
POLITECNICO DI TORINO

SCUOLA INTERPOLITECNICA DI DOTTORATO

Dottorato in Computer and Control Engineering

Tesi di Dottorato

Exact and Heuristic Hybrid
Approaches for Scheduling and

Clustering Problems

Michele Garraffa

Tutore Coordinatore del corso di dottorato
prof. Federico Della Croce di Dojola prof. Matteo Sonza Reorda

April 2016



Acknowledgements

In November 2015, I attended an enlightening talk given by prof. Luciano Floridi
from Oxford University. My being there was just a coincidence: I was waiting
to receive the annual award for the bests PhD students of my institution. It was
definitely not a waste of time. On the contrary, I found a lot of interesting remarks
about what does it mean to do scientific research. The title of the talk was: “How
do you get good ideas?". As said by prof. Floridi, the key point to find an answer
to this tricky question is “the problems". A researcher should enjoy them, see them
from each different sides and finally a brillant solution will arise naturally. Tackling
interesting scientific problems is fundamental for any researcher, because they help
us to improve from a scientific point of view, just like everyday difficulties help us
to be better people. Well, I am proud to say that I learned a lot in the last three
years, because I loved to spend time with combinatorial problems and I wanted to
learn from all the difficulties I went through.

I had the chance to meet a huge number of people thanks to the PhD activities,
and I would like to thank all of them. Knowing that it will be impossible to be
exahustive, I try to provide a quite representative list. First, I want to thank my
supervisor prof. Federico Della Croce, for being an excellent guide along all these
years and for all the opportunities he gave me. Furthermore, I want to thank the
supervisors I had in the research period I spent in Belgium (Ghent) and France
(Tours): prof. Greet Vanden Berghe and prof Vincent T’kindt, respectively. I
visited Greet’s research group at the end of 2012 (right before the start of my PhD)
and in 2015 for a few days. I am grateful for the fact that she believed in me and
she allowed me to have an exceptional research experience in the beginning of my
academic career. I spent most of the 2015 in Tours, where I worked with Vincent
and Lei Shang for almost 7 months. A special thank goes to Vincent for the support

ii



he gave me in this research period and for the interesting topic he proposed me: the
design of exact exponential algorithms for scheduling problems. I was enthusiastic to
work on such a theoretical field, and it was really rewarding to obtain some results.
In the months spent in Tours, Lei was an excellent research partner and a very good
friend. I learned a lot from him and I feel honestly indebted. I want to thank all
the other members of the ALCO group at Politecnico di Torino, in particular Marco
Ghirardi, Fabio Salassa and Rosario Scatamacchia. Thanks for their support and
help to all the colleagues and friends I met in the labs at Torino, Ghent and Tours,
among which: Luca, Francesca, Elisa, Mauro, Edoardo, Wim, Tony, Pieter, Jannes,
Gaetan, Faiza, Frédéric, Zeina.

Special thanks are due also to the friends I had “outside academia" that somehow
gifted me something important in these years. Calogero has been a very important
friend with whom I shared every difficulty and happy moment. My cousin Massimi-
lano helped me thousands of times with his wise hints. Thanks to Barbara for being
a very supportive friend and for all the precious hours she spent talking with me
on Skype. Thanks to Maria for still helping me with my poor English. I am also
grateful to my gorgeous girlfriend Clara, for being so sweet and supportive in the
last 2 years and a half and loving me like nobody has ever done before.

Most importantly, none of this could have happened without my family. I want
to spend the final paragraph to thank them: my mom Anna, my brother Giuseppe
and finally my grandparents Michele e Sina, who passed away in the last years. My
mother and my brother lovingly supported me in all my studies from the beginning.
The love I feel for them cannot be expressed in words. Finally, thanks to my
grandparents who had a lot of infuence on me. They will keep living in my heart.
All the merit for my achievements should be somehow shared with all of them.

iii



Contents

Acknowledgements ii

1 Introduction 1
1.1 Matheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Local Branching . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Variable Partitioning Local Search . . . . . . . . . . . . . . . 9
1.1.3 Continuous Relaxation Based Matheuristics . . . . . . . . . . 10
1.1.4 Column Generation Based Heuristics . . . . . . . . . . . . . . 11

1.2 Semidefinite Programming for Combinatorial Optimization . . . . . . 13
1.3 The Design of Exact Exponential Algorithms . . . . . . . . . . . . . . 17

1.3.1 The Branch and Reduce Paradigm . . . . . . . . . . . . . . . 18
1.3.2 Dynamic Programming across the Subsets . . . . . . . . . . . 19
1.3.3 Other Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I Scheduling Problems 22

2 A Domestic Energy Management Problem 23
2.1 Problem Description and Formulation . . . . . . . . . . . . . . . . . . 25

2.1.1 MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 A Matheuristic Approach . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iv



3 The Cutting Stock Problem with Sequence-Dependent Cut Losses
36

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.1 Related Work and Similar Problems . . . . . . . . . . . . . . . 41
3.1.2 An Approximation by 1D-CSP . . . . . . . . . . . . . . . . . 42

3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 An Exact Enumerative Pattern Based Approach . . . . . . . . 43
3.2.2 Heuristic Approach . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Computational Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Experimental Results and Discussion . . . . . . . . . . . . . . 49

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 An Exact Exponential Branch and Merge Approach for the Total
Tardiness Problem 54
4.1 A Branch and Reduce Approach . . . . . . . . . . . . . . . . . . . . . 55
4.2 A Branch and Merge Algorithm . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Merging Left-Side Branches . . . . . . . . . . . . . . . . . . . 61
4.2.2 Merging Right-Side Branches . . . . . . . . . . . . . . . . . . 69
4.2.3 Complete Algorithm and Analysis . . . . . . . . . . . . . . . . 79

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

II Clustering Problems 85

5 The Max-Mean Dispersion Problem 86
5.1 Mathematical formulations . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 A Semidefinite Programming Approach . . . . . . . . . . . . . . . . . 92

5.2.1 The Semidefinite Programming Relaxation . . . . . . . . . . . 92
5.2.2 The Branch and Bound Framework . . . . . . . . . . . . . . . 95
5.2.3 Reducted SDP model . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 A Three-Phase Hybrid Heuristic . . . . . . . . . . . . . . . . . . . . . 100
5.3.1 PHASE ONE: using the QIP solver to compute initial solutions101
5.3.2 PHASE TWO: local branching . . . . . . . . . . . . . . . . . 104

v



5.3.3 PHASE THREE: path relinking . . . . . . . . . . . . . . . . 105
5.4 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Tests for the Branch and Bound Algorithm . . . . . . . . . . . 107
5.4.2 Tests for the Hybrid Heuristic . . . . . . . . . . . . . . . . . . 111

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 The Multi-Meter Covering Problem 118
6.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.4 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.5 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . 126
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Conclusions and Future Developments 134

Bibliography 136

vi



List of Tables

2.1 Results on the first dataset . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Results on the extended dataset . . . . . . . . . . . . . . . . . . . . 34
3.1 Length and demand for each item . . . . . . . . . . . . . . . . . . . 37
3.2 Cut losses matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Results on instances with IS = 80. . . . . . . . . . . . . . . . . . . . 51
3.4 Results on instances with IS = 125. . . . . . . . . . . . . . . . . . . 51
3.5 Results on instances with IS = 170. . . . . . . . . . . . . . . . . . . 52
3.6 Summary of results on the second set of generated instances. . . . . . 52
4.1 The time complexity of TTBM for values of k from 3 to 20 . . . . . . 83
5.1 Solutions computed in PHASE ONE . . . . . . . . . . . . . . . . . . 104
5.2 Values of Tmax used in the tests . . . . . . . . . . . . . . . . . . . . . 108
5.3 Results on [76]’s small instances . . . . . . . . . . . . . . . . . . . . . 109
5.4 Results on [76]’s medium instances . . . . . . . . . . . . . . . . . . . 110
5.5 Results grouped by instance size . . . . . . . . . . . . . . . . . . . . . 111
5.6 Results of phase 2 on the instances of [76] with n = 500 for different

values of δ with k = 5 and time distribution 1 . . . . . . . . . . . . . 112
5.7 Results on the instances of [76] of Type II with n = 500 for different

distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.8 Results on the instances of [76] of Type II with n = 500 for different

distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.9 Results on the large instances for different CPU time limits . . . . . . 114
5.10 Comparing GRASP, XPRESS SLP and the hybrid algorithm on the

large instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1 Telecom vs Polito solutions for Asti instance . . . . . . . . . . . . . . 129
6.2 Telecom vs Polito solutions for Torino instance . . . . . . . . . . . . . 129

vii



6.3 Detailed Polito results for Asti instance . . . . . . . . . . . . . . . . 130
6.4 Detailed Polito results for Torino instance . . . . . . . . . . . . . . . 131

viii



List of Figures

1.1 The Local Branching scheme . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 LP and SDP in the general taxonomy for convex programs . . . . . . 14
2.1 Washing Machine Power Profile . . . . . . . . . . . . . . . . . . . . . 26
2.2 Dish Machine Power Profile . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Dynamic Tariff Profile . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Three Tier Tariff Profile . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 All the active variables in the complete MIP model . . . . . . . . . . 30
2.6 All the active variables in the first phase . . . . . . . . . . . . . . . . 30
2.7 All the active variables in the second phase . . . . . . . . . . . . . . . 30
3.1 An example of a problem instance . . . . . . . . . . . . . . . . . . . 38
3.2 First solution, 4 cutting patterns used . . . . . . . . . . . . . . . . . 39
3.3 Second solution, 3 cutting patterns used . . . . . . . . . . . . . . . . 39
3.4 Third solution, 3 cutting patterns used and larger leftovers . . . . . . 40
4.1 The branching scheme of TTBR1 at the root node . . . . . . . . . . . 60
4.2 Left-side branches merging at the root node . . . . . . . . . . . . . . 62
4.3 Merging for a generic left-side branch . . . . . . . . . . . . . . . . . . 66
4.4 An example of right-side branches merging for k = 3 . . . . . . . . . 69
4.5 Generic right-side merging at the root node . . . . . . . . . . . . . . 70
4.6 The right branches of Pn have been modified when performing right-

merging from P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1 An example showing three steps of PHASE ONE . . . . . . . . . . . 102
6.1 Flowchart of the procedure COMPUTE_UB . . . . . . . . . . . . . . . . . 125
6.2 Asti area with all the concentrators . . . . . . . . . . . . . . . . . . . 127
6.3 Asti area with the concentrators included in the optimal solution . . . 128
6.4 Comparing Telecom - Polito solutions on Asti instance . . . . . . . . 132

ix



6.5 Comparing Telecom - Polito solutions on Torino instance . . . . . . . 132

x



Chapter 1

Introduction

In the modern society, the importance of taking smart decisions is universally ac-
knowledged in any different context. Companies, nations, individuals aim at being
efficient and productive in order to achieve their goals. As a consequence, they need
to find good solutions for problems of different nature, often consisting in looking for
the best decisions among a finite number of alternatives. In operational research,
the discipline that studies how to choose the best object in a finite set is called
combinatorial optimization. An impressive number of combinatorial optimization
problems are of practical interest in many different fields like logistics, data mining,
finance, networking and telecommunication, computational biology and so on.

One of the biggest challenges of the IT era is to solve these problems automati-
cally by means of electronic computing devices and proper optimization algorithms.
Unluckily, most of the interesting combinatorial optimization problems are NP-hard
[47]. For this class of problems, it is commonly recognized that the existence of an
exact solution algorithm with polynomial complexity is very unlikely. More specifi-
cally, unless P=NP, there are no algorithms with the following requirements:

1. solve any istance of an NP-hard problem;

2. to optimality;

3. in polynomial time.

All the algorithmic studies on NP-hard problems are performed by discarding at
least one of the requirements above. Such studies date back to the 60s and involve

1



1 – Introduction

both practical and theoretical aspects. On the one hand, decision makers aim at
defining efficient practical approaches that manage large real world instances in a
reasonable time. On the other hand, theoretical computer scientists have shown that
different NP-hard problems have a different intrinsic complexity from a theoretical
point of view.

From a theoretical point of view, several algorithmic studies are mainly devoted
to achieve a deep understanding of the inner complexity of NP-hard problems. In
general, these algorithms may or may not be efficient and interesting from a practi-
cal point of view. Three research lines can be identified in this context: exact expo-
nential algorithms, parameterized algorithms and approximation algorithms. Exact
exponential algorithms [46] correspond to the study of exact approaches for NP-hard
problems where the focus is on their worst case complexity. Obviously, requirement
(3) is discarded in this context. Traditionally, the problems belonging to the NP-
hard class can be solved to optimality with different worst case complexity. Pushing
the barrier of the best worst case complexity achievable for an NP-hard problem
gives a better understanding of its intrinsic complexity, whether the resulting al-
gorithm may be inefficient in practice. In the field of parameterized complexity,
fixed-parameter algorithms [26, 38] solve to optimality NP-hard problems in poly-
nomial time with respect to the input size of the instance, but in exponential time
with respect to a certain input parameter. The polynomial complexity is achieved
as soon as the specific parameters are fixed, then we loose the generality of the
considered instances that can be handled and requirement (1) is excluded. Ap-
proximation algorithms [95, 93] replace requirement (2) with a quality guarantee
on the solution. In simple words, the solution provided by the algorithm may be
not optimal, but it can not be worse than the optimal solution more than a specific
threshold. There are several interconnections among these three research lines. As
an example, a brand new research field arises from matching approximation theory
with exact computation with respect to the worst-case complexity. This is the field
of moderately exponential approximation [78]: it allows to achieve approximation
factors that are not achievable by means of polynomial approximation algorithms.
Here, both requirement (2) and requirement (3) are discarded.

The two most important families of practical approaches are exact methods and
heuristics/ metaheuristics. Practical exact methods for combinatorial optimization

2



1 – Introduction

address the challenge of solving to optimality large instances in a limited amount
of time. In this case, requirements (1) and (2) hold, while requirement (3) does
not. As a consequence, the worst case complexity of these approaches grows ex-
ponentially with the input size as for exact exponential algorithms focused on the
worst case complexity. The difference between these two classes is the focus of
the resulting approach: practical efficiency or worst case complexity. Heuristics
and metaheuristics satisfy the need of finding high quality solution very quickly.
They are definitely faster than exact methods because the algorithm structure does
not preserve the optimality, nor any quality guarantee, of the solutions provided.
Usually, well-performing exact methods and heuristics are approaches tailored on a
specific problem, whose properties and structure are exploited in order to improve
the algorithm performances. The common aim is to manage real world instances:
depending on the case, the accent is put on the optimality requirement or on the
need of managing very large instances.

Different techniques have been used across the years to design efficient exact
methods and metaheuristics for NP-hard problems. Metaheuristics define a high-
level problem-independent strategy that guides heuristic algorithms in finding good
solutions. Tons of different metaheuristics with different structures have been de-
signed so far. A general taxonomy for metaheuristics distinguish constructive meta-
heuristics (GRASP, etc), local-search metaheuristics (simulated annealing, tabu
search, multistart algorithms, etc) and population based metaheuristics (genetic
algorithms, scatter search, path relinking, etc). For an introduction to the main
types of metaheuristics, the reader is referred to [49].

In the state of the art, the great majority of exact methods (both practical
and theoretical) are search tree approaches. In fact, practical exact methods are
usually branch and bound algorithms, where the bounding technique is used to
identify branchings that can be pruned because they will not lead to any improving
solution. The efficiency of such approaches is generally a direct consequence of
the tradeoff between the tightness of the bounds and their computational cost.
Roughly speaking, we often end up in computing a weak bound in a short time
(several nodes will be opened in the branch and bound tree), or in computing a
tight and time consuming bound (a few nodes will be opened, but a lot of time will
be required by the bounding steps). In general, the bounding procedure can be of

3



1 – Introduction

different nature and consists in solving a relaxation of the original problem. The
simplest and more common choice is to use an LP relaxation of the mathematical
formulation, which can be generally solved very quickly, for example via the simplex
method. In this context, it is possible to compute the relaxation in a node of the tree
by reusing the optimal continuous solution found at the father node (warm start).
Although such solution may be infeasible for the current node, the reoptimization
can be performed very quickly by using the dual simplex algorithm. This scheme
requires the use of a linear model for the problem considered. In other cases, convex
optimization algorithms can be exploited to obtain high quality bounds for non-
linear formulations. There exists a class of interior point methods which are able
to efficiently solve such relaxations with an arbitrary small error from the optimal
solution. The resulting bounds are often heavier to compute than LP bounds, but
their quality leads to efficient branch and bound algorithms in several cases. In the
worst case complexity analysis of an exact approach, bounding techniques are shown
so far to be fruitless. As a consequence, the branch and bound framework is replaced
by another paradigm (branch and reduce, described in Section 1.3.1) whenever the
focus is on the worst case complexity of the exact approach.

A general and universally adopted approach to determine exact methods for
combinatorial optimization is to use the state of the art solvers. These solvers take
as an input a mathematical formulation and an instance of the problem, and provide
an optimal solution as an output. There are specific mathematical programming
solvers for different types of formulations (linear, quadratic, fractional, etc). As an
example, the current Integer Linear Programming (ILP) solvers include commercial
solvers like Cplex [7] or Xpress [5] and free solvers like Symphony [3] and CBC
[2]. Thanks to mathematical solvers, today many operational researchers can focus
on the structure of the problem formulations to obtain exact solution approaches
for the problem. Since today solvers are really developed and well-optimized, the
implementation of an exact ad-hoc algorithm from scratch is often useless.

In the last years, mathematical solvers have been used also in a heuristic con-
text. This has led to the definition of a new class of metaheuristics: the so called
matheuristics [74]. Such algorithms arise from the hybridization of exact methods
and metaheuristics and try to exploit the advantages of both approaches. Even
though matheuristics avoid the complete enumeration of the solution space (as for

4



1 – Introduction

metaheuristics), the efficiency of commercial solvers can be exploited as for exact
methods. Section 1.1 is devoted to briefly describe the most important topics in the
context of matheuristics.

As a generalization of this concept, we refer to hybrid methods as the algorithms
(exact or heuristics) that mix ingredients coming from different mathematical pro-
gramming techniques. In this thesis, hybrid algorithms will reuse pieces of software
(mathematical solvers) in order to provide heuristic or exact solution for real world
combinatorial problems. As an example, this thesis provides both applications of
linear and non-linear models in the design of effective matheuristics and the use of
a convex relaxation (more specifically, a semidefinite programming relaxation) to
design an efficient branch and bound algorithm. Finally, an exact exponential al-
gorithm is proposed. It is based on a new technique that hybridize the branch and
reduce paradigm (Section 1.3.1) with concepts coming from another well-established
exact approach (dynamic programming across the subsets, Section 1.3.2).

As evidenced by the title, this thesis tackles combinatorial problems belong-
ing to two important families of combinatorial problems: scheduling and clustering
problems. Scheduling problems concern with the allocation of a limited amount of
resources to some activities over time. Due to the huge number of applications in
industry, several studies have been conducted for scheduling problems since the first
developments of the OR discipline, and an impressive number of books have been
written to summarize the most important practical and theoretical results (such as
[98]). Clustering problems consist in grouping a set of objects in several subgroups
(cluster) such that the most similar/different objects are in the same cluster. In
particular, this thesis deals with clustering problems where the aim is to find a
single cluster, the one that maximizes a specific objective. As an example, many
applications of clustering problems can be found in data mining, image processing
and machine learning.

In the next sections, the main techniques used in the thesis are introduced and
illustrated with respect to the state of the art. Section 1.1 is devoted to briefly
introduce the most important topics in the context of matheuristics. Section 1.2
describes the general use of semidefinite programming in the context of combinatorial
optimization. Section 1.3 provides a brief introduction to the most important
techniques for the design of exact exponential algorithms. Finally, Section 1.4 gives

5



1 – Introduction

a general overview on the content of this thesis and summarizes the main scientific
contributions.

1.1 Matheuristics

The intuitive idea behind the concept of matheuristics is, as described previously,
the use of mathematical solvers in a heuristic context. Since mathematical solvers
work with a model of the problem, matheuristics are also known as model-based
heuristics. Although the general idea is simple, any try to derive a formal definition
for matheuristics leads to statements that are pretty vague or not completely correct.
In fact, there is not a universally accepted formal definition in the literature. As
a matter of fact, even the main important point needs to be rediscussed in some
circumstances: mathematical solvers may be replaced by some other ad hoc exact
algorithm for the specific problem, used in a hybrid fashion. As a consequence, the
aim of this section is to delineate the features that occur most frequently in the past
works.

Generally speaking, the most important families of solvers that are exploited so
far are LP and ILP solvers. Indeed, there exists very efficient solvers for this type
of problems. The basic algorithms used for their solution are primal/dual simplex
and branch and bound. However, a lot of algorithmic improvements have led these
software to be more practically efficient by far than a standard implementation. Re-
cently, the focus has been extended to other families of problems such as quadratic
problems, whose continuous relaxation may not be convex. As an example, last ver-
sions of CPLEX implement a very efficient Quadratic Integer Programming solver,
which is also able to manage non-convexity by means of some convexification tech-
niques. It is very likely that other classes of combinatorial problems are going to
be managed by new mathematical programming solvers in the upcoming decades.
As a consequence, more and more research could likely be conducted in the area of
matheuristics, in order to exploit such new solvers.

Similarly as metaheuristics, there no exists a unique framework that works well
for any type of problem. Contrarily, there are several distinct strategies that have
been successfully adopted in several cases. A first classification is analogous to
the one that is traditionally performed for heuristics. In fact, we can distinguish

6



1 – Introduction

local-search based matheuristics and constructive matheuristics. The firsts take
as an input a starting solution xin generated by means of another algorithm, and
produce as an output a possibly improved solution xout. The improvement steps
are performed thanks to a mathematical model which describes the neighborhood
of xin, thus the exploration of the neighborhood is performed by the mathematical
solver. Constructive matheuristics create the output solution xout from scratch and
exploit mathematical programming techniques to generate it.

Here follows an introduction to four different matheuristic strategies studied in
the state of the art and successfully applied in this thesis. As an example of local
search matheuristics, local branching and variable fixing are described, while two
ideas on how to obtain good feasible solutions from scratch are discussed subse-
quently. These ideas consist of creating a feasible integer solution from a continuous
relaxation and by means of a column generation formulation. For more details on
matheuristics, we refer to [74, 32].

1.1.1 Local Branching

Given a solution x̂ of a combinatorial problem and an integer k, a possible neigh-
borhood Nk(x̂) consists of all the solutions such that the Hamming distance from x̂
is less than or equal to k. This corresponds to the well-known k-opt neighborhood
traditionally defined for the Travelling Salesman Problem (TSP). The exploration
of such neighborhood can be performed by enumeration of the solutions, but this
may lead to poor performances when k increases. Whenever the problem can be
formulated as an ILP, the local search can be performed by running an ILP solver
on the model of the problem, with the addition of the following constraint:

∆(x, x̂) =
∑

j:x̂j=0
xj +

∑
j:x̂j=1

(1− xj) ≤ k

where x̂j are the components of x̂. Today ILP solvers can explore Nk(x̂) in a
very aggressive way, such that good heuristic solutions are available at a very early
stage. However, such computation needs to be integrated with a high level strat-
egy that avoids to fall in local optima and properly explores the promising parts of

7



1 – Introduction

the solution space. The resulting method is Local Branching [43], a general pur-
pose matheuristic which integrates small neighborhood explorations and strategic
branchings.

As highlighted by its name, the branching rule covers a fundamental role in
Local Branching. At the very first step, the algorithm classifies solutions into two
categories: the ones with an Hamming distance from x̂ less than or equal to k, and
the remaining ones. This induces the following branching scheme:

∆(x, x̂) ≤ k (1.1)

∆(x, x̂) ≥ k (1.2)

The value of the parameter k is chosen such that the size of Nk(x̂) is small
enough to be completely explored in a reasonable time and large enough to contain
new improving solutions. Then, the larger subproblem where ∆(x, x̂) ≥ k needs to
be solved. This is done by applying the same branching scheme where the solution
x̂ is replaced by the improving solution x̂′ found in Nk(x̂). Note that if Nk(x̂) does
not contain any improving solution, the search is extended to a larger neighborhood,
in order to find at least one improving solution. This scheme is applied recursively
as depicted in Figure 1.1.

The method is exact in nature, since the branching scheme can be recursively
applied until all the solution space is explored. However, the heuristic efficiency can
be improved by setting ad hoc defined time limits for the solution of the problem
induced by Equation 1.1. Another important remark is that the whole procedure is
not problem dependent and can be easily applied to a wide class of problems. Even
the problem formulation may be linear or not, but the efficiency of the resulting
approach will be strongly affected by the efficiency of the mathematical solver used.
Local branching has been successfully applied in several problems in the last few
years, as an example in [82, 29, 102].

8



1 – Introduction

∆(x, x̂) ≤ k ∆(x, x̂) ≥ k

∆(x, x̂′) ≤ k ∆(x, x̂′) ≥ k

∆(x, x̂′′) ≤ k ∆(x, x̂′′) ≥ k

new best x̂′

new best x̂′′

new best x̂′′′ · · · · · ·
Figure 1.1: The Local Branching scheme

1.1.2 Variable Partitioning Local Search

Given a certain mathematical model of a combinatorial problem, a simple measure
of the hardness of an instance is the number of free variables. MIP solvers generally
try to exploit some properties such that variables can be fixed at some values without
loss of optimality as soon as possible in the branch and bound tree. This is the aim of
techniques such as variable probing and reduced cost fixing (see page 31 of [12] for a
short review on these topics). The same idea can be exploited in a heuristic fashion,
as an example by fixing variables at a specific value a priori, before the solution
of the model. This can be done according to several heuristic criteria that can be
based on the specific properties of the problem considered. When a sufficiently high
number of variables are fixed, the corresponding reduced problem is much easier to
be handled by an integer programming solver.

The size of such problem corresponds to the number of remaining variables. Let
us consider the subset S of the indexes set {1, . . . , n}, that refers to the indexes

9



1 – Introduction

associated to the unfixed variables. Given a starting solution x̂, whose components
are the scalars x̂j j = 1 . . . n, we define the neighborhood NS(x̂) of the solution
x̂, such that all the solutions in NS(x̂) are feasible and have the j-th component
(∀j /∈ S) equal to x̂j. As a consequence, the following formulation is valid for N(x̂):

N(x̂) = {x ∈ F |xj = x̂j∀j /∈ S}

where F is the feasible solution space of the problem. The neighborhood NS(x̂)
can be very large and the problem of exploring such part of the solution space
is sometimes referred to as core problem. In such case, it is usually explored by
using a MIP solver approximately, by setting a limit on the time required for its
solution. Since different subsets S are related to different neighborhoods NS(x̂),
further improvement can be established by using the MIP solver on several of these
sets. Similarly as for Local Branching, this general technique has been exploited to
derive matheuristics for several combinatorial problems [30, 34, 28].

1.1.3 Continuous Relaxation Based Matheuristics

A traditional approach for dealing with a combinatorial problem is to solve the
problem formulation obtained by discarding the integrality constraint. In this case,
we obtain a continuous version of the problem that is easier to be solved. In fact,
instead of using a branch and bound approach, efficient algorithms (such as interior
point methods for the convex case and simplex methods for the linear case) can
be used to find an optimal solution for the continuous problem. Given the con-
tinuous solution, the easiest way to obtain a feasible integer solution is to round
each fractional component to the nearest integer. This is very easy to implement,
but often the solution obtained is not feasible for the integer problem. In fact, the
rounded solution may not belong to the feasible set, since some constraints may not
be verified anymore after the rounding operation. This issue is solved by means of
a problem-independent method called Feasibility Pump [42].

10



1 – Introduction

1.1.4 Column Generation Based Heuristics

Column Generation (CG) [37, 72] is a general technique to solve large LPs with an
exponential number of variables in the input size. In such case, most of the variables
assume a value of zero in the optimal solution, then even if the number of variables
is very large, only a few of them should be considered in the solution of the LP. The
idea behind this technique is very similar to the one adopted in the simplex method,
where variables enter in the basis when they can improve the objective according
to their reduced costs. Analogously, in CG a column is generated only when it is
needed, i.e. when it can contribute to achieve a better solution.

Let us consider the following LP, called in this context master problem (MP):

min
∑
i∈J

cjλj

subject to: ∑
i∈J

ajλj ≥ b

λj ≥ 0 ∀j ∈ J

In MP, the number of variables λj ∈ R is equal to |J | and is very large, while the
number of constraints is m. Furthermore, we have b ∈ Rm and aj ∈ Rm, cj ∈ R for
all j ∈ J . In each iteration of the simplex method, we look for a non-basic variable
with negative reduced cost to enter the basis. When |J | is large, this operation may
be too costly. For this reason, in column generation we work with the so-called
restricted master problem (RMP), that is the previous problem where the number
of columns considered is restricted and J is replaced by J̃ ⊆ J .

At each iteration, we want to add a column with the most negative reduced cost
in J̃ , that means performing the pricing step. As in the simplex method, this is
repeated until no columns in J can improve the objective. Let λ,π be the current
primal-dual optimal solution of the current RMP. The pricing operation can be
performed by solving the following pricing problem (PP):

min
j∈J

cj − πtaj

When the optimal solution of PP is positive, there are not columns with negative

11



1 – Introduction

reduced costs and the current λ is optimal for the original master problem. In
this decomposition scheme, it may not be clear why solving PP it is so helpful
instead of solving the pricing by enumeration. The reason is that PP often results
in a well structured and studied optimization problem. Besides, there are many
algorithmic choices that arise in this context and lead to different computational
performances. As an example, the pricing step can be performed such that several
columns are selected via some heuristic criteria. Same considerations can be done for
the initialization of the set J̃ , that can be done by means of different problem-specific
choices. In general, many studies have been performed to improve the convergence
of the method, that include considerations about the dual point of view [17].

Nowadays, CG is often used as a bounding procedure in branch and bound to
solve large MIPs. The resulting method is called branch and price (B&P)[60], since
at each node the pricing problem is solved to compute the optimal solution of the
relaxation. Branch and price is one of the most important advances in mathematical
programming of the last years and has many important applications in a wide class of
combinatorial problems, among which vehicle routing problems and cutting/packing
problems.

Although CG and B&P are originally used to solve LPs and ILPs to optimality,
several studies have been performed to use such techniques in a heuristic fashion
(see [61] for a review). Certainly, the most natural way to use CG to derive a
heuristic for an integer problem is to solve its continuous relaxation and then round
the corresponding solution as described in Section 1.1.3. This is often known as
a rounding CG heuristic. Another choice is to explore the branch and price tree
by means of a heuristic depth-first rule. In this context, the re-optimization of the
master problem computed at each node does not even need to be solved to optimality.
This type of heuristic is called diving CG heuristic. Finally, the rescricted master
problem, with the restricted set J̃ generated according to a specific heuristic rule,
can be solved as a static integer program. Even if RMP is solved to optimality,
the solution provided is a heuristic solution for the master problem, since only a
subset of all the possible columns is considered. This class of heuristics is known as
restricted master CG heuristics. Note that in this case the set J̃ needs to be created
such that at least a feasible solution for RMS exists.

As a conclusion, CG techniques perfectly fit in the context of hybrid methods

12



1 – Introduction

for combinatorial optimization. In fact, in large LPs and MIPs we need to call
multiple times a mathematical solver in order to implement the specific CG tech-
nique. The last decades showed that these techniques are effective for many classes
of combinatorial problems.

1.2 Semidefinite Programming for Combinatorial
Optimization

A fundamental point for the efficiency of a branch and bound algorithm is the
compromise between the tightness of the bound and the time required to compute
it. Both convex and linear relaxations have been successfully used to this aim.
Admittedly, there is a deep connection between these two worlds. In fact, the tightest
convex relaxation for a combinatorial problem is linear and describes its convex hull.
Unfortunately, such relaxation is not practical to be computed in several cases, due
to the high number of linear constraints to be considered. The alternative is to find
a convex relaxation that approximates well the convex hull and for which there exist
efficient solution algorithms.

In the last decades, the field of non-linear relaxations have received much atten-
tion in this direction. In particular, Semidefinite Programming (SDP) [97] has been
considered as a powerful tool to derive tight relaxations for combinatorial problems
that are reasonably fast to be computed. SDP is the natural extension of LP: it
consists in minimizing a linear function over the intersection of the cone of positive
semidefinite matrices with an affine space. An SDP can be expressed as follows:

min Tr(CX)

subject to
Tr(AiX) = bi ∀i = 1, ...,m

X � 0

where X, C and Ai ∀i = 1, ...,m are n-dimensional symmetric square matrices,
bi ∀i = 1, ...,m are real coefficients and Tr(·) is the trace function. Contrarily to
LP, the feasible region of an SDP is not polyhedral, but it has a shape that is a

13



1 – Introduction

spectrahedron. Although the SDP constraint is non-linear, it turns out to be convex:
as a consequence, SDPs belong to the more general family of convex optimization
problems (see Figure 1.2). Conversely, SDP generalizes some classes of optimization
problems, such as LPs, quadratic convex programs (QCPs) and second order cone
programs (SOCPs).

Convex Programs

LP

SDP

Figure 1.2: LP and SDP in the general taxonomy for convex programs

Several engineering problems can be formulated as SDPs, they arise in fields like
control theory, signal processing, eigenvalue optimization and, finally, combinatorial
optimization. As a matter of fact, a consistent part of the great popularity of SDP is
due to its application in combinatorial optimization. The key point is that, in spite
of the higher generality of SDPs with respect to LPs, SDPs are not much harder to
solve, whether their generality allows to design more powerful relaxations. In other
words, SDP relaxations can be used to better approximate the convex hull of the
feasible region of a combinatorial problems and, in many cases, it does not require an
excessive computational effort. This is due to the fact that interior point methods for
linear programming can be directly extended to the semidefinite programming case
[10], and their complexity is still polynomial. Besides, other efficient approaches
have been adopted (as an example, the Specral Bundle method [56]) and several
SDP solvers have been implemented (CSDP, SDPA, ConicBundle, etc).

The applications of SDP in combinatorial optimization are based on deriving
tight SDP relaxations for combinatorial problems. Deriving such relaxations is often
not intuitive for the people out from the SDP community, then, as an introductory
example, we describe the steps that lead to the definition of a basic semidefinite
relaxation for a very well known combinatorial problem: the Quadratic Knapsack

14



1 – Introduction

Problem (QKP) [58, 79]. First, we recall the definition of the problem, that is,
basically, an extension of the knapsack problem where a quadratic objective is con-
sidered. Let us consider a knapsack of size K, and a set N = {1, ..., n} of items
whose weights are wj ∀j = 1, ..., n, and a matrix P whose components pi,j indicate
that the profit pi,j + pj,i is obtained when the items i and j are selected. The QKP
calls for selecting the subset of items such that they fit in the knapsack, meaning that
the sum of their weights should be less than K, and the overall profit is maximized.
The following quadratic programming formulation follows:

max
∑
i∈N

∑
j∈N

pi,jxixj

subject to:

∑
i∈N

wixi ≤ K

xi ∈ {0,1} ∀i ∈ N

Let x be the vector of the decision variables xi. The objective can be reformulated
by using the trace operator and considering the profit matrix P and the matrix
X = xxt, whose components model the products xixj ∀i, j ∈ N . In fact, it is
possible to verify that Tr(PX) = ∑

i∈I
∑
j∈N pi,jxixj. Since xixi = x2

i = xi for
binary variables, we also have that Tr(IX) = ∑

i∈N wixi, where I is the identity n-
dimensional square matrix. As a conclusion, the previous formulation for the QKP
can be rewritten as follows:

max Tr(PX)

subject to:

Tr(IX) ≤ K

X = xxt

Now, the interesting point is that all the model is convex (even linear) but the

15



1 – Introduction

constraint X = xxt. In order to provide an SDP relaxation, such constraint is
relaxed by the weaker SDP constraint X � xxt, that is still non-linear, but convex.
Thus, the following SDP relaxation holds for the QKP:

max Tr(PX)

subject to:

Tr(IX) ≤ K

X � xxt

that, by applying Schur’s complement theorem, can be written as follows:

max Tr(PX)

subject to:

Tr(IX) ≤ K

X x
xt 1

 � 0

As for linear relaxations, SDP relaxations as the one above can be tightened
by considering sets of valid inequalities. In the context of SDP, they can be linear
inequalities and non-linear convex inequalities that can be expressed as Linear Ma-
trix Inequalities (LMI). Several valid inequalities have been considered for the QKP
polytope (see [58] for a review). A branch and bound based on such relaxation lead
to the definition of an efficient branch and bound approach for the QKP, and thanks
to the power of SDP relaxations, several other branch and bound approaches have
been designed for many well-studied combinatorial optimization problems, such as
the Quadratic Assignment Problem [104]. These studies involve specifically many
problems whose natural formulation is quadratic in the objective. Recently, all such

16



1 – Introduction

advancements made the definition of a general purpose quadratic integer program-
ming (QIP) solver based on SDP possible. We are talking about BiqCrunch [1]. It
integrates the possibility of using a general purpose solver with some problem specific
techniques for a wide class of quadratic problems (Max-Cut, k-cluster, Maximum
Independent Set, Quadratic Stable Set, Exact Quadratic Knapsack).

Another appreciated application of SDP has mainly theoretical interest, that
is the design of approximation algorithm. Basically, such algorithms are based on
rounding the result given by an SDP relaxation of the problem, then similarly as
in LP based approximation algorithms, a specific approximation ratio can be deter-
mined after some geometrical considerations. Several theoretical results have been
based on this scheme, pioneered by the seminal work of Goemans and Williamson
on the Max-Cut problem [53].

1.3 The Design of Exact Exponential Algorithms

Since the beginning of this century, the design of exact exponential algorithms for
NP-hard problems has been attracting more and more researchers. The research
in this area consists in designing exact exponential algorithms for NP-hard prob-
lems, such that they have the lowest possible worst case complexity. Some of these
problems have appeared to be solvable with a lower exponential complexity than
others belonging to the same complexity class: these differences are not explained
by the traditional complexity theory. Although the research in this area dates back
to early 60s, the discovery of new design and analysis techniques has led to many
new developments. In this section, we give a brief overview of the most important
techniques used in this field.

The study of moderate exponential algorithms is also motivated by the fact that
they may perform well for problem instances of small size. As a matter of fact,
an algorithm running in O(1.01n) performs better on instances of small size than a
polynomial algorithm running in O(n4).

When an exact exponential algorithm is designed, the key point is its worst
case complexity and, more specifically, the exponential contribute. Given a poly-
nomial poly(n), an algorithm whose complexity is O(poly(n)2n) has an asymptotic
behaviour that is between O(2n) and O((2 + ε)n) for every ε ≥ 0. For this reason, a

17



1 – Introduction

specific complexity notation, the O∗(·) notation traditionally used in the context of
exact exponential algorithms, is used in this thesis. Given two functions f(n) and
g(n), we write that f(n) = O∗(g(n)) if f(n) = O(g(n)poly(n)), where poly(n) is,
again, a polynomial. This means that all the polynomial factors are ignored in this
notation.

In the following, Section 1.3.1 and Section 1.3.2 describe two very important
techniques used to design exact exponential algorithms: branch and reduce, and
dynamic programming across the subsets. Finally, Section 1.3.3 is dedicated to
list some of the other techniques in the state of the art. For a deeper survey on
the most effective techniques in designing exact exponential algorithms, readers are
kindly referred to Woeginger’s survey [96].

1.3.1 The Branch and Reduce Paradigm

The branch and reduce paradigm is one of the most common and oldest techniques in
the design of exact exponential algorithms, pioneered in 1960 by Davis and Putnam
[27]. The structure of branch and reduce algorithms is intrinsically recursive. Given
a problem instance, these two steps are applied as follows:

1. reduction rules, which simplify the instance by reducing the number of free
variables;

2. branching rules, which divide the current problem instance in a number of
distinct subproblems.

Since this scheme is applied recursively, a branch and reduce algorithm is then
univocally defined by the list of reduction rules and branching rules to be considered.

The space consumption of a branching algorithm is generally polynomial: it is
achieved by exploring the search tree in depth-first order. The time complexity is
usually studied by estimating the number of nodes in the search tree, usually it
has the form O∗(cn) with c a possibly irrational constant. When a single branching
rule is considered, the linear recursion induced by the branching rule can be solved
to derive an upper bound to the worst case complexity of the algorithm. When
multiple branching rules are considered, a simple upper bound can be determined
by considering the branching rule that induces the highest worst case complexity.

18



1 – Introduction

In general, how to determine tight bounds on the time complexity of branch and
reduce algorithms is an open problem. A very common approach is measure and
conquer, see Chapter 6 of [46] for more information.

1.3.2 Dynamic Programming across the Subsets

Dynamic programming is a classical technique to solve combinatorial optimization
problems to optimality (see typical books on algorithms such as [24]). The basic idea
is to solve and store solutions of small subproblems and then progressively combine
them to obtain solutions for larger and larger subproblems. Dynamic programming
has been used to derive polynomial, pseudo-polynomial and exponential exact algo-
rithms. Here, we discuss exponential algorithms based on dynamic programming,
that have the main drawback of being exponential both in time and space, contrarily
(generally) to branching algorithms.

In this section, the focus is on specific type of dynamic programming: dynamic
programming across the subsets. It is specifically designed for permutation problems,
for which a trivial enumeration algorithm runs in O(n!). It allows to decrease the
complexity to O∗(cn) with c a constant parameter (usually c = 2). The general
approach is invented by Bellman [16], who designed this approach to solve the
Travelling Salesman Problem (TSP) in O∗(2n).

In order to present the technique, we describe the original approach for the TSP.
Given a set of cities C = {1, ..., n}, the distance between the i-th city and the j-th city
is d(i, j). We target to find the shortest possible route that visits each city in C only
once. For every subset S of {2, ..., n} and every city i ∈ C, we denote by Opt[S, i]
the optimal route that starts in 1, crosses all the cities in S \ i in arbitrary order
and ends in i. Obviously, Opt[{i}, i] = d(1, i). Therefore, the following recurrence
holds:

Opt[S, i] = min{Opt[S \ {i}, j] : j ∈ S \ {i}} (1.3)

The algorithm computes the solution of subsets increasingly. For each subset, a
cost of O(n2) is required because we need to consider all the possible values of i and
j in Equation 1.3. The number of all the possible subsets of C is O(2n), then the
time and space complexity of the approach is O(n22n) = O∗(2n).

19



1 – Introduction

Several linear ordering problems can be solved by means of dynamic program-
ming across the subsets, such as the TSP, the Treewidth Problem and the Cutwidth
Problem. A complete list of these problem can be found in [18]. These problems
can be solved also by extending the divide and conquer approach presented in [55].

1.3.3 Other Techniques

The most important technique for the design of exact exponential algorithms are
discussed in [46]. As an example, a design technique is based on the inclusion-
exclusion principle commonly used in combinatorics. As dynamic programming
across the subsets, inclusion-exclusion based algorithms go through all possible sub-
sets, but it does not require exponential space. Another paradigm is called sort
and search, basically we consider instances of exponential size and then apply fast
polynomial time algorithm on such instances.

1.4 Outline of the Thesis

The present thesis is organized in two parts: the first deals with scheduling problems,
while the second focuses on clustering problems. Each chapter corresponds to the
study of a combinatorial problem performed during my PhD. Finally, Section 7
reports some general conclusions and future developments for this work.

Let us start to describe Part I, about scheduling problems. Chapter 2 refers
to a scheduling problem where the aim is to schedule home appliances in order to
minimize the energy cost. An ILP formulation and a hybrid heuristic based on Vari-
able Partitioning (Section 1.1.2) is presented. Cutting stock problems are special
production scheduling problems where a set of items are cut from pieces of mate-
rial. Chapter 3 considers a new cutting stock problem where the cuts determine a
material loss which depends on the items order. A mathematical programming for-
mulation for the problem is provided and a restricted master CG heuristic, according
to the scheme discussed in Section 1.1.4, is presented to solve the problem efficiently.
Chapter 4 describes an exact exponential algorithm for a classical scheduling prob-
lem: the Single Machine Total Tardiness Problem. Such algorithm runs in O∗(2n)
time and polynomial space, which improves the current result available in the state

20



1 – Introduction

of the art, and its design involves a new technique called branch and merge. The
technique avoid solutions of equivalent subproblems in a branching tree: in a sense
it includes the phylosophy of dynamic programming in a branching algorithm, then
keeping the space requirement polynomial. Although the presentation of the result-
ing algorithm regards its theoretical relevance, Chapter 4 includes remarks about
the extension of the technique to improve the practical performance of branching
algorithms for scheduling problems.

Now, we describe the content of Part II about clustering. Chapter 5 is devoted to
provide effective algorithms (a heuristic and an exact approach) for the Max-Mean
Dispersion Problem, a clustering problem where the aim is to find the subset of a set
whose average distance between selected elements is maximized. Two approaches
are presented: the first is a heuristic algorithm based on a non-linear formulation of
the problem, while the second is a branch and bound algorithm where the bounding
procedure consists in solving a semidefinite relaxation of the problem. In such chap-
ter, the techniques disccussed in Section 1.1.1 and Section 1.2 are used. Chapter 6
copes with the so-called Multi-Meter Covering Problem. Such problem arises in a
smart city context where, given a number of concentrators located in the area, we
aim at covering the overall area by minimizing the overall number of concentrators
used. All the research works described in Chapter 2 and Chapter 6 have been carried
out in a collaboration with Telecom Italia.

As a conclusion, the main contributions of this thesis are solution algorithms
with practical relevance for scheduling and clustering combinatorial problems. Such
contributions are certified by some journal/conference pubblications that are listed
here, whose merits are shared with my co-authors. The work described in Chapter 2
was presented at Airo 2014. The research presented in Chapter 3 was preliminarily
presented at Mista 2013 and subsequently published in International Transactions
in Operational Research [48]. The research about the Total Tardiness Problem
(Chapter 4) was presented at Mista 2015 and Airo 2015, and will be submitted
to a theoretical computer science journal in March 2016. Chapter 5 includes two
dinstict works that led to different pubblications. The heuristic described in such
chapter was presented at Isco 2014 and Airo 2014, while the final work is published
in Computers and Operations Research [29]. The exact approach was submitted at
Journal of Combinatorial Optimization and currently in first revision.

21



Part I

Scheduling Problems



Chapter 2

A Domestic Energy Management
Problem

A very interesting and trendy topic in the IT era is to deliver useful services to
people inside buildings, in such a way that the economic cost and the environmental
impact are lowered. The buildings that implement these functions are referred to
as smart buildings. In smart buildings, a fundamental role is played by the energy
management system, which aims at scheduling appliances at the most convenient
time instant. This chapter deals with a real world combinatorial optimization prob-
lem arising in smart energy systems. It was studied jointly with Telecom Italia, in
the context of the INTRePID project [8].

In general, electricity suppliers provide tariffs for which the costs strongly vary
depending on the time of the day. At the same time, there are limits on the overall
peak consumption, such that a given threeshold can not be surpassed during the
day. As a consequence, it may not be possible to schedule all the appliances in
the part of the day associated with the lowest costs. Then, the aim of the smart
grid system is to schedule household appliances in order to lower the overall energy
cost and avoid that the maximum peak consumption is exceeded. In this scenario,
another important factor that may occur is the use of Renewable Energy Sources
(RES), such as solar energy. This means that photovoltaic devices, usually located
in the top of the building, generate an amount of energy directly from the sunlight.
Since we consider the case where no batteries are used in the building, such energy

23



2 – A Domestic Energy Management Problem

should be used on the fly. Nowadays, this case is still realistic due to the high costs
of storing energy.

A few papers appeared recently on smart appliances scheduling, such as [14], [20],
[85] and [103] where a house-size context is considered. Since many side conditions
may be taken into account, all these works may significantly differ. In [14], these side
conditions are batteries constraints and the possibility of selling unused energy. The
use of batteries is also included in [44]. Another strongly different aspect, described
also in [85], is that the total consumption of an appliance could be split over a
variable number of timeslots. In other words, the amount of energy consumed by an
appliance in each timeslot is a problem variable, and must be decided by the smart
grid system.

Solution approaches are also different. In [14], a Mixed Integer Programming
(MIP) model is proposed to deal with the problem as in [85] and [103] where opti-
mization models, though with different variables definition, are used. In [20], a Par-
ticle Swarm Optimization (PSO) approach is proposed to obtain heuristic solutions
for the problem. Finally, a matheuristic algorithm is presented in [44]. Matheuristic
approaches have been successfully applied to other well-known scheduling problems
(see [33] and [35]), a simple but effective one is presented in this chapter. This
matheuristic is basically constructed by following the Variable Partitioning scheme
described in Section 1.1.2.

In this chapter of the thesis, we study a specific smart grid energy problem with
no appliance preemption and no possibility to store/sell energy. A more precise de-
scription of the problem together with a MIP formulation are provided in Section 2.1.
Section 2.2 highlights the heuristic approach proposed, namely a matheuristic ap-
proach exploiting the MIP formulation described previously. In Section 2.3, a com-
putational campaign, conducted by comparing the matheuristic approach to other
approaches, is presented. As competitors, two algorithms are considered: the first
is based on the solution of the MIP model via MIP solvers (CPLEX, XPRESS and
SYMPHONY), the second is an enhanced version of the approach proposed in [20],
henceforth denoted as RaPSOL, which was provided by Telecom Italia. Finally,
some conclusions about this work are presented in Section 2.4.

24



2 – A Domestic Energy Management Problem

2.1 Problem Description and Formulation

The problem can be formalized as follows. A set A of n appliances has to be
scheduled during a defined time horizon. Each appliance a ∈ A has to be switched
on during the time horizon and, when active, it has to be on for exactly da timeslots
which must be contiguous, preemption is not allowed.

For each of these timeslots t ∈ Ha = {1, ..., da}, we have two kind of energy
consumptions: an average energy consumption ea,t and a peak energy consumption
pa,t. The whole time horizon is 24 hours (represented by the set H = {1, ..., T}).
The maximum energy consumption is P for each timeslot of the time horizon. This
refers to the peak energy consumption, given that the average energy consumption
is smaller than the peak one (ea,t ≤ pa,t). The cost for each energy unit is equal
to ct ∈ R+ which is calculated on the average energy consumption. The use of this
couple of values for defining the consumption of an appliance is motivated by the
realistic behaviour of the appliances. In fact, considering a minute as the timeslot
size, the consumption within this time may vary a lot and peaks can be present for
just milliseconds. Then, we consider peak values to guarantee that the maximum
consumption is not exceeded, while we evaluate the average cost over single timeslots
to compute the overall cost. The overall cost also depends on the energy cost per
timeslot, which is given by the tariff considered and possibly varies every hour.

Moreover, an amount St ≥ 0 of solar energy can be used for each timeslot t ∈ H.
This additional energy influences both the maximum energy consumption P and the
tariff cost ct. In fact, the use of solar energy may induce an increase to P equal to
St and no costs, again, for the consumption up to St. In other words, a maximum
quantity of St ∀t ∈ H can be used free of charge.

The aim of the problem is to schedule all requested appliances within the time
horizon, at the minimum total cost, respecting the maximum power constraint. As
an example, the power profiles of a washing machine and a dish machine are plotted
in Figure 2.1 and Figure 2.2, where the grayscale distinguishes the peak power
consumption and the average consumption. Besides, the values of two different
tariffs are represented for the whole time horizon in Figure 2.3 and Figure 2.4.
Here, the grayscale indicates how much expensive is the cost associated with a
specific timeslot.

25



2 – A Domestic Energy Management Problem

Figure 2.1: Washing Machine Power Profile

Figure 2.2: Dish Machine Power Profile

2.1.1 MIP Model

A solution of the problem is given by the starting time of each appliance, since
durations are inputs for the problem. Given that, the overall cost of each appliance
starting in every possible (feasible) timeslot can be precomputed. In such a way, a
cumulative coefficient Ca,t, which represents the total cost of appliance a starting
at time t, is computed for all a ∈ A, t ∈ H. Each coefficient Ca,t is a function of
the different tariff coefficients ct and the mean power consumption ea,t. In fact, the
following equality holds:

Ca,t =
∑
t′∈Ha

ea,t′ct+t′

The overall cost, due to the energy consumption, is the overall energy consump-
tion of each appliance minus the solar energy consumed:

26



2 – A Domestic Energy Management Problem

Figure 2.3: Dynamic Tariff Profile

Figure 2.4: Three Tier Tariff Profile

∑
a∈A

∑
t∈H

Ca,t −
∑
t∈H

ctzt

where zt is a set of continuous variables representing the minimum among the
solar energy available St at time t and the sum of consumptions of all appliances
again at time t. Consequently, the following inequalities hold for each zt:

zt ≤ St ∀t ∈ H

zt ≤
∑
a∈A

∑
t′∈Ha

ea,t′xa,t−t′ ∀t ∈ H

Given the previous considerations, for each a ∈ A and t ∈ H, we define a variable

27



2 – A Domestic Energy Management Problem

xa,t (as in [14]) such that:

xa,t =
 1 if the appliance a starts at time t

0 otherwise

The complete MIP model follows.

min f(xa,t, zt) =
∑
a∈A

∑
t∈H

Ca,txa,t −
∑
t∈H

ctzt (2.1)

subject to:

∑
t∈H|t<=T−da

xa,t = 1 ∀a ∈ A (2.2)

∑
a∈A

∑
t′∈Ha

pa,t′xa,t−t′ − P − St ≤ 0 ∀t ∈ H (2.3)

zt ≤ St ∀t ∈ H (2.4)

zt ≤
∑
a∈A

∑
t′∈Ha

ea,t′xa,t−t′ ∀t ∈ H (2.5)

xa,t ∈ {0,1} ∀a ∈ A ∀t ∈ H (2.6)

zt ≥ 0 ∀t ∈ H (2.7)

The objective function 2.1 minimizes the overall cost of scheduling all appli-
ances. Constraints 2.2 assign exactly one starting time to each of the appliances.
Constraints 2.3 define the maximum power consumption for each timeslot, where the
overall energy consumption must not exceed P (plus the solar power). Constraints
2.4 and 2.5 set the values of zt as previously depicted. Finally, in Constraints 2.6
and 2.7, the variables domain is defined. The overall number of variables of the

28



2 – A Domestic Energy Management Problem

model is O(nT ) variables (proportional to the number of appliances and the size of
the time horizon), while the overall number of constraints is O(T ) (proportional to
the size of the time horizon).

2.2 A Matheuristic Approach

In the following, a matheuristic approach, which can be used to tackle the problem,
is described. Such approach is a two phase algorithm in which the first phase is
dedicated to generate a feasible solution to the problem, while the second phase is
devoted to improve the first solution in a local search framework. Both phases rely
on the mathematical formulation of the problem and are solved by means of a MIP
solver.

The first phase is based on the reduction of the number of variables (i.e. the
cardinality of the set H) such that the MIP solver can carry out a smaller problem
of controlled size. The reduction is made by sampling the possible starting times for
each appliance within the whole time horizon. This implies that an appliance can
be scheduled only on a subset of active time instant H ′ ⊂ H. The subset of active
time instants is obtained by sampling elements from H with a fixed size step α ∈ N.

H ′ = {t ∈ H, k ∈ N : t = kα + 1}

This is realized by introducing an additional constraint into the model 2.1–2.7 and
by imposing that appliances can only start in t ∈ H ′.

∑
t/∈H′

xa,t = 0 ∀a ∈ A (2.8)

The second phase aims at improving the solution provided by the previous phase
(given by the schedule time ta ∈ H of each appliance). A neighbourhood of ta is
generated by activating a fixed size (β ∈ N) “window" of variables, whose time
instant is contiguous to ta:

H ′a = {t ∈ H : |t− ta| ≤ β}

This is realized by modifying Constraints 2.8 such that only variables in H ′a are

29



2 – A Domestic Energy Management Problem

active.

∑
t/∈H′a

xa,t = 0 ∀a ∈ A (2.9)

Both phases are executed until a local optimum is reached or a time limit (T1

and T2 respectively) is reached. Algorithm 1 and Algorithm 2 depict the structure
of the procedures associated with the first and the second phase of the matheuristic.
Figures 2.5, 2.6 and 2.7 depict a simple example where two appliances must be
scheduled within a time horizon of 12 timeslots. The timeslots filled by a dark color
are the ones whose variables are active, while the other timeslots are not active. In
this toy example, parameters α and β of our heuristic are set to 4 and 1, respectively.

Figure 2.5: All the active variables in the complete MIP model

Figure 2.6: All the active variables in the first phase

Figure 2.7: All the active variables in the second phase

30



2 – A Domestic Energy Management Problem

Algorithm 1 and Algorithm 2 summarize the structure of the two phases of the
algorithm.

Algorithm 1 First phase
Input: Problem instance, α
for all a ∈ A do

for all t /∈ H ′ do
Set xa,t equal to 0

end for
end for
s1 ← Solve model 2.1–2.7 with time limit T1
Output: Solution s1 = {(a, ta)}a∈A

Algorithm 2 Second phase
Input: Problem instance, s1, β
for all a ∈ A do

for all t /∈ H ′a do
Set xa,t equal to 0

end for
end for
s2 ← Solve model 2.1–2.7 with time limit T2
Output: Solution s2

2.3 Computational Results

A first dataset of small instances was used in order to asses the quality of the MIP
model and to benchmark the results with the hybrid heuristic. Three different
MIP solvers were considered on this first dataset. The tests were conducted using
both commercial solvers (CPLEX 12.5 and FICO XPRESS 7.2) and an open source
one (SYMPHONY 5.2 from COIN-OR). This because we wanted to evaluate the
applicability of open source software to this real world problem. All the approaches
were tested on instances with 3, 5, 10 and 15 appliances. The durations of the
appliances were generated according to a uniform distribution between 80 and 200
minutes (timeslots). Analogously, the peak power consumption for each timeslot
was generated according to a uniform distribution between 50 and 1600 Watts, while

31



2 – A Domestic Energy Management Problem

the mean power consumption decreased the peak power of a percentage uniformly
extracted between 5% and 10%. The dynamic tariff for the energy cost and the
cloudy profile for the solar power were the only ones considered. Furthermore,
different maximum power values were tested, namely 2KW, 3KW and 4KW (italian
single home-sized values).

The three approaches considered (the MIP solvers, the hybrid heuristic and the
RaPSOL approach provided by Telecom Italia) were tested with the same time
limits, namely 10 and 60 seconds. The same time limit TiLim = T1 = T2 was set
in both phases of the matheuristic. The results of the tests on the initial dataset
are reported in Table 2.1. The values depicted with ∗ mean that the optimal value
has been proved within the specific time limit. Empty entries occur whenever no
result has been achieved within the time limit. Finally, column bound 1h tracks
the value of the lower bound, given by CPLEX 12.5 after one hour of CPU time
(again, entries with ∗ mean that the optimal solution was reached within 1 hour
processing of CPLEX 12.5). The RaPSOL procedure is a randomized metaheuristic.
Its performance is evaluated by performing 5 runs on each instance, then the average
and the best objective function value are reported in the tables.

XPRESS CPLEX SYMPHONY Hybrid RaPSOL
# Appl Max Power TiLim Bound 1h Obj Obj Obj Obj CPU (s) Obj best Obj mean

3 4000 10 s 2,5381* 2,5384 2,5381* 3,2278 2,5381 1,264 2,5381 2,5381
60 s 2,5381* 2,5381* 2,5381 2,5381 1,28 2,5381 2,5381

3 3000 10 s 2,5381* 2,5384 2,5381* 3,2278 2,5381 1,419 2,5381 2,5381
60 s 2,5381* 2,5381* 2,5381 2,5381 1,435 2,5381 2,5381

3 2000 10 s 2,5381* 2,5381* 2,5381* 2,5425 2,5381 0,842 2,5381 2,5381
60 s 2,5381* 2,5381* 2,5381 2,5381 0,827 2,5381 2,5381

5 4000 10 s 4,8642* 4,8643 4,8643 4,8870 4,9091 2,871 4,8643 4,8656
60 s 4,8643 4,8643 4,8685 4,9091 2,87 4,8643 4,8643

5 3000 10 s 4,8642* 4,8643 4,8671 4,8925 4,8685 3,759 4,8643 4,9078
60 s 4,8643 4,8643 4,8925 4,8685 3,775 4,8643 4,8798

5 2000 10 s 4,9544* 4,9700 5,2445 – 4,95866 2,262 4,9551 4,9577
60 s 4,9700 4,9545 – 4,95866 2,278 4,9551 4,9557

10 4000 10 s 8,6464 12,8896 9,7318 – 8,95512 6,255 9,1123 9,1497
60 s 9,1929 9,0141 – 8,95512 11,513 9,0149 9,07

10 3000 10 s 8,7858 12,3398 12,1620 – 9,34792 7,581 9,6051 9,6804
60 s 10,0963 9,2056 – 9,25844 10,031 9,3841 9,5507

10 2000 10 s 9,2177 11,4725 11,9863 – 10,52528 6,381 11,022 11,133
60 s 11,4561 11,6960 – 10,54349 31,684 10,809 10,95

15 4000 10 s 13,2484 – 19,2274 – 14,27465 10,748 14,906 14,999
60 s 15,0148 15,0497 – 14,07361 42,526 14,681 14,823

15 3000 10 s 13,5077 – 18,0702 – 15,72953 10,764 16,347 16,572
60 s 16,3381 16,8535 – 15,52666 60,778 16,172 16,398

Table 2.1: Results on the first dataset

As can be seen the hybrid heuristic appears to be slightly less competitive for the
small instances (up to 5 appliances) with respect to RaPSOL and MIP solvers, while

32



2 – A Domestic Energy Management Problem

for the larger ones (10-15 appliances) the hybrid heuristic performs better than the
other approaches within the same time limit. We also generated the instance with
15 appliances and 2KW of maximum power, but no solution was found in 1 hour.

Given the results obtained on the first dataset, we decided to test the hybrid
heuristic, the RaPSOL approach, CPLEX and XPRESS on a larger dataset, while
we skept SYMPHONY solver because on larger instances it was not capable of
providing any solution. The second dataset considers instances with 10, 20, 30 and
50 appliances. In this dataset, half of the appliances are washing machines and half
are dish machines for any instance. Moreover, different solar profiles were taken
into account, namely cloudy, clearSky, a larger solar power availability and noSolar,
where power can be only drawn by the line. In addition, two different cost tariffs
are used, the dynamic and the three which are depicted in Figure 2.3 and Figure 2.4,
respectively. The maximum power consumption was modified accordingly in order
to guarantee the existence of feasible solutions. The time limits were set according
to the instance size. After preliminary testing, parameter α and β, as defined in
Section 2.2 are set to 10 and 20 respectively.

In Table 2.2, the results show that the hybrid heuristic performed better than
the RaPSOL procedure on all instances but two. CPLEX solver is strongly com-
petitive on a specific class of instances, namely the ones with no solar power, but
this dominance is limited to 30 appliances in size. XPRESS solver has a similar
behaviour of CPLEX, i.e. it is competitive on no solar power instances, but, in this
case, the dominance is limited to instances formed by 20 appliances at most. As
the size of instances increases, the gap between the hybrid heuristic and the other
approaches increases too, and the hybrid heuristic shows up to be the clear winner
for large size instances.

33



2 – A Domestic Energy Management Problem

Max RaPSOL Time
# Appl. Power Tariff Solar Hybrid Obj best Obj mean CPLEX XPRESS Lim. (s)
1 10 3000 dynamic noSolar 4,6980 4,6677 4,7011 4,6505 4,6505 60
2 10 3000 dynamic cloudy 1,8060 1,8533 1,8885 1,8925 2,1118 60
3 10 3000 dynamic clearSky 0,3577 0,4412 0,4575 0,5103 1,1752 60
4 10 3000 threeTier noSolar 2,3255 2,3255 2,3658 2,2165 2,2165 60
5 10 3000 threeTier cloudy 0,8845 0,9205 0,9286 0,9472 0,9298 60
6 10 3000 threeTier clearSky 0,1956 0,1840 0,2129 0,2066 0,5231 60
7 10 4000 dynamic noSolar 4,4791 4,6695 4,6948 4,4545 4,4545 60
8 10 4000 dynamic cloudy 1,8070 1,8300 1,8810 1,8889 2,1926 60
9 10 4000 dynamic clearSky 0,3459 0,4264 0,4468 0,6552 1,4057 60
10 10 4000 threeTier noSolar 2,1528 2,1528 2,1528 2,1528 2,1528 60
11 10 4000 threeTier cloudy 0,8841 0,9108 0,9231 0,9373 0,9193 60
12 10 4000 threeTier clearSky 0,1849 0,1983 0,2110 0,2977 0,8405 60
13 20 3000 dynamic noSolar 11,2363 11,6590 11,8730 10,9634 11,2726 120
14 20 3000 dynamic cloudy 5,7572 6,2273 6,2863 6,2720 6,5549 120
15 20 3000 dynamic clearSky 3,8648 4,3187 4,4007 4,1433 4,7256 120
16 20 3000 threeTier noSolar 6,5332 7,3371 7,4904 6,4152 6,8619 120
17 20 3000 threeTier cloudy 2,9483 3,1580 3,2937 3,1562 3,3282 120
18 20 3000 threeTier clearSky 1,7749 2,0020 2,0834 2,0745 2,8823 120
19 20 4000 dynamic noSolar 9,4391 9,5925 9,6905 9,3281 9,3281 120
20 20 4000 dynamic cloudy 5,5838 5,9396 6,0112 5,8263 6,0444 120
21 20 4000 dynamic clearSky 3,6451 3,9902 4,0895 4,2894 4,5495 120
22 20 4000 threeTier noSolar 4,5887 5,0092 5,0668 4,4295 4,4304 120
23 20 4000 threeTier cloudy 2,9074 2,9864 3,0194 3,0675 5,6774 120
24 20 4000 threeTier clearSky 1,7645 1,8307 1,8937 1,8954 2,4962 120
25 30 4000 dynamic noSolar 15,5035 16,3060 16,4600 15,3603 15,5729 180
26 30 4000 dynamic cloudy 10,2747 10,6240 10,9590 10,7797 10,7979 180
27 30 4000 dynamic clearSky 8,3640 8,8660 9,0229 8,6057 9,4602 180
28 30 4000 threeTier noSolar 8,5092 9,4517 9,6183 8,5194 8,6925 180
29 30 4000 threeTier cloudy 5,2506 6,0775 6,4360 5,6405 6,6524 180
30 30 4000 threeTier clearSky 4,0070 4,6583 4,7961 11,2188 5,9905 180
31 30 5000 dynamic noSolar 15,0684 15,6900 16,0450 15,0199 15,2949 180
32 30 5000 dynamic cloudy 10,1457 10,6900 10,8420 10,5401 11,3998 180
33 30 5000 dynamic clearSky 8,3351 8,8296 8,9401 8,8882 9,2533 180
34 30 5000 threeTier noSolar 8,2077 8,8856 9,1870 7,8718 7,9708 180
35 30 5000 threeTier cloudy 5,1221 5,4297 5,5386 6,2345 5,9731 180
36 30 5000 threeTier clearSky 3,8858 4,2717 4,3767 4,4262 5,3123 180
37 50 4000 dynamic noSolar 30,8919 33,4500 33,8060 31,8704 32,2769 300
38 50 4000 dynamic cloudy 22,9057 24,8280 25,0610 27,6976 23,5963 300
39 50 4000 dynamic clearSky 20,3754 22,1750 22,3770 20,9757 21,7216 300
40 50 4000 threeTier noSolar 19,5239 24,1470 24,3960 22,5064 21,8103 300
41 50 4000 threeTier cloudy 13,9575 17,5180 17,6360 20,1169 15,0825 300
42 50 4000 threeTier clearSky 11,6914 14,9420 15,2290 18,6342 13,3780 300
43 50 5000 dynamic noSolar 30,2348 31,8720 32,2410 32,5150 30,4633 300
44 50 5000 dynamic cloudy 22,1632 23,2390 23,5990 23,2425 23,2187 300
45 50 5000 dynamic clearSky 19,8182 20,9870 21,2990 20,3465 20,6428 300
46 50 5000 threeTier noSolar 18,2266 21,8080 22,2260 24,6358 19,4974 300
47 50 5000 threeTier cloudy 12,4277 14,0590 14,6510 14,0561 14,2489 300
48 50 5000 threeTier clearSky 10,8568 12,6130 13,0880 12,3682 13,8075 300

Table 2.2: Results on the extended dataset

34



2 – A Domestic Energy Management Problem

2.4 Conclusions

We considered the problem of scheduling smart appliances within a given time hori-
zon, taking into account a threshold on the energy peak consumption and seeking
for the minimization of the overall cost related to the average energy consumption of
each appliance in each time instant. Two main approaches were investigated. The
first approach explored a MIP formulation of the problem that is embedded into
a hybrid matheuristic algorithm. The second approach (RAPSOL) consists of an
enhanced particle swarm optimization algorithm.

The two approaches were tested on several real life data instances and compared
with the direct solution of the MIP model by means of two state-of-the-art MIP
solvers such as CPLEX 12.5 and FICO XPRESS 7.2. While the hybrid approach
shows up to be globally the best performing algorithm (particularly on large size
instances), it is interesting to note that RAPSOL reaches quite good results. This
is particularly interesting, taking into account the fact that RAPSOL (contrarily
to the integer linear programming based approaches described in this chapter) is
substantially unaffected by a non linear modification of the cost function. As an
example, this case occurs when the maximum power constraint is discarded and
replaced by a strong non linear penality in the objective. Future research will be
devoted to a specific study in this direction, i.e. in the design of an efficient math-
ematical programming technique that can manage an objective function that has a
non linear component.

35



Chapter 3

The Cutting Stock Problem with
Sequence-Dependent Cut Losses

Cutting stock problems arise in many different industries such as in textile, glass,
steel, wood and paper. To reduce operating cost, companies strive to minimize waste
of stock material when cutting stock down to customer orders. A great deal of re-
search effort has thus focused on developing effective ways for improving operations.

The present chapter focusses on the one-dimensional cutting stock problem (1D-
CSP). Many papers refer to material waste for a 1D-CSP as material that is not
used in the cutting patterns (leftovers). However, this is not the only material loss
that occurs in practical contexts. Another type of material loss is intrinsically due
to the process of cutting the material (by use of a blade, laser, etc.). The overall
loss due to cuts is usually negligible, thus it is normally not taken into account.
Nevertheless, cut losses cannot always be ignored in practical cases and may even
depend on the item order.

We generalize the 1D-CSP to include sequence dependent cut losses (SDCL)
that may occur between any pair of adjacent items or at the start and end of a
cutting pattern. This generalisation allows to further improve efficiency and reduce
cut losses that may occur in some situations. The 1D-CSP with SDCL can be
approximately solved by any 1D-CSP or 1D bin packing (1D-BPP) approach. We
investigate the conditions that make it beneficial to consider the SDCL nature of
the problem. To this end, we present a heuristic approach specifically considering

36



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

SDCL, and compare it with a 1D-BPP approach on a range of generated instances,
with varying characteristics.

3.1 Problem Formulation

Consider the well known 1D-CSP: a set of items I, each i ∈ I having length li and
demand di, is to be cut from an unbounded set of larger stock items, each of length
L (with li < L ∀i ∈ I). A feasible cutting pattern p is a subset of items i ∈ I with
multiplicity (denoted ai) for which the total length ∑

i∈p ai · li is at most L. The
objective is to find a minimum set of feasible cutting patterns that cover each item’s
demand.

The 1D-CSP with SDCL generalizes the problem to include sequence dependent
cut losses between items: between each pair of adjacent items i and j in a cutting
pattern, the presence of an additional cut loss cij should be taken into account. A
cutting pattern is then not only determined by the included items and their mul-
tiplicity, but also by the sequence of the items within the pattern. Consequently,
feasible patterns are cutting patterns for which the sum of item lengths (with mul-
tiplicity) and the sum of the SDCL cij between adjacent items is smaller than L.
Finally, the problem also considers start and end cut losses, c0i and ci0. These occur
at the start (resp. end) of the pattern before the first (resp. after the last) item i is
cut and should also be considered in order to fit within L.

To illustrate the problem, consider the instance shown in Figure 3.1 with input
data listed in Table 3.1 and Table 3.2.

i 1 2 3 4
li 4.5 3.1 4 6
di 2 2 2 1

Table 3.1: Length and demand for each item

The cut losses cij are of the same order of magnitude as the smallest item and
show a very high variability. Figures 3.2-3.4 show three feasible solutions for this
instance: the cut losses are drawn with a dashed background, while the leftovers are
coloured gray.

37



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

Figure 3.1: An example of a problem instance


0 2.4 2.5 1.9 2.6
1 2.5 2.5 1.5 2.7

1.3 1 3 2.8 3
3.5 0.5 0.2 2.5 2.7
2.2 2.8 1.4 3 2.5


Table 3.2: Cut losses matrix

The example clearly illustrates that changing the order in which the items are
cut determines a different amount of material loss due to the cut losses and leftovers.
As a result, the solution in Figure 3.3 requires fewer stock material than the solution
in Figure 3.2.

Several solutions require an equal amount of stock material. For example, Figure
3.4 shows another solution requiring three cutting patterns. The solution in Figure
3.4 is more suitable for more industrial purposes, as the leftover in the last pattern
may be reusable. Larger leftovers are more likely to be reusable, allowing for further
operating cost reductions. We therefore introduce a secondary objective, namely
maximization of the sum of the squared leftovers produced by the solution, targeting

38



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

Figure 3.2: First solution, 4 cutting patterns used

Figure 3.3: Second solution, 3 cutting patterns used

reusability of the leftover material. The square function is desirable because it allows
distinction based on the leftover sizes as shown above. This objective was developed
in analogy with [45], where maximization of the sum of square loads on a bin packing
problem allows to find the optimal space utilization.

One possible (well known) integer linear programming formulation for the 1D-
CSP with SDCL is based on the selection of a subset of patterns from the set of
all possible feasible cutting patterns P , that covers each item’s demand. A cutting
pattern p of np items is defined as a sequence (i1, i2, . . . , inp) with i1, i2, . . . inp ∈
I. Feasible cutting patterns are patterns (i1, i2, . . . , inp) for which the following

39



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

Figure 3.4: Third solution, 3 cutting patterns used and larger leftovers

inequality holds:

lp =
np∑
j=1

li +
np∑
j=1

cijij+1 + c0i1 + cinp0 ≤ L (3.1)

with lp denoting the length of the pattern p, including SDCL.

The following model minimizes the number of patterns used, and then maximizes
the sum of the squared leftovers. Let variables xp (p ∈ P ) denote the number of
occurrences of the pattern p in the cutting plan. Let rp ∈ R+ denote the leftover of
pattern p (i.e rp = L− lp), and aip ∈ N the multiplicity of the item i in the pattern
p. The integer model is then defined as:

min
∑
p∈P

(M − r2
p)xp (3.2)

s.t. : ∑
p∈P

aipxp = di ∀i ∈ I (3.3)

xp ∈ N ∀p ∈ P (3.4)

where M ∈ R+ is a suitably large constant.

40



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

3.1.1 Related Work and Similar Problems

According to Dyckhoff’s typology [40], the 1D-CSP with SDCL can be categorised
as 1/V/I/R. It is a one-dimensional problem with an unlimited supply of objects
of identical size and a set of items to be cut. The problem can also be classified
as a Single Stock Size Cutting Stock Problem (SSSCSP) according to the typology
introduced in [94]. In both cases, however, the classification is not pure since the
addition of sequence dependent waste should be included.

The literature on this type of problems is vast, starting as early as the 1960’s
with the seminal work of Gilmore et al. [50]. Many different models and approaches
to the 1D-CSP have been studied since then, and many extensions to the problem
definition include more practical considerations. Consideration of multiple stock
lengths [59], sequencing and minimization of different cutting patterns to avoid
machine setup costs [11, 99, 77], consideration of reusing leftovers [91, 25] have been
of particular interest.

The inclusion of ordering significance within patterns has also been reported.
Lewis et al. [69] studied the Truss Cutting Problem (TCP), a problem originating
from the roofing industry that has strong connections to this work. Profiles of equal
width having trapezoidal shapes, have to be cut from wooden boards with the aim
of minimizing area waste. They show that the TCP is a special case of 2D-CSP and
can actually be solved with a 1D packing approach. Sequence dependent cut losses
(inter-item wastage) in this setting are specifically due to the shape of the items that
may fit better together in certain arrangements. Given that the items have equal
width, Lewis et al. solve the problem as a 1D grouping/packing problem using an
algorithmic framework for bin packing problems. Feasibility of a grouping/packing
for the TCP is determined by solving some form of a sequencing problem on a
losses matrix. The authors understanding of SDCL is more abstract, and we do
not restrict losses to the geometric considerations applicable to the TCP. In the
same paper, the possibility of including two different orientations for each item is
investigated. This, however, cannot be modelled by 1D-CSP with SDCL. Another
fundamental difference with our work is that we include considerations about the
size of the leftovers in the objective. The 1D-CSP with SDCL cannot be solved
directly by applying the procedures in [69].

41



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

One dimensional CSP with SDCL presents interesting analogies with other com-
binatorial optimization problems. It can also be modelled as a distance constrained
vehicle routing problem (DCVRP or DVRP). The three index formulation in [65]
denoted VRP4 can be adapted to model 1D-CSP with SDCL, ignoring the capac-
ity constraints on the vehicles. However, if the second objective function (sum of
squared leftovers) is to be considered in the DCVRP model, it becomes nonlinear:
since leftover sizes are variable depending on the patterns’ sequence, the resulting
objective function is quadratic. In this vehicle routing context, the stock material
and the items of the 1D-CSP with SDCL are represented respectively by the ve-
hicles and the cities (duplicated to cover the demand of each item) of the DVRP,
while the dummy item 0 corresponds to the depot in vehicle routing. The cut losses
matrix C is replaced by an analogous matrix C ′ indicating the distances between
cities, increased by (half of) the corresponding item lengths (i.e. its components
c′ij = li+lj

2 + cij).
Moreover the problem can be modelled as a slight variation of the Multiple Trav-

elling Salesman Problem (mTSP). Following the description in [15], the variations
relevant for this work are related to the number of salesmen and to the so called
emphspecial restrictions.

The presented problem also shares similarities with the parallel machine schedul-
ing problem with sequence dependent setup times (see e.g. [71]). Sequence depen-
dent setup times basically model the same idea as SDCL in a scheduling context.
Main differences lie with the fact that for the parallel machine scheduling problem,
the number of machines (∼ corresponding to cutting patterns) is bounded, but no
limit on the usage time for each machine is defined. Typically, the objective is to
optimize some measure of throughput (total makespan, weighted tardiness, etc.),
rather than minimizing the number of machines.

3.1.2 An Approximation by 1D-CSP

Under one specific assumption, the 1D-CSP with SDCL can also be solved as a
standard 1D-CSP or 1D-BPP. Let cij denote the maximum cut loss in the cut loss
matrix cij. If li + cij ≤ L − cij ∀i ∈ I holds, then a 1D-CSP with SDCL instance
can be converted to a standard 1D-CSP instance by setting l∗i := li + cij ∀i ∈ I and

42



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

L∗ := L − cij. Any cutting pattern or packing found by a 1D-CSP (or 1D-BPP)
approach on this converted instance is feasible in any sequence. Consequently, the
solution is also feasible for the 1D-CSP with SDCL. An important question addressed
in Section 3.3 considers the conditions where an SDCL approach is better than a
standard 1D-CSP approach.

3.2 Algorithms

We present a heuristic approach to the 1D-CSP with SDCL. Starting from an exact
enumerative pattern based approach, presented in Section 3.2.1, a heuristic approach
(denoted HSD) is developed that overcomes the shortcomings of the exact approach.
This heuristic approach is described in Section 3.2.2.

3.2.1 An Exact Enumerative Pattern Based Approach

A general MILP solver was not able to efficiently solve the three index model [65]
due to the subtour elimination constraints (SEC) and the item duplication required
to cover demand. The following approach is based on the solution of the model
3.2 - 3.4 which is the classical set cover (SC) formulation where rp are pre-computed
constants. Solving this model requires the computation of the set P formed by all the
efficient patterns. Efficient patterns are those for which the sequence of items within
a pattern is optimal, i.e. that the total material loss incurred by the items and the
cut losses is minimized. We refer to this optimization as inner optimization. The set
P includes all patterns that can be generated using the given set of items, having
a total length smaller than L, and for which the inner optimization is optimal.
Patterns for which the inner optimization of the pattern is not optimal, can be
safely ignored due to consideration of the second objective. The pseudocode of this
approach is presented in Algorithm 3.

The algorithm consists of two phases: generating all efficient patterns and solving
model 3.2 - 3.4 to obtain the final solution. The pattern generation phase iterates
over all possible subsets S(I) (with repetition of items i if di > 1) to check if they
form feasible and efficient patterns; in which case they are added to the pattern set
P .

43



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

Algorithm 3 An enumerative approach
Input: I, cij, L, d
P ← ∅
for all s ∈ S(I) do . For all item subsets s

if LengthLowerBound(s) < L then
p ← TSPOPT(s,cij) . Find optimal pattern for subset s
if Length(p) < L then

P ← P ∪ {p}
end if

end if
end for
Solution ← SC(I,P ,d)
return Solution

44



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

Checking for feasibility and efficiency requires solving a TSP problem on the cut
losses matrix, restricted to the items (with multiplicity) in the considered pattern.
If the optimal tour length (the minimal losses for the considered items), increased
by the items’ lengths, is lower than L, then the pattern is feasible. Clearly not all
subsets of items need to be checked. A simple lower bound on the pattern length
of the best permutation (LengthLowerBound) can be obtained by summing only
the items’ lenghts, without considering SDCL (or by considering that each loss is
equal to the lowest value in the matrix C). The TSP optimization is only necessary
when this lower bound does not exceed L.

Obviously, the main drawbacks of this algorithm are the memory needed for
representing all the patterns, and the high computation time required to solve the
TSP. The following heuristic approach tries to overcome these shortcomings.

3.2.2 Heuristic Approach

The main purpose of the heuristic is to modify the previous exact approach in order
to overcome its drawbacks. The high memory required to represent the whole set of
feasible patterns can be managed by reducing the number of patterns considered, at
the expense of the optimality guarantee. The second critical point is the large time
required to solve the TSP. A simple alternative is to solve the TSP heuristically,
which leads to a sharp decrease in computational time required. In order to obtain
a good quality TSP solution, we adopted an iterated version of dynasearch [23]
followed by a 3-OPT [70] local search.

The pseudocode is presented in Algorithm 4. A solution of the 1D-CSP with
SDCL is given by the patterns and the corresponding number of occurrences required
to completely satisfy the item demand. If a part of the solution is fixed by imposing
some patterns, the remaining problem consists in finding other patterns to include
in the solution in order to fulfil the demand.

Let U be the set of all the unitary patterns, formed by one item. If the set U is
a proper subset of the pattern set considered as input of the SC step, it will always
provide a feasible solution. In the worst case, it will be given by adopting di times
each unitary pattern {i} ∀i ∈ I. Let Bd be the set of the longest feasible patterns
considering item set I and demand vector d.

45



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

Algorithm 4 Heuristic approach
Input: I, cij L, d
U ← GenerateUnitaryPatterns(I,d,L)
d’ ← d . Make a copy of the required demand
k ← 1
while TotalAmount(d’) > 0 do . While demand not fully satisfied

B̂d’ ← GenerateLongPatterns(I, cij, d’,U)
Pk ← U ∪ B̂d’
Sk ← SC(I, d’, Pk)
Update d’ considering all patterns p ∈ Sk fixed
k ← k + 1

end while
Solution ← SC(I, d, ∪kPk)
Output: Solution

46



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

Each iteration k of the algorithm generates a solution to the problem by applying
the SC model to a set of patterns Pk, with U ⊆ Pk in order to guarantee feasibility.
More precisely, Pk is determined as the union of U and a set B̂d’ ⊆ Bd’, which
includes the best patterns of Bd’ according to the leftover criterion. Note that d’
is the vector representing the current unsatisfied demand for each item. In the
pseudocode, the set B̂d’ is computed by the function GenerateLongPatterns.

GenerateLongPatterns starts from the unitary patterns U and iteratively
generates good feasible patterns of increasing length. First, the unitary patterns
are merged with themselves, generating all the possible patterns of length 2 (avoid-
ing repetitions). Subsequently, the inner optimization algorithm is applied on the
generated patterns and the best ones are kept according to the following criteria:

1. The ratio LOAD
WASTE

, where LOAD is the sum of the lengths of the items in the
pattern and WASTE is the sum of the cut losses. If it is high, it means that
the large object is filled properly.

2. The value of WASTE.

3. The level of item coverage, such that the final set contains patterns formed by
a wide variety of items.

The best patterns are merged with unitary patterns again considering all the possible
combinations, and the selection of the best patterns is performed. These steps are
iterated as long as feasible patterns can be generated, i.e. while patterns do not
violate the stock material length constraint. In general, the first criterion is more
suitable for long patterns (for which it is more important to maximize raw material
utilization), while the second works better for small or medium size patterns (for
which large leftovers are acceptable, and the goal is to minimize cut losses).

When the function GenerateLongPatterns ends, the set B̂d’ is defined and
Pk can be computed as U ∪ B̂d’. At this point, the SC model is solved on Pk

and a feasible solution of the problem is provided. This solution is formed by two
types of patterns: patterns belonging to U and patterns belonging to B̂d’. The
latter are the best among the longest patterns that can be generated at iteration k.
They are imposed as part of the final solution The remaining demand d’ is updated
considering this part of the solution as fixed.

47



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

These operations are iterated until the overall demand d is satisfied. Afterwards,
the SC step is performed on all the generated patterns ∪kPk in order to obtain a
better solution.

The whole procedure can be seen as a column generation based primal heuristic,
more precisely as a restricted master heuristic (see Section 1.1.4 for an introduc-
tion on column generation heuristics). The restricted master problem is model
(3.2) - (3.4), and the initial columns given by the unitary patterns ensure feasibil-
ity. Additional columns are generated heuristically by theGenerateLongPatterns
procedure.

3.3 Computational Study

The main research question in this work is to assess circumstances in which SDCL
are relevant to consider, rather than disregarding them and applying a 1D-CSP or
1D-BPP approach. We therefore set up a computational study that compares the
performance of the HSD heuristic and a 1D-BPP approach on a set of instances with
varying characteristics. For the 1D-BPP approach, we opted for the MBS2+VNS
heuristic from [45]. It performs well and considers the maximization of the sum
of squared loads, thus aiming for very dense packings, and indirectly for reusable
leftovers. This MBS2+VNS heuristic is applied to the 1D-BPP conversion of the
problem described in Section 3.1.2.

The tests were executed on an Intel Core i5-3550 3.30 GHz and 4GB RAM,
under Windows 7. The algorithms were implemented in C++ (except MBS2 +
VNS which was coded in Java). CPLEX 12.4 was used as ILP solver. A time limit
of 200 seconds was set for the SC steps of the HSD heuristic.

3.3.1 Experimental Setup

A set of instances was randomly generated in such a way that it includes instances
with varying item size and cut losses. Firstly, all the instances have been generated
such that the stock size is L = 1000. Two datasets have been generated. The
main dataset covers a wide range of parameter values. The second, smaller, dataset
consists of instances generated to study a specific feature.

48



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

Instances are uniquely identified by four parameters, denoted IS, N, CLV and
ID. The first parameter IS establishes the probabilistic distribution of the item
sizes, computed according to a truncated Poisson distribution with minimum and
maximum values of respectively 50 and 200. The second parameter N = ∑

i∈I di

denotes the total number of items to be cut. The demands di are generated according
to a uniform distribution between 5 and 10, forcing that N is fixed. N can take values
25, 50, 100, 200 and 300. It defines a first approximation of the size of the instance.
The third parameter CLV defines the variability of the cut losses. Both a high and
low variability of the cut losses are studied. The cut losses are generated according
to a uniform distribution; a setting of CLV = High denotes cut losses between 15
and 45, and CLV = Low denotes cut losses between 5 and 15. These distributions
lead to a global cut losses variability corresponding respectively to 3% and 1% of
the whole stock size.

Finally, five instances (distinguished by ID) with the same settings of the first
three parameters have been generated. In what follows, we present the averaged
results over these five instances, per parameter setting. The overall number of
instances in this dataset is equal to 150.

The main dataset contains no instances with a very low cut loss variability. Con-
sequently, the second set of instances was constructed with very small cut losses in
order to compare the performances of HSD and 1D-CSP approaches under these
circumstances. N is fixed and equal to 100 and item sizes have been generated ac-
cording to a uniform distribution between 100 and 150. Five instances are generated
for five different values of absolute cut loss variability (CL = 0,1,2,3,4). The cut
losses vary uniformly between [1,1 + CL].

3.3.2 Experimental Results and Discussion

The averaged results of the tests performed on the main dataset are reported in
Tables 3.3, 3.4 and 3.5. HSD indicates the heuristic based on sequence dependen-
cies introduced in Section 3.2.2, while MBS2+VNS refers to the heuristic in [45].
The tables report the following results for both HSD and MBS2+VNS: the averaged
values of the first objective (O1), the second objective (O2) and the execution time
of the algorithm (T , in seconds) per parameter setting, as well as the averaged lower

49



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

bound (LB) for those instances. Bold indicates best results. LB was determined
with the column generation procedure described in [92] that solves the linear relax-
ation of 1D-CSP with SDCL, considering only O1. In the tables, missing values for
the lower bounds denote that the column generation model did not produce a bound
with a time limit of 12 hours for at least one instance. The lower bound LBBP is the
lower bound for the bin packing conversion of the problem. LBBP enables assessing
the quality of the heuristic results (with respect to O1) for the bin packing version.
For both HSD and MBS2+VNS, the average computation time required for finding
these bounds is reported, as well as the number of optimal solutions found (#OPT ,
maximum = 5). The time limit is set to 12 hours.

The computational results reveal that HSD is the best performing heuristic in
terms of number of cutting patterns required. Considering SDCL is therefore rel-
evant to find cutting patterns that make better use of raw material. Even a cut
losses variability as small as 1% of the stock size and an item size as large as 30%
of the stock size, should not be overlooked when considering SDCL. However, the
consideration of SDCL comes at a computational cost, as the HSD heuristic requires
significantly more computational time. It is possible to conclude that the compu-
tational effort is higher when item sizes are smaller (as in the case of IS = 80)
and cut losses are smaller (as in the case of CLV = Low). In these cases, the
inner optimization is more computationally intensive since patterns are formed by
a larger number of items. Smaller cut losses make HSD less effective and increase
its execution time.

Table 3.6 summarizes the results on the second set of instances that have very
small cut losses (drawn uniformly from [1,1 + CL].). As expected, MBS2+VNS
performs better than HSD if the cut losses are very small. HSD can only outperform
MBS2+VNS if the absolute cut losses are larger and vary more (i.e. when cut losses
are between [1,3] and larger). In the cases where the results on O1 are identical,
HSD provides better solutions than MBS2+VNS.

50



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

Main dataset HSD MBS2+VNS
N CLV LB TLB O1 O2 T # OPT. LBBP TLB O1 O2 T # OPT.
25 Low 3.0 1156.0 3.0 526620.0 1.6 5 3.0 104.8 3.0 417392.6 0.0 5
25 High 3.0 327.6 3.0 124866.4 1.0 5 4.0 59.6 4.0 454319.4 0.0 5

50 Low 5.0 13316.6 5.0 449547.2 14.5 5 5.0 101.0 5.0 111841.2 0.2 5
50 High 5.8 5174.4 5.8 352242.6 7.8 5 7.2 74.8 7.2 320836.6 0.2 5

100 Low 9.4 104124.0 9.6 557879.0 63.4 4 10.2 164.2 10.2 374432.0 0.9 5
100 High 10.2 65795.8 10.4 218870.4 33.6 4 13.2 231.0 13.2 134662.4 0.1 5

200 Low 17.8 831582.6 17.8 433030.2 996.3 5 19.6 349.4 19.6 488221.4 2.1 5
200 High 20.2 3151317.8 20.6 255675.6 149.8 3 26.8 580.0 26.8 122297.6 0.2 5

300 Low 26.4 2327745.0 26.6 147403.6 13710.4 4 29.4 754.4 29.4 213160.4 0.3 5
300 High 29.8 4965184.4 30.6 533039.4 416.2 1 39.6 881.6 40.0 300060.4 0.4 3

Table 3.3: Results on instances with IS = 80.

Main dataset HSD MBS2+VNS
N CLV LB TLB O1 O2 T # OPT. LBBP TLB O1 O2 T # OPT.
25 Low 4.0 1131.4 4.0 398896.6 0.4 5 4.0 96.4 4.0 248966.6 0.0 5
25 High 4.8 302.0 4.8 579865.4 0.2 5 5.0 39.6 5.0 136972.0 0.0 5

50 Low 7.0 48908.0 7.0 116578.0 1.4 5 7.6 67.8 7.6 461525.6 0.1 5
50 High 8.0 45685.4 8.2 311025.8 1.4 4 9.8 48.8 9.8 263596.0 0.1 5

100 Low 13.8 2164429.2 14.0 213577.4 7.0 4 14.8 226.0 14.8 388055.6 0.3 5
100 High 15.0 1090221.0 15.4 379002.4 4.7 3 18.6 198.6 18.6 266930.8 0.1 5

200 Low - 31528894.0 27.2 471917.8 76.7 - 28.8 519.8 28.8 478105.2 0.2 5
200 High 29.2 5925667.8 30.0 281166.0 24.0 1 36.8 320.0 37.6 506611.2 0.3 1

300 Low - 40269585.2 40.8 310140.0 121.4 - 43.0 1098.8 43.4 432623.6 0.3 3
300 High - 21508083.6 44.8 305606.8 62.0 - 55.8 670.8 56.4 495685.2 0.6 2

Table 3.4: Results on instances with IS = 125.

51



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

Main dataset HSD MBS2+VNS
N CLV LB TLB O1 O2 T # OPT. LBBP TLB O1 O2 T # OPT.
25 Low 5.0 89.0 5.0 204486.8 0.1 5 5.0 95.2 5.0 70145.6 0.0 5
25 High 5.4 77.6 5.6 277806.2 0.1 4 7.0 40.8 7.0 637881.2 0.0 5

50 Low 9.6 11609.2 9.8 183052.4 0.3 4 10.0 29.6 10.0 190604.4 0.1 5
50 High 10.2 891.0 10.4 222870.8 0.3 4 12.6 30.4 12.6 300492.6 0.2 5

100 Low 19.2 671442.6 19.6 257374.6 1.5 3 19.8 51.8 19.8 117312.6 0.2 5
100 High 20.0 510213.8 20.2 144705.6 1.0 4 24.6 54.6 24.6 467421.2 0.4 5

200 Low - 36825450.0 37.6 439263.2 9.6 - 38.8 315.2 39.2 474066.6 0.4 3
200 High - 23508436.6 40.0 135964.6 5.6 - 49.2 117.4 49.2 624402.4 2.8 5

300 Low - 22080908.6 57.0 716090.4 35.4 - 58.6 606.2 59.0 522072.4 0.7 3
300 High - 42738567.4 60.0 214577.6 17.4 - 74.6 176.8 74.6 1025290.8 4.1 5

Table 3.5: Results on instances with IS = 170.

HSD MBS2+VNS
CL LB TLB O1 O2 T # OPT. LBBP TLB O1 O2 T # OPT.
0 13.4 412.2 13.6 526327.8 19.1 4 13.4 333.6 13.4 464630.0 1.3 5
1 13.4 1224420.0 13.6 422938.8 16.4 4 13.4 260.4 13.4 311685.0 1.0 5
2 13.4 1297271.2 13.6 491371.8 17.2 4 13.6 267.2 13.6 370179.0 0.7 5
3 13.4 766664.8 13.4 290571.6 15.9 5 13.6 289.2 13.6 272759.4 1.4 5
4 13.4 1145944.6 13.6 386685.6 14.1 4 13.6 247.4 13.6 177527.4 0.8 5

Table 3.6: Summary of results on the second set of generated instances.

52



3 – The Cutting Stock Problem with Sequence-Dependent Cut Losses

3.4 Conclusions

The present chapter discussed a one dimensional cutting stock problem with se-
quence dependent cut losses (1D-CSP with SDCL) that considers minimization of
the number of raw materials required for cutting a set of items. As a secondary
objective, the reusability of leftover material is considered.

It was shown that the problem can be approximately solved using a standard one
dimensional cutting stock problem or one dimensional bin packing approach. There-
fore, the main research question was to identify beneficial conditions to specifically
consider SDCL.

A computational study on a set of generated instances with varying character-
istics showed that it is clearly beneficial to consider SDCL, whenever the item size
is small, i.e. up to 30% of the stock size, and when cut losses are not too small and
have some variability, i.e. larger than 0.2% of the stock size.

The heuristic approach developed for this problem hybridizes a typical CG frame-
work, such that it provides high quality heuristic solutions. In the approach, a math-
ematical solver runs on a SC model and a time limit is set such that it is used in a
heuristic fashion. The effectiveness of the approach is validated in the computational
experiment section, by comparing it with a standard bin packing approach.

53



Chapter 4

An Exact Exponential Branch and
Merge Approach for the Total
Tardiness Problem

Section 1.3 introduced the basic concepts in the design of exact exponential algo-
rithms for combinatorial NP-hard problems. In spite of the growing interest on this
field, few results are yet known on scheduling problems, see the survey of Lenté et
al. [68]. In [67], Lenté et al. introduced the so-called class of multiple constraint
problems and showed that all problems fitting into that class could be tackled by
means of the Sort & Search technique. Further, they showed that several known
scheduling problems are part of that class. However, all these problems required
assignment decisions only and none of them required the solution of a sequencing
problem.

This work focuses on a pure sequencing problem, the single machine total tardi-
ness 1||∑Tj problem. In this problem, a jobset N = {1,2, . . . , n} of n jobs must be
scheduled on a single machine. For each job j, a processing time pj and a due date dj
are defined. The problem asks for arranging the jobset in a sequence S = (1,2, . . . , n)
so as to minimize T (N,S) = ∑n

j=1 Tj = ∑n
j=1 max{Cj − dj,0}, where Cj = ∑j

i=1 pi.
The 1||∑Tj problem is NP-hard in the ordinary sense [39]. It has been extensively
studied in the literature and many exact procedures ([36, 66, 80, 88]) have been
proposed. The current state-of-the-art exact method of [88] dates back to 2001 and

54



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

solves to optimality problems with up to 500 jobs. All these procedures are search
tree approaches, but dynamic programming algorithms were also considered. On
the one hand, in [66] a pseudo-polynomial dynamic programming algorithm was
proposed running with complexity O(n4 ∑

pi). On the other hand, the standard
technique of doing dynamic programming across the subsets (see Section 1.3.2) ap-
plies and runs with complexity O∗(2n) both in time and in space. Latest theoretical
developments for the problem, including both exact and heuristic approaches can
be found in the recent survey of Koulamas [63].

To the authors’ knowledge, there is no available exact algorithm for this problem
running in O∗(cn) (c being a constant) and polynomial space. Admittedly, one
could possibly apply a divide-and-conquer approach as in [55] and [18]. This would
lead to an O∗(4n) complexity in time requiring polynomial space. Aim of this
work is to present an improved exact algorithm exploiting known decomposition
properties of the problem. Different versions of the proposed approach are described
in Section 4.1. A final version making use of a new technique called branch and merge
that avoids the solution of several equivalent subproblems in the branching tree is
presented in Section 4.2. This version is shown to have a complexity that tends to
O∗(2n) in time and requires polynomial space. Finally, Section 4.3 discusses further
developments of this work and possible extensions of the presented technique.

4.1 A Branch and Reduce Approach

First, we recall some basic properties of the total tardiness problem and intro-
duces the notation used along the chapter. Given the jobset N = {1,2, . . . , n},
let (1,2, . . . , n) be a LPT (Longest Processing Time first) sequence, where i < j

whenever pi > pj (or pi = pj and di ≤ dj). Let also ([1], [2], . . . , [n]) be an EDD
(Earliest Due Date first) sequence, where i < j whenever d[i] < d[j] (or d[i] = d[j] and
p[i] ≤ p[j]). As the cost function is a regular performance measure, we know that in
an optimal solution, the jobs are processed with no interruption starting from time
zero. Let Bj and Aj be the sets of jobs that precede and follow job j in an optimal
sequence. Correspondingly, Cj = ∑

k∈Bj
pk + pj. Similarly, if job j is assigned to

position k, we denote by Cj(k) the corresponding completion time and by Bj(k) and

55



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

Aj(k) the sets of predecessors and successors of j, respectively.
The main known theoretical properties are the following.

Property 1. [41] Consider two jobs i and j with pi < pj. Then, i precedes j in
an optimal schedule if di ≤ max{dj, Cj}, else j precedes i in an optimal schedule if
di + pi > Cj.

Property 2. [66] Let job 1 in LPT order correspond to job [k] in EDD order.
Then, job 1 can be set only in positions h ≥ k and the jobs preceding and following
job 1 are uniquely determined as B1(h) = {[1], [2], . . . , [k − 1], [k + 1], . . . , [h]} and
A1(h) = {[h+ 1], . . . , [n]}.

Property 3. [66, 80, 87] Consider C1(h) for h ≥ k. Job 1 cannot be set in position
h ≥ k if:

(a) C1(h) ≥ d[h+1], h < n;

(b) C1(h) < d[r] + p[r], for some r = k + 1, . . . , h.

Property 4. ([89]) For any pair of adjacent positions (i, i+1) that can be assigned
to job 1, at least one of them is eliminated by Property 3.

In terms of complexity analysis, we recall that, if it is possible to bound above
T (n) by a recurrence expression of the type T (n) ≤ ∑h

i=1 T (n− ri) +O(p(n)), then
we have ∑h

i=1 T (n − ri) + O(p(n)) = O∗(α(r1, . . . , rh)n) where α(r1, . . . , rh) is the
largest root of the function f(x) = 1−∑h

i=1 x
−ri .

A basic branch and reduce algorithm TTBR1 (Total Tardiness Branch and Re-
duce version 1) can be designed by exploiting Property 2, which allows to decompose
the problem into two smaller subproblems when the position of the longest job 1
is given. The basic idea is to iteratively branch by assigning job 1 to every pos-
sible position (1, ..., n) and correspondingly decompose the problem. Each time
job 1 is assigned to a certain position i, two different subproblems are generated,
corresponding to schedule the jobs before l (inducing subproblem Bl(i)) or after l
(inducing subproblem Al(i)), respectively. The algorithm operates by applying to
any given jobset S starting at time t function TTBR1(S, t) that computes the cor-
responding optimal solution. With this notation, the original problem is indicated

56



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

by N = {1, ..., n} and the optimal solution is reached when function TTBR1(N,0)
is computed.

The algorithm proceeds by solving the subproblems along the branching tree
according to a depth-first strategy and runs until all the leaves of the search tree have
been reached. Finally, it provides the best solution found as an output. Algorithm 5
summarizes the structure of this approach, while Proposition 1 states its worst-case
complexity.

Algorithm 5 Total Tardiness Branch and Reduce version 1 (TTBR1)
Input: N = {1, ..., n} is the problem to be solved

1: function TTBR1(S, t)
2: seqOpt← a random sequence of jobs
3: l← the longest job in N
4: for i = 1 to n do
5: Branch by assigning job l to position i
6: seqLeft← TTBR1(Bl(i), t)
7: seqRight← TTBR1(Al(i), t+ ∑

k∈Bl(i) pk + pl)
8: seqCurrent← concatenation of seqLeft, l and seqRight
9: seqOpt← best solution between seqOpt and seqCurrent

10: end for
11: return seqOpt
12: end function

Proposition 1. Algorithm TTBR1 runs in O∗(3n) time and polynomial space in
the worst case.

Proof. Whenever the longest job 1 is assigned to the first and the last position of
the sequence, two subproblems of size n− 1 are generated. For each 2 ≤ i ≤ n− 1,
two subproblems with size i − 1 and n − i are generated. Hence, the total number
of generated subproblems is 2n− 2 and the time cost related to computing the best
solution of size n starting from these subproblems is O(p(n)). This induces the
following recurrence for the running time T (n) required by TTBR1:

T (n) = 2T (n− 1) + 2T (n− 2) + ...+ 2T (2) + 2T (1) +O(p(n)) (4.1)

57



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

By replacing n with n− 1, the following expression is derived:

T (n− 1) = 2T (n− 2) + ...+ 2T (2) + 2T (1) +O(p(n− 1)) (4.2)

Expression 4.2 can be used to simplify the right hand side of expression 4.1 leading
to:

T (n) = 3T (n− 1) +O(p(n)) (4.3)

that induces as complexity O∗(3n). The space requirement is polynomial since the
branching tree is explored according to a depth-first strategy.

An improved version of the algorithm is defined by taking into account Property 3
and Property 4, which state that for each pair of adjacent positions (i, i + 1), at
least one of them can be discarded. The worst case occurs when the largest possible
subproblems are kept. This corresponds to solving problems with size n − 1, n −
3, n − 5, . . ., that arise by branching on positions i and n − i + 1 with i odd. The
resulting algorithm is referred to as TTBR2 (Total Tardiness Branch and Reduce
version 2). Its structure is equal to the one of TTBR1 depicted in Algorithm 5, but
lines 5-9 are executed only when l can be set on position i according to Property 3.
The complexity of the algorithm is discussed in Proposition 2.

Proposition 2. Algorithm TTBR2 runs in O∗((1 +
√

2)n) = O∗(2.4143n) time and
polynomial space in the worst case.

Proof. The proof is close to that of Proposition 1. The algorithm induces a recursion
of the type:

T (n) = 2T (n− 1) + 2T (n− 3) + ...+ 2T (4) + 2T (2) +O(p(n)) (4.4)

as the worst case occurs when we keep the branches that induce the largest possible
subproblems. Analogously to Proposition 1, we replace n with n− 2 in the previous
recurrence and we obtain:

T (n− 2) = 2T (n− 3) + 2T (n− 5) + ...+ 2T (4) + 2T (2) +O(p(n− 2)) (4.5)

58



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

Again, we plug the latter expression into the former one and obtain the recur-
rence:

T (n) = 2T (n− 1) + T (n− 2) +O(p(n)) (4.6)

that induces as complexity O∗((1 +
√

2)n) = O∗(2.4143n). The space complexity is
still polynomial.

4.2 A Branch and Merge Algorithm

In this section, we describe how to get an algorithm running with complexity arbi-
trarily close to O∗(2n) in time and polynomial space by integrating a node-merging
procedure into TTBR1. We recall that in TTBR1 the branching scheme is defined
by assigning the longest unscheduled job to each available position and accordingly
divide the problem into two subproblems. Hereafter, we focus on the scenario where
the LPT sequence (1, ..., n) coincides with the EDD sequence ([1], ..., [n]), for conve-
nience we write LPT = EDD. This scenario eases the description of the algorithm.

Figures 4.1 shows how an input problem {1, ..., n} is decomposed by the branch-
ing scheme of TTBR1. Each node is labelled by the corresponding subproblem Pj

(P denotes the input problem). Notice that from now on Pj1,j2,...,jk , 1 ≤ k ≤ n,
denotes the problem (node in the search tree) induced by the branching scheme of
TTBR1 when the largest processing time job 1 is in position j1, the second largest
processing time job 2 is in position j2 and so on till the k-th largest processing time
job k being placed in position jk.

To roughly illustrate the guiding idea of the merging technique introduced in this
section, consider Figures 4.1. Noteworthy, nodes P2 and P1,2 are identical except for
the initial subsequence (21 vs 12). This fact implies, in this particular case, that
the problem of scheduling jobset {3, ..., n} at time p1 + p2 is solved twice. This kind
of redundancy can however be eliminated by merging node P2 with node P1,2 and
creating a single node in which the best sequence among 21 and 12 is scheduled
at the beginning and the jobset {3, ..., n}, starting at time p1 + p2, remains to be
branched on. Furthermore, the best subsequence (starting at time t = 0) between

59



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

P1 :1{2, ..., n}
P2 :21{3, ..., n}

P : {1, ..., n}

Pn

P3 :{2, 3}1{4, ..., n}
Pn :{2, ..., n}1

P3P2

P1

P1,n

. . .

P1,4P1,3P1,2

. . .

P1,2 :12{3, ..., n}
P1,3 :132{4, ..., n}
P1,4 :1{3, 4}2{5, ..., n}
P1,n :1{3, ..., n}2

Figure 4.1: The branching scheme of TTBR1 at the root node

21 and 12 can be computed in constant time. Hence, the node created after the
merging operation involves a constant time preprocessing step plus the search for
the optimal solution of jobset {3, ..., n} to be processed starting at time p1 + p2.
We remark that, in the branching scheme of TTBR1, for any constant k ≥ 3, the
branches corresponding to Pi and Pn−i+1, with i = 2, ..., k, are decomposed into
two problems where one subproblem has size n − i and the other problem has size
i − 1 ≤ k. Correspondingly, the merging technique presented on problems P2 and
P1,2 can be generalized to all branches inducing problems of sizes less than k. Notice
that, by means of algorithm TTBR2, any problem of size less than k requires at most
O∗(2.4143k) time (that is constant time when k is fixed). In the remainder of the
chapter, for any constant k ≤ n

2 , we denote by left-side branches the search tree
branches corresponding to problems P1, ..., Pk and by right-side branches the ones
corresponding to problems Pn−k+1, ..., Pn.

In the following subsections, we show how the node-merging procedure can be
systematically performed to improve the time complexity of TTBR1. Basically, two
different recurrent structures hold respectively for left-side and right-side branches
and allow to generate fewer subproblems at each recursion level. The node-merging
mechanism is described by means of two distinct procedures, called LEFT_MERGE
(applied to left-side branches) and RIGHT_MERGE (applied to right-side branches),
which are discussed in Section 4.2.1 and Section 4.2.2, respectively. The final branch

60



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

and merge algorithm is described in Section 4.2.3 and embeds both procedures in
the structure of TTBR1.

4.2.1 Merging Left-Side Branches

The first part of the section aims at illustrating the merging operations on the root
node. The following proposition highlights two properties of the couples of problems
Pj and P1,j with 2 ≤ j ≤ k.

Proposition 3. For a couple of problems Pj and P1,j with 2 ≤ j ≤ k, the following
conditions hold:

1. The solution of problems Pj and P1,j involves the solution of a common sub-
problem which consists in scheduling jobset {j + 1, ..., n} starting at time
t = ∑

i=1,...,j pi.

2. Both in Pj and P1,j, at most k jobs have to be scheduled before jobset {j +
1, ..., n}.

Proof. As problems Pj and P1,j are respectively defined by {2, ..., j}1{j + 1, ..., n}
and 1{3, ..., j}2{j + 1, ..., n}, the first part of the property is straightforward.
The second part can be simply established by counting the number of jobs to be
scheduled before jobset {j + 1, ..., n} when j is maximal, i.e. when j = k. In this
case, jobset {k + 1, ..., n} has (n − k) jobs which implies that k jobs remain to be
scheduled before that jobset.

Each couple of problems indicated in Proposition 3 can be merged as soon as
they share the same subproblem to be solved. More precisely, (k − 1) problems Pj
(with 2 ≤ j ≤ k) can be merged with the corresponding problems P1,j.

Figure 4.2 illustrates the merging operations performed for the root node on its
left-side branches, by showing the branch tree before and after (Figure 4.2a and
Figure 4.2b) such merging operations. For any given 2 ≤ j ≤ k, problems Pj and
P1,j share the same subproblem {j + 1, ..., n} starting at time t = ∑j

i=1 pi. Hence,
by merging the left part of both problems which is constituted by jobset {1, ..., j}
having size j ≤ k, we can delete node Pj and replace node P1,j in the search tree by
the node Pσ1,j which is defined as follows (Figure 4.2b):

61



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

P1 :1{2, ..., n}
P2 :21{3, ..., n}

P : {1, ..., n}

Pn

Pk :{2, ..., k}1{k + 1, ..., n}

PkP2

P1

P1,n

. . .

P1,kP1,2

. . .

P1,2 :12{3, ..., n}
P1,3 :132{4, ..., n}
P1,k :1{3, ..., k}2{k + 1, ..., n}

. . .

. . .

Pn :{2, ..., n}1

P1,n :1{3, ..., n}2

(a) Left-side branches of P before performing the merging operations

P : {1, ..., n}

PnPkP2

P1

P1,n

. . .

Pσ1,kPσ1,2

. . .

Pσ1,2 :BEST(12, 21){3, ..., n}
Pσ1,k :BEST({2, ..., k}1, 1{3, ..., k}2){k + 1, ..., n}

. . .

. . .

(b) Left-side branches of P after performing the merging operations

Figure 4.2: Left-side branches merging at the root node

• Jobset {j + 1, ..., n} is the set of jobs on which it remains to branch on.

• Let σ1,j be the sequence of branching positions on which the j longest jobs
1, ..., j are branched, that leads to the best jobs permutation between {2, ..., j}1
and 1{3, ..., j}2. This involves the solutions of two problems of size at most k−1
(in O∗(2.4143k) time by TTBR2) and the comparison of the total tardiness
value of the two sequences obtained.

62



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

In the following, we describe how to apply analogous merging operations on any
node of the tree. With respect to the root node, the only additional consideration
is that the child nodes of a generic node may already been affected by a previous
merging. As an example, let us consider Figure 4.2b. It shows that, subsequently
to the merging operations performed in P , the first k − 1 branches of P1 may not
be the subproblems induced by the usual branching scheme.

In order to define the branching scheme used with the LEFT_MERGE procedure,
a data structure Lσ is associated with a problem Pσ. It represents a list of k − 1
subproblems that result from a previous merging and are now the first k − 1 child
nodes of Pσ. When Pσ is created by branching, Lσ = ∅. When a merging operation
sets the first k − 1 child nodes of Pσ to Pσ1 , ..., Pσk−1 , we set Lσ = {Pσ1 , ..., Pσk−1}.
As a conclusion, the following branching scheme for a generic node of the tree holds.

Definition 1. The branching scheme for a generic node Pσ is defined as follows:

• If Lσ = ∅, use the branching scheme of TTBR1;

• If Lσ /= ∅, extract problems from Lσ as the first k − 1 branches, then branch
on the longest job in the available positions from the k-th to the last.

This branching scheme, whenever necessary, will be referred to as improved branch-
ing.

Before describing how merging operations can be applied on a generic node Pσ,
we highlight its structural properties by means of Proposition 4.

Proposition 4. Let Pσ be a problem to branch on, and σ be the permutation of
positions assigned to jobs 1, . . . , |σ|, with σ empty if no positions are assigned. The
following properties hold:

1. j∗ = |σ|+ 1 is the job to branch on,

2. j∗ can occupy in the branching process, positions {`b, `b + 1, . . . , `e}, where

`b =

|σ|+ 1 if σ is a permutation of 1, . . . , |σ| or σ is empty

ρ1 + 1 otherwise

63



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

with ρ1 = max{i : i > 0, positions 1, . . . , i are in σ} and

`e =

n if σ is a permutation of 1, . . . , |σ| or σ is empty

ρ2 − 1 otherwise

with ρ2 = min{i : i > ρ1, i ∈ σ}

Proof. According to the definition of the notation Pσ, σ is a sequence of positions
that are assigned to the longest |σ| jobs. Since we always branch on the longest
unscheduled job, the first part of the proposition is straightforward. The second
part aims at specifying the range of positions that job j∗ can be branched on. Two
cases are considered depending on the content of σ:

• If σ is a permutation of 1, . . . , |σ|, it means that the longest |σ| jobs are set
on the first |σ| positions, which implies that the job j∗ should be branched on
positions |σ|+ 1 to n

• If σ is not a permutation of {1, . . . , |σ|}, it means that the longest |σ| jobs are
not set on consecutive positions. As a result, the current unassigned positions
may be split into several ranges. As a consequence of the decomposition prop-
erty, the longest job j∗ should necessarily be branched on the first range of
free positions, that goes from ρ1 to ρ2. Let us consider as an example P1,9,2,8,
whose structure is 13{5, . . . ,9}42{10, . . . , n} and the job to branch on is 5. In
this case, we have: σ = (1,9,2,8), `b = 3, `e = 7. It is easy to verify that 5 can
only be branched on positions {3, . . . ,7} as a direct result of Property 2.

Corollary 1 emphasises the fact that even though a node may contain several
ranges of free positions, only the first range is the current focus since we only branch
the longest job in eligible positions.

Corollary 1. Problem Pσ has the following structure:

π{j∗, . . . , j∗ + `e − `b}Ω

64



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

with π the sequence of jobs on first `b − 1 positions in σ and Ω the schedule on all
positions after `e. The merging procedure is applied on jobset {j∗, . . . , j∗ + `e − `b}
starting at time tπ = ∑

i∈Π pi where Π is the jobset of π.

The validity of merging on a general node still holds as indicated in Proposition 5,
which extends the result stated in Proposition 3.

Proposition 5. Let Pσ be a generic problem and let π, j∗, `b, `e,Ω be computed
relatively to Pσ according to Corollary 1. If Lσ=∅ the j-th child node Pσj is Pσ,`b+j−1

for 1≤j≤k. Otherwise, the j-th child node Pσj is extracted from Lσ for 1≤j≤k−1,
while it is created as Pσ,`b+k−1 for j=k. For any couple of problems Pσj and Pσ1,`b+j−1

with 2≤j≤k, the following conditions hold:

1. Problems Pσj and Pσ1,`b+j−1 with 2≤j≤k have the following structure:

• Pσj :

πj{j∗+j, . . . , j∗+`e−`b}Ω 1≤j≤k−1 and Lσ /=∅

π{j∗+1, . . . , j∗+j−1}j∗{j∗+j, . . . , j∗+`e−`b}Ω
(1≤j≤k−1;Lσ=
∅)
or j=k

• Pσ1,`b+j−1:
π1{j∗+2, . . . , j∗+j−1}(j∗+1){j∗+j, . . . , j∗+`e−`b}Ω

2. By solving all the problems of size less than k, that consist in scheduling the
jobset {j∗+1, . . . , j∗+j−1} between π and j∗ and in scheduling {j∗+2, . . . , j∗+
j−1} between π1 and j∗+1, both Pσj and Pσ1,`b+j−1 consist in scheduling {j∗+
j, ..., j∗+`e−`b}Ω starting at time tπj =∑

i∈Πj pi where Πj is the jobset of πj.

Proof. The first part of the statement follows directly from Definition 1 and simply
defines the structure of the child nodes of Pσ. The problem Pσj is the result of a
merging operation with the generic problem Pσ,`b+j−1 and it could possibly coincide
with Pσ,`b+j−1, for each j=1, ..., k−1. Furthermore, Pσj is exactly Pσ,`b+j−1 for j=k.
The generic structure of Pσ,`b+j−1 is π{j∗+1, . . . , j∗+j−1}j∗{j∗+j, . . . , j∗+`e−`b}Ω,
and the merging operations preserve the jobset to schedule after j∗. Thus, we

65



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

have Πj=Π∪{j∗, ..., j∗+j−1} for each j=1, ..., k−1, and this proves the first state-
ment. Analougosly, the structure of Pσ1,`b+j−1 is π1{j∗+2, . . . , j∗+j−1}(j∗+1){j∗+
j, . . . , j∗+`e−`b}Ω. Once the subproblem before j∗+1 of size less than k is solved,
Pσ1,`b+j−1 consists in scheduling the jobset {j∗+j, ..., j∗+`e−`b} at time tπj =∑

i∈Πj pi.
In fact, we have that Πj=Π1∪{j∗+2, . . . , j∗+j−1}∪{j∗+1}=Π∪{j∗, . . . , j∗+j−1} .

Pσ

PσkPσ2

Pσ1 . . .

Pσ1,`b+k����Pσ1,`b+1

. . .

. . .

�����
Pσ1,`b+k−1

. . .

Pσ1,j∗+1 Pσ1,j∗+k−1

Figure 4.3: Merging for a generic left-side branch

Analogously to the root node, each couple of problems indicated in Proposition
5 can be merged. Again, (k− 1) problems Pσj (with 2 ≤ j ≤ k) can be merged with
the corresponding problems Pσ1,`b+j−1. Pσj is deleted and Pσ1,`b+j−1 is replaced by
Pσ1,j∗+j−1 (Figure 4.3), defined as follows:

• Jobset {j∗+j, ..., j∗+`e−`b}Ω is the set of jobs on which it remains to branch
on.

• Let σ1,j∗+j−1 be the sequence of branching positions on which the j∗ + j − 1
longest jobs 1, ..., j∗+j−1 are branched, that leads to the best jobs permutation
between πj and π1{j∗+2, . . . , j∗+j−1}(j∗+1) for 2 ≤ j ≤ k−1, and between
π{j∗ + 1, . . . , j∗ + j − 1}j∗ and π1{j∗ + 2, . . . , j∗ + j − 1}(j∗ + 1) for j = k.
This involves the solutions of one or two problems of size at most k − 1 (in
O∗(2.4143k) time by TTBR2) and the finding of the sequence that has the

66



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

smallest total tardiness value knowing that both sequences are scheduled at
time 0.

The LEFT_MERGE procedure is presented in Algorithm 6. Notice that, from a
technical point of view, this algorithm takes as input one problem and produces as
an output its first child node to branch on, which replaces all its k left-side child
nodes.

Algorithm 6 LEFT_MERGE Procedure
Input: Pσ an input problem of size n, with `b, j∗ accordingly computed
Output: Q: a list of problems to branch on after merging

1: function LEFT_MERGE(Pσ)
2: Q←∅
3: for j=1 to k do
4: Create Pσj (j-th child of Pσ) by the improved branching with the sub-

problem induced by jobset {j∗+1, . . . , j∗+j−1} solved if Lσ=∅ or j=k
5: end for
6: for j=1 to k−1 do
7: Create Pσ1j (j-th child of Pσ1) by the improved branching with the sub-

problem induced by jobset {j∗+2, . . . , j∗+j−1} solved if Lσ1=∅ or j=k
8: Lσ1←Lσ1∪BEST(Pσj+1 , Pσ1j )
9: end for

10: Q←Q∪Pσ1

11: return Q
12: end function

Lemma 1. The LEFT_MERGE procedure returns one node to branch on in O(n) time
and polynomial space. The corresponding problem is of size n− 1.

Proof. The creation of problems Pσ1,`b+j−1, ∀j = 2, . . . , k, can be done in O(n) time.
The call of TTBR2 costs constant time. The BEST function called at line 8 consists
in computing then comparing the total tardiness value of two known sequence of jobs
starting at the same time instant: it runs in O(n) time. The overall time complexity
of LEFT_MERGE procedure is then bounded by O(n) time as k is a constant. Finally,
as only the node Pσ1 is returned, its size is clearly n − 1 considering Pσ has size
n.

67



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

In the final part of this section, we discuss the extension of the algorithm in the
case where LPT /= EDD. In this case, Property 2 is supposed to be integrated
to the LEFT_MERGE procedure, which allows to discard subproblems associated with
branching in some positions (one at least). If a problem P can be discarded according
to this property, then we say that P does not exist and its associated node is empty.

Lemma 2. Instances such that LPT = EDD correspond to worst-case instances
for which the LEFT_MERGE procedure returns one node of size n − 1 to branch on,
replacing all the k left-side child nodes of its parent node.

Proof. Let us consider the improved branching scheme. The following exhaustive
conditions hold:

1. 1 = [1] and 2 = [2];

2. 1 = [j] with j ≥ 2;

3. 1 = [1] and 2 = [j] j ≥ 3.

In case 1, the branching scheme matches the one of Figure 4.2, hence Lemma 2
holds according to 1. In case 2, the problem Pσ1 is empty if no problem has been
merged to its position in the tree previously. The node associated with Pσ1,`b+`−1,
∀` ≤ k, can then be considered as empty node, hence the merging can be done by
simply moving the problem Pσ` into Pσ1,`b+`−1. As a consequence, the node returned
by LEFT_MERGE only contains the merged nodes as children nodes, whose solution
is much faster than solving a problem of size n − 1. If Pσ1 is not empty due to a
previous merging operation, the merging can be performed in the ordinary way. In
case 3, the nodes associated with Pσ1,`b+1, ..., Pσ1,`b+j−2 may or may not be empty
depending on the previous merging operation concerning Pσ1 , in either case the
merging can be done. The same reasoning holds for nodes associated with Pσ` and
Pσ1,`b+`−1 for ` ≥ j.

In general, the solution of problems Pσ` , ∀` = 2, . . . , k, can always be avoided.
In the worst case, the node associated with Pσ1 contains a subproblem of size n− 1,
otherwise with the application of Property 2, it contains a problem whose certain
children are set as empty. Therefore, Lemma 2 holds.

68



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

4.2.2 Merging Right-Side Branches

Due to the branching scheme, the merging of right-side branches involves a more
complicated procedure than for the merging of left-side branches. In the merging of
left-side branches, it is possible to merge some nodes associated with problems P`
with child nodes of P1, while for the right-side branches, it is not possible to merge
some nodes P` with child nodes of Pn. We can only merge child nodes of P` with
child nodes of Pn. Let us more formally introduce the right merging procedure and,
again, let k < n

2 be the same constant parameter as used in the left merging.
Figure 4.4 shows an example on the structure of merging for the k right-side

branches with k = 3. The root problem P consists in scheduling jobset {1, . . . , n}.
Unlike left-side merging, the right-side merging can only be done horizontally for
each level. Nodes that are involved in merging are colored by a dark color, all dark
nodes of the same shape and grayscale can be merged to a single one. Notice that
each right-side branch of P is expanded to a different depth which is actually an
arbitrary decision: the expansion stops when the first child node has size n− k − 1
as indicated in the figure. This eases the computation of the final complexity.

......

· · · · · · · · ·

· · · · · ·

· · ·

P

Pn−2
Pn−1 Pn

Pn−2,1

Pn−1,1,2

Pn−2,n−3 Pn−1,n−2

Pn−1,1,n−2

Pn,n−2

Pn,n−1

Pn,1,n−1
Pn,1,n−2

Pn,1,2,3

size:n−k−1

size:n−k−1

size:n−k−1

Figure 4.4: An example of right-side branches merging for k = 3

69



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

More generally, Figure 4.5 shows the right-side search tree and the content of
the nodes involved in the merging in a generic way.

. . .

· · · · · ·

P

Pn−k+1
Pq Pn

Pq,1,...,`,j

Pn−k+1,n−k

· · · · · ·

· · · · · ·

...

· · · · · · · · ·

...

· · ·

������Pn,1,...,`,j

· · · · · ·

...

· · · · · · · · ·

...

Level 0

Level 1

Level `

Level `− 1

...

Pq,1,...,`,j : (2, . . . , `+1){`+3, ..., j+1}(`+2){j+2, ..., q}1{q+1, ..., n}

Pσ1,`+2,•,j+2,n

Pσ1,`+2,•,j+2,n : (2, . . . , `+1){`+3, ..., j+1} BEST
max{j+1,n−k+`+1}≤q≤n

((`+2){j+2, ..., q}1{q+1, ..., n})

Figure 4.5: Generic right-side merging at the root node

The rest of this section intends to describe the merging by following the same
lines as for left merging. We first extend the notation Pσ in the sense that σ may
now contain placeholders. The i-th element of σ is either the position assigned to
job i if i is fixed, or • if job i is not yet fixed. The • sign is used as placeholder,
with its cardinality below indicating the number of consecutive •. As an example,
the problem {2, . . . , n− 1}1n can now be denoted by Pn−1, •

n−2
,n. The cardinality of

• may be omitted whenever it is not important for the presentation or it can be
easily deduced as in the above example. Note that this adapted notation eases the
presentation of right merge while it has no impact on the validity of results stated
in the previous section.

70



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

Proposition 6. Let Pσ be a problem to branch on. Let j∗, `b, `e, ρ1 and ρ2 be defined
as in Proposition 4. Extending Corollary 1, problem Pσ has the following structure:

π{j∗, . . . , j∗ + `e − `b}γΩ′

where π is defined as in Corollary 1 and γ is the sequence of jobs on positions
ρ2, . . . , ρ3 with ρ3 = max{i : i ≥ ρ2, positions ρ2, . . . , i are in σ} and Ω′ the schedule
on all positions after ρ3. The merging procedure is applied on jobset {j∗, . . . , j∗ +
`e − `b} preceded by a sequence of jobs π and followed by γΩ′.

Proof. The problem structure stated in Corollary 1 is refined on the part of Ω. Ω
is split into two parts: γ and Ω′. The motivation is that γ will be involved in the
right merging, just like the role of π in left merging.

Proposition 7 makes links between nodes that can be merged in the right part
of the search tree of the root node.

Proposition 7. For each problem in the set

S`,j=


Pσ:

|σ|=`+2,
max{j+1, n−k+`+1}≤σ1≤
n,
σi=i−1, ∀i∈{2, . . . , `+1},
σ`+2=j


1

with 0≤`≤k−1, n−k≤j≤n−1, and with σi referring to the position of job i in
σ, we have the two following properties:

1. The solution of problems in S`,j involves the solution of a common subproblem
which consists in scheduling jobset {`+3, ..., j+1} starting at time t`=

∑`+1
i=2 pi.

2. For any problem in S`,j, at most k+1 jobs have to be scheduled after jobset
{`+3, ..., j+1}.

1Placeholders do not count in the cardinality of σ

71



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

Proof. As each problem Pσ is defined by (2, . . . , `+1){`+3, ..., j+1}(`+2)
{j+2, ..., σ1}1{σ1+1, ..., n}, the first part of the property is straightforward.
Besides, the second part can be simply established by counting the number of jobs
to be scheduled after jobset {`+3, ..., j+1} when j is minimal, i.e. when j=n−k. In
this case, (`+2){j+2, ..., σ1}1{σ1+1, ..., n} contains k+1 jobs.

The above proposition highlights the fact that some nodes can be merged as
soon as they share the same initial subproblem to be solved. More precisely, at most
k−`−1 nodes associated with problems Pq,1..`,j, max{j+1, n−k+`+1} ≤ q ≤ (n−1),
can be merged with the node associated with problem Pn,1..`,j, ∀j = (n−k), ..., (n−1).
The node Pn,1..`,j is replaced in the search tree by the node Pσ1,`+2,•,j+2,n defined as
follows (Figure 4.5):

• Jobset {`+ 3, ..., j + 1} is the set of jobs on which it remains to branch on.

• Let σ1,`+2,•,j+2,n be the sequence containing positions of jobs {1, . . . , `+ 2, j +
2, . . . , n} and placeholders for the other jobs, that leads to the best jobs permu-
tation among (`+2){j+2, ..., q}1{q+1, ..., n}, max{j+1, n−k+`+1} ≤ q ≤ n.
This involves the solutions of at most k problems of size at most k + 1 (in
O∗(k × 2.4143k+1) time by TTBR2) and the finding of the sequence that
has the smallest total tardiness value knowing that all these sequences are
scheduled at time point t which is the sum of processing time of jobs in
(2, . . . , `+ 1){`+ 3, ..., j + 1}.

The merging process described above is applied from the root node, while an
analogous merging can be applied from any node of the tree. With respect to
the root node, the only additional consideration is that the right-side branches of a
general node may have already been modified by previous mergings. As an example,
let us consider Figure 4.6. It shows that, subsequently to the merging operations
performed from P , the right-side branches of Pn may not be the subproblems induced
by the branching scheme. However, it can be shown in a similar way as per left-
merge, that the merging can still be applied.

In order to define the branching scheme used with the RIGHT_MERGE procedure, a
data structureRσ is associated with a problem Pσ. It represents a list of subproblems
that result from a previous merging and are now the k right-side child nodes of Pσ.

72



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

P

Pn−1 Pn

Pn−1,n−2

����Pn,n−2 Pn,n−1

· · ·

· · · · · ·

· · ·· · ·
Pn,n−1,n−3

Pn−1,n−2

Pn−1,n−2,n−3

Figure 4.6: The right branches of Pn have been modified when performing right-
merging from P

When a merging operation sets the k right-side child nodes of Pσ to Pσn−k+1 , ..., Pσn ,
we set Rσ = {Pσn−k+1 , ..., Pσn}, otherwise we have Rσ = ∅. As a conclusion, the
following branching scheme for a generic node of the tree is defined. It is an extension
of the branching scheme defined in Definition 1.

Definition 2. The branching scheme for a generic node Pσ is defined as follows:

• If Rσ = ∅, use the branching scheme defined in Definition 1;

• If Lσ = ∅ and Rσ /= ∅, branch on the longest job in the available positions
from the 1st to the (n − k)-th, then extract problems from Rσ as the last k
branches.

• If Lσ /= ∅ and Rσ /= ∅, extract problems from Lσ as the first k − 1 branches,
then branch on the longest job in the available positions from the k-th to the
n− k-th, finally extract problems from Rσ as the last k branches.

This branching scheme, whenever necessary, will be referred to as improved branch-
ing. It also replaces the one introduced in Definition 1

Proposition 8 states the validity of merging on a general node, which extends
the result in Proposition 7.

73



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

Proposition 8. Let Pσ be a generic problem and let π, j∗, `b, `e, γ,Ω′ be computed
relatively to Pσ according to Proposition 6. If Rσ=∅, the right merging on Pσ can be
easily performed by considering Pσ as a new root problem. Suppose Rσ /=∅, the q-th
child node Pσq is extracted from Rσ, ∀n′−k+1≤q≤n′, where n′=`e−`b+1 is number
of child nodes of Pσ. The structure of Pσq is π{j∗+1, ..., j∗+q−1}γqΩ′.

For 0≤`≤k−1 and n′−k≤j≤n′−1, the following conditions hold:

1. Problems in Sσ`,j have the following structure:
π(j∗+1, . . . , j∗+`){j∗+`+2, ..., j∗+j}(j∗+`+1){j∗+j+1, ..., j∗+q−1}γqΩ′ with
q varies from max{j+1, n−k+`+1} to n′.

2. The solution of all problems in Sσ`,j involves the scheduling of a jobset {j∗+
j+1, ..., j∗+q−1}, max{j+1, n−k+`+1}≤q≤n′, which is of size less than k.
Besides to solve problems in Sσ`,j it is required to solve a common subproblem
made of jobset {j∗+`+2, ..., j∗+j} starting after π(j∗+1, . . . , j∗+`) and before
(j∗+`+1){j∗+j+1, ..., j∗+q−1}γqΩ′.

Proof. The proof is similar to the one of Proposition 5. The first part of the
statement follows directly from Definition 2 and simply defines the structure of
the child nodes of Pσ. For the second part, it is necessary to prove that {j∗+j+
1, ..., j∗+q−1}γq consists of the same jobs for any valid value of q. Actually, since
right-merging only merges nodes that have common jobs fixed after the unsched-
uled jobs, the jobs concerned in {j∗+j+1, ..., j∗+q−1}γq must be the same as in
{j∗+j+1, ..., j∗+q−1}j∗{j∗+q, ..., j∗+n′−1}γ, max{j+1, n−k+`+1}≤q≤n′, which
proves the statement.

Analogously to the root node, given the values of ` and j, all the problems in
Sσ`,j can be merged. More precisely, we rewrite σ as α•

n′
β where α is the sequence of

positions assigned to jobs {1, . . . , j∗−1}, •
n′

refers to the jobset to branch on and β
contains the positions assigned to the rest of jobs. At most k−`−1 nodes associated
with problems Pα,`b+q−1,`b..`b+`−1,`b+j−1,•,β, with max{j+1, n′−k+`+1}≤q≤n′−1, can
be merged with the node associated with problem Pα,`e,`b..`b+`−1,`b+j−1,•,β. The node
Pα,`e,`b..`b+`−1,`b+j−1,•,β is replaced in the search tree by the node Pα,σ`,`b,j ,•,β defined
as follows:

74



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

• Jobset {j∗+`+2, ..., j∗+j} is the set of jobs on which it remains to branch on.

• Let σ`,`b,j be the sequence of positions among

{(`b+q−1, `b..`b+`−1, `b+j−1) : max{j+1, n′−k+`+1}≤q≤n′−1}

associated with the best job permutation on (j∗+`+1){j∗+j+1, ..., j∗+q−
1}γq, ∀max{j+1, n′−k+`+1}≤q≤n′. This involves the solutions of k prob-
lems of size at most k+1 (inO∗(k×2.4143k+1) time by TTBR2) and the finding
of the sequence that has the smallest total tardiness value knowing that all
these sequences are scheduled at time point t which is the sum of processing
time of jobs in π(j∗+1, . . . , j∗+`){j∗+`+2, ..., j∗+j}.

The RIGHT_MERGE procedure is presented in Algorithm 7. Notice that, similarly
to the LEFT_MERGE procedure, this algorithm takes as input one problem Pσ and
provides as an output a set of nodes to branch on, which replaces all its k right-side
child nodes of Pσ. It is interesting to notice that the LEFT_MERGE procedure is also
integrated.

A procedure MERGE_RIGHT_NODES is invoked to perform the right merging for
each level ` = 0, ..., k − 1 in a recursive way. The initial inputs of this procedure
(line 13 in RIGHT_MERGE) are the problem Pσ and the list of its k right-side child
nodes, denoted by rnodes. They are created according to the improved branching
(lines 4-12 of Algorithm 7). Besides, the output is a list Q containing problems to
branch on after merging. In the first call to MERGE_RIGHT_NODES, the left merging is
applied to the first element of rnodes (line 2), all the child nodes of nodes in rnodes
not involved in right nor left merging, are added to Q (lines 3-7). This is also the
case for the result of the right merging operations at the current level (lines 8-11).
In Algorithm 8, the value of r indicates the current size of rnodes. It is reduced
by one at each recursive call and the value (k − r) identifies the current level with
respect to Pσ. As a consequence, each right merging operation consists in finding the
problem with the best total tardiness value on its fixed part, among the ones in the
set Sσk−r,j. This is performed by the BEST function (line 10 of MERGE_RIGHT_NODES)
which extends the one called in Algorithm 6 by taking at most k subproblems as
input and returning the dominating one.

75



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

Tthe MERGE_RIGHT_NODES procedure is then called recursively on the list con-
taining the first child node of the 2nd to r-th node in rnodes (lines 13-17). Note that
the procedure LEFT_MERGE is applied on every node in rnodes except the last one.
In fact, for any specific level, the last node in rnodes belongs to the last branch of
Pσ, which is Pσ,lb+n−1,•,β. Since Pσ,lb+n−1,•,β is put into Q at line 14 of RIGHT_MERGE,
it means that this node will be re-processed later and LEFT_MERGE will be called
on it at that moment. Since the recursive call of MERGE_RIGHT_NODES (line 18) will
merge some nodes to the right-side child nodes of Pα,`b, •

nr−1
,βr , the latter one must

be added to the list L of Pα, •
nr
,βr (line 19). In addition, since we defined L as a list

of size either 0 or k − 1, lines 20-24 add the other (k − 2) nodes to Lα, •
nr
,βr .

It is also important to notice the fact that a node may have its L or R structures
non-empty, if and only if it is the first or last child node of its parent node. A direct
result is that only one node among those involved in a merging may have its L or
R non-empty. In this case, these structures need to be associated with the resulting
node. The reader can always refer to Figure 4.4 for a more intuitive representation.

Lemma 3. The RIGHT_MERGE procedure returns a list of O(n) nodes in polynomial
time and space.
The solution of the associated problems involves the solution of 1 subproblem of size
(n − 1), of (k − 1) subproblems of size (n − k − 1), and subproblems of size i and
nq − (k − r)− i− 1, ∀r = 2, ..., k; q = 1, ..., r − 1; i = k, ..., n− k − (k − r)− 2.

Proof. The first part of the result follows directly from Algorithm 7. The only
lines where nodes are added to Q in RIGHT_MERGE are lines 13-14. In line 14,
only one problem is added to Q, thus it needs to be proved that the call on
MERGE_RIGHT_NODES (line 13) returnsO(n) nodes. This can be computed by analysing
the lines 2-7 of Algorithm 8. Considering all recursive calls, the total number of
nodes returned by MERGE_RIGHT_NODES is (∑k−1

i=1 (k − i)(n− 2k − i)) + k − 1 which
yields O(n). The number of all the nodes considered in right merging is bounded
by a linear function on n. Furthermore, all the operations associated with the nodes
(merging, creation, etc) have a polynomial cost. As a consequence, Algorithm 7
runs in polynomial time and space.

Regarding the sizes of the subproblems returned by RIGHT_MERGE, the node

76



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

Algorithm 7 RIGHT_MERGE Procedure
Input: Pσ = Pα,•

n
,β a problem of size n, with `b, j∗ computed according to Propo-

sition 4
Output: Q : a list of problems to branch on after merging

1: function RIGHT_MERGE(Pσ)
2: Q← ∅
3: nodes← ∅
4: if Rσ = ∅ then
5: for q = n−k+1 to n do
6: Create Pα,`b+q−1,•,β by branching
7: δ ← the sequence of positions of jobs {j∗+q, . . . , j∗+n−1} fixed by

TTBR2
8: nodes← nodes+Pα,`b+q−1,•,δ,β
9: end for

10: else
11: nodes← Rσ

12: end if
13: Q← Q∪MERGE_RIGHT_NODES(nodes, Pσ)
14: Q← Q∪nodes[k] . The last node will be re-processed
15: return Q
16: end function

77



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

Algorithm 8 MERGE_RIGHT_NODES Procedure
Input: rnodes = [Pα, •

n1
,β1 , . . . , Pα, •

nr
,βr ], ordered list of r last child nodes with `b

defined on any node in rnodes. |α|+1 is the job to branch on and nr = n1+r−1.
Output: Q, a list of problems to branch on after merging

1: function MERGE_RIGHT_NODES(rnodes, Pσ)
2: Q← LEFT_MERGE(Pα, •

n1
,β1)

3: for q = 1 to r − 1 do
4: for j = `b + k to `b + n1 − 1 do
5: Q← Q ∪ Pα,j, •

nq−1
,βq

6: end for
7: end for
8: for j = `b + n1 to `b + nr do
9: Solve all the subproblems of size less than k in Sσk−r,j

10: Rα, •
nr
,βr ← Rα, •

nr
,βr + BEST(Sσk−r,j)

11: end for
12: if r > 2 then
13: newnodes← ∅
14: for q = 2 to r − 1 do
15: newnodes← newnodes+ LEFT_MERGE(Pα, •

nq
,βq)

16: end for
17: newnodes← newnodes+ Pα,`b, •

nr−1
,βr

18: Q← Q ∪ MERGE_RIGHT_NODES(newnodes, Pσ)
19: Lα, •

nr
,βr ← Pα,`b, •

nr−1
,βr

20: for q = 2 to k − 1 do
21: Create Pα,`b+q−1, •

nr−1
,βr by branching

22: δ ← the sequence of positions of jobs {|α| + 2, . . . , |α| + q} fixed by
TTBR2

23: Lα, •
nr
,βr ← Lα, •

nr
,βr + Pα,`b+q−1,δ, •

nr−1
,βr

24: end for
25: end if
26: return Q
27: end function

78



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

added in line 14 of Algorithm 7 contains one subproblem of size n−1, corresponding
to branching the longest job on the last available position. Then, the problems added
by the call to MERGE_RIGHT_NODES are added to Q. In line 2 of Algorithm 8, the size
of the problem returned by LEFT_MERGE is one less than the input problem which is
of size n− k − (k − r), where k − r is the current level with respect to the original
node. As a consequence, the size of the resulting subproblem is n− k− (k− r)− 1.
Note that this line is executed (k − 1) times, ∀r = k, . . . ,2, corresponding to the
number of calls to MERGE_RIGHT_NODES. In line 5 of Algorithm 8, the list of nodes
which are not involved in any merging operation are added to Q. This corresponds
to couples of problems of size i and nq− (k− r)− i− 1 ∀i = k, ..., n− k− 1 and this
proves the last part of the lemma.

Lemma 4. Instances such that LPT = EDD correspond to worst-case instances for
which the RIGHT_MERGE procedure returns O(n) nodes to branch on, whose subprob-
lems are listed in Lemma 3, replacing all the k right-side child nodes of its parent
node.

Proof. The proof follows similar reasoning as the one in Lemma 2. In general, if
LPT /= EDD then the number of nodes in Sσ`,j (defined in Proposition 8) could be
less, since some nodes may not be created due to Property 2. However, all the nodes
inside Sσ`,j can still be merged to one except when Sσ`,j is empty. In either case, we
can achieve at least the same reduction as the case of LPT = EDD.

4.2.3 Complete Algorithm and Analysis

We are now ready to define the main procedure TTBM (Total Tardiness Branch
and Merge), stated in Algorithm 9 which is called on the initial input problem
P : {1, ..., n}. The algorithm has a similar recursive structure as TTBR1. However,
each time a node is opened, the sub-branches required for the merging operations
are generated, the subproblems of size less than k are solved and the procedures
LEFT_MERGE and RIGHT_MERGE are called. Then, the algorithm proceeds recursively
by extracting the next node from Q with a depth-first strategy and terminates when
Q is empty.

79



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

Algorithm 9 Total Tardiness Branch and Merge (TTBM)
Input: P : {1, ..., n}: input problem of size n

n
2 > k ≥ 2: an integer constant

Output: seqOpt: an optimal sequence of jobs
1: function TTBM(P ,k)
2: Q← P
3: seqOpt← a random sequence of jobs
4: while Q /= ∅ do
5: P ∗ ← extract next problem from Q (depth-first order)
6: if the size of P ∗ < 2k then
7: Solve P ∗ by calling TTBR2
8: end if
9: if all jobs {1, ..., n} are fixed in P ∗ then

10: seqCurrent← the solution defined by P ∗
11: seqOpt← best solution between seqOpt and seqCurrent
12: else
13: Q← Q ∪ LEFT_MERGE(P ∗) . Left-side nodes
14: for i = k + 1, ..., n− k do
15: Create the i-th child node Pi by branching scheme of TTBR1
16: Q← Q ∪ Pi
17: end for
18: Q← RIGHT_MERGE(P ∗) . Right-side nodes
19: end if
20: end while
21: return seqOpt
22: end function

80



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

Proposition 9 determines the time complexity of the proposed algorithm. In
this regard, the complexity of the algorithm depends on the value given to k. The
higher it is, the more subproblems can be merged and the better is the worst-case
time complexity of the approach.

Proposition 9. Algorithm TTBM runs in O∗((2 + ε)n) time and polynomial space,
where ε→ 0 for large enough values of k.

Proof. The proof is based on the analysis of the number and the size of the subprob-
lems put in Q when a single problem P ∗ is expanded. As a consequence of Lemma 2
and Lemma 4, TTBM induces the following recursion:

T (n) =2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+
k∑
r=2

r−1∑
q=1

n1−(k−r)−2∑
i=k

(T (i) + T (nq − (k − r)− i− 1))

+ (k − 1)T (n1 − 1) +O(p(n))

First, a simple lower bound on the complexity of the algorithm can be derived by the
fact that the procedures RIGHT_MERGE and LEFT_MERGE provide (among the others)
two subproblems of size n− 1, based on which the following inequality holds:

T (n) > 2T (n− 1) (4.7)

By solving the recurrence, we obtain that T (n) = ω(2n). As a consequence, the
following inequality holds:

T (n) > T (n− 1) + . . .+ T (1) (4.8)

In fact, if it does not hold, we have a contradiction on the fact T (n) = ω(2n).
By using Equation 4.8, we can find a bound for the complexity of T (n) as follows:

T (n) ≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+
k∑
r=2

r−1∑
q=1

n1−(k−r)−2∑
i=1

2T (i) + (k − 1)T (n1 − 1) +O(p(n))

≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

81



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

+
k∑
r=2

(r − 1)2T (n1 − (k − r)− 1) + (k − 1)T (n1 − 1) +O(p(n))

≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)
+ (k − 1)4T (n1 − 1) + (k − 1)T (n1 − 1) +O(p(n))

≤ 2T (n− 1) + 4T (n− k − 1) + 5(k − 1)T (n− k − 1) +O(p(n))
= 2T (n− 1) + (5k − 1)T (n− k − 1) +O(p(n))

where O(p(n)) includes the cost for creating all nodes for each level and the cost
of all the merging operations, performed in constant time.

The recursion T (n) = 2T (n− 1) + (5k − 1)T (n− k − 1) +O(p(n)) is an upper
limitation of the running time of TTBM. Recall that its solution is T (n) = O∗(cn)
where c is the largest root of the function:

fk(x) = 1− 2
x
− 5k − 1

xk+1 (4.9)

.
As k increases, the function fk(x) converges to 1− 2

x
, which induces a complexity

of O∗(2n). Table 4.1 shows the time complexity of TTBM obtained by solving
Equation 4.9 for all the values of k from 3 to 20. The base of the exponential is
computed by solving Equation 4.9 by means of a mathematical solver and rounding
up the fourth digit of the solution. The table shows that the time complexity is
O∗(2.0001n) for k ≥ 20.

82



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

k T (n)
3 O∗(2.5814n)
4 O∗(2.4302n)
5 O∗(2.3065n)
6 O∗(2.2129n)
7 O∗(2.1441n)
8 O∗(2.0945n)
9 O∗(2.0600n)
10 O∗(2.0367n)
11 O∗(2.0217n)
12 O∗(2.0125n)
13 O∗(2.0070n)
14 O∗(2.0039n)
15 O∗(2.0022n)
16 O∗(2.0012n)
17 O∗(2.0007n)
18 O∗(2.0004n)
19 O∗(2.0002n)
20 O∗(2.0001n)

Table 4.1: The time complexity of TTBM for values of k from 3 to 20

4.3 Conclusions

This chapter focused on the design of exact branching algorithms for the sin-
gle machine total tardiness problem. By exploiting some inherent properties of
the problem, we first proposed two branch and reduce algorithms, indicated with
TTBR1 and TTBR2. The former runs in O∗(3n), while the latter achieves a bet-
ter time complexity in O∗(2.4143n). The space requirement is polynomial in both
cases. Furthermore, a technique called branch and merge, is presented and ap-
plied onto TTBR1 in order to improve its performance. The final achievement is a
new algorithm (TTBM) with time complexity converging to O∗(2n) and polynomial
space. The same technique can be tediously adapted to improve the performance of
TTBR2, but the resulting algorithm achieves the same asymptotic time complexity
as TTBM, and thus it was omitted. To the best of authors’ knowledge, TTBM is
the polynomial space algorithm that has the best worst-case time complexity for

83



4 – An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem

solving this problem.
Beyond the new established complexity results, the main contribution of the

work is the branch and merge technique. The basic idea is very simple, and it con-
sists of speeding up branching algorithms by avoiding to solve identical problems.
The same goal is traditionally pursued by means of Memorization [46], where the
solution of already solved subproblems are stored and then queried when an identical
subproblem appears. This is at the cost of exponential space. In contrast, branch
and merge discards identical subproblems but by appropriately merging, in polyno-
mial time and space, nodes involving the solution of common subproblems. When
applied systematically in the search tree, this technique enables to achieve a good
worst-case time bound. On a computational side, it is interesting to notice that node
merging can be relaxed to avoid solving in O∗(2.4143k), with k fixed, subproblems
at merged nodes. This relaxation can be reduced to the comparison of active nodes
with already branched nodes with the requirement of keeping use of a polynomial
space. This can also be seen as memorization but with a fixed size memory used
to store already explored nodes. This leads to the lost of a reduced worst-case time
bound but early works [90] have shown that this can lead to substantially good
practical results, at least on some scheduling problems.

As a future development of this work, our aim is twofold. First, we aim at apply-
ing the branch and merge algorithm to other combinatorial optimization problems
in order to establish its potential generalization to other problems. Second, we want
to explore the pratical efficiency of this algorithm on the single machine total tardi-
ness problem and compare it with relaxed implementation where a node comparison
procedure is implemented with a fixed memory space used to store already branched
nodes, in a similar way than in [90].

84



Part II

Clustering Problems



Chapter 5

The Max-Mean Dispersion
Problem

Semidefinite Programming was introduced in Section 1.2. As previously discussed,
it has been adopted to design exact, heuristic and approximation algorithms for sev-
eral combinatorial optimization problems, especially for those that have a quadratic
formulation. Matheuristics were presented in Section 1.1. Originally, they were
conceived for LP - ILP models, for which very efficient mathematical solvers are
available. Recently, there has been a significant evolution in the performances on
solving non-linear programming (NLP) models, in particular in specific case of the
quadratic - quadratic integer programming (QP - QIP). As we will show in this
chapter, they are a mature-enough instrument to design matheuristics.

In this chapter, we tackle the Max-Mean Dispersion Problem (Max−MeanDP ),
a fractional combinatorial optimization problem that received some attention in the
last years. The algorithmic contribute is twofold. On the one hand, we propose an
efficient matheuristic approach based on a quadratic formulation of the problem. On
the other hand, we provide an exact method for the problem: an ad hoc branch and
bound algorithm based on a semidefinite programming relaxation of the problem.

Max−MeanDP belongs to a general category of clustering problems whose aim
is to find a subset M of a set N which maximizes a measure of dispersion/similarity
of the elements inM . More formally, suppose N is a set of elements with cardinality
n, and D a matrix whose components di,j (that may be positive, negative or null)

86



5 – The Max-Mean Dispersion Problem

indicate distance/proximity between item i ∈ N and j ∈ N . We assume that
the matrix D is symmetric, namely di,j = dj,i ∀i, j ∈ N , where the values on the
diagonal are equal to 0 (di,i = 0, ∀i ∈ N). When the measure of dispersion/similarity
of the elements in M is the sum of the di,js between elements i, j ∈ M (that is∑
i,j∈M di,j) and the cardinality of subset M is given a priori (|M | = m with m

predefined), then we have the Maximum Diversity Problem [54, 51], which is known
to be strongly NP-Hard. The Maximum Diversity Problem has been referred to with
several names, which have been carefully collected in [75]. Recently, it has also been
called k − cluster problem [73]. Hereafter, we will refer to it as Max − SumDP .
When the measure of dispersion/similarity of the elements in M is the minimum
of the di,js between elements i, j ∈ M (that is mini,j∈M di,j) and the cardinality of
subset M is given a priori, then we have the Max−MinDP [31, 83], which is also
known to be strongly NP-Hard. Finally, when the measure of dispersion/similarity
of the elements inM is the average of the distances between elements i, j ∈M (that
is

∑
i,j∈M

di,j

|M | ), but the cardinality of subset M is not given a priori, we have the
Max−MeanDP which is the object of this work.

This problem has a real importance in fields like architectural space planning and
analysis of social networks (as claimed in [76]). Another real-world application is
about web pages rank (see [62]). A different application is also shown in [84], where
authors aim at selecting individuals with different abilities, in order to determine
very productive non-homogeneous work teams. In such domains di,js can violate the
triangular inequality di,j ≤ di,k + dk,j∀i, k, j ∈ N and the non negativity condition
di,j ≥ 0∀i, j ∈ N . Finally, the considered problem can be of interest for communities
mining (see [100]) where relationships between individuals and/or elements can be
either positive or negative, such as like-dislike, trust-distrust. This can be useful for
market surveys, pattern recognition and social network analysis and more generally
when studies have to be conducted in order to derive specific (balanced) character-
istic of subset of elements in a larger community. In this context, it is a common
approach to tackle clustering problems with the aim of maximizing a measure of the
average diversity among individuals or elements where it is important also to take
into account the cluster size.

To the authors’ knowledge, the state of the art literature on Max−MeanDP is
quite limited. In [81], Max−MeanDP is shown to be strongly NP-Hard whenever

87



5 – The Max-Mean Dispersion Problem

di,js can take both positive and negative values. Those authors have also presented
a mixed integer non-linear programming (MINLP) formulation and an equivalent
ILP formulation. In [76], a randomized GRASP with path relinking is proposed for
Max−MeanDP . The presented computational experiments dealt with a set of real
world instances from a social network application.

Section 5.1 discusses the mathematical programming formulations of the Max−
MeanDP . Section 5.2 describes the semidefinite relaxation used as a bounding
method and the main features that characterize the proposed branch and bound.
The matheuristic is described in Section 5.3. It is a three-phase hybrid heuristic
procedure whose first phase repeatedly solves a QIP formulation of Max−SumDP
in order to determine an initial solutions set. The following phases enhance the
quality of the initial solutions set by means of a local branching scheme and a path
relinking procedure respectively. Section 5.4 provides a computational analysis that
validates the efficiency of the proposed algorithms.

5.1 Mathematical formulations

Max − MeanDP has a straightforward non-linear and fractional formulation, as
introduced in [81]. Define vector x ∈ {0,1}n where, for each component xi, we
have xi = 1 if and only if element i is included in the subset M , otherwise 0. The
formulation below follows directly from the definition of Max−MeanDP :

Max−MeanDP Standard Formulation 1.

max
∑n−1
i=1

∑n
j=i+1 di,jxixj∑n
i=1 xi

(5.1)

subject to:

n∑
i=1

xi ≥ 2 (5.2)

xi ∈ {0,1}∀i ∈ N (5.3)

Since D is symmetric, it can be written in the following vectorial form:

88



5 – The Max-Mean Dispersion Problem

Max−MeanDP Standard Formulation 2.

max xtDx
2utx (5.4)

subject to:

utx ≥ 2 (5.5)

x ∈ {0,1}n (5.6)

where uT =
n︷ ︸︸ ︷

(1,1, ..., 1), and, for convenience, the problem is converted into a mini-
mization problem where the sign of the objective is changed. The following propo-
sition indicates that if the integrality constraints are relaxed, then the resulting
mathematical program is not convex if no other assumptions are given on the ma-
trix D.

Proposition 10. The function f(x) : Γ→ R:

f(x) = −
1
2xTDx

uTx (5.7)

where Γ = {x ∈ [0,1]n : uTx ≥ 2}, is convex if and only if D � 0.

Proof. Set uTx = y. The above function can be written as:

f(x, y) = −
1
2x

TDx
y

over the domain Γ′ = {x ∈ [0,1]n , y ∈ R : y = uTx ≥ 2}
The Hessian ∇2f(x, y) is equal to:

∇2f(x, y) = − 1
y3

 Dy2 −Dxy
−(Dx)Ty xtDx

 = − 1
y3D

 y

−x

  y

−x

T

Function f(x, y) is defined on the convex set Γ′ and is convex if and only if
∇2f(x, y) � 0, thus if D � 0.

89



5 – The Max-Mean Dispersion Problem

With real world application data such as those considered in [76], the condition
D � 0 typically does not hold, hence the problem given by the continuous relaxation
of the standard fractional formulation of the problem is not convex in the general
case. NLP solvers can clearly be applied to this formulation (here we used XPRESS-
SLP by Fair-Isaac) even though just local maxima can be guaranteed.

In addition, the following straightforward QIP model holds for Max−SumDP :

Max− SumDP QIP Formulation 1.

max
n−1∑
i=1

n∑
j=i+1

di,jxixj (5.8)

subject to:

n∑
i=1

xi = m (5.9)

xi ∈ {0,1} ∀i ∈ N (5.10)

Even if general convexity results do not hold also for the continuous relaxation
of this QIP, we note that for Max−SumDP , the formulation corresponds to a 0/1
quadratic knapsack problem (with equality constraint) that has been much more
tackled in the literature (see, e.g. [79]) and can be efficiently tackled by means of
QIP solvers, such as, for instance, CPLEX. In [76], computational experiments dealt
only with ILP formulations of Max−MeanDP and Max− SumDP showing that
the iterative solution of Max − SumDP was superior to the one-shot solution of
Max−MeanDP . In our preliminary tests on Max−SumDP , we determined that
CPLEX 12.5 was more efficient when applied to QIP Formulation 1 rather than to its
standard linearization indicated in [76]. In fact, the latter required a computational
time which is higher by more than an order of magnitude on instances with n = 35.
The purpose of this work is to embed the repeated solution of the QIP formulation
of Max− SumDP into a heuristic framework for Max−MeanDP .

As a conclusion, we consider the solution approach based on the iterative solution
of the QIP formulation to validate our branch and bound in the computational
experiments. The pseudocode of the method, henceforth indicated by IMA, follows:

90



5 – The Max-Mean Dispersion Problem

Algorithm 10 Iterative Max− SumDP Approach (IMA)
Input: Max−MeanDP instance
i← 2
while i ≤ n do

Solve QIP Formulation 1 and obtain x(i)

if i = 2 or f(x(i))
i

> f(x(i∗))
i∗ then

x(i∗) ← x(i)

iMAX ← i
end if
m← m+ 1

end while
Output: x(i∗)

91



5 – The Max-Mean Dispersion Problem

5.2 A Semidefinite Programming Approach

In this section, the overall exact approach based on an SDP relaxation of the problem
is described. Section 5.2.1 describes how the SDP relaxation is derived, while Section
5.2.2 discusses the other features of the branch and bound framework.

5.2.1 The Semidefinite Programming Relaxation

The proposed SDP relaxation for the Max −MeanDP takes inspiration from the
ones described in Section 1.2 for the Quadratic Knapsack Problem. A similar re-
laxation to the one presented in this section was obtained in [22] for a problem
belonging to a completely different field. First, we consider the vectorial formula-
tion of the problem (Max−MeanDP Standard Formulation 2). Another equivalent
form can be derived from it by defining the matrix X as the dyadic product xxt. In
this case, each matrix component xi,j represents the product xixj.

Max−MeanDP Standard Formulation 3.

max Tr(DX)
2 Tr(IX) (5.11)

subject to:

Tr(IX) ≥ 2 (5.12)

X = xxt (5.13)

x ∈ {0,1}n (5.14)

Since xi,i = xi ∀i = 1, ..., n, the expression utx can be rewritten as Tr(IX),
where I is the identity n × n matrix, and x = diag(X) since xis are binary. As a
standard procedure to obtain a semidefinite relaxation, we discard Constraint 5.13
and Constraint 5.14 because they are non-convex, while we add the convex one
X � xxt. The following relaxation arises from these considerations:

92



5 – The Max-Mean Dispersion Problem

Max−MeanDP Quasiconvex Relaxation (QCR).

max Tr(DX)
2 Tr(IX) (5.15)

subject to:

Tr(IX) ≥ 2 (5.16)

X x
xt 1

 � 0 (5.17)

Note that Constraint 5.17 is equivalent to X � xxt because of Schur complement
condition for positive semidefiniteness. Constraints 5.16 and 5.17 are convex, but the
objective function is not. In fact, f(X) = Tr(DX)

Tr(IX) is a quasiconvex function and, thus,
program 5.15 - 5.17 is a quasiconvex program. Henceforth, we refer to this program
as QCR. In general, quasi convex programs can be solved via bisection method [21]
which is computationally expensive because a sequence of SDP feasibility problems
has to be solved at each step. In analogy with [22], we prove that it is possible to
compute the value of this relaxation by solving just one SDP. Let us consider the
following program:

Max−MeanDP SDP Relaxation (SDPR).

max 1
2 Tr(DZ) (5.18)

subject to:

Tr(IZ) = 1 (5.19)

 Z z
zT zn+1,n+1

 � 0 (5.20)

1
n
≤ zn+1,n+1 ≤

1
2 (5.21)

93



5 – The Max-Mean Dispersion Problem

Here Z is a symmetric n× n matrix, z is a n-dimensional vector and zn+1,n+1 is
a scalar. This program is an SDP and can be solved in polynomial time by means
of interior point methods. Let us call it SDPR. In the subsequent proposition, we
state the relationship between SDPR and QCR.

Proposition 11. The quasiconvex problem QCR has the same optimal value of
SDPR. Furthermore, the following statements holds:

• an optimal solution X∗ of QCR can be obtained from an optimal solution Z∗

of SDPR by using the equation:

X∗ = Z∗

zn+1,n+1
(5.22)

• the value of zn+1,n+1 is equal to 1∑n

i=1 xi
.

Proof. We follow the lines of [22] in the proof of their Proposition 1. First, we note
that zn+1,n+1 /= 0 because of Constraint 5.21. Then, it is easy to verify that we can
always define a feasible point X of QCR and Z of SDPR such that X = Z

zn+1,n+1
.

As a consequence of Constraint 5.19, we have that Tr(IX) = 1
zn+1,n+1

= 1∑n

i=1 zi
.

By using this equality, we can see that X and Z has the same objective function.
Finally, problems QCR and SDPR are equivalent and their optimal values X∗ and
Z∗ are linked by the equation X∗ = Z∗

zn+1,n+1
.

In simple words, the optimum of SDPR is scaled by ∑n
i=1 xi with respect to the

optimum of QCR. Thus, the logic-one value in variables xi is reflected on variables zi
such that they are equal to zn+1,n+1. A traditional approach to strengthen the quality
of these relaxations is to add valid inequalities for the boolean quadric polytope. In
fact, components xi,js model the product xixj in QCR and the following inequalities
hold:

xi,i + xj,j ≤ 1 + xi,j ∀i, j (5.23)

xi,k + xj,k ≤ xk,k + xi,j ∀i, j, k (5.24)

94



5 – The Max-Mean Dispersion Problem

xi,j + xi,k + xj,k + 1 ≥ xi,i + xj,j + xk,k ∀i, j, k (5.25)

These inequalities can be reformulated by means of Equation 5.22 such that they
are valid for SDPR:

zi,i + zj,j ≤ zn+1,n+1 + zi,j ∀i, j (5.26)

zi,k + zj,k ≤ zk,k + zi,j ∀i, j, k (5.27)

zi,j + zi,k + zj,k + zn+1,n+1 ≥ zi,i + zj,j + zk,k ∀i, j, k (5.28)

Let B be the set of inequalities 5.26 - 5.28. The cardinality of set B is O(n3),
but the efficiency of the solution of SDP models is strongly affected by the number
of constraints considered. Thus, it is not practical to include them all in SDPR
even for instances with a few items. In this case, the common approach is to use
a cutting plane algorithm in order to selects a subset of relevant inequalities which
allow to achieve a good compromise between the tightness of the relaxation and the
computation time to solve it.

5.2.2 The Branch and Bound Framework

The basic idea is to embed the relaxation SDPR of Max−MeanDP into a branch
and bound framework. At the root node of the branch tree, SDPR is solved for
a number of iterations and at each iteration the θ most violated inequalities in
B are added as constraints to the problem. Let us call B the set of the selected
inequalities within a time Tmax. The result of the final relaxation provides an initial
upper bound. At the other nodes, no warm start strategy is implemented, meaning
that the solution of the father node is not used to reduce the computation time
of the new optimum. Conversely, the SDP model is created from scratch, but the
number of variables and constraints is reduced more and more as we go down in the
branch tree.

95



5 – The Max-Mean Dispersion Problem

5.2.3 Reducted SDP model

At a general point of the branch tree, we distinguish a set A of elements which are
put in M and another set Ã of elements which are inhibited to be in M . Finally,
the set N/(A+ Ã) is formed by the undecided elements. We impose the belonging
of elements in A and Ã as linear constraints and we obtain the following problem,
named SDPRA:

Max−MeanDP SDP Relaxation A (SDPRA).

max 1
2 Tr(DZ) (5.29)

subject to:

Tr(IZ) = 1 (5.30)

 Z z
zT zn+1,n+1

 � 0 (5.31)

1
n
≤ zn+1,n+1 ≤

1
2 (5.32)

zi = zn+1,n+1 ∀i ∈ A (5.33)

zi = 0 ∀i ∈ Ã (5.34)

valid inequalities ∈ B (5.35)

It is possible to create a reducted version of SDPRA by substituting 5.33 and
5.34 in the rest of the model. Let us define a set Ba ⊆ B of active constraints, i.e.
the set of constraints in B which are not redundant because of the decisions taken in
the branch tree. Let us define a matrix Da obtained by considering only rows and
columns of D associated to elements in N/(A+ Ã). Analogously, we define Za from
Z by removing the same rows and columns. Both Da and Za are n̂ × n̂ matrices

96



5 – The Max-Mean Dispersion Problem

where n̂ ≤ n is the number of unfixed variables. The contribution of the picked
elements, i.e. elements belonging to A, in the objective is given by the expression
s =

∑
i∈A

∑
j∈A di,jzn+1,n+1

2 . Moreover, there exists a contribution brought by the
insertion of an element i ∈ N/(A+Ã) inM that is obtained as si =

∑
j∈A di,jzn+1,n+1

2 .
In the following notation, we use a function α(·) which provides the element number
α(p) ∈ N associated to a row/column index p. First, we define a matrix Ua as a
diagonal matrix with the p-th component of the diagonal equal to sα(p). Let za be a
n̂-dimensional vector whose p-th component is equal to xαpzn+1,n+1. Let us consider
the following n̂+ 1× n̂+ 1 matrices:

D̂a =
Da + Ua 0

0T s

 (5.36)

Ẑa =
Za 0
0T zn+1,n+1

 (5.37)

Î =
 Ia 0
0T |A|

 (5.38)

Then, the following problem, called SDPRB, can be obtained:

Max−MeanDP SDP Relaxation B (SDPRB).

max 1
2 Tr(D̂aẐa) (5.39)

subject to:

Tr(ÎẐa) = 1 (5.40)

Za za
zTa zn+1,n+1

 � 0 (5.41)

1
n
≤ zn+1,n+1 ≤

1
2 (5.42)

valid inequalities ∈ Ba (5.43)

97



5 – The Max-Mean Dispersion Problem

It is easy to verify that SDPRA and SDPRB are equivalent problems, but SD-
PRB presents a lower number of variables and constraints, since unrelevant con-
straints and variables are not taken into consideration. Thus, SDPRB is used as
a method in the branch and bound tree to determine powerful upper bounds in a
reasonable amount of time.

SDP based lower bounds

As we have seen so far, semidefinite programming is exploited in order to have
powerful upper bounds. However, the semidefinite solution of the relaxation SDPRB
can be used to determine good lower bounds too. The basic strategy embedded in
the framework is a rounding heuristic that, starting from the fractional semidefinite
programming solution za, allows to reconstruct a high quality feasible solution for the
Max−MeanDP . In an open node of the branch and bound tree, an initial feasible
solution xA can be instantly obtained by fixing at 1 variables whose associated
element is in A and at 0 all the other elements. Another initial feasible solution xÃ
can be obtained in the opposite way, variables associated at elements in Ã are set
to 0 and all the other variables are equal to 1.

The heuristic based on the solution za of SDPRB can be seen as a path relinking
from solution xA to xÃ. At each step of the path-relinking procedure a variable
associated to an element in N/(A+ Ã) is set to 1. Let us suppose that this element
is p and the associated variable is xp. The element p is choosed such that the i-th
component of za with α(i) = p has the highest value in the semidefinite solution
among the unfixed variables. Thus, the path relinking is guided by the solution of
SDRB and the distance between the current solution xCURR and xÃ decreases by one
unit at each step. Note that it is not a problem if the initial solution does not satisfy
Constraint 5.2, because the cardinality of set M will increase along the path and
feasible solutions will be found. A steepest descent three-opt local search centered
in xCURR is performed after of each iteration of the path relinking. In the end of
the algorithm, the best solution found is provided as an output. The pseudocode of
this heuristic approach follows.

98



5 – The Max-Mean Dispersion Problem

Algorithm 11 SDP based heuristics for Max−MeanDP

Input: Max−MeanDP instance, sets A and Ã, semidefinite solution xa
Set xCURR = xA
while xCURR /= xÃ do

Set variable associated to the highest valued component of za at 1
Update xCURR
Perform steepest descent three-opt local search from xCURR
Update best feasible solution x∗

end while
Output: Best solution x∗ found

99



5 – The Max-Mean Dispersion Problem

Tree expansion strategy

Our preliminary tests revealed that the best branching rule, in order to reduce
the size of the search tree, is to branch on the highest valued variable. Since the
algorithm is thought to reduce the overall time to compute the optimal solution of
a Max −MeanDP instance, the expansion strategy is a simple depth-first search
where at each step of the algorithm the node with the most promising upper bound
is expanded.

5.3 A Three-Phase Hybrid Heuristic

This section is devoted to describe the matheuristics approach designed for the
problem. In [76], it was shown that in their real world small instances the value of
m associated with the optimal solution lies in an interval, such that there are high
quality solutions with values of m inside this interval. Although these promising
intervals may be disjoint in large instances, the basic conclusion is very interesting:
if a set C of good candidate values form is selected, the use of the pseudo-polynomial
models can be restricted only to values of m in C. In the following, an interval, i.e.
the set of all possible integer values between two extreme points m1 and m2, where
m1,m2 ∈ N and 2 ≤ m1 ≤ m2 ≤ n, is indicated with [m1,m2].

The proposed hybrid algorithm forMax−MeanDP is composed by three phases
applied in cascade, namely

PHASE ONE It consists in the selection of good candidate values of m to be
included in set C, while also providing good feasible solutions;

PHASE TWO Given C, a local branching scheme is used in order to enhance the
quality of the solutions provided in PHASE ONE ∀m ∈ C.

PHASE THREE A further solution enhancement is obtained by means of a path
relinking procedure.

and the best solution found at the end of PHASE THREE is provided in output.
In the following subsections, the three phases are described in detail and for each

phase the corresponding pseudocode is provided.

100



5 – The Max-Mean Dispersion Problem

5.3.1 PHASE ONE: using the QIP solver to compute initial
solutions

PHASE ONE makes use of a decision tree with k branches (where k is a parameter
to be defined experimentally) to seek promising intervals. Starting from the initial
interval [2, n], it is split into k intervals of equal width, where an evaluation value is
computed for each interval. Then, the interval with the best evaluation is expanded
at each step, resulting in a best first expansion of the decision tree. The evaluation of
an interval [m1,m2] is performed by considering the quality of the solution provided
by the QIP solver after a fixed amount of time, using QIP Formulation 1 with m =
m1 and m = m2. Thus, we evaluate a set of contiguous values of m by computing
two solutions at its extreme points and summing their objectives. Call h(m) the
result provided by the solver after Ts seconds. The evaluation λ(m1,m2) ∈ R, with
m1,m2 ∈ N such that 2 ≤ m1 ≤ m2 ≤ n, of an interval [m1,m2] can be computed
as:

λ(m1,m2) = h(m1) + h(m2) (5.44)

A set S1 of feasible solutions for theMax−MeanDP is computed in PHASE ONE,
during the evaluations of intervals thanks to the computation of function h. In other
words, the output of PHASE ONE is not limited to the definition of C, but for each
value m′ ∈ C a solution S1 with m = m′ is computed, included in S1 and provided
as output.

Figure 5.1 shows how the decision tree is expanded during PHASE ONE, under
the assumption that gray nodes are associated to the intervals with the highest
evaluation λ at each step. Only the initial three steps of the expansion are depicted.
Table 5.1 enumerates solutions computed in these steps in order to expand nodes.
These solutions are indicated with the notation x̂m′ where m′ is the value of m for
the solution. In the example, PHASE ONE yields the following sets C and S1 after
the initial three steps.

C = {2,100,120,140,144,148,152,156,160,180,200,300,400,499} (5.45)

S = {x̂2, x̂100, x̂120, x̂140, x̂144, x̂148, x̂152, x̂156, x̂160, x̂180, x̂200, x̂300, x̂400, x̂500} (5.46)

In general, PHASE ONE ends as soon as a specific time limit T1 is achieved. We

101



5 – The Max-Mean Dispersion Problem

Figure 5.1: An example showing three steps of PHASE ONE

refer to the number of solutions computed in the end of PHASE ONE as γ.

Algorithm 12 depicts the pseudocode of PHASE ONE.

102



5 – The Max-Mean Dispersion Problem

Algorithm 12 PHASE ONE
Input: Max−MeanDP instance
Compute x̂2 and x̂n by solving to optimality Max − SumDP for m = 2 and
m = n
C ← {2, n} S1 ← {x̂2, x̂n}
Set I ← {[2, n]}
while time limit T1 is not reached do

Extract best valued interval from I
Split the selected interval [m0,mk] in k intervals [m0,m1] · · · [mk−1,mk]
By running the QIP solver for Ts seconds:

Compute k − 1 solutions x̂m1 · · · x̂mk−1 with m = m1 · · ·mk−1
I ← I ∪ {[m0,m1] · · · [mk−1,mk]}
C ← C ∪ {m1 · · ·mk−1}
S1 ← S1 ∪ {x̂m1 · · · x̂mk−1}

end while
Output: S1

103



5 – The Max-Mean Dispersion Problem

First step Second step Third step
x̂2 x̂120 x̂144
x̂100 x̂140 x̂148
x̂200 x̂160 x̂152
x̂300 x̂180 x̂156
x̂400
x̂500

Table 5.1: Solutions computed in PHASE ONE

5.3.2 PHASE TWO: local branching

PHASE TWO applies a local branching scheme [43] to each solution in S1 and
provides in output a set S2 of new solutions. A general description of the method
is provided in Section 1.1.1. For each solution x̂m′ , a local search is performed,
considering as a neighborhood of x̂m′ the set Ψ(x̂m′) of solutions whose Hamming
distance from x̂m′ is less than or equal to a parameter δ, while the overall number of
selected items is kept constant. This local search is carried out by running the QIP
solver on an extension of QIP formulation 1 for TLS seconds. Recall that in QIP
formulation 1 the value of m is fixed a priori, here m = m′. The following constraint
is added to the formulation, in order to take into account the Hamming distance
constraint:

2H(x, x̂) =
n∑
i=1

(xi(1− x̂i) + x̂i(1− xi)) ≤ 2δ (5.47)

where H(x, x̂) is the Hamming distance between x and x̂.

At this point, the QIP solver can provide two different results:

• an improving solution x̂∗m′ ∈ Ψ(x̂m′) is found and can be used as a starting
point for the subsequent local search;

• no improving solution is found in Ψ(x̂m′).

In the first case, PHASE TWO continues by discarding Constraint 5.47 and forcing
the exploration of the remaining solution space. To this end, the following constraint

104



5 – The Max-Mean Dispersion Problem

is kept:
n∑
i=1

(xi(1− x̂i) + x̂i(1− xi)) ≥ 2δ (5.48)

Accordingly, a new constraint that indicates the maximum Hamming distance from
x̂∗m′ is added, the solver is run on the resulting model and the process is iterated.

In the second case, Constraint 5.47 is replaced by:

2δ <
n∑
i=1

(xi(1− x̂i) + x̂i(1− xi)) ≤ 4δ (5.49)

and the solver is run again on the resulting model. If an improved solution is found,
PHASE TWO proceeds as in the first case. Otherwise, it moves to the next initial
solution in S1. Each solution provided by the local branching step is included in the
set S2. PHASE TWO stops when a time limit T2 is reached, or when the whole set
S1 is scanned.

Algorithm 13 depicts the pseudocode of PHASE TWO.

Algorithm 13 PHASE TWO
Input: Max−MeanDP instance, S1
S2 ← ∅
while S1 /= ∅ and time limit T2 is not reached do

Extract best solution x̂ in S1
Compute x̂′ with a Local Branching procedure starting from x̂
S2 ← S2 ∪ {x̂′}

end while
Output: S2

5.3.3 PHASE THREE: path relinking

Path relinking [52] is a technique that has been proved to be computationally effec-
tive for many combinatorial optimization problems. It takes as input an initial set of
feasible solutions, called the elite set E . We build such a set by scanning S2 in non-
increasing order and adding the current solution x̂ to E if there are no solutions in E

105



5 – The Max-Mean Dispersion Problem

whose Hamming distance from x̂ is less than or equal to 1. This step is iterated until
all solutions in S2 are considered. Recall that solutions provided by PHASE TWO
have different values of m, thus E is constructed by considering solutions which are
sufficiently different from one to another. Correspondingly, we generate a vector
CE containing all couples of solutions (x̂,ŷ) (with x̂, ŷ ∈ E and x̂ /= ŷ) sorted in
nonincreasing order of f(x̂) + f(ŷ). Then, we scan the sorted vector CE considering
one at a time (until all couples are considered or a time limit T3 is met) each couple
(x̂,ŷ) and we determine a sequence of moves that leads from x̂ to ŷ and viceversa.
In this context, a move is determined by an item deletion or insertion such that a
decrease in the Hamming distance between the solutions occurs. At each step, the
move leading to the best solution (ties broken at random) is picked and the process
is iterated until the destination is reached. The final solution returned by PHASE
THREE is the best of those in E and those computed along the paths.

Algorithm 14 depicts the pseudocode of PHASE THREE.

Algorithm 14 PHASE THREE
Input: Max−MeanDP instance, S2
while S2 /= ∅ and T3 is not reached do

Extract best solution x̂ in S2
if @ê ∈ E : H(ê, x̂) ≤ 1 then
E ← E ∪ x̂

end if
end while
Create set CE and sort it in increasing order of f(x̂) + f(ŷ)
for all sorted couples (x̂,ŷ) ∈ CE do

Perform path relinking from x̂ to ŷ
end for
Output: Best solution found

5.4 Computational Experiments

The aim of this section is to show the practical efficiency of the branch and bound
algorithm and of the matheuristic described so far. The instances used for the
tests have different sizes, we distinguish small instances (n = 20,25,30,35), medium

106



5 – The Max-Mean Dispersion Problem

size instances (n = 50,75,100) and large size instances (n = 150,500). Small in-
stances and large instances are the ones introduced in [76], while the medium size
instances are randomly generated following the same lines. The instances belong to
two classes:

Type I distances di,js are uniformly distributed in [−10,10];

Type II distances di,js are uniformly distributed in [−10,−5] ∪ [5,10].

Since 10 instances are considered for every different type and size, the whole dataset
that we adopted is formed by 180 different instances. All the proposed approaches
were tested on an Intel Core i5-3550 3.30GHz with 4GB of RAM, and they were
implemented in C++. Cplex 12.5 was used as a QIP solver. In the following, the
tests performed for the exact method will regard only small and medium instances.
Contrarily, the heuristic is only tested on large instances, for which the exact method
is not practical.

5.4.1 Tests for the Branch and Bound Algorithm

Let us discuss the parametrization of the proposed method, hereafter indicated with
SDP B&B. A key point for the effectiveness of the method is the fast solution of
the problem SDPRB. In the implementation, we solve SDPRB via CSDP 6.1.1 [19],
which is a robust and efficient SDP solver. It implements a primal dual interior
point method that is a variant of the algorithm described in [57]. Let us start with
the settings of the cutting plane algorithm executed in the root node. We set θ to
5, meaning that the 5 most violated inequalities among the ones in 5.26 - 5.28. The
time Tmax is set to a value which depends on the size of the instance. These values,
reported in Table 5.2, are choosed experimentally in order to obtain a good upper
bound in the root node by adding a sufficiently small set of constraints B. In fact,
we also want that the solution of SDPRB in the other nodes of the tree is not too
costly.

We did not set a time limit for SDP B&B. However, the time limit of 10 hours
used for IMA was reached only in two instances of size 100 (MDPI5_100 and MD-
PII5_100). The results of the tests are reported in Table 5.3 and Table 5.4. In
these tables, the first three columns are relative to the name of the instance, the

107



5 – The Max-Mean Dispersion Problem

n Tmax
20,25 0.5 seconds
30,35 1 second
50 20 seconds
75 5 minutes
100 20 minutes

Table 5.2: Values of Tmax used in the tests

value of the cardinality m of the selected subset in the optimal solution and the
value of the optimal objective. The columns labeled with T(s) indicate the time
in seconds required by the approach (IMA or SDP B&B) to solve the instances to
optimality. Relatively to the SDP method, the column named “Nodes" indicate the
number of nodes opened in proving the optimality of the solution. Table 5.3 shows
that for small instances (n = 20,25,30,35) the two approaches are quite equivalent,
and the number of nodes opened by SDP B&B is low. This scenario changes when
we consider medium size instances (n = 50,75,100). In the case of n = 50, the
proposed method is able to solve the instances considered roughly in a half of the
time required by IMA. As the value of n increases, the dominance of SDP B&B with
respect to IMA is stronger. In fact, IMA can not manage instances with n = 75
in most of the cases, while SDP B&B was capable of solving each of them within
32 minutes. For n = 100, SDP B&B solved 18 over 20 instances within a time
limit of 10 hours, with a high variance (for instance MDPI4_100 was solved in
approximately 38 minutes). Table 5.5 summarizes the results obtained in all the
tests by grouping them according to the instance size. In this table, Tavg(s) is the
average computational time and Average Nodes is the average number of nodes
opened. As a conclusion, the proposed approach allows to solve instances with up
to 100 elements, while previously even instances with size 75 could be hardly man-
aged. Further developments of this work could regard the implementation of a more
efficient interior point algorithm which exploits some properties of the relaxation.

108



5 – The Max-Mean Dispersion Problem

Optimum IMA SDP B&B
Instance m value T(s) Nodes T(s)
MDPI1_20 7 13,880 1 6 0
MDPI2_20 5 13,608 0 5 0
MDPI3_20 7 11,796 1 8 0
MDPI4_20 8 17,540 1 3 0
MDPI5_20 8 16,006 1 1 0
MDPI6_20 11 14,606 0 3 0
MDPI7_20 9 14,882 0 4 0
MDPI8_20 7 14,461 0 10 0
MDPI9_20 6 14,035 0 5 0
MDPI10_20 6 13,443 0 7 0
MDPII1_20 8 18,855 0 5 0
MDPII2_20 7 17,830 0 6 0
MDPII3_20 7 18,110 0 3 0
MDPII4_20 10 17,842 0 9 0
MDPII5_20 5 16,344 0 9 0
MDPII6_20 6 17,610 0 3 0
MDPII7_20 6 18,938 0 9 0
MDPII8_20 8 21,880 0 9 0
MDPII9_20 8 19,785 0 18 0
MDPII10_20 10 22,599 0 10 0
MDPI1_25 12 17,271 1 13 0
MDPI2_25 7 15,121 1 10 0
MDPI3_25 6 14,182 1 8 0
MDPI4_25 12 19,857 1 6 0
MDPI5_25 7 17,537 1 12 0
MDPI6_25 9 17,967 1 9 0
MDPI7_25 10 16,207 1 13 0
MDPI8_25 12 18,137 1 11 0
MDPI9_25 9 17,478 1 10 0
MDPI10_25 12 19,459 1 9 0
MDPII1_25 10 21,810 1 10 0
MDPII2_25 8 22,185 1 9 0
MDPII3_25 9 23,564 1 8 0
MDPII4_25 8 19,740 1 15 0
MDPII5_25 10 20,790 1 15 0
MDPII6_25 9 20,174 1 19 0
MDPII7_25 10 19,947 1 27 0
MDPII8_25 10 23,921 1 8 0
MDPII9_25 10 25,016 1 8 0
MDPII10_25 12 23,575 1 10 0

Optimum IMA SDP B&B
Instance m value T(s) Nodes T(s)
MDPI1_30 8 19,861 2 9 1
MDPI2_30 9 18,813 1 13 1
MDPI3_30 9 15,249 2 30 2
MDPI4_30 15 22,717 2 16 1
MDPI5_30 9 17,237 3 43 3
MDPI6_30 11 18,376 2 20 2
MDPI7_30 8 15,293 3 17 1
MDPI8_30 11 19,247 2 18 2
MDPI9_30 14 22,004 2 9 1
MDPI10_30 13 18,699 2 17 2
MDPII1_30 14 22,272 2 39 3
MDPII2_30 13 26,914 3 9 1
MDPII3_30 11 21,897 5 40 3
MDPII4_30 8 20,538 3 32 2
MDPII5_30 11 22,790 3 21 2
MDPII6_30 10 20,351 3 31 2
MDPII7_30 10 27,655 2 5 1
MDPII8_30 12 26,884 2 20 1
MDPII9_30 9 24,177 2 31 2
MDPII10_30 10 24,800 2 17 1
MDPI1_35 12 19,183 5 24 4
MDPI2_35 10 17,168 4 45 5
MDPI3_35 13 17,075 4 50 5
MDPI4_35 15 23,350 4 33 4
MDPI5_35 13 19,018 4 41 5
MDPI6_35 12 19,445 8 37 5
MDPI7_35 14 19,497 5 30 4
MDPI8_35 15 21,231 7 58 6
MDPI9_35 9 20,980 5 17 3
MDPI10_35 9 16,938 6 39 5
MDPII1_35 12 25,968 8 38 5
MDPII2_35 11 26,136 6 50 5
MDPII3_35 13 24,159 6 57 6
MDPII4_35 14 24,415 6 40 5
MDPII5_35 12 23,858 9 121 9
MDPII6_35 13 24,673 8 27 4
MDPII7_35 13 29,394 5 23 3
MDPII8_35 11 25,217 5 24 4
MDPII9_35 12 27,435 7 8 2
MDPII10_35 12 25,713 10 56 6

Table 5.3: Results on [76]’s small instances

109



5 – The Max-Mean Dispersion Problem

Optimum IMA SDP B&B
Instance m value T(s) Nodes T(s)
MDPI1_50 16 25,742 124 36 31
MDPI2_50 16 24,362 75 27 29
MDPI3_50 15 23,298 236 65 41
MDPI4_50 13 21,321 216 103 47
MDPI5_50 13 21,291 213 174 64
MDPI6_50 17 26,314 68 23 26
MDPI7_50 13 22,639 150 144 58
MDPI8_50 15 23,386 307 230 71
MDPI9_50 17 24,594 109 37 32
MDPI10_50 13 21,039 232 137 54
MDPII1_50 14 28,587 245 105 48
MDPII2_50 18 31,283 118 57 36
MDPII3_50 17 30,701 126 119 47
MDPII4_50 14 29,892 162 37 31
MDPII5_50 19 33,934 401 204 61
MDPII6_50 15 31,219 240 174 56
MDPII7_50 15 33,394 116 37 31
MDPII8_50 16 35,934 87 22 26
MDPII9_50 19 30,410 358 241 72
MDPII10_50 17 29,811 65 108 49
MDPI1_75 30 34,113 >36000 121 439
MDPI2_75 26 31,045 >36000 255 592
MDPI3_75 23 27,750 >36000 148 509
MDPI4_75 22 32,885 23830 72 384
MDPI5_75 27 28,536 >36000 318 655
MDPI6_75 26 27,743 >36000 451 909
MDPI7_75 25 29,445 >36000 408 759
MDPI8_75 36 37,173 >36000 100 392
MDPI9_75 30 29,395 >36000 343 714
MDPI10_75 26 30,393 34894 76 395

Optimum IMA SDP B&B
Instance m value T(s) Nodes T(s)
MDPII1_75 20 38,511 >36000 365 721
MDPII2_75 26 40,982 >36000 1775 1180
MDPII3_75 25 36,843 >36000 1483 1899
MDPII4_75 22 38,359 >36000 1504 1749
MDPII5_75 22 38,576 >36000 273 866
MDPII6_75 32 44,099 >36000 123 437
MDPII7_75 24 39,403 >36000 301 673
MDPII8_75 29 42,424 >36000 272 593
MDPII9_75 28 38,673 35493 543 993
MDPII10_75 28 42,302 12524 120 465
MDPI1_100 29 34,710 >36000 213 2893
MDPI2_100 28 35,246 >36000 3029 11954
MDPI3_100 30 36,172 >36000 749 5237
MDPI4_100 29 37,226 >36000 138 2285
MDPI5_100 34 34,651 >36000 16993 63686
MDPI6_100 36 30,691 >36000 5799 32580
MDPI7_100 27 35,040 >36000 7788 28681
MDPI8_100 25 33,390 >36000 2088 10570
MDPI9_100 32 35,725 >36000 2377 11266
MDPI10_100 34 35,167 >36000 1060 6325
MDPII1_100 26 44,731 >36000 1978 10015
MDPII2_100 34 43,142 >36000 3026 13235
MDPII3_100 24 48,827 >36000 2082 8375
MDPII4_100 38 50,972 >36000 506 3456
MDPII5_100 35 44,749 >36000 30130 65076
MDPII6_100 36 46,135 >36000 2271 16017
MDPII7_100 28 45,411 >36000 928 5743
MDPII8_100 32 43,664 >36000 1329 9613
MDPII9_100 32 50,435 >36000 830 7841
MDPII10_100 33 49,252 >36000 3389 12423

Table 5.4: Results on [76]’s medium instances

110



5 – The Max-Mean Dispersion Problem

IMA SDP B&B
n Tavg(s) Average Nodes Tavg(s)
20 ≤1 6,65 ≤1
25 ≤1 11,5 ≤1
30 ≈ 2 21,85 ≈ 2
35 ≈ 6 40,9 ≈ 5
50 ≈ 182 45,5 ≈ 104
75 ≥36000 766,2 ≈ 453
100 ≥36000 16363,55 ≈ 4335

Table 5.5: Results grouped by instance size

5.4.2 Tests for the Hybrid Heuristic

Preliminary tests were conducted with respect to the parameter settings of the
hybrid heuristic. These tests were performed on the instances of [76] for n = 500.
The CPU time limit for executing the three phases in cascade was set to 600 seconds.
The tests indicated that the best results were obtained by setting k = 5 for phase
1, δ = 16 for phase 2 and CPU time split within the phases assigning 240 seconds
to phase 1, 240 seconds to phase 2 and 120 seconds to phase 3 (from now denoted
as time distribution 1), that is 2/5 of the time available assigned to phase 1, 2/5
assigned to phase 2 and 1/5 assigned to phase 3.

To assess the validity of these settings, we checked the performances of the
algorithm by perturbing the parameters of one phase only at a time. We do not
provide the results of these experiments on phase 1 as, for 2 ≤ k ≤ 10, the results
were substantially the same while for larger k the results were progressively worse.
This can be explained by the fact that, for different k ≤ 10, even if the exploration
of the search tree is different, the best m of this phase is sooner or later encountered.
We sticked then to k = 5 for the rest of the experimentation.

Table 5.6 provides the output of phase 2 for different values of δ (with k = 5 in
phase 1 and 240 seconds allowed to phase 1 and phase 2, respectively) in the range
2 ≤ δ ≤ 64. It is shown that the results are quite similar for 2 ≤ δ ≤ 32 while a
degradation occurs for larger values. The best value is obtained for δ = 16.

Table 5.7 and Table 5.8 provide the output of the three phases for different
distributions of time among the phases with k = 5, δ = 16 and total CPU time

111



5 – The Max-Mean Dispersion Problem

Instances δ = 2 δ = 4 δ = 8 δ = 16 δ = 32 δ = 64
MDPI1_500 81,21 81,25 81,28 81,25 81,05 79,73
MDPI2_500 77,31 77,71 77,74 77,74 77,71 76,68
MDPI3_500 75,11 75,34 75,74 76,26 76,09 74,53
MDPI4_500 82,06 82,23 82,24 82,22 82,17 81,11
MDPI5_500 80,01 80,02 80,04 80,01 79,98 79,09
MDPI6_500 81,10 81,25 81,25 81,20 81,17 80,47
MDPI7_500 78,03 77,99 78,16 78,16 77,87 76,70
MDPI8_500 78,87 78,84 78,99 79,03 78,84 78,37
MDPI9_500 76,99 77,05 77,16 77,13 76,98 76,35
MDPI10_500 81,08 81,23 81,24 81,24 81,02 80,61
MDPII1_500 109,17 109,21 109,26 109,24 109,38 108,49
MDPII2_500 105,03 105,03 105,09 105,19 104,96 103,45
MDPII3_500 107,59 107,64 107,77 107,76 107,33 106,24
MDPII4_500 105,08 105,28 105,42 105,61 105,93 104,38
MDPII5_500 106,33 106,33 106,55 106,48 106,27 105,87
MDPII6_500 105,10 105,52 105,52 105,76 105,74 104,08
MDPII7_500 106,65 106,36 106,77 106,90 106,67 104,82
MDPII8_500 103,43 103,43 103,41 103,66 103,28 103,28
MDPII9_500 106,17 106,17 106,24 106,24 105,98 105,30
MDPII10_500 103,80 104,13 104,15 104,06 103,70 102,97

Total 1850,13 1852,01 1854,00 1855,10 1852,12 1832,51

Table 5.6: Results of phase 2 on the instances of [76] with n = 500 for different
values of δ with k = 5 and time distribution 1

Time distribution 1 Time distribution 2
PHASE1 PHASE2 PHASE3 PHASE1 PHASE2 PHASE3

Instances 240,00 240,00 120,00 120,00 240,00 240,00
MDPI1_500 79,73 81,25 81,25 79,73 81,25 81,25
MDPI2_500 76,59 77,74 77,77 76,59 77,52 77,64
MDPI3_500 74,53 76,26 76,30 74,53 75,74 76,07
MDPI4_500 81,11 82,22 82,33 81,10 82,18 82,27
MDPI5_500 79,09 80,01 80,08 79,09 80,01 80,08
MDPI6_500 80,46 81,20 81,25 80,46 81,20 81,25
MDPI7_500 76,70 78,16 78,16 76,70 77,80 78,16
MDPI8_500 78,37 79,03 79,06 78,37 78,99 79,03
MDPI9_500 76,35 77,13 77,30 76,35 77,13 77,28
MDPI10_500 80,61 81,24 81,25 80,61 81,24 81,25
MDPII1_500 108,49 109,24 109,30 108,49 109,23 109,30
MDPII2_500 103,45 105,19 105,30 103,45 105,00 105,12
MDPII3_500 106,24 107,76 107,79 106,24 107,76 107,79
MDPII4_500 103,63 105,61 106,10 103,63 105,71 106,10
MDPII5_500 105,87 106,48 106,54 105,87 106,48 106,54
MDPII6_500 104,08 105,76 105,77 104,08 105,61 105,61
MDPII7_500 104,82 106,90 106,92 104,82 106,74 107,06
MDPII8_500 103,28 103,66 103,78 103,28 103,66 103,78
MDPII9_500 105,30 106,21 106,24 105,30 106,21 106,24
MDPII10_500 102,88 104,06 104,10 102,88 104,04 104,10

Total 1831,57 1855,08 1856,60 1831,56 1853,46 1855,92

Table 5.7: Results on the instances of [76] of Type II with n = 500 for different
distributions

112



5 – The Max-Mean Dispersion Problem

Time distribution 3 Time distribution 4
PHASE1 PHASE2 PHASE3 PHASE1 PHASE3

Instances 360,00 120,00 120,00 240,00 360
MDPI1_500 79,73 81,25 81,25 79,73 80,27
MDPI2_500 76,59 77,28 77,28 76,59 77,01
MDPI3_500 74,53 76,26 76,26 74,53 74,93
MDPI4_500 81,11 82,18 82,18 81,11 81,81
MDPI5_500 79,09 80,01 80,01 79,09 79,86
MDPI6_500 80,46 81,20 81,20 80,46 80,78
MDPI7_500 76,70 78,16 78,16 76,70 77,53
MDPI8_500 78,37 78,99 78,99 78,37 78,73
MDPI9_500 76,35 77,13 77,13 76,35 76,81
MDPI10_500 80,61 81,24 81,24 80,61 81,07
MDPII1_500 108,49 109,24 109,24 108,49 108,89
MDPII2_500 103,45 105,05 105,05 103,45 104,52
MDPII3_500 106,24 107,76 107,76 106,24 107,17
MDPII4_500 103,63 105,71 105,71 103,63 104,53
MDPII5_500 105,87 106,48 106,48 105,87 106,37
MDPII6_500 104,08 105,61 105,61 104,08 104,96
MDPII7_500 104,82 106,90 106,90 104,82 105,80
MDPII8_500 103,28 103,43 103,43 103,28 103,43
MDPII9_500 105,30 106,21 106,21 105,30 105,92
MDPII10_500 102,88 104,04 104,04 102,88 103,37

Total 1831,57 1854,09 1854,09 1831,57 1843,75

Table 5.8: Results on the instances of [76] of Type II with n = 500 for different
distributions

equal to 600 s. For any time distribution tested, time limits for each phase are
reported. Best results were reached with time distribution 1. Notice that deleting
phase 2 (time distribution 4) or phase 3 (results not presented here) leads to worse
results. The final parameters setting for the hybrid heuristic was k = 5, δ = 16 and
time distribution 1. We tested then the behaviour of the hybrid heuristic on the
whole dataset of [76] with n ≥ 150 for different CPU time limits, namely 15, 60 and
120 seconds for n = 150 and 150, 600 and 1200 seconds for n = 500. We denote as
TOTCPU-1 the case where the CPU time limit is 15 for the instances with n = 150
and 150 for the instances with n = 500. Then, we denote as TOTCPU-2 the case
where the CPU time limit is 60 for the instances with n = 150 and 600 for the
instances with n = 500. Finally, we denote as TOTCPU-3 the case where the CPU
time limit is 120 for the instances with n = 150 and 1200 for the instances with
n = 500.

Table 5.9 provides the related results. It shows a very minor improvements in
quality from TOTCPU-1 to TOTCPU-3 even though the times are 8 eight times
larger in the latter case. From the table, we notice that PHASE TWO leads to

113



5 – The Max-Mean Dispersion Problem

TOTCPU-1 TOTCPU-2 TOTCPU-3
Instances PHASE 1 PHASE 2 PHASE 3 PHASE 1 PHASE 2 PHASE 3 PHASE 1 PHASE 2 PHASE 3
MDPI1_150 45,89 45,89 45,92 45,89 45,89 45,92 45,89 45,92 45,92
MDPI2_150 43,39 43,39 43,39 43,39 43,39 43,39 43,39 43,39 43,39
MDPI3_150 39,89 39,91 40,00 39,89 39,91 40,04 39,89 39,91 40,04
MDPI4_150 43,88 43,98 44,04 43,88 44,04 44,04 43,88 44,04 44,04
MDPI5_150 42,48 42,48 42,48 42,48 42,48 42,48 42,48 42,48 42,48
MDPI6_150 43,55 43,57 43,72 43,55 43,64 43,72 43,55 43,64 43,72
MDPI7_150 45,99 45,99 46,08 45,99 45,99 46,08 45,99 45,99 46,08
MDPI8_150 42,14 42,26 42,45 42,29 42,35 42,45 42,29 42,35 42,43
MDPI9_150 41,78 41,78 41,82 41,82 41,82 41,82 41,82 41,82 41,82
MDPI10_150 41,76 41,76 41,80 41,80 41,80 41,80 41,80 41,80 41,80
MDPII1_150 57,48 57,48 57,48 57,48 57,48 57,48 57,48 57,48 57,48
MDPII2_150 57,34 57,46 57,82 57,47 57,62 57,82 57,47 57,64 57,80
MDPII3_150 57,42 58,02 58,42 58,42 58,42 58,42 58,42 58,42 58,42
MDPII4_150 56,11 56,28 57,38 56,51 57,06 57,22 56,51 57,06 57,38
MDPII5_150 54,09 54,09 54,14 54,09 54,09 54,14 54,09 54,09 54,23
MDPII6_150 56,44 56,44 56,44 56,44 56,44 56,44 56,44 56,44 56,44
MDPII7_150 58,43 58,43 58,60 58,47 58,47 58,60 58,47 58,47 58,77
MDPII8_150 57,97 57,97 57,97 57,97 57,97 57,97 57,97 57,97 57,97
MDPII9_150 58,06 58,14 58,30 58,06 58,14 58,30 58,06 58,14 58,30
MDPII10_150 56,18 56,55 57,06 56,18 56,84 57,18 56,18 56,84 57,18
MDPI1_500 79,73 81,18 81,25 79,73 81,25 81,25 79,73 81,25 81,25
MDPI2_500 76,59 77,34 77,56 76,59 77,74 77,77 76,59 77,74 77,79
MDPI3_500 74,40 75,57 75,99 74,53 76,26 76,30 74,53 76,16 76,30
MDPI4_500 81,05 82,15 82,27 81,11 82,22 82,33 81,11 82,22 82,33
MDPI5_500 79,09 79,91 80,02 79,09 80,01 80,08 79,09 80,01 80,08
MDPI6_500 80,46 81,20 81,25 80,46 81,20 81,25 80,46 81,20 81,25
MDPI7_500 76,68 77,78 78,16 76,70 78,16 78,16 76,70 78,16 78,16
MDPI8_500 78,37 78,93 78,99 78,37 79,03 79,06 78,37 79,03 79,06
MDPI9_500 76,35 76,95 77,04 76,35 77,13 77,30 76,35 77,32 77,36
MDPI10_500 80,54 80,99 81,05 80,61 81,24 81,25 80,61 81,24 81,25
MDPII1_500 108,49 109,03 109,23 108,49 109,24 109,30 108,49 109,24 109,30
MDPII2_500 103,45 104,83 105,12 103,45 105,19 105,30 103,45 105,19 105,33
MDPII3_500 105,96 107,62 107,79 106,24 107,76 107,79 106,24 107,76 107,79
MDPII4_500 103,47 105,25 105,49 103,63 105,61 106,10 103,63 105,71 106,10
MDPII5_500 105,87 106,32 106,37 105,87 106,48 106,54 105,87 106,45 106,54
MDPII6_500 104,08 105,51 105,61 104,08 105,76 105,77 104,08 105,76 105,77
MDPII7_500 104,82 106,90 106,92 104,82 106,90 106,92 104,82 106,90 107,06
MDPII8_500 103,28 103,43 103,48 103,28 103,66 103,78 103,28 103,66 103,78
MDPII9_500 105,30 106,14 106,24 105,30 106,21 106,24 105,30 106,21 106,24
MDPII10_500 102,24 103,80 104,02 102,88 104,06 104,10 102,88 104,06 104,10

Table 5.9: Results on the large instances for different CPU time limits

increased solution quality with respect to PHASE ONE. Also, PHASE THREE is
capable of further improving the solutions of PHASE TWO.

We compared then the hybrid three-phase heuristic with parameters setting k =
5, δ = 16, time distribution 1 and TOTCPU-1 as CPU time limit to the GRASP with
path relinking proposed in [76] and the XPRESS-SLP non-linear solver applied to
the Standard Formulation 1. The results are presented in Table 5.10. GRASP with
path relinking was tested on an Intel Core Solo 1.4GHz with 3GB of RAM, while we
recall that the other approaches were tested on an Intel Core i5-3550 3.30GHz with
4GB of RAM. Even though an exact comparison between the two processors is not

114



5 – The Max-Mean Dispersion Problem

possible, we can evince from [4] that the latter machine is somewhat in between 3 and
4 times faster than the first one. XPRESS-SLP was applied in its default version
with no time limits where the results obtained correspond to a local maximum
reached by the solver.

GRASP [76] XPRESS-SLP Hybrid algorithm
Instances best m time best m time best m time

value (s) value (s) value (s)
MDPI1_150 45,92 53 83 45,55 52 5 45,92 52 15
MDPI2_150 43,33 41 72 43,03 59 12 43,39 42 15
MDPI3_150 39,64 43 60 38,38 58 13 40,00 49 15
MDPI4_150 43,70 57 76 43,76 58 12 44,04 58 15
MDPI5_150 42,48 49 71 40,63 55 11 42,48 49 15
MDPI6_150 43,67 40 73 43,27 53 10 43,72 44 15
MDPI7_150 46,08 53 60 45,44 52 8 46,08 52 15
MDPI8_150 42,39 45 61 41,71 53 12 42,45 44 15
MDPI9_150 42,14 42 64 41,49 53 22 41,82 46 15
MDPI10_150 41,80 41 55 41,80 41 23 41,80 41 15
MDPII1_150 56,72 49 62 55,95 59 5 57,48 50 15
MDPII2_150 57,80 47 61 56,18 54 14 57,82 46 15
MDPII3_150 58,28 45 59 57,49 50 15 58,42 44 15
MDPII4_150 57,38 47 59 55,21 60 10 57,38 47 15
MDPII5_150 54,23 42 48 51,05 54 7 54,14 35 15
MDPII6_150 56,44 49 58 55,10 55 9 56,44 49 15
MDPII7_150 58,89 48 61 57,62 54 10 58,60 40 15
MDPII8_150 57,97 54 66 57,97 54 14 57,97 54 15
MDPII9_150 58,30 42 56 55,84 52 9 58,30 42 15
MDPII10_150 56,92 39 55 54,25 52 20 57,06 41 15
MDPI1_500 78,60 152 716 77,23 175 135 81,25 158 150
MDPI2_500 76,87 150 682 75,17 177 262 77,56 170 150
MDPI3_500 75,69 128 668 73,86 172 182 75,99 136 150
MDPI4_500 81,81 166 647 79,89 185 277 82,27 144 150
MDPI5_500 78,57 140 683 78,75 170 339 80,02 148 150
MDPI6_500 79,64 156 732 77,40 169 246 81,25 152 150
MDPI7_500 75,50 146 607 74,18 182 221 78,16 133 150
MDPI8_500 76,98 151 666 78,22 176 294 78,99 176 150
MDPI9_500 75,72 128 635 75,45 175 317 77,04 159 150
MDPI10_500 80,38 137 849 80,09 159 370 81,05 149 150
MDPII1_500 108,15 165 766 107,78 174 234 109,23 163 150
MDPII2_500 103,29 121 656 103,46 169 275 105,12 125 150
MDPII3_500 106,30 140 710 101,74 206 267 107,79 161 150
MDPII4_500 104,62 154 725 101,01 197 111 105,49 158 150
MDPII5_500 103,61 149 707 103,85 182 253 106,37 161 150
MDPII6_500 104,81 158 713 102,57 169 229 105,61 167 150
MDPII7_500 104,50 148 626 103,26 181 335 106,92 149 150
MDPII8_500 100,02 135 609 99,28 178 245 103,48 153 150
MDPII9_500 104,93 130 636 104,58 177 239 106,24 141 150
MDPII10_500 103,50 144 649 102,13 176 428 104,02 160 150

Table 5.10: Comparing GRASP, XPRESS SLP and the hybrid algorithm on the
large instances

115



5 – The Max-Mean Dispersion Problem

The solutions provided by XPRESS-SLP had a low quality, thing which indicates
that the solver generally gets stuck in low quality local maxima. The GRASP
approach proposed in [76] was globally dominated by our heuristic both for n = 150
and n = 500 (taking into account the different performances between the machine
used by GRASP and the one used by the hybrid algorithm, the CPU times were
roughly the same). Also, Table 5.10 shows that the dominance increased as the
instance size grows. Indeed, for n = 150 the GRASP approach outperformed our
heuristic on 3 instances while it was outperformed in 9 instances and reached the
same result in 8 instances. For n = 500 the GRASP approach was outperformed
by the hybrid heuristic on all instances. Finally, from the tests we evince that the
instance type did not affect the performances of the three approaches.

As a further validation of the quality of the solutions provided by the three-phase
heuristic, for each instance we checked the robustness of the best solution found after
PHASE THREE by performing a local search based on a 3-opt neighborhood. We
defined this 3-opt neighborhood of a solution x̂∗ as the set given by the solutions
that can be obtained by means of one, two or three moves of insertion/deletion of an
item. While this neighborhood has a large size (i.e. O(n3)), our tests revealed that
in one case only (instance MDPI1_500) the 3-opt neighborhood search was able to
obtain an improved solution (81.2751).

5.5 Conclusions

This chapter proposed an SDP based branch and bound algorithm and a three-phase
hybrid heuristic for the Max−MeanDP .

The results showed that the proposed exact method outperforms the best per-
forming exact method known for the problem. The proposed method was able to
solve instances up to 100 elements, that were not solvable by previous methods. In
addition, the presented branch and bound method can be extended to other frac-
tional problems that have a similar formulation, for which a similar SDP relaxation
can be derived. Future research will be devoted to find other successful applications
of the proposed method for other combinatorial problems.

The matheuristic embeds three main ingredients: the use of a QIP solver, a
local branching scheme and a path relinking enhancement procedure. The first

116



5 – The Max-Mean Dispersion Problem

phase selects a set of promising values for the cardinality of an unknown subset and
generates a pool of initial solutions by means of the QIP solver. The second and
third phases enhance the quality of the solutions provided by the first phase by using
local branching and path relinking. As shown above, this hybrid heuristic globally
outperforms the best state of the art heuristic. In our opinion, the performance of
the proposed approach indicates that QIP models and related solvers can also be
taken into consideration in the design of hybrid heuristics for other combinatorial
optimization problems that can be modeled by means of a QIP formulation.

117



Chapter 6

The Multi-Meter Covering
Problem

This chapter deals with a problem that arises in a smart city context, where con-
centrators and meters are spread along the city area. These devices communicate
through a point-to-multi-point connection where each concentrator is capable of re-
ceiving data from a heterogeneous set of meters. Currently, the number of meters
in the towns is going to increase and all meters require a connection. The goal is to
minimize the global cost, that is, to minimize the weighted sum of activated concen-
trators, where each weight corresponds to the activation cost of the concentrator.

Such devices may work at different frequencies (169MHz, 868MHz, 2.4GHz) with
distinct propagation features which induce different coverage areas. The concentra-
tors can be placed in two different types of locations, already established along the
city area. We refer to such locations as cabinets and base stations. As a consequence
of their technological properties, we observe that the same concentrator placed in
a different location (cabinet or base station) is capable of covering a significantly
different area. In general, the information on the expected coverage area is de-
rived from a simplified model of propagation, validated by Telecom Italia with field
measurements.

The aim of this work is to formulate the problem in a formal way and to design an
approach which provides solutions directly usable in real contexts. In particular, the
focus is on two Italian cities (Asti and Torino) for which real data will be considered

118



6 – The Multi-Meter Covering Problem

and an estimate of the overall cost will be derived. The proposed approach is able
to determine both solutions where the maximal coverage is attained and solutions
where the coverage is very close to the maximum.

In Section 6.1, the problem is formally described. The mathematical formulation
and the literature review are then discussed in Section 6.2 and Section 6.3. The
proposed algorithm is carefully described in Section 6.4 and computational results
are presented in Section 6.5 where the obtained results are compared with the ones
provided by a built in-house approach implemented by Telecom staff.

6.1 Problem Description

Consider a set N of n concentrators, each concentrator c ∈ N is placed in the
geographical coordinates αc and βc which respectively represent the longitude and
the latitude where the concentrator is placed. Each concentrator has a coverage
radius rc, meaning that it can cover a sphere of radius rc in first approximation.
This radius is determined as a function of the location and of the frequency. These
concentrators cannot be moved, so their geographical coordinates are constant data
inputs. As we mentioned, the final aim of the company is to attain the maximal
covered area by minimizing the costs, thus the number of concentrators used.

Some assumptions are needed in order to define and formulate the problem in
a mathematical way. First of all, the input coordinates represent points on the
Earth’s surface which are hard to be handled. For this reason, we use Haversine [6]
formula to obtain a good projection of the points with a negligible approximation
error according to the specifications provided by Telecom staff (see in Algorithm 15
the relevant MATLAB code by Telecom). The points are thus projected on a plane,
so as to formulate the whole problem in two dimensions. In this context, the area
covered by a concentrator is a circle whose center is given by the projected coor-
dinates of the point, while the radius is the same mentioned before. We indicate
as xc and yc the projection of respectively αc and βc for any c ∈ N (all input data
provided by TELECOM already include xc and yc projection coordinates) Another
important assumption is about the number of connections that a single concentra-
tors can handle. In fact, multiple meters can use the same concentrator and the
technology allows to use a limited (although high) number of connections. However,

119



6 – The Multi-Meter Covering Problem

the maximum number of connections is sufficiently large in practice and thus we do
not consider this kind of limitation.

Algorithm 15 MATLAB code for the projection of the geographical coordinates

function [x, y] = geo2km(latlon)
minlat = min(latlon(:, 1));
minlon = min(latlon(:, 2));
maxlat = max(latlon(:, 1));
maxlon = max(latlon(:, 2));
dy = lat2m(maxlat - minlat, mean(latlon(:, 2)));
dx = lon2m(maxlon - minlon, mean(latlon(:, 1)));
dlon = maxlon - minlon;
dlat = maxlat - minlat;
y = 1e-3 * dy * (latlon(:, 1) - minlat) / dlat;
x = 1e-3 * dx * (latlon(:, 2) - minlon) / dlon;

function dy = lat2m(dlat,alat)
rlat = alat * pi/180;
m = 111132.09 + zeros(size(rlat)) - ...

566.05 * cos(2 * rlat) + 1.2 * cos(4 * rlat);
dy = dlat .* m;

end

function dx = lon2m(dlon, alat)
% dx = lon_to_m(dlon, alat)
% dx = longitude difference in meters
% dlon = longitude difference in degrees
% alat = average latitude between the two fixes
rlat = alat * pi/180;
p = 111415.13 * cos(rlat) - 94.55 * cos(3 * rlat);
dx = dlon .* p;

end

120



6 – The Multi-Meter Covering Problem

6.2 Mathematical Formulation

In the following, we indicate with Ac the set of points that can be covered by a
concentrator c ∈ N and with A = ∪c∈NAc the overall area that can be covered. The
problem can be formulated as a covering problem where we want to minimize the
weighted sum of the used concentrators (each weight wc refers to the activation cost
for the concentrator) and we impose that any point in A is covered by at least one
concentrator. Given a point p ∈ A, we indicate with Cp the set of concentrators
that can cover the point p, i.e. the set formed by all the concentrators for which the
distance between (xc, yc) and p is less than or equal to the concentrator radius rc.
The only variables that we are going to use are the binary variables xc ∀c ∈ N , each
variable xc is equal to 1 if and only if the concentrator is activated, 0 otherwise.
The mathematical formulation we obtain is the following:

minwcxc (6.1)

∑
c∈Cp

xc ≥ k ∀p ∈ A (6.2)

xc ∈ {0,1} ∀c ∈ N (6.3)

The parameter k refers to the degree of coverage that we want to achieve for the
area. In fact, we may want to cover each single point for a multiple amount of times,
in order to guarantee the robustness of the coverage. For example, we know that if
we solve the problem with k = 2 and afterwards a concentrator c is out of service,
each point of the area Ac is still covered by a concentrator. Hereafter, we refer to
the case where k is set to 1, but all the considerations still apply for a general value
of k.

The formulation above cannot be used in practice because of the infinite number
of constraints. However, if the set A is finite, the formulation corresponds to a classi-
cal NP-hard combinatorial optimization problem called Weighted Set Cover Problem
[47], which has been intensively studied through the years. A simple relaxation of
model 6.1 6.3 can be obtained if we consider a set of points A ⊂ A:

121



6 – The Multi-Meter Covering Problem

minwcxc (6.4)

∑
c∈Cp

xc ≥ k ∀p ∈ A ⊂ A (6.5)

xc ∈ {0,1} ∀c ∈ N (6.6)

The optimal solution of this model yields a lower bound on the optimal solution
of 6.1 - 6.3. The quality of this lower bound strongly depends on the choice of the
set A, thus on how the points belonging to A are chosen. Roughly speaking, we can
say that the more representative of A the points are, the higher is the quality of the
lower bound obtained.

6.3 Literature

We formulated the problem via a Weighted Set Cover model. Many exact algorithms
and heuristics have been designed for this problem through the years. We refer
to [101] for a recent contribution on this problem. In general, it is possible to
handle instances up to some thousands of variables and constraints. However, the
description of the problem has some common insights with two well studied NP-hard
problems, the Circle Packing Problem [86] and its dual, the Circle Covering Problem
[13]. Basically, we deal with circles as in circle packing and circle covering problems.
However, the circles area cannot overlap in circle packing. In simple words, our
problem consists of covering the maximal amount of area with the minimum amount
of circles. This is the same goal of circle covering, the important difference is about
the fact that there is a limited amount of circles (i.e. locations for concentrators)
among which we can choose. In general, when we deal with circle covering problems
the position where we can place the circles is intended to be variable, and they are
usually no constraints on it. We can conclude by saying that, to the best of our
knowledge, the problem we deal with has not already been studied in the literature,
at least in its current form.

122



6 – The Multi-Meter Covering Problem

6.4 The Proposed Algorithm

The first issue that we encountered in the design of an exact algorithm for this real
world problem is the evaluation of the maximal area. In fact, it is not trivial to
compute the area of a figure obtained by overlapping circles, as the number of the
circles considered increases. There are some deterministic numerical methods which
allow to solve this task with a good accuracy (see [9]). The method we adopted is
a scan-line method [9]: it is able to solve problems with thousands of circles within
several seconds. The first step of the algorithm is the computation of the maximal
area Amax that the concentrators can cover. We did this by using a procedure that
takes as an input the projected coordinates (xc, yc) of each concentrator c ∈ N , and
gives as an output the value of the area covered by them. This function is indicated
with DOUBLE AREA(SET OF CONCENTRATORS).

One simple property of the problem gives us the chance to reduce the size of the
instances. In fact, a concentrator is necessarily put in the optimal solution if it is able
to cover at least one point that is not covered by any other concentrator. We indicate
the set of such concentrators as Nnecessary. How can we select such concentrators
in an efficient way? The answer is relatively simple, we are going to use the AREA
function. We scan the set of the concentrators N in an arbitrary order and we
evaluate the value provided by the call AREA(N/ c) for each concentrator c ∈ N .
If the value obtained is less than Amax, then the concentrator c covers a portion of
the area which is not covered by any other concentrator in N . In this step, all the
variables associated with the concentrators included in Nnecessary are set to 1 without
loss of optimality. Since the concentrators are scanned one by one, this operation
can be performed in O(n). Note that we already have an initial lower bound to the
optimal solution, given by the sum of the weights of the concentrators in Nnecessary.
The computation of the necessary concentrators is done by the function SET OF
CONCENTRATORS GET_NECESSARY(SET OF CONCENTRATORS). Generally speaking, it
takes as an input a set of concentrators and it provides only the necessary ones to
cover the whole area as an output.

Hence, we start a loop, where a set of λ points is generated at each iteration.
These points are generated via simulation by means of a routine SET OF POINTS
NEW_POINTS(SET OF CONCENTRATORS, SET OF CONCENTRATORS, INT). This routine

123



6 – The Multi-Meter Covering Problem

receives as an input two set of concentrators and the number of points to be gener-
ated. It provides as an output a set of λ points that are covered by the first set of
concentrators, but not by the second one. We define the set P as the set formed by
all the points generated at the current iteration. We indicate with Ncurrent the set
of concentrators which are currently selected, while Acurrent is the value of the area
covered by concentrators in Ncurrent.

The points are generated in the area which is not covered by any concentrator in
Ncurrent, in order to add as a constraint the coverage of points in A that were not cov-
ered at the previous iterations. At this point, we solve the Weighted Set Cover model
6.4 - 6.6 by setting A = P and fixing all the variables associated with the necessary
concentrators to 1. The model can be solved by means of any ILP solver, this is
performed in function FLOAT SOLVE_SET_COVER(SET OF CONCENTRATORS, SET OF
CONCENTRATORS, SET OF POINTS). The inputs are the set of necessary concentra-
tors, the set of the concentrators to use and the numbers of points to cover. The
output is a floating point value which represents a lower bound for the original
problem. A drawback in the use of the ILP model is that the time required for the
solution can be too long if the number of variables and constraints of the model is
too high. For this reason, we set a time limit to the solver and thus we may not solve
model 6.4 - 6.6 to optimality. However, the solver will provide a feasible solution
and a lower bound for model 6.4 - 6.6. The lower bound obtained in this way is also
a lower bound for the original problem represented by formulation 6.1 - 6.3. On the
contrary, the solution provided may not be feasible for the original problem and we
need to modify it to make it feasible.

This goal can be reached by using different type of heuristics. Our purpose is “to
fill the holes" in the overall area by using the minimal number of concentrators, so we
keep all the concentrators in Ncurrent and we try to add new concentrators in order
to achieve the maximal area as soon as possible. Here it is important to note that
local search strategies can hardly be applied to search for better solutions. In fact,
the computational cost due to the evaluation of the area is too high if we need O(n2)
computations. For this reason, we had to design a basic constructive heuristic that
is able to obtain in O(n) a feasible solution. We adopted a greedy approach where at
each iteration, only the concentrators which allow an increase of the coverage greater
than or equal to a specific threshold, are added. This threshold is halved after each

124



6 – The Multi-Meter Covering Problem

iteration and the procedure ends as soon as the maximal coverage is achieved. This
heuristic is implemented in the function SET OF CONCENTRATORS COMPUTE_UB(SET
OF CONCENTRATORS, SET OF CONCENTRATORS) which takes as an input the initial
set of concentrators and the set of concentrators which are currently fixed. It gives
as an output the set of concentrators which determines a feasible solution covering
all the area. Figure 6.1 depicts the flowchart of the procedure.

Figure 6.1: Flowchart of the procedure COMPUTE_UB

The same heuristic can be applied to determine solutions that reach a partial
coverage of the overall area. The only step that we need to change in the heuristic is
the stopping criterion. In fact, we can stop adding new concentrators when a specific
amount of area, for example a percentage of the maximal area Amax, is covered.

The function used to obtain partial coverage solutions is SETS OF CONCENTRATORS
COMPUTE_PARTIAL_SOLUTIONS(SET OF CONCENTRATOR, SET OF CONCENTRATOR,
VECTOR OF DOUBLE). Its inputs are the set of concentrators that we can use, the
set of selected concentrators and a vector which represents the area values that we
aim to cover. The output is formed by a sequence of concentrator sets, each set
represents a solution which covers one of the input area values.

125



6 – The Multi-Meter Covering Problem

The algorithm keeps generating points and solving Set Covering Problems of
increasing size. The termination criteria are two: we stop the algorithm when we
find a solution which is optimal with tolerance up to ε or when an overall time limit
is reached. The pseudo-code of the algorithm is depicted in Algorithm 16, where
all the functions defined above are used in order to clarify the structure of this
approach.

Algorithm 16 Exact algorithm for the Multi-meter Covering Problem
Input: A set N of concentrators
Amax ← AREA(N)
Nnecessary ← GET_NECESSARY_CONCENTRATORS(N)
P ← ∅
Ncurrent ← ∅
while Amax −Acurrent < ε and a time limit is not reached do

P ← P∪ NEW_POINTS(N,Ncurrent, λ)
Ncurrent ← SOLVE_SET_COVER(Nnecessary, N, P)
COMPUTE_UB(N, Ncurrent)
COMPUTE_PARTIAL_SOLUTIONS(N, Ncurrent, coverage values )
Acurrent ← AREA(Ncurrent)

end while
Output: The best upper/lower bounds, partial solutions

6.5 Computational Experiments

The proposed approach was implemented in C++ using CPLEX 12.5 as a MIP
solver. It was tested on two real world instances which correspond to the Torino
area and to the Asti area running on an Intel Core i5 at 3GHz with 4GB of RAM. We
used the exact positions where concentrators can be placed in these Italian cities.
These two instances are completely different due to the different structure of the
cities. For the smallest one, Asti, 1841 possible locations were considered, while for
the largest, Torino, the number of the possible locations was 9631. We estimated
the area that can be covered by putting in this locations concentrators of radius
around 230 m, thus we considered concentrators of a single type. The maximal
area coverable was approximately 64.726 km2 in Asti and 114.192 km2 in Torino,
respectively.

126



6 – The Multi-Meter Covering Problem

We managed to solve to optimality Asti instance by means of our algorithm,
while we derived upper and lower bounds with a deviation of approximately 15% for
Torino. Figure 6.2 depicts a map of Asti area where all the concentrators available
are activated. The area covered by them is represented by green circles. Analogously,
Figure 6.3 takes into consideration the same city, but the circles drawn are relative
to concentrators activated in the optimal solution. Notice that some concentrators
are necessarily included in the optimal solutions because they are the only ones that
can cover a very limited sub-area.

Figure 6.2: Asti area with all the concentrators

Table 6.3 and Table 6.4 depict in details the results obtained for Asti area and
Torino area respectively. In such tables, we grouped the columns according to the
percentage of the coverage given by the considered solution. For each given coverage,
the columns denoted with “Area " indicate the specific area (in km2) covered by the
solution, while with “Obj " we indicate the number of concentrators used. Each row

127



6 – The Multi-Meter Covering Problem

Figure 6.3: Asti area with the concentrators included in the optimal solution

refers to a different iteration of the algorithm, as long as we go on with the iterations,
new points are considered and then new constraints are added to the ILP model.
The last column depicts the cumulative CPU time in seconds. Note that the column
about the lower bound obtained, denoted with “LB", contains only non decreasing
values because we never discard the old constraints as the algorithm proceeds. This
consideration cannot be done for the upper bounds, in fact they are obtained by
means of heuristic algorithms which compute completely different solution when
they start from different lower bound. As the quality of the lower bound increases,
the quality of the related upper bounds does not necessarily increase. This is due
to the fact that the upper bounds are obtained by means of a heuristic approach.

Tables 6.1 and 6.2 compare the results obtained by the proposed method (de-
noted as Polito) with the ones already available by Telecom on Asti area and Torino
area, respectively. In each Table are provided different percentages of coverage and

128



6 – The Multi-Meter Covering Problem

corresponding number of activated concentrators for the two methods. It is possible
to see that for high coverage values, the proposed approach clearly outperforms the
results provided by Telecom. Same comparison is graphically expressed in Figures
6.4 and 6.5.

Telecom Our approach
Area Obj Area Obj

64,7266 859 64,7266 835
64,6427 838 64,7266 835
62,959 523 63,4558 507
62,9462 521 63,4558 507
62,3509 499 62,812 478
61,7228 482 62,1649 458
61,105 461 61,5033 443
60,4916 445 60,8551 428
59,7973 432 60,2394 417
59,2846 423 59,5769 405
58,2315 403 58,2585 391
57,1253 386 57,6424 388
56,1872 371 56,3522 371
55,26 358 55,6957 364

54,1325 346 54,414 354
52,9593 335 53,1333 343
51,7364 324 51,8457 331

Table 6.1: Telecom vs Polito solutions for Asti instance

Telecom Our approach
Area Obj Area Obj

114,1835 1778 114,191 1456
112,9996 1165 113,056 1010
112,1108 1087 113,056 1010
111,3432 1020 111,923 932
110,0519 969 110,787 889
109,2742 951 109,639 851
108,5957 916 109,639 851
107,9039 894 108,522 828
107,1488 876 107,4 803
106,498 838 107,4 803
105,8068 821 106,245 781
105,1608 806 106,245 781
104,6451 797 105,084 762
104,0757 783 105,084 762
103,4006 768 103,995 739
102,6439 753 102,857 719
102,0062 743 102,857 719
101,3197 734 101,746 705
100,8395 726 101,746 705
100,2156 718 100,57 689

Table 6.2: Telecom vs Polito solutions for Torino instance

129



6 – The Multi-Meter Covering Problem

100% 99.80% 99.40% 99% 96% 93% 90% CPU
It. LB Area Area Obj Area Obj Area Obj Area Obj Area Obj Area Obj Area Obj (s)
1 767 59,8021 64,7266 854 64,4695 606 64,212 565 62,8066 482 60,8839 431 58,9582 403 58,3003 396 494
2 790 62,7103 64,7266 858 64,4716 604 64,2135 563 62,8066 482 60,8839 431 58,9162 401 58,2983 395 777
3 801 63,6339 64,7266 860 64,4716 604 64,2135 563 62,8066 482 60,8839 431 58,9162 401 58,2983 395 1057
4 805 63,9539 64,7266 861 64,4716 604 64,2135 563 62,8049 481 60,8983 430 58,9162 401 58,2911 394 1339
5 810 64,1755 64,7266 863 64,4716 604 64,2135 563 62,8049 481 60,8983 430 58,9162 401 58,2911 394 1623
6 813 64,3946 64,7266 860 64,4716 604 64,2135 563 62,8049 481 60,8551 428 58,9129 399 58,2911 394 1912
7 815 64,3863 64,7266 862 64,4716 604 64,2135 563 62,8049 481 60,8551 428 58,9129 399 58,2911 394 2200
8 816 64,4548 64,7266 858 64,4728 603 64,2167 562 62,8049 481 60,8551 428 58,9129 399 58,2911 394 2489
9 819 64,5007 64,7266 859 64,4728 603 64,2167 562 62,8049 481 60,8551 428 58,9129 399 58,2911 394 2778
10 821 64,5396 64,7266 856 64,4702 601 64,2134 561 62,7918 480 60,8551 428 58,9129 399 58,2911 394 3068
11 822 64,6057 64,7266 858 64,4704 599 64,213 559 62,812 478 60,8551 428 58,9129 399 58,2997 392 3357
12 823 64,6322 64,7266 851 64,4704 599 64,213 559 62,812 478 60,8551 428 58,9129 399 58,2997 392 3647
13 825 64,6613 64,7266 859 64,4715 597 64,213 559 62,812 478 60,8551 428 58,9129 399 58,2997 392 3941
14 826 64,6352 64,7266 854 64,4715 597 64,213 559 62,812 478 60,8551 428 58,9129 399 58,2997 392 4262
15 827 64,6643 64,7266 852 64,4715 597 64,2189 557 62,812 478 60,8551 428 58,9129 399 58,2997 392 4559
16 828 64,6552 64,7266 856 64,4715 597 64,2189 557 62,812 478 60,8551 428 58,9348 398 58,2997 392 4942
17 828 64,6734 64,7266 853 64,4715 597 64,2189 557 62,812 478 60,8551 428 58,9348 398 58,2997 392 5317
18 828 64,6939 64,7266 854 64,4715 597 64,2144 556 62,812 478 60,8551 428 58,9348 398 58,2997 392 5635
19 828 64,6684 64,7266 854 64,4715 597 64,2144 556 62,812 478 60,8551 428 58,9348 398 58,2997 392 6002
20 829 64,6894 64,7266 857 64,4715 597 64,2144 556 62,812 478 60,8551 428 58,9382 397 58,2997 392 6372
21 830 64,6823 64,7266 852 64,4715 597 64,2144 556 62,812 478 60,8551 428 58,9382 397 58,2997 392 6695
22 830 64,7028 64,7266 855 64,4715 597 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 7019
23 831 64,6971 64,7266 852 64,4715 597 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 7392
24 832 64,6797 64,7266 848 64,4715 597 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 7777
25 832 64,7025 64,7266 851 64,4715 597 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 8122
26 832 64,7039 64,7266 853 64,4715 597 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 8463
27 832 64,701 64,7266 850 64,4715 597 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 8820
28 832 64,6992 64,7266 846 64,4715 597 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 9124
29 833 64,7205 64,7266 848 64,4712 596 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 9529
30 833 64,7176 64,7266 844 64,4712 596 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 9972
31 833 64,7002 64,7266 850 64,4712 596 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 10391
32 833 64,7187 64,7266 841 64,472 594 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 10749
33 833 64,7146 64,7266 847 64,472 594 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 11135
34 833 64,7199 64,7266 844 64,472 594 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 11531
35 833 64,7189 64,7266 840 64,472 594 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 11937
36 833 64,7193 64,7266 846 64,472 594 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 12331
37 833 64,6976 64,7266 848 64,472 594 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 12760
38 833 64,7227 64,7266 843 64,472 594 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 13285
39 833 64,7184 64,7266 844 64,472 594 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 13811
40 833 64,7253 64,7266 839 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 14299
41 833 64,7203 64,7266 843 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 15220
42 833 64,7178 64,7266 844 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 16076
43 833 64,7139 64,7266 841 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 17491
44 834 64,7184 64,7266 848 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 18569
45 834 64,7108 64,7266 847 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 19516
46 834 64,7224 64,7266 845 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 20623
47 834 64,7247 64,7266 840 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 22068
48 834 64,724 64,7266 841 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 23460
49 834 64,719 64,7266 845 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 24778
50 834 64,7203 64,7266 844 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 25763
51 834 64,7235 64,7266 843 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 26909
52 834 64,7263 64,7266 841 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 27900
53 834 64,7257 64,7266 839 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 30298
54 834 64,7171 64,7266 840 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 31616
55 834 64,7263 64,7266 839 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 32335
56 834 64,7242 64,7266 845 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 34666
57 834 64,726 64,7266 836 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 35887
58 834 64,7261 64,7266 839 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 37500
59 834 64,7238 64,7266 842 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 39266
60 834 64,7238 64,7266 839 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 40080
70 835 64,7236 64,7266 840 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 51633
80 835 64,7266 64,7266 837 64,4718 593 64,2158 555 62,812 478 60,8551 428 58,9382 397 58,2585 391 64992
Best 835 836 593 555 478 428 397 391 -

Table 6.3: Detailed Polito results for Asti instance

130



6 – The Multi-Meter Covering Problem

100% 99.80% 99.40% 99% 96% 93% 90% CPU
It. LB Area Area Obj Area Obj Area Obj Area Obj Area Obj Area Obj Area Obj (s)
1 992 82,0394 114,192 1539 113,966 1184 113,513 1079 113,058 1028 109,65 871 106,235 785 102,861 720 12101
2 1054 88,9706 114,192 1547 113,968 1178 113,513 1070 113,054 1017 109,64 863 106,249 786 102,832 724 14898
3 1087 93,4377 114,192 1543 113,966 1179 113,51 1074 113,054 1023 109,655 859 106,26 782 102,882 721 17767
4 1115 96,7064 114,192 1547 113,965 1183 113,512 1074 113,055 1022 109,662 865 106,255 786 102,792 720 20649
5 1137 99,9811 114,192 1546 113,966 1182 113,51 1078 113,055 1024 109,649 867 106,214 787 102,83 717 23462
6 1151 101,942 114,192 1541 113,965 1175 113,513 1072 113,061 1024 109,636 866 106,251 790 102,838 726 26248
7 1167 103,364 114,192 1538 113,965 1178 113,512 1072 113,058 1026 109,656 867 106,257 784 102,877 725 29021
8 1180 104,248 114,192 1546 113,966 1190 113,514 1085 113,052 1033 109,657 872 106,243 789 102,876 721 31801
9 1191 105,766 114,192 1554 113,967 1190 113,511 1084 113,061 1032 109,666 867 106,223 786 102,801 717 34573
10 1203 106,799 114,192 1564 113,968 1181 113,513 1075 113,057 1026 109,644 867 106,244 791 102,805 726 37352
11 1212 107,429 114,192 1548 113,966 1182 113,512 1076 113,059 1026 109,635 864 106,27 784 102,791 721 40098
12 1219 107,897 114,192 1554 113,967 1185 113,512 1080 113,053 1026 109,668 869 106,24 789 102,814 724 42924
13 1226 108,559 114,192 1551 113,966 1176 113,51 1075 113,06 1027 109,636 868 106,271 789 102,796 723 45815
14 1233 109,297 114,192 1556 113,965 1195 113,513 1088 113,053 1028 109,656 866 106,27 790 102,808 723 48714
15 1240 109,678 114,192 1551 113,966 1178 113,511 1073 113,059 1022 109,652 864 106,234 784 102,827 722 52684
16 1248 109,972 114,192 1562 113,965 1177 113,509 1069 113,059 1018 109,639 858 106,266 785 102,831 720 57774
17 1252 110,454 114,192 1552 113,966 1174 113,51 1068 113,059 1021 109,652 857 106,207 782 102,798 718 66441
18 1259 110,582 114,192 1562 113,967 1182 113,51 1076 113,056 1023 109,653 860 106,278 784 102,812 717 73869
19 1264 110,831 114,192 1560 113,966 1170 113,512 1062 113,051 1014 109,668 862 106,27 781 102,879 719 80965
20 1270 111,076 114,192 1541 113,966 1173 113,511 1070 113,061 1017 109,64 862 106,235 783 102,797 718 88196
21 1274 111,477 114,192 1544 113,967 1165 113,51 1062 113,055 1010 109,648 862 106,27 781 102,884 721 95303
22 1280 111,681 114,192 1551 113,966 1173 113,513 1064 113,061 1014 109,656 864 106,271 782 102,826 717 102501
23 1284 111,811 114,192 1545 113,967 1177 113,512 1069 113,055 1012 109,649 861 106,212 786 102,813 720 109908
24 1288 111,922 114,192 1537 113,968 1172 113,512 1065 113,057 1012 109,645 859 106,276 782 102,806 720 117316
25 1288 111,938 114,192 1545 113,968 1177 113,511 1070 113,057 1018 109,668 859 106,219 785 102,811 724 124217
26 1292 112,066 114,192 1535 113,968 1161 113,514 1059 113,056 1011 109,654 863 106,257 784 102,866 720 131539
27 1294 112,352 114,192 1549 113,968 1170 113,51 1059 113,06 1010 109,667 859 106,243 784 102,85 719 140507
28 1298 112,388 114,192 1548 113,967 1171 113,51 1063 113,056 1010 109,639 851 106,245 781 102,857 719 147930
Best 1298 1535 1161 1059 1010 851 781 717 -

Table 6.4: Detailed Polito results for Torino instance

131



6 – The Multi-Meter Covering Problem

Figure 6.4: Comparing Telecom - Polito solutions on Asti instance

Figure 6.5: Comparing Telecom - Polito solutions on Torino instance

132



6 – The Multi-Meter Covering Problem

6.6 Conclusions

This chapter presented an exact approach for a real world clustering problem. The
aim of the problem is to select the concentrators cluster of minimal size that covers
all the area. The exact approach is based on a constraint generation approach, that
iteratively adds constraints which refer to the coverage of some points inside the
area, generated via simulation. The approach is enhanced by a heuristic method
that computes feasible solutions at each step.

It is interesting to note that a mathematical solver is used to determine both a
lower bound and an upper bound at each iteration. Then, the resulting method is
a typical hybrid method that uses mathematical programming techniques to solve
a combinatorial problem. The computational results showed the effectiveness of the
proposed approach.

133



Chapter 7

Conclusions and Future
Developments

This thesis dealt with the design of exact and heuristic algorithms for scheduling and
clustering combinatorial optimization problems. All the works are linked by the fact
that all the presented methods are basically hybrid algorithms, that mix techniques
used in the world of combinatorial optimization. Section 2 presented practical so-
lution algorithms based on an ILP model for an energy scheduling combinatorial
problem that arises in a smart buildings. Section 3 presented a new cutting stock
problem and introduced a heuristic solution approach based on a heuristic column
generation scheme. Section 4 provided an exact exponential algorithm, whose impor-
tance is only theoretical so far, for a classical scheduling problem: the total tardiness
problem. Section 5 provided an exact approach based on semidefinite programming
and a heuristic approach based on a quadratic solver for a fractional clustering com-
binatorial optimization problem. Section 6 proposed practical solution methods for
a real world clustering problem arising in a smart city context.

An important part of the thesis is the study conducted in Section 4 for the
design of an exact exponential algorithm for the total tardiness problem. The pro-
posed algorithm used a new technique, called branch and merge, that avoids the
solution of repeated equivalent subproblems in a branching tree context. The merg-
ing operations are based on comparing the two prefixed/suffixed sequences of the
two subproblems and then keeping the dominating one. This required solutions of

134



7 – Conclusions and Future Developments

small subproblems (of size up to k), and a comparison between the two fixed se-
quences for determining the dominating one. A future development of this work is
to make the proposed method practical from a computational point of view. This
may regard the design of a fast method to merge the nodes of the branch tree, which
may involve considerations on the lower bounds of the small subproblems consid-
ered. Such method may then use typical mathematical programming techniques to
establish the dominating sequence in a very short time in the average case. Since
we are trying to find other applications of the branch and merge technique, these
computational considerations may also involve other problems.

Another possible development of this research may involve the definition of exact
exponential algorithms based on the use of convex bounding techniques that have a
worst case quality guarantee. This type of study would be very innovative for the
field of exact exponential algorithms, but at the same time, the worst case quality
guarantee is very difficult to be achieved.

In Section 5, a branch and bound method based on a semidefinite programming
relaxation is proposed for a fractional combinatorial optimization problem and it
is likely to be extended to other problems with a similar structure. Apart from
the generalization of the method, it would be interesting to find applications where
semidefinite programming allows to derive well-performing matheuristic for hard
combinatorial problems. As an example, this may regard the use of a semidefinite
programming based quadratic integer programming solver, such as BiqCrunch, or
some other schemes based on the rounding of the result of the semidefinite relaxation.

Another possible development is the integration of semidefinite programming in
a column generation framework, for instance to perform the pricing operation. This
research line has already been investigated in works like [64].

135



Bibliography

[1] BiqCrunch. http:/lipn.univ-paris13.fr/BiqCrunch/.
[2] Coin-or Branch and Cut (CBC). https:/projects.coin-or.org/cbc.
[3] Coin-or Symphony. https:/projects.coin-or.org/symphony.
[4] CPU Benchmark. https:/www.cpubenchmark.net/.
[5] FICO Xpress Optimization Suite. http:/www.fico.com/en/Products/

DMTools/Pages/FICO-Xpress-Optimization-Suite.aspx.
[6] Haversine formula. https:/en.wikipedia.org/wiki/Haversine_formula.
[7] ILOG Cplex. http:/www-01.ibm.com/software/integration/

optimization/cplex-optimization-studio/.
[8] INTRePID. http:/www.fp7-intrepid.eu.
[9] Total circles area. http:/rosettacode.org/wiki/Total_circles_area.
[10] F. Alizadeh. Interior point methods in semidefinite programming with applica-

tions to combinatorial optimization. SIAM Journal on Optimization, 5:13–51,
1993.

[11] M. Armbruster. A solution procedure for a pattern sequencing problem as part
of a one-dimensional cutting stock problem in the steel industry. European
Journal of Operational Research, 141:328–340, 2002.

[12] M. O. Ball. Heuristics based on mathematical programming. Surveys in Op-
erations Research and Management Science, 16:21–38, 2010.

[13] B. Bánhelyi, E. Palatinus, and B. L. Lévay. Optimal circle covering problems
and their applications. Central European Journal of Operations Research,
23:815–832, 2015.

[14] A. Barbato, A. Capone, G. Carello, M. Delfanti, M. Merlo, and A. Zaminga.
House energy demand optimization in single and multi-user scenarios. In 2nd

136

http:/lipn.univ-paris13.fr/BiqCrunch/
https:/projects.coin-or.org/cbc
https:/projects.coin-or.org/symphony
https:/www.cpubenchmark.net/
http:/www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-Optimization-Suite.aspx
http:/www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-Optimization-Suite.aspx
https:/en.wikipedia.org/wiki/Haversine_formula
http:/www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
http:/www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
http:/www.fp7-intrepid.eu
http:/rosettacode.org/wiki/Total_circles_area


Bibliography

IEEE International Conference on Smart Grid Communications (SmartGrid-
Comm 2011) Brussels, Belgium, 2011.

[15] T. Bektas. The multiple traveling salesman problem: an overview of for-
mulations and solution procedures. Omega: The International Journal of
Management Science, 34:209–219, 2006.

[16] R. Bellman. Dynamic programming treatment of the travelling salesman prob-
lem. Journal of the ACM, 9:61–63, 1962.

[17] H. Ben Amor, J. Desrosiers, and J.M. Valério de Carvalho. Dual-optimal
inequalities for stabilized column generation. Operations Research, 54:454–
463, 2006.

[18] H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch, and D. M.
Thilikos. On exact algorithms for treewidth. ACM Transactions on Algo-
rithms, 9:article n. 12, 23 pages, 2012.

[19] B. Borchers. Csdp, a c library for semidefinite programming. Optimization
Methods and Software, 11:613–Â623, 1999.

[20] C. Borean and E. Grasso. Qpsol: Quantum Particle Swarm Optimization
with Levy’s Flight: Optimization of appliance scheduling for smart residential
energy grids, booktitle = The Ninth International Multi-Conference on Com-
puting in the Global Information Technology (ICCGI 2014) Seville, Spain,
year = 2014.

[21] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[22] T. H. Chang, C. W. Hsin, W.K. Ma, and C.Y. Chi. A linear fractional semidefi-
nite relaxation approach to maximum-likelihood detection of higher-order qam
ostbc in unknown channels. IEEE Transactions On Signal Processing, 58:2315
– 2326, 2010.

[23] R.K. Congram. Polynomially searchable exponential neighbourhoods for se-
quencing problems in combinatorial optimisation. PhD thesis, University of
Southampton, 2000.

[24] T.H. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-
rithms, second edition. The MIT Press, 2001.

[25] Y. Cui and Y. Yang. A heuristic for the one-dimensional cutting stock prob-
lem with usable leftover, volume = 204, year = 2010. European Journal of

137



Bibliography

Operational Research, pages 245–250.
[26] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, Ma. Pilipczuk,

Mi. Pilipczuk, and S. Saurabh. Parametrized Algorithms. Springer, 2015.
[27] M. Davis and H. Putnam. A computing procedure for quantification theory.

Journal of the ACM, 7:201–215, 1960.
[28] F. Della Croce and M. Garraffa. The selective fixing algorithm for the closest

string problem. Computers & Operations Research, 41:24–30, 2014.
[29] F. Della Croce, M. Garraffa, and F. Salassa. A hybrid three-phase approach

for the max-mean dispersion problem. Computers & Operations Research,
2016 forthcoming.

[30] F. Della Croce and A. Grosso. Improved core problem based heuristics for the
0/1 multi-dimensional knapsack problem. Computers & Operations Research,
39:27–31, 2012.

[31] F. Della Croce, A. Grosso, and M. Locatelli. A heuristic approach for the
max-min diversity problem based on max-clique. Computers & Operations
Research, 36:2429–2433, 2009.

[32] F. Della Croce, A. Grosso, and F. Salassa. Matheuristics: embedding milp
solvers into heuristic algorithms for combinatorial optimization problems.
Heuristics: theory and applications, 2012.

[33] F. Della Croce, A. Grosso, and F. Salassa. A matheuristic approach for the
two–machine total completion time flow shop problem. Annals of Operations
Research, 213:67–78, 2014.

[34] F. Della Croce and F. Salassa. Improved lp-based algorithms for the closest
string problem. Computers & Operations Research, 39:746–749, 2012.

[35] F. Della Croce, F. Salassa, and V. T’Kindt. A hybrid heuristic approach
for single machine scheduling with release times. Computers & Operations
Research, 45:7–11, 2014.

[36] F. Della Croce, R. Tadei, B. Baracco, and A. Grosso. A new decomposition
approach for the single machine total tardiness scheduling problem. Journal
of the Operational Research Society, 49:1101–1106, 1998.

[37] J. Desrosiers and Lübbecke M. E. A primer in column generation. Column
Generation, pages 1–32, 2005.

[38] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

138



Bibliography

[39] J. Du and J. Y. T. Leung. Minimizing total tardiness on one machine is
np-hard. Mathematics of Operations Research, 15:483–495, 1990.

[40] H. Dyckhoff. A typology of cutting and packing problems. European Journal
of Operational Research, 44:145–159, 1990.

[41] H. Emmons. One-machine sequencing to minimize certain functions of job
tardiness. Operations Research, 17:701–715, 1969.

[42] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical
Programming, 104:91–104, 2005.

[43] M. Fischetti and A. Lodi. Local branching. Mathematical Programming,
98:23–47, 2003.

[44] M. Fischetti, G. Sartor, and A. Zanette. A mip-and-refine matheuristic for
smart grid energy management. International Transactions in Operational
Research, 22:49–59, 2015.

[45] K. Fleszar and K. S. Hindi. New heuristics for one-dimensional bin-packing.
Computers & Operations Research, 29:821–839, 2002.

[46] F. Fomin and D. Kratsch. Exact Exponential Algorithms. Springer, 2010.
[47] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Free-

man, 1979.
[48] M. Garraffa, F. Salassa, W. Vancroonenburg, G. Vanden Berghe, and

T. Wauters. The one-dimensional cutting stock problem with sequence-
dependent cut losses. International Transactions in Operational Research,
23:5–24, 2016.

[49] M. Gendreau and J. Potvin. Handbook of Metaheuristics. Springer, 2010.
[50] P. C. Gilmore and R. E. Gomory. A linear programming approach to the

cutting-stock problem-part ii. Operations Research, 11:864–888, 1963.
[51] F. Glover, C.-C. Kuo, and K.S. Dhir. Heuristic algorithms for the maximum

diversity problem. Journal of Information and Optimization Sciences, 19:109–
132, 1998.

[52] F. Glover, M. Laguna, and R. Martí. Fundamentals of scatter search and path
relinking. Control and Cybernetics, 39:653–684, 2000.

[53] M.X. Goemans and D.P. Williamson. Semidefinite programming relaxations
for the quadratic assignment problem. Journal of the ACM, 42:1115–1145,
1995.

139



Bibliography

[54] J.B. Gosh. Computational aspects of the maximum diversity problem. Oper-
ations Research Letters, 19:175–181, 1996.

[55] Y. Gurevich and S. Shelah. Expected computation time for hamiltonian path
problem. SIAM Journal on Computing, 16:486â€“502, 1987.

[56] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite pro-
gramming. SIAM Journal on Optimization, 10:673–696, 2006.

[57] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior-
point method for semidefinite programming. SIAM Journal on Optimization,
6:342–361, 1996.

[58] C. Helmberg, F. Rendl, and R. Weismantel. A semidefinite programming
approach to the quadratic knapsack problem. Journal of Combinatorial Op-
timization, 4:197–215, 2000.

[59] O. Holthaus. Decomposition approaches for solving the integer one-
dimensional cutting stock problem with different types of standard lengths.
European Journal of Operational Research, 141:295–312, 2002.

[60] E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Op-
erations Research, 46:316–329, 1998.

[61] C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, and F. Vanderbeck. Column
generation based primal heuristics. Electronic Notes in Discrete Mathematics,
36:695–702, 2010.

[62] C. Kerchove and P.V. Dooren. The page trust algorithm: how to rank web
pages when negative links are allowed? In SIAM International Conference on
Data Mining, pages 346–352, 2008.

[63] C. Koulamas. The single-machine total tardiness scheduling problem: review
and extensions. European Journal of Operational Research, 202:1–7, 2010.

[64] K. Krishnan and J. E. Mitchell. A semidefinite programming based polyhedral
cut and price approach for the maxcut problem. Computational Optimization
and Applications, 33:51–71, 2006.

[65] G. Laporte. The vehicle routing problem: An overview of exact and ap-
proximate algorithms. European Journal of Operational Research, 59:345–358,
1992.

[66] E.L. Lawler. A pseudopolynomial algorithm for sequencing jobs to minimize

140



Bibliography

total tardiness. Annals of Discrete Mathematics, 1:331–342, 1977.
[67] C. Lenté, M. Liedloff, A. Soukhal, and V. T’Kindt. On an extension of the sort

& search method with application to scheduling theory. Theoretical Computer
Science, 511:13–22, 2013.

[68] C. Lenté, M. Liedloff, A. Soukhal, and V. T’Kindt. Exponential algo-
rithms for scheduling problems. Technical report, 2014. https:/hal.
archives-ouvertes.fr/hal-00944382.

[69] R. Lewis, X. Song, K. Dowsland, and J. Thompson. An investigation into two
bin packing problems with ordering and orientation implications. European
Journal of Operational Research, 213:52–65, 2011.

[70] S. Lin. Computer solutions of the traveling salesman problem. Bell System
Technical Journal, 44:2245–2269, 1965.

[71] M. J. P. Lopes and J. V. de Carvalho. A branch-and-price algorithm for
scheduling parallel machines with sequence dependent setup times. European
Journal of Operational Research, 176:1508–1527, 2007.

[72] M.E. Lübbecke and J. Desrosiers. Selected topics in column generation. Op-
erations Research, 53:1007–1023, 2005.

[73] J. Malick and F. Roupin. Solving k-cluster problems to optimality with
semidefinite programming. Mathematical Programming, 136:279–300, 2012.

[74] V. Maniezzo, T. Stützle, and Stefan Voß. Matheuristics: Hybridizing Meta-
heuristics and Mathematical Programming. 2009.

[75] R. Martí, M. Gallego, A. Duarte, and E. G. Pardo. Heuristics and metaheuris-
tics for the maximum diversity problem. Journal of Heuristics, 19:591 – 615,
2013.

[76] R. Martí and F. Sandoya. Grasp and path relinking for the equitable dispersion
problem. Computers & Operations Research, 40:3091 – 3099, 2013.

[77] A. Mobasher and A. Ekici. Solution approaches for the cutting stock problem
with setup cost. Computers & Operations Research, 40:225–235, 2013.

[78] V. T. Paschos. When polynomial approximation meets exact computation.
4OR, 13:227–245, 2015.

[79] D. Pisinger. The quadratic knapsack problem - a survey. Discrete Applied
Mathematics, 155:623–648, 2007.

[80] C. N. Potts and L. N. Van Wassenhove. A decomposition algorithm for the

141

https:/hal.archives-ouvertes.fr/hal-00944382
https:/hal.archives-ouvertes.fr/hal-00944382


Bibliography

single machine total tardiness problem. Operations Research Letters, 5:177–
181, 1982.

[81] O. A. Prokopyev, N. Kong, and D.L. Martinez-Torres. The equitable disper-
sion problem. Discrete Applied Mathematics, 197:59 – 67, 2009.

[82] W. Rei, M. Gendreau, and P. Soriano. A hybrid monte carlo local branching
algorithm for the single vehicle routing problem with stochastic demands.
Transportation Science, 44:136–146, 2010.

[83] M.G.C. Resende, R. Martí, M. Gallego, and A. Duarte. Grasp and path relink-
ing for the maxâ€“min diversity problem. Computers & Operations Research,
37:498 – 508, 2010.

[84] F. Sandoya and R. Aceves. Grasp and path relinking to solve the problem of
selecting efficient work teams. In Javier Del Ser, editor, Recent Advances on
Meta-Heuristics and Their Application to Real Scenarios, chapter 2. 2013.

[85] K.C. Sou, J. Weimer, H. Sandberg, and K.H. Johansson. Scheduling smart
home appliances using mixed integer linear programming. In 50th IEEE Con-
ference on Decision and Control and European Control Conference (CDC-
ECC) Orlando, USA, pages 5144–5149, 2011.

[86] K. Stephenson. Circle packing: a mathematical tale. Notices Amer. Math.
Soc, 50:1376–1388, 2003.

[87] W. Szwarc. Single machine total tardiness problem revisited. Creative and
Innovative Approaches to the Science of Management, pages 407–419, 1993.

[88] W. Szwarc, A. Grosso, and F. Della Croce. Algorithmic paradoxes of the single
machine total tardiness problem. Journal of Scheduling, 4:93–104, 2001.

[89] W. Szwarc and S. Mukhopadhyay. Decomposition of the single machine total
tardiness problem. Operations Research Letters, 19:243–250, 1996.

[90] V. T’kindt, F. Della Croce, and C. Esswein. Revisiting branch and bound
search strategies for machine scheduling problems. Journal of Scheduling,
7:429–440, 2004.

[91] P. Trkman and M. Gradisar. One-dimensional cutting stock optimization in
consecutive time periods. European Journal of Operational Research, 179:291–
301, 2007.

[92] W. Vancroonenburg, P. De Causmaecker, F. Spieksma, and G. Vanden Berghe.
Column generation for the 1D-CSP with SDCL, and the orienteering problem

142



Bibliography

with multiplicity. Technical report, KU Leuven, Department of Computer
Science, 2014. http:/allserv.kahosl.be/~wimvc/cg-1D-csp-with-sdcl.
pdf.

[93] V. V. Vazirani. Approximation Algorithms. Springer, 2003.
[94] G. Wäscher, H. Haußner, and H. Schumann. An improved typology of cutting

and packing problems. European Journal of Operational Research, 183:1109–
1130, 2007.

[95] D. P. Williamson and D. B. Shmovs. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

[96] G.J. Woeginger. Exact algorithms for np-hard problems: a survey. Lecture
Notes in Computer Science, 2570:185–207, 2003.

[97] H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of Semidefinite
Programming. Springer, 2000.

[98] Leung J. Y-T. Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. Chapman and Hall/CRC, 2004.

[99] H. H. Yanasse and M. S. Limeira. A hybrid heuristic to reduce the num-
ber of different patterns in cutting stock problems. Computers & Operations
Research, 33:2744–2756, 2007.

[100] B. Yang, W. Cheung, and J. Liu. Community mining from signed social
networks. IEEE Transactions on Knowledge and Data Engineering, 19:1333–
Â1348, 2007.

[101] B. Yelbay, S. Birbil, and K. Bulbul. The set covering problem revisited: an
empirical study of the value of dual information. Technical report, 2012.
Optimization Online.

[102] C. Yu, D. Zhang, and H.Y.K. Lau. Mip-based heuristics for solving robust
gate assignment problems. Computers & Industrial Engineering, 98:23–47,
2016.

[103] D. Zhang, L.G. Papageorgiou, N.J. Samsatli, and N. Shah. Optimal scheduling
of smart homes energy consumption with microgrid. In The First International
Conference on Smart Grids, Green Communications and IT Energy-aware
Technologies (ENERGY 2011) Venice/Mestre, Italy, pages 70–75, 2011.

[104] Q. Zhao, S. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming
relaxations for the quadratic assignment problem. Journal of Combinatorial

143

http:/allserv.kahosl.be/~wimvc/cg-1D-csp-with-sdcl.pdf
http:/allserv.kahosl.be/~wimvc/cg-1D-csp-with-sdcl.pdf


Bibliography

Optimization, 2:71–109, 1998.

144


	Acknowledgements
	Introduction 
	Matheuristics
	Local Branching
	Variable Partitioning Local Search
	Continuous Relaxation Based Matheuristics
	Column Generation Based Heuristics

	Semidefinite Programming for Combinatorial Optimization
	The Design of Exact Exponential Algorithms
	The Branch and Reduce Paradigm
	Dynamic Programming across the Subsets
	Other Techniques

	Outline of the Thesis

	I Scheduling Problems
	A Domestic Energy Management Problem 
	Problem Description and Formulation
	MIP Model

	A Matheuristic Approach
	Computational Results
	Conclusions

	The Cutting Stock Problem with Sequence-Dependent Cut Losses 
	Problem Formulation
	Related Work and Similar Problems
	An Approximation by 1D-CSP

	Algorithms
	An Exact Enumerative Pattern Based Approach
	Heuristic Approach

	Computational Study
	Experimental Setup
	Experimental Results and Discussion

	Conclusions

	An Exact Exponential Branch and Merge Approach for the Total Tardiness Problem 
	A Branch and Reduce Approach
	A Branch and Merge Algorithm
	Merging Left-Side Branches
	Merging Right-Side Branches
	Complete Algorithm and Analysis

	Conclusions


	II Clustering Problems
	The Max-Mean Dispersion Problem 
	Mathematical formulations
	A Semidefinite Programming Approach
	The Semidefinite Programming Relaxation
	The Branch and Bound Framework
	Reducted SDP model

	A Three-Phase Hybrid Heuristic
	PHASE ONE: using the QIP solver to compute initial solutions
	PHASE TWO: local branching
	PHASE THREE: path relinking 

	Computational Experiments
	Tests for the Branch and Bound Algorithm
	Tests for the Hybrid Heuristic

	Conclusions

	The Multi-Meter Covering Problem 
	Problem Description
	Mathematical Formulation
	Literature
	The Proposed Algorithm
	Computational Experiments
	Conclusions

	Conclusions and Future Developments
	Bibliography


