Furthermore, functional methods for detecting
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faults, which do not affect the correct functionality of a proces-
sor but degrade its performance, have been investigated [17].
In [18], an approach was proposed for the generation of
SBST programs, which is mainly based on the execution of a
large number of blocks of random instructions (>1 million).
However, it does not succeed in achieving high fault coverage
when only the memory content can be observed after SBST
program execution. In [19], an approach to SBST program
generation is presented, which is based on the creation of an
abstract simulation model of the processor under test. Random
training programs are used to create a mapping from processor
inputs and outputs to inner module ports. This mapping is used
in conjunction with constrained structural ATPG in order to
derive an SBST program. Furthermore, special test routines for
hidden control logic as data forwarding and branch prediction
are proposed. While this approach is able to achieve high fault
coverage, it requires in-depth knowledge of the processor for
creating a simulation model and test routines for hard-to-test
logic.

At the same time, some companies providing micro-
controllers for safety-critical applications started to deliver
libraries of software procedures that, when executed by the
processor, guarantee the achievement of specified fault cov-
erage. These libraries are integrated by the system company
into the application software, and their execution is properly
triggered depending on the test and reliability specifications.
Clearly, their development represents a significant cost, which
could be reduced if at least some parts could be automatically
generated, starting from the processor netlist.

While the discussed works provide generalized approaches
to (semi-)manual test program generation or automatically
generated functional test sequences (TSs), none of them allows
a user to model the constraints of an SBST program for
an arbitrary processor and test environment on an abstract
level. For example, a constraint could require to only apply
valid instructions. Especially when targeting in-field SBST,
restrictive constraints are imposed, e.g., the memory area
available for the test code and data may be limited [20], some
input signals may hardly be controllable (e.g., reset), and only
the final content of the memory can be observed. Hence, the
generation of the corresponding test program is significantly
more complex than for end-of-manufacturing test. Previous
works also showed that during in-field test, a higher number
of faults become untestable [21]. Thus, a general approach
to model the described constraints is mandatory to achieve
the same degree of automatism for SBST generation as it is
common for scan test patterns in (commercial) ATPG tools.
Furthermore, an effective identification of untestable faults
under the specific constraints is necessary to comply with the
regulations in the application field of the processor.

The first contribution of this paper is to describe a method,
based on formal techniques, which is able to automati-
cally generate suitable test programs for mid-sized pipelined
processors, such as those that are often used in microcon-
trollers. These test programs can be used for both end-of-
manufacturing and in-field test. The method introduces several
optimizations with respect to previous attempts in the area,
which can reduce the computational effort and maximize the

achieved fault coverage. It is worth mentioning that the method
is able not only to generate a test program with high fault
coverage, but also to prove the untestability of faults. The
employed solving engine applies unbounded model checking
for the first time in the scope of SBST generation. This enables
to handle a complete mid-sized processor at gate level within
the solving engine, which has not been possible with other
approaches [12]. The employment of abstraction techniques
in combination with the powerful solving engine will allow to
handle even larger designs.

The second contribution of this paper specifically focuses on
in-field test. This kind of test requires launching the execution
of suitable procedures either at the power-ON or during the idle
slots of the application. By looking at the produced results,
the system can detect possible faults affecting the processor.
We list constraints, which often exist when performing in-
field SBST test of a processor, and propose a method, which
allows to use the optimized ATPG algorithm mentioned before
in combination with these constraints. In practice, the method
allows the test engineer to specify the constraints existing in
a given environment, and thereby forcing the ATPG algorithm
to generate a test program matching them. As a result, this
paper is the first to propose a method able to automatically
generate effective test programs to be used for in-field SBST
test of a processor. A major advantage of this method lies in
the fact that it is also able to identify faults, which cannot be
tested, when constraints are introduced. Experimental results
gathered on an MIPS-like processor show the feasibility and
the effectiveness of the proposed solutions.

This paper is an extension of [22], where the combination of
specified constraints with the described ATPG was introduced,
and of [23], where exemplary constraints for SBST were devel-
oped and evaluated. In this paper, we improve the runtime of
the functional test generation engine by extracting and reusing
knowledge gained during the test generation process and by
implementing a heuristic for the reduction of aborts. We give
a detailed and generalized description of typical in-field SBST
constraints and their integration into our framework. Finally,
we present extensive experimental results with significantly
improved performance compared with the previous works.

The rest of this paper is organized as follows. Section II
introduces two formal tools, which are used in this paper.
Section III details the functional ATPG algorithm and its
optimizations. In Section IV, the interface for the specifi-
cation of constraints is described. Section V introduces the
considered constraints, which are present in a typical SBST
scenario. Finally, Section VI shows the experimental results
and Section VII concludes this paper.

II. PRELIMINARIES

In this section, we give an introduction to two formal
techniques, which are employed in this paper. First, we detail
BMC with Craig interpolation, which allows to determine the
(non-)existence of a trace from an initial state to a target
state. Thus, the combination of BMC with Craig interpola-
tion enables unbounded model checking. Second, we give a
brief introduction to maximum SAT (MAX-SAT), which is a
generalization of the Boolean SAT problem.
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Fig. 1. Processing steps for a fault.

A. Bounded Model Checking With Craig Interpolation

A classical BMC solver tries to solve a formula, which is
defined by an initial state I0, a transition relation Ti,i+1, and
a target property Pk

BMCk = I0 ∧ T0,1 ∧ · · · ∧ Tk−1,k ∧ Pk . (1)

Ti,i+1 defines the progress of the system from time frame i
to i + 1, whereas Pk specifies the property to be verified.
Starting with k = 0, the solver searches for a solution, which
satisfies the target property or proves that the target property
cannot be satisfied within k steps. k is increased stepwise until
a solution is found or no new system states can be reached.
In general, the latter case requires very large values for k,
which are not feasible in practice.

However, several approaches for a more efficient unreacha-
bility proof exist. In this paper, the solver Craig Interpolation
prover (CIP) is employed [24], which uses Craig interpolants
to over approximate the reachable system states within each
step. This in many cases allows to prove effectively that a
target property will not be satisfied for arbitrary values of k,
which corresponds to unbounded model checking.

B. MAX-SAT

The underlying engine of our algorithm is an efficient
SAT-based maximization tool, which solves the so-called
MAX-SAT. An ordinary SAT problem consists of a number
of clauses. An SAT solver has to find a solution, which
satisfies each single clause and thus satisfies the SAT formula.
If no such solution exists, the formula is unsatisfiable.
An MAX-SAT problem is a generalization of SAT and its
target is to determine the maximum number of clauses that
can be satisfied simultaneously.

In the following, we provide a brief overview of the
employed MAX-SAT solver [25]. The solver distinguishes
between two types of clauses, namely, hard clauses and soft
clauses. A valid solution has to satisfy all hard clauses and
the maximum number of soft clauses. This problem is solved
by incrementally calling an SAT solver. In order to transform
the original problem, consisting of hard and soft clauses,
into a standard SAT problem, which only consists of hard
clauses, the formula has to be modified. For this purpose,
a bitonic sorting network is employed and encoded into the
formula. This network can be viewed as a circuit with n inputs
(corresponding to the soft clauses) and n outputs. Its function
is to sort all 0s and 1s [each 0 (1) corresponding to an

unsatisfied (a satisfied) soft clause] applied at the inputs to
form a nondecreasing sequence. Alternatively, the network can
be understood as a counter, which counts all applied 1s and
outputs the result in a unary representation. This enables us to
count the number of satisfied soft clauses and incrementally
adjust the bounds for this number until the optimal solution is
found.

To prevent excessive runtimes, the employed MAX-SAT
solver works with a timeout. If the timeout is reached, the
solver returns the best solution that it has found so far.
Furthermore, the solver comprises a partial mode, which does
not return the optimal solution but incrementally optimizes
the blocks of soft clauses. The block size is a user-defined
parameter. Small block sizes yield increased performance but,
in general, produce worse results.

III. ATPG FRAMEWORK FOR FUNCTIONAL

TEST GENERATION

In this section, we give a detailed description of the pro-
posed functional ATPG framework, which is based on the
solver introduced in Section II-A. While also other functional
ATPG engines could be used, SAT-based approaches have
shown to be very effective for targeting hard-to-detect faults
and identifying untestable faults. The proof of structural or
functional untestability for a considered fault allows to cor-
rectly classify it and reduces the overall abort ratio.

The ATPG framework starts with a fault list, which initially
contains all faults. All structurally equivalent faults are then
collapsed. The faults from the collapsed fault list are processed
one after each other. If a TS could be generated for a fault,
all yet untested faults, which are tested by this sequence,
are removed from the fault list. Processing one fault consists
of the steps shown in Fig. 1. These steps are described in
Sections III-A–III-D. The structural testability check is done
with an SAT solver; all remaining steps are based on the
CIP solver. All CIP-based steps require an initial state I0.
We use the reset state,2 when no TS has been found yet,
or the state reached after applying the last pattern of the
previously generated sequence. Finally, Section III-E describes
an optimization of the framework, which extracts knowledge
from successfully generated TSs and reuses this knowledge to
speed up the further TS generation.

2The reset state is determined by calculating a synchronization sequence,
which starts in the all-X state and brings the circuit into a well-defined reset
state. Thus, the synchronization sequence can bring the circuit from each
arbitrary state into the reset state.
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This functional ATPG framework is the underlying engine
for the automatic generation of an SBST program. When
applying additional constraints for SBST (Section V) to the
ATPG algorithm, the generation of a TS for a fault will
correspond to finding an assembler code snippet, which tests
this fault. By using the final state of the last sequence as the
starting state for the next sequence, we ensure that all snippets
can be consecutively connected to a single test program.
Furthermore, the ability of the solver to prove unreachability
will identify faults for which no system state can be reached
from which the fault can be tested. Consequently, it is not
possible to generate a code snippet, which will test this fault,
i.e., the fault is proved to be untestable.

A. Structural Testability Check

The first step determines whether a fault is structurally
testable. We denote a fault as structurally testable if it can be
tested with full control over all primary inputs and secondary
inputs (i.e., flip-flop outputs) and full observability of all
primary outputs and secondary outputs (i.e., flip-flop inputs).
Consequently, a structurally testable fault can be tested with
a full-scan approach. In this step, we employ an SAT solver
as only one unrolling of the circuit has to be considered. For
the input cone of the fault, only the fault-free version of the
circuit has to be encoded. The output cone has to be encoded
in fault-free and faulty versions in order to determine the fault
effect. By solving the corresponding formula, the SAT solver
either finds a structural test for the fault or proves that no
such test exists. In the latter case, the fault does not have to be
considered further as it will also be untestable in the functional
scenario. This step is reasonable as it can effectively identify
structurally untestable faults with only one unrolling of the
circuit.

B. Functional Testability Check

The second step evaluates whether a TS exists, which is able
to sensitize the fault and propagate it to a primary or secondary
output within the same cycle. For this purpose, a CIP formula
has to be generated. For the transition relation Ti,i+1, the
whole circuit is encoded in a fault-free version. In addition,
the output cone of the fault location, specifying the faulty
behavior, is encoded in the transition relation. In the target
property Pk , we require a difference between the fault-free
and the faulty output cone of the fault location. If the solver
returns unsatisfiable, then the fault is functionally untestable as
no circuit state can be reached, which sensitizes the fault and
propagates it to an output. In combination with Footnote 2, we
can also conclude that no such state can be reached from the
initial state. Thus, there is no functional system state, which
allows testing the fault. This check is reasonable as it only
requires encoding the faulty output cone of the faulty circuit
instead of the complete faulty circuit (which is required for the
next steps) and is, therefore, a less complex problem. If the
solver returns satisfiable, we proceed with the next step.

C. Test Sequence Generation

This step tries to generate a TS, which sensitizes the
considered fault and propagates it to a primary output. For the

transition relation of the CIP formula, we now have to encode
the complete circuit in a fault-free and a faulty version. This is
necessary as the fault effect may be propagated through several
cycles and arbitrary parts of the circuit before it reaches a
primary output. In the target property, we require a difference
between the fault-free and the faulty circuit at a primary
output. If the solver returns satisfiable, we can extract the
TS from the solution. If the solver aborts due to a timeout, we
proceed with the next step.

D. Partitioned Test Sequence Generation

If a fault is testable, but requires a long TS, the TS genera-
tion step may abort with a timeout, as a large number of circuit
unrollings are required. Therefore, this step tries to generate a
TS by partitioning the problem into two subproblems, namely,
sensitization and propagation. The sensitization step sensitizes
the fault and latches it into at least one flip-flop. Then the
propagation step tries to propagate the latched fault effect to
a primary output.

For the transition relation of the sensitization step, we
encode the complete circuit in a fault-free and a faulty version.
In the target property, we require the fault effect to be latched
at least in one of a set of suitable flip-flops. The initial state
of the propagation step is then given by the final state of the
sensitization step, i.e., a circuit state where at least one flip-flop
contains a fault effect. The transition relation also contains the
encoding of the fault-free and the faulty circuit. In the target
property, we require a difference between the fault-free and
the faulty circuit at a primary output. The selection of suitable
flip-flops is crucial for the success of this ATPG step. For this
purpose, we precompute a heuristic for each flip-flop, which
estimates the probability that a fault effect latched in this flip-
flop can be propagated to a primary output. This heuristic is
computed by choosing several random functional states. Then,
for each flip-flop, a fault effect is inserted and a CIP formula
is generated and solved, which tries to propagate this fault
effect to a primary output. The partitioned TS generation is
executed for several iterations until a solution is found or
a user-defined bound is reached. In the first iteration, only
flip-flops, which are structurally reachable from the fault
location, are considered. If the fault effect could be latched
into flip-flop F , then, in addition, all flip-flops, which are
structurally reachable from F , are considered in the next itera-
tion. Thus, the iterations of the partitioned TS generation will
propagate the fault effect successively to varying flip-flops,
until the fault effect is latched into a state, which allows
its propagation to a primary output. If the propagation step
succeeds, then the TS is extracted from the solutions of the
sensitization and propagation steps. If the user-defined bound
is reached, the fault is classified as aborted.

E. Fault Propagation Sequences

In this section, we will describe a modification of the
TS generation step (Section III-C), which decreases the
runtime by reusing knowledge gained from previously
generated TSs.

A valid TS for a fault has to achieve two tasks. First,
the fault has to be sensitized and latched into a register.
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Fig. 2. Propagation sequence extraction.

Second, the faulty value of the register has to be propagated
to an observable output of the circuit. While the sensitization
is fault specific, the propagation of the latched register value
is often fault independent. Therefore, we propose an approach
that is based on a propagation sequence cache maintaining
propagation sequences for each register r, which will allow
the propagation of a value from r to a circuit output. These
propagation sequences are extracted during the execution of
the ATPG algorithm. Each successfully generated TS is used
for extraction.

1) Propagation Sequence Extraction: The algorithm for
the extraction of propagation sequences requires a TS for a
fault F as an input. By fault simulation, we determine the
traces over which the fault effect is propagated from the
fault source to a primary output. Assume that TS consists
of N clock cycles, and F is sensitized in cycle tK . An example
of such a sequence is shown in Fig. 2. The algorithm will start
with the last clock cycle tN . The set ODN of all observable
outputs, which show a fault effect in this cycle, is identified,
i.e., oa and ob in the example. For each output odN ∈ ODN ,
we will then execute the following flow. The fault propagation
path in the currently evaluated cycle tN from odN to an
originating register idN is identified, e.g., from oa to rg .
Then an MAX-SAT formula (see Section II-B) is build.
We use 01X-encoding where an X is regarded as a don’t
care value. First, the input cone of this path is encoded.
All side inputs of the path are required to maintain their
noncontrolling value. All primary and secondary inputs in
the input cone are required either to maintain their logic
value or to be X . Finally, a maximization condition over
the number of primary and secondary inputs being X is
formulated. By solving this formula, the MAX-SAT solver
will return a partially specified pattern PTSN , where the
01X-minimal number of primary and secondary inputs is
specified, which still enables the fault propagation through the
required path. This pattern then constitutes a fault propagation
sequence with a length of one clock cycle starting at register
idN . If there is more than one originating register, the flow
is repeated for all of them. Then, the next output odN is
evaluated.

When all odN ∈ ODN values have been evaluated, the
algorithm will continue with clock cycle tN−1. Now,
the set ODn−1 consists of the registers idN (r f and rg in
the example) from the previously evaluated cycle tN . The
elements of this set will be denoted by odN−1. Similar to

cycle tN , for each odN−1, the following flow is executed:
The fault propagation path in cycle tN−1 from odN−1 to an
originating register idN−1 is identified, e.g., from r f to rd . The
MAX-SAT formula is built by first generating 01X-encoding
of the input cone of this path. In addition, the pattern PTSN

from cycle tN has to be considered. The input cone of each
register, whose value is not X in PTSN , is also 01X-encoded.
Furthermore, these registers are required to have the same
logic value as in PTSN . The remaining formula is generated as
described above. The solution of this MAX-SAT formula is a
partially specified pattern PTSN−1 with the minimal number of
specified primary and secondary inputs and enabled fault prop-
agation through the desired path. Furthermore, the secondary
outputs of this pattern are compatible with the secondary
inputs of PTSN . By concatenating PTSN−1 and PTSN , we
obtain a fault propagation sequence with a length of two clock
cycles, which propagates a fault from the register idN−1 to
the primary output odN . An example for such a propagation
sequence would be the path from rd to r f and then to ob.
Then, the next odN−1 is considered.

In general, there can be several propagation paths originat-
ing from a register r . In order to reduce the processing time,
we determine whether an already computed partially specified
pattern PTS for r also covers other propagation paths from r .
If this is the case, these paths do not have to be considered.

The algorithm will evaluate all clock cycles until
reaching tK . During each cycle tI , we extract partially speci-
fied patterns PTSI and connect them with their corresponding
patterns from the following time frames. This enables us to
efficiently compute propagation sequences of arbitrary length.
The fault propagation sequence extraction algorithm is applied
to each generated TS during the ATPG flow.

2) Application of Propagation Sequences: The computed
fault propagation sequences are integrated into the ATPG
flow by modifying the TS generation step described in
Section III-C. This modification is detailed in the following.
We first determine which registers are structurally reachable
from the considered fault over a certain amount of clock
cycles. If no propagation sequences have been cached for
any of these registers, the TS generation step is executed
as usual. The amount of evaluated clock cycles is deter-
mined by the user. Furthermore, the user defines how many
propagation sequences are chosen as targets. The selection
algorithm will then start with the registers that are structurally
reachable within one clock cycle and select one register and
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its corresponding propagation sequence, which has the lowest
number of specified secondary inputs. Then, the selection will
proceed with the registers structurally reachable within two
clock cycles. When the maximum number of considered clock
cycles is reached, the selection process will start again with the
registers reachable within one cycle. This process continues
until the required number of propagation sequences is chosen.
Next, a CIP formula is constructed, similar to Section III-C.
For the transition relation, we also generate encoding of the
fault-free and the faulty version of the complete circuit. The
target property is now modified. It requires that the fault effect
is latched into a system state, which is compatible with one of
the targeted propagation sequences. This means that the fault
effect has to be latched into the register, which is given by
the propagation sequence, and the other register values have
to match the values of the specified secondary inputs given by
the propagation sequence. If such a state is reachable, we can
construct the final TS for the considered fault by extracting
the resulting sequence from the CIP formula solution and
attaching the propagation sequence. We determine by fault
simulation that the fault is detected by the final sequence.
In general, it may happen that the desired propagation is
hindered because of reconvergent fault effects. In this case,
the generation of a TS with the propagation sequence cache
has failed and we proceed with the partitioned TS generation
step, thus trying to generate a TS without the cache.

F. Prediction of Aborts

The first experimental results showed that the list of aborted
faults contained several blocks of faults, which consisted of
structurally very similar faults. This structural similarity is
usually due to several gates being located in the input cone
of different flip-flops, which belong to the same multibit
register (e.g., a 32-bit register). When considering such a
block of structurally similar faults, the solver will try to solve
repeatedly almost the same problem for each fault. Therefore,
we implemented a heuristic, which identifies faults that are
structurally similar to previously aborted faults in order to
avoid unnecessary processing. Structural similarity of two
faults is determined by comparing the port and the type of
the gates affected by the two faults as well as the inputs,
outputs, and (multibit) registers located in the input and output
cone of the two fault sites. If all of these points are equal,
the two faults are considered to be structurally similar. For
the heuristic, all aborted faults since the last successfully
generated TS are stored. When considering the next fault
for ATPG, we determine whether this fault is structurally
similar to a previously aborted fault. If this is the case, this
fault is immediately classified as aborted without processing it.

IV. VALIDITY CHECKER MODULE

The functional ATPG framework described in Section III
assumes that the primary inputs of a circuit under test (CUT)
can be set to arbitrary values at each clock cycle, and the
primary outputs can be observed at each clock cycle. While
this assumption is valid in a production test scenario, it is not
realistic in an SBST environment. Usually, an SBST approach

Fig. 3. Validity checker module (VCM).

comprises the following steps. First, a test program and
corresponding data are uploaded to the memory accessible by
the microprocessor under test. Then, the program is executed
and the final memory content is downloaded. Finally, the
memory content is compared with a golden version, i.e.,
a fault-free execution. Consequently, only valid instructions
and data words can be applied to the data bus. In addition,
hardware interrupts cannot be controlled by software means.
Furthermore, a fault effect can only be observed if written in
the memory at the end of the test. The described constraints
are exemplary for a realistic SBST environment. However,
the concrete constraints can differ depending on the require-
ments imposed by the environment. Therefore, an approach
is required, which can flexibly model these requirements and
constrain the generated TSs accordingly.

We propose a so-called validity checker module (VCM)
for the specification of the SBST requirements. The VCM is
a circuit that can be specified in a hardware description
language (HDL), such as VHDL or Verilog. It is then syn-
thesized to a gate-level netlist and combined with the CUT.
The described functional ATPG framework (Section III)
is extended to incorporate the constraints specified in the
VCM into the TS generation. This will yield TSs, which satisfy
all specified constraints. Thus, the VCM serves as an interface
for the specification of constraints given by the environment of
the CUT. This interface is also very flexible as the addition of
new constraints or the modification of existing constraints can
be achieved by (re)writing a small amount of the HDL code.

Fig. 3 shows an overview over the VCM concept. In the
HDL source file, a test engineer will specify a number of con-
straints describing the environment of the CUT. A constraint
has to be a circuit itself with an arbitrary number of inputs
and one output. The output should be 1 if the constraint is
satisfied and 0 otherwise and is denoted by validity output.
The constraint can be designed as a pure combinational block
or may contain storing elements. Its inputs can comprise
several types of signals as indicated in Fig. 3. The primary
inputs and outputs of the CUT can be utilized as constraint
inputs, e.g., for forbidding certain values on these signal lines.
An internal signal can serve as an input, e.g., if the validity of
the constraint depends on a CUT register value. In addition,
we introduce pseudo-D inputs that are not part of the CUT.
However, they are required if a constraint, referring to a fault
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Fig. 4. Typical in-field SBST environment.

effect at a certain signal or bus, has to be specified. For
example, if a constraint requires a fault effect to be visible
at bus data, then pseudo-D input data_D is introduced, which
is handled like a normal circuit input in the VCM. The ATPG
framework will then identify data_D as the placeholder for the
fault effect at data and connect this line to the corresponding
variable in the circuit encoding, which determines whether
a fault effect is visible, i.e., a difference between the fault-
free and faulty circuit version is visible at data. After all
constraints are specified, the VCM can be synthesized to a gate
netlist. This netlist is combined with the CUT netlist, as shown
in Fig. 3. The resulting netlist is the input for the functional
ATPG. The ATPG framework supports the activation and
deactivation of each constraint during each step. This is useful
for identifying constraints, which invalidated test generation
for a specific fault. Furthermore, we distinguish between two
types of constraints, namely, invariant constraints and target
constraints. An invariant constraint has to be valid in each
cycle of a TS, while a target constraint only has to be valid
in the last cycle of a sequence.

V. CONSTRAINTS

In this section, we will describe the constraints that are
usually present in a realistic in-field SBST environment and
explain how these constraints can be enforced with the
VCM (Section IV). We divided the constraints into several
subclasses, which outline the challenges related to the genera-
tion of an SBST program. First, we will discuss each subclass
on an abstract level and then give the concretely implemented
constraints for a typical in-field test environment. An overview
of the considered SBST environment is shown in Fig. 4. The
implemented constraints should be seen as an example and
as a basis for the specification of constraints for an arbitrary
microprocessor and test environment, since the flexibility of
our framework allows a user to easily change, remove, or add
constraints in order to model his specific requirements.

A. Hardware-Controlled Inputs

As SBST is solely based on the execution of a software
program, it is not possible to access hardware-controlled
inputs. This is especially true when considering in-field SBST,
where the processor is usually embedded in a larger system.
Therefore, the input signals of the processor will be connected
to other system modules, such as memory, sensors, or IO con-
trollers, and will not be controllable during SBST. Instead, the
SBST program has to work properly without being disturbed
by these hardware-controlled inputs. Consequently, the user
has to specify HDL constraints, which describe the behavior of
these signals during SBST execution. For example, an external

interrupt may be constantly inactive or may only occur within
a certain amount of clock cycles. However, describing such
behavior on the high abstraction level of an HDL is easily
achievable.

In our SBST environment, we consider three hardware-
controlled inputs. First, the system reset signal is only allowed
to be active once at circuit initialization and then has to remain
inactive. This is reasonable as activating the signal at certain
clock cycles would be hard to control in an in-field SBST sce-
nario. Second, analogous to the previous constraint, hardware
interrupts are not allowed and have to remain inactive. Third,
we assume a memory with a response time of one clock cycle.
Therefore, we require the memory acknowledgment signal to
be always active. If a memory with another response time or
interface is used, constraints corresponding to this memory
protocol have to be implemented at this point.

B. Valid Memory Content

In an in-field SBST scenario, we are only able to control the
program and data memory content. Depending on the actual
processor under test, this content has to be further restricted.
In most cases, the program memory is supposed to solely
contain instructions from the processor instruction set. This
requires the user to implement a constraint, which comprises
the encoding of all instructions.

In our test environment, we applied the following constraint.
If the processor is loading an instruction, only valid instruc-
tions are allowed to be applied at the data bus. For this purpose,
the encoding of all instructions from the processor instruction
set has to be contained in the implementation of this constraint.
If a data word is loaded, no restrictions are applied.

C. Program Memory Coherence

As the objective is to generate a program, it has to be
possible to map a computed TS to memory. This requires
the coherence of the program memory, i.e., fetching an
instruction from one memory address should always return
the same instruction. A naive approach could store all accessed
instructions in the VCM, i.e., implement a program memory.
However, this would induce a large search space and would not
be feasible. Hence, we implement this requirement by prevent-
ing operations, which decrement the program counter. This can
be achieved by restricting branch instructions accordingly and
forbidding system functions and exceptions. As this approach
is very restrictive and may decrease the fault coverage for
certain modules, test macros can be utilized. The idea of a
test macro is to specify a small state machine, which requires
a certain sequence of instructions. For example, this can be
used to allow backward branches, which are usually required
for testing branch prediction units.

At the power-ON, the processor is supposed to set the
program counter to a well-defined value. The constraint is
enforced by forbidding jump instructions to arbitrary memory
locations and system functions. Furthermore, branch instruc-
tions are only allowed to increase the program counter by a
fixed value. This value is chosen by taking into account the
number of pipeline stages, which take place after loading the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

branch instruction until its execution. The described constraint
will, therefore, enforce a monotonic increase in the program
counter and avoid several fetch operations from the same
memory address. However, this restrictive implementation may
prevent testing some parts of the processor. In order to cope
with this challenge, the constraint is extended by two macros,
which are described in the following.

Increasing the program counter by a fixed value results in
high instruction addresses being hard to reach. Therefore, the
first macro enables reaching these addresses more easily. It
consists of two jump and link instructions (jump to target
address and store return address) and one store instruction.
The first jump can target an arbitrary memory address above a
user-defined threshold; the second jump will then return to the
memory address after the first jump. Finally, a store instruction
for the return address will be performed. In case of a fault in
the address logic, this control flow will be manipulated and
the store instruction will not be performed or store a wrong
value in the memory.

A branch prediction module will usually require the exe-
cution of a branch instruction at a certain memory address
several times in order to be activated [10]. Therefore, the
second macro enables backward branches in a restricted way.
The macro enforces a conditional branch instruction, whose
condition is initially false and, therefore, the branch is not
taken. Then, the condition is set to true, and a second branch
instruction returns to the first conditional branch instruction.
As its condition is now true, it will branch to a store instruc-
tion, which finishes the macro. A fault in the branch prediction
module will cause a branch to a wrong memory address and,
therefore, the store instruction will not be executed. Please
note that the performance faults [17] in the branch prediction
unit, i.e., faults that only cause a wrong branch prediction,
cannot be detected due to the fault detection condition, which
states that only the memory content after program execution
is observable. However, performance faults would require
cycle-accurate monitoring of the circuit outputs. Consequently,
performance faults are untestable in an in-field SBST scenario.

Finally, the constraint requires that either only one of the
macros is active or both are deactivated. In the latter case,
branches are restricted to a fixed value. The functional ATPG
will then choose one of these three possibilities to test a given
fault.

D. Data Memory Coherence

In addition to the program memory coherence, the data
memory coherence also has to be guaranteed. This means
that two consecutive load instructions accessing the same
memory address have to return the same data word. If a store
instruction has been executed on a memory address, then all
following load instructions accessing the same address have to
return the previously stored data word. This requirement can
be implemented by defining a starting address for the data
memory and by then performing all memory load and store
instructions on consecutive memory cells.

The data memory coherence constraint is implemented by
initially loading a predefined value into a general purpose
register r. The loaded value determines the starting address of

the data memory. The value of r serves as the target address for
all load and store instructions. After one of these instructions
has been executed, the value of r is incremented. No other
manipulations of r are allowed. This constraint will, therefore,
cause all load and store instructions to target distinct memory
cells in the data memory.

E. Fault Detection

In an in-field SBST scenario, it is only possible to observe
the memory content after the execution of the test program.
Therefore, a fault effect has to be persistently stored in
the memory in order to be observed. For this purpose, the
pseudo_D inputs (Section IV) can be utilized. The constraint
that enforces the fault detection has to require a memory
store operation, while a pseudo_D input (related to a memory-
controlling output) is active, i.e., a fault effect affecting the
store operation is visible. For example, requiring the pseudo_D
input of the data bus to be active, while a store is performed,
will cause storing faulty data.

For our test environment, the implemented constraint
requires that either the memory write signal is faulty or the
memory write signal is active and a fault effect is visible at
either the address or the data bus. The first requirement will
lead to a store instruction, which is only executed in either
the fault-free or the faulty case. The latter requirement will
cause a store instruction, which either writes to an erroneous
memory address or writes an erroneous data value into the
memory.

F. SBST Program Extraction

Generating a TS for a fault with the described constraints
will return a sequence of patterns consisting of valid instruc-
tions and data words. By simulating the sequence, we can
determine the memory address, which is outputted by the
processor at the address bus for fetching an instruction or
loading a data word. The implemented constraints will enforce
that each instruction and data word is using a unique address
in the memory. The SBST program can be extracted by map-
ping each instruction to its corresponding memory address.
Furthermore, the data words required by the load instructions
can be preloaded into the corresponding memory cells.
Therefore, a memory mapping is generated, which realizes
an SBST program together with its required data.

G. Application to Other Fault Models

The approach detailed in this paper considers stuck-at
faults. However, this approach can be extended to other fault
models. In [26], a functional ATPG algorithm for small-
delay faults was proposed, which is based on the same solver
as the functional ATPG in this paper. Riefert et al. [22]
combined the small-delay fault ATPG with the VCM described
in Section IV.

VI. EXPERIMENTAL RESULTS

An MIPS-like processor [27] was used to prove the via-
bility and the effectiveness of the proposed approach. This
processor comprises a five-stage pipeline, data forwarding, and
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TABLE I

EXPERIMENTAL RESULTS (PERCENTAGE WITH REGARD TO COMPLETE FAULT LIST)

branch prediction. We utilized the available register transfer-
level description.3 The VHDL code was synthesized with
Synopsys Design Vision using an in-house developed library.
The resulting gate netlist contained 18 279 gates and 1966 flip-
flops that were all considered for stuck-at test generation. The
uncollapsed fault list contains 111 024 faults and is collapsed
to 54 181 faults. The VCM containing all described constraints
was specified in VHDL and comprises ∼400 lines of code,
which resulted in a synthesized netlist consisting of 1387 gates
and 55 flip-flops. All experiments were executed on one core
of an Intel Xeon processor running at 3.3 GHz and being
equipped with 64 GB of RAM. The timeout for each call to
the utilized CIP solver was 60 s. One solver call required no
more than 3 GB.

A. Evaluation of Contraints

We executed three runs with differing sets of applied
constraints. First, we executed an experiment with no con-
straints applied (no constraints). This corresponds to an end-
of-manufacturing test scenario. Second, only the constraints
described in Sections V-A and V-B were considered. These
constraints are implemented as small combinational blocks and
are, therefore, denoted by combinational constraints. Third,
the remaining constraints from Sections V-C to V-E, which
correspond to more complex sequential blocks, are addition-
ally considered. This experiment is denoted by all constraints.
The first run required 32 h, the second run required 29 h,
and the third run required 65 h. The runtime decrease in
the second run, in comparison to the first run, is due to the
combinational constraints, which restrict the search space in
a suitable way, and thus simplify the task of the solver. The
third run requires significantly more time as the additional
constraints, especially the fault detection condition, invalidate
several simple solutions, which were valid in the first two
runs. While the runtime is relevant, the reader should note
that alternative approaches are much more costly as they
require a skilled engineer with in-depth processor knowledge
to manually generate an SBST program instead of computer
runtime.

3The available version contains a bug, which always executes a conditional
branch, even when the condition does not hold. As the correct execution of a
conditional branch instruction is required for the execution of a program, we
fixed this bug.

Table I lists the results of the three runs. We give detailed
results for each of the processor modules. The subdivision
corresponds to the modules given in the available VHDL
code. The columns untest and abort give the percentage of
faults, which are untestable in the considered scenario, and are
aborted, respectively. The column FC gives the fault coverage
of the generated TSs. The column FE gives the fault efficiency,
i.e., the percentage of faults that can be either tested or
proved as being untestable. Compared with other approaches
utilizing BMC [12], we have a low abort ratio as our approach
can identify all structurally untestable faults and a significant
amount of functionally untestable faults. Consequently, aborts
are avoided, while processing these faults. The TSs generated
with no constraints have a total length of 15 389 clock cycles.
Considering the combinational constraints, it yields TSs with
a total length of 12 601 clock cycles. When applying all
constraints, 17 162 clock cycles are required.

B. Evaluation of Proposed Optimizations

The propagation sequence cache (Section III-E) has been
applied to all runs. In order to assess the effectiveness of
the cache, we executed an additional evaluation run with
no constraints applied and without utilizing the propagation
sequence cache. In this evaluation run, we processed all 1588
TSs that were generated by the original run with the cache.
For each of these sequences, the evaluation run tried to
generate one sequence starting from the same starting state
and targeting the same fault as the corresponding sequence
from the original run. The described evaluation approach
ensures that the original run with cache and the comparison
run without cache will always process the same problem
instances and, therefore, provide comparable runtimes. The
original run utilizing the cache required 72 002 s for generating
the 1588 TSs and extracting the propagation sequences. The
comparison run without utilizing the cache required 100 837 s
for processing the corresponding 1588 problem instances.
Out of these instances, 17 were aborted, i.e., no pattern
could be generated without utilizing the cache. Thus, the
application of the propagation sequence cache could improve
the TS generation runtime by ∼28%. This demonstrates
that the knowledge gained from already generated TSs can
be automatically extracted and used beneficially for the
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further ATPG process. Out of the 1588 generated sequences,
1068 propagation sequence cache hits occurred. For all of
these cache hits, the cached sequence provided a valid fault
propagation sequence, i.e., it was not corrupted by the targeted
fault. This shows that assuming the propagation of a latched
fault effect to be mostly fault independent (Section III-E) is
reasonable.

We also evaluated the effectiveness of the proposed heuristic
for the prediction of aborts (Section III-F) by executing an
additional experimental run with combinational constraints
and without the described heuristic. The results show that the
proposed heuristic reduces the runtime by 26% and addition-
ally misclassifies only 0.13% of the total number of faults as
aborts.

C. Comparison With Other Approaches

In [28], an approach for the generation of an SBST program
was proposed, which is based on the manual development
of test programs for the different modules of a processor.
Gizopoulos et al. [28] evaluated the processor, which is
also considered in this paper. They are able to achieve fault
coverage of 95.08%. It has to be noted that they consider
an older version of the processor, which does not contain
a branch prediction unit. However, it can be concluded that
our automatic approach achieves the comparable fault cover-
age (95.02%) without the need for manual effort and in-depth
processor knowledge. In addition, it can classify 3.14% faults
as untestable and achieve a fault efficiency of 98.16%. The
manual generation of test algorithms is particularly tedious
and time expensive when considering pipeline structures with
bypassing and data forwarding. Furthermore, certain faults can
become untestable due to the constraints imposed by a realistic
SBST scenario. Due to standards and regulations for safety-
critical systems, it is also important to identify these faults.
By activating or deactivating certain constraints in the VCM,
our approach allows not only to prove untestability of a
fault but also to identify the constraint, which made the fault
untestable.

In [18] and [19], also the same processor, as considered
in this paper, is evaluated and the results are given. How-
ever, the processor is synthesized using differing libraries.
Furthermore, the fault coverage given in both works is
computed by considering only structurally testable faults,
i.e., structurally untestable faults are collapsed. Thus, the
fault coverage given here is rather comparable to the fault
efficiency of our approach. Furthermore, Lu et al. [18] utilize
so-called micro observations which means that the fault effect
can be observed at each clock cycle. This makes it rather
comparable to our run, which considers only combinational
constraints. In [18], 98.46% fault coverage can be achieved,
while our approach considering combinational constraints
achieves 99.31% fault efficiency. Compared with the fault
coverage of 97.31% achieved by [19], we achieve a fault
efficiency of 98.16%. As detailed, these numbers cannot be
compared exactly but still indicate the effectiveness of our
approach.

For comparison, we also evaluated the effectiveness of
random TSs. Fig. 5 shows the evolution of the fault coverage

Fig. 5. Comparison of fault coverage saturation with random patterns.

over the number of TS clock cycles for different test sets. The
upmost curve (ATPG) is based on the test set generated by our
functional ATPG with combinational constraints applied and
saturates at 96.46%. The second curve (random instructions)
is based on a test set where the reset and interrupt signals
are always inactive; the memory acknowledgment signal is
always active and random instructions are applied. This corre-
sponds to the combinational constraints. This curve saturates at
about 86.66%. In the beginning, this curve rises more steeply
than the fault coverage of the ATPG-generated test set as
the fault list, processed by the ATPG framework, is sorted
modulewise. Consequently, the ATPG will process all faults
from one module before considering the next module, while
random instruction will sooner address easy-to-detect faults
from all modules. The lowest curve (random patterns) is based
on completely random patterns. This test set is only able to
reach ∼25.63% fault coverage. Fig. 5 shows that constrained
random patterns can be used to achieve basic fault coverage.
However, they are not able to achieve high fault coverage as
they fail to test hard-to-detect faults, which require a very
specific TS.

VII. CONCLUSION

In this paper, we have presented a framework, which
allows for the first time to automatically generate an effective
in-field test program for a pipelined processor. We have
detailed the basis of this framework, which is a functional
ATPG engine capable of efficiently generating a TS for a
fault or proving its untestability. Several optimizations of the
functional ATPG engine have been developed. Furthermore,
the flexible interface of our framework has been described,
which allows the specification of arbitrary constraints, induced
by an in-field test environment, on an abstract level. We have
listed typical constraints, which exist in an in-field processor
test environment and illustrated their integration into our
framework. Finally, extensive experimental results have been
reported, which show the effectiveness of the approach and
give significantly improved runtimes with regard to the previ-
ous works. In particular, the experimental results show that our
fully automatic test program generation method can achieve
the same stuck-at fault coverage as manual approaches.
Furthermore, it can take into account any constraint stemming
from an in-field SBST environment, and identify untestable
faults.
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