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Abstract—Block-based separable transforms tend to be inef-
ficient when blocks contain arbitrarily shaped discontinuities.
For this reason, transforms incorporating directional information
are an appealing alternative. In this paper, we propose a new
approach to this problem, designing a new transform that can
be steered in any chosen direction and that is defined in a
rigorous mathematical way. This new steerable DCT allows to
rotate in a flexible way pairs of basis vectors, enabling precise
matching of directionality in each image block, and thereby
achieving improved coding efficiency. We tested the proposed
transform on several images and the results show that it provides
a significant performance gain compared to the DCT. Moreover,
the mathematical framework on which the steerable DCT is
based allows to generalize the transform to more complex steering
patterns than a single pure rotation.

I. INTRODUCTION

The 2D Discrete Cosine Transform (DCT) is by far the most
widespread transform used for block-based image and video
compression [1]. The 2D DCT is implemented by two separa-
ble 1D transforms along the vertical and horizontal directions.
Thus, the conventional DCT can efficiently represent images in
which horizontal or vertical edges are dominating. Instead, one
of the main drawbacks of the DCT is that it becomes inefficient
when a block contains arbitrarily shaped discontinuities.

To overcome this problem, various solutions have been
proposed in the past and different approaches have been
explored. Several researchers have proposed to modify the
implementation of the separable 2D DCT in order to incor-
porate directional information into the transform [2]–[4]. The
Directional DCT (DDCT) presented in [2] is the first attempt
in this sense. The authors developed a new separable transform
in which the first 1D DCT may choose to follow a direction
other than the vertical or horizontal one, then the coefficients
produced by all directional transforms in the first step are
rearranged so that the second transform can be applied to the
coefficients that are best aligned with each other. However, this
method faces several issues [5]: 1D DCTs of various lengths
are needed, some of them are very short and their lengths are
not always a power of 2. Moreover, the second DCT may not
always be applied to coefficients of similar AC frequencies.

In the specific case of intra-frame video coding, another ap-
proach to design a directional transform has been investigated.
In [6], the authors proposed to derive mode-dependent direc-
tional transforms (MDDT) from Karhunen-Loeve transform
(KLT) using prediction residuals from training video data.
Using this approach, various follow-up works have presented
several variations and enhancements for the MDDT exploiting

the use of symmetry to reduce the number of transform
matrices needed [7]–[9]. However, the main problem of this
methods is that training sets must be processed to obtain
transforms that are optimal for a given mode.

Recently, a new approach in image and video coding is
emerging. Any image can be viewed as a graph, where
each pixel is a node of the graph and the edges describe
the connectivity relations among the pixels, e.g. in terms
of similarity [10]. This graph representation allows one to
design an edge-aware transform in an elegant and effective
way. Block-based method using graph transform have been
proposed in [11], [12], but they all reported unsatisfactory
results on natural images that are not piece-wise smooth. For
the specific case of texture images, a new class of transforms
called graph template transforms was proposed to approximate
the KLT by exploiting a priori information known about
signals represented by a graph-template [13]. However, one of
the main drawbacks of graph-based compression techniques
lies in the cost required to represent and encode the graph,
which may outweigh the coding gain provided by the edge
adaptive transform. For this reason, recently some graph-based
compression methods that require a small overhead have been
presented [14], [15], however, even if their performances are
competitive compared to the DCT, the construction of the
transform matrix has a high computational cost.

In this paper, we present a new framework for directional
transforms. Starting from the graph transform of a grid graph,
we design a new transform, the Steerable DCT (SDCT), that
can be obtained simply by rotating the 2D DCT basis. In this
way, the proposed transform can be oriented in any possible
direction and can achieve better compression performance than
the DCT. The SDCT is defined in a rigorous mathematical
way and can be easily computed starting from the 2D DCT.
In addition, we show that the proposed framework is very
general and it is open to many further extensions that could
lead to significant improvements.

The paper is organized as follows. Section 2 presents some
theoretical results that will be needed in the following sections
of the paper. We then introduce the construction method for
the Steerable DCT basis in Section 3. In Section 4, the results
of our experimental tests are presented. A final discussion on
the proposed method is conducted in Section 5.

II. GRAPH FOURIER TRANSFORM AND DCT

We start our analysis by briefly reviewing the graph Fourier
transform and highlighting the link between this transform and



the DCT.

A. Laplacian matrix and graph Fourier transform

A graph can be denoted as G = (V,E), where V is the
set of vertices (or nodes) with |V | = N and E ⊂ V × V
is the set of edges. It is possible to represent a graph by its
adjacency matrix A ∈ RN×N , where Aij = 1 if there is an
edge between node i and j, otherwise Aij = 0. The graph
Laplacian is defined as L = D − A, where D is a diagonal
matrix whose ith diagonal element di is equal to the number
of edges incident to node i.

We can define a signal f on the vertices of the graph and
it can be represented as a vector f ∈ RN , where the ith
component of f represents the signal value at the ith vertex in
V .

In the graph domain, it is possible to define an equivalent
of the Fourier transform, i.e. the graph Fourier transform [10].
The graph Fourier transform f̂ of any signal f ∈ RN is defined
as

f̂ = U f ,

where U is the matrix whose rows are the eigenvectors of
the graph Laplacian L. The inverse graph Fourier transform is
then given by

f = UT f̂ .

B. Product graph and its Laplacian

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the
product of G1 and G2 is the graph G = G1×G2 whose vertex
set is the Cartesian product V1×V2. Suppose v1, v2 ∈ V1 and
u1, u2 ∈ V2. Then (v1, u1) and (v2, u2) are adjacent in G if
and only if one of the following conditions are satisfied [16]:
• v1 = v2 and {u1, u2} ∈ E2;
• {v1, v2} ∈ E1 and u1 = u2.

Theorem [16], [17]. Let G1 and G2 be graphs on n1 and n2
vertices, respectively. Then the eigenvalues of L(G1×G2) are
all possible sums of λi(G1) + λj(G2), with 0 ≤ i ≤ n1 − 1
and 0 ≤ j ≤ n2 − 1. Moreover, if v(i) is an eigenvector
of G1 corresponding to λi(G1), v(j) an eigenvector of G2

corresponding to λj(G2) and ⊗ is the Kronecker product, then
v(i)⊗v(j) is an eigenvector of G corresponding to λi(G1)+
λj(G2).

C. Grid graph and 2D DCT

A path graph Pn is a particularly simple graph consisting of
n vertices, whose structure is shown in Fig 1(a). It is known
that the eigenvectors of the Laplacian matrix L of the path
graph Pn are identical to the basis vectors of the discrete
cosine transform (type II) [18]
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Fig. 1. Two graph models: (a) the path graph P4, (b) the square grid graph
P4 × P4.

multiplicity of the eigenvalues in (2) is always 1, the 1D DCT
basis is the unique eigenbasis for the Laplacian of a path graph,
therefore the graph transform for a signal represented by a path
graph is equivalent to the 1D DCT transform.

It is easy to see that a grid graph as the one shown in Fig.
1(b) is the product of two path graphs. If the two path graphs
have the same number of vertices n, their product graph is a
square grid graph. It has been proved that the basis vectors of
the 2D DCT form an eigenbasis of the Laplacian matrix of
the square grid graph [19].

III. STEERABLE DCT

Starting from the theoretical results presented in the previ-
ous section, we build a new transform that can be oriented in
any direction.

A. Preliminaries

Using the theorem presented in the previous section and
equations (1) and (2), we can compute the eigenvalues and
the corresponding eigenvectors of the Laplacian of the square
grid graph

λk,l = λk + λl = 4 sin2
(
πk

2n

)
+ 4 sin2

(
πl

2n

)
, (3)

v(k,l) = v(k) ⊗ v(l), (4)

for 0 ≤ k, l ≤ n − 1, where v(k) is the eigenvector of the
path graph corresponding to λk and v(l) is the eigenvector
corresponding to λl. From (3), it is evident that some repeated
eigenvalues are present, indeed λk,l = λl,k if k 6= l.
Moreover, through straightforward computations, it is possible
to prove that the eigenvalue λ = 4 has multiplicity n− 1 and
corresponds to all eigenvalues λk,n−k with 1 ≤ k ≤ n − 1.
Therefore, in the spectrum of L there are only n−1 eigenval-
ues with algebraic multiplicity 1 (i.e. λk,k with k 6= n/2), then
all the others but λk,n−k have multiplicity 2. It is important
to highlight that even if λk,l = λl,k when k 6= l, we still have



Fig. 2. 2D DCT basis vectors represented in matrix form (with n = 8):
the corresponding two eigenvectors of an eigenvalue with multiplicity 2 are
highlighted in red, the n − 1 eigenvectors corresponding to λ = 4 are
highlighted in blue and the n−1 eigenvectors corresponding to the eigenvalues
with multiplicity 1 are highlighted in green.

that v(k,l) and v(l,k) are linearly independent, because the
Kronecker product is not commutative. Therefore, the dimen-
sion of the eigenspaces corresponding to these eigenvalues is
bigger than one. This means that the 2D DCT is not the unique
eigenbasis for the Laplacian of a square grid graph.

In Figure 2 the 2D DCT basis with n = 8 is represented
in matrix form; as an example, we have highlighted in red
the corresponding two eigenvectors of an eigenvalue with
multiplicity 2, we can see that they are clearly related to each
other, since one is the 90◦ rotation of the other.

B. Transform definition

Since the 2D DCT is not the unique eigenbasis for the
Laplacian of a square grid graph, we want to find other
possible eigenbases of the Laplacian and choose as transform
matrix the one that better fits the properties of the specific
image block that we have to compress.

Given an eigenvalue λk,l of L whose corresponding
eigenspace has dimension two and the two vectors of the
2D DCT v(k,l) and v(l,k) that are the eigenvectors of L
corresponding to λk,l, we can write any other possible basis of
the eigenspace corresponding to λk,l as the result of a rotation
of the eigenvectors v(k,l) and v(l,k)[

v(k,l)′

v(l,k)′

]
=

[
cos θk,l sin θk,l
− sin θk,l cos θk,l

] [
v(k,l)

v(l,k)

]
, (5)

where 0◦ ≤ θk,l ≤ 90◦.
For every eigenvalue λk,l with multiplicity 2, we can rotate

the corresponding eigenvectors as shown in (5); the n − 1
eigenvectors corresponding to λ = 4 are rotated in pairs
v(k,n−k) and v(n−k,k), if n is even the eigenvector v(n

2 ,n2 ) is
not rotated. In the 2D DCT matrix, the pairs of basis vectors
v(k,l) and v(l,k) are replaced with the rotated ones v(k,l)′ and
v(l,k)′ obtaining a new transform matrix that can be defined

Fig. 3. Steerable DCT with θ = 45◦.

only by the rotation angles used, that we have to transmit to
the decoder.

In principle, we can rotate each eigenspace with a different
angle, choosing the best one for every pair of DCT basis
vectors. However, in this case the cost required to transmit
all the rotation angles may be too high. In this paper, we limit
our study to the case where we use the same rotation angle for
every eigenspace, transmitting, therefore, only one angle per
block. The case of a rotation with a different angle for each
pair of basis vectors is left as future work.

Rotating all the eigenspaces by the same angle, we obtain
a transform matrix that is still the graph transform of a square
grid graph, but its orientation is different from that of the DCT.
In Figure 3, we show the basis vectors obtained rotating by 45◦

degree each pair of eigenvectors. As can be seen, the diagonal
elements v(k,k) are the same as the DCT ones because the
corresponding eigenvalues have multiplicity one, instead all
the others are rotated by 45◦.

The aim of using a transform matrix whose vector basis
has a different orientation from the horizontal/vertical one
is to obtain a more compact signal representation by unbal-
ancing the transform coefficients. For each pair of rotated
eigenvectors, the total energy of the corresponding transform
coefficients remains unchanged, but it is possible to sparsify
the signal representation in each eigenspace. In the optimal
case, the rotation compacts all the energy of the pair in one
of the two coefficients. If every couple of vectors is rotated
by the same angle, in the majority of cases we will not
achieve a complete unbalancing that zeros out one of the two
coefficients, but we will still obtain an improvement in the
compression performance, as we will show later in the paper.

C. Choice of the rotation angle

To choose the best rotation angle, we use an exhaustive
method, finding, among a finite set of N possible angles
between 0◦ and 90◦, the one that optimizes a predetermined
objective function J (e.g a measure of the sparsity of the
transform coefficients, more details will be given in the



(a) House (b) Boat (c) Lena

Fig. 4. Original images.

following section). Algorithm 1 describes the method used.
The implementation of a more efficient method for choosing

Algorithm 1 Steerable DCT. θ: set of N angles between 0◦

and 90◦, J : objective function, Jopt: optimal value of the
objective function, V : 2D DCT matrix.

Set Jopt to 0;
Set the optimal angle to 0;
for i=1 to N do

Rotate each pair of vectors in V by θi;
Build a new transform matrix V ′ with the rotated vectors;
Compute J(θi): the value of the objective function J
using V ′;
if J(θi) > Jopt then

Set the optimal angle to θi;
Jopt = J(θi);

end if
end for

the optimal angle, e.g a hierarchical search, will be evaluated
in future.

IV. EXPERIMENTAL RESULTS

For the purpose of experimentation, first we subdivide the
image into blocks; then, in each block we apply the SDCT,
using only one rotation angle for all the eigenspaces. To
evaluate the performance of the proposed SDCT, we use the M
term non-linear approximation, where we keep the M largest
coefficients and set the others to zero:

Irec =

M∑
i=1

civi,

where Irec is the reconstructed image, {ci}1≤i≤M are the M
transform coefficients with largest magnitude and vi are the
corresponding basis vectors. To find the best rotation angle,
we choose, for each M , the one that maximizes the energy in
the M largest coefficients

(
J =

∑M
i=1 c

2
i

)
. Then, we compute

the PSNR of each image and we compare the performance of
the proposed SDCT with the standard DCT. We have tested
this method on several grayscale images, three of them are
shown in Figure 4.

Fig. 5. M -term non-linear approximation using different angle quantizations.

The results presented are preliminary and they are meant
to demonstrate the potentiality of the proposed transform, but
further work is needed to develop image coding applications.
In particular, the non-linear approximation used does not
take into account the overhead bits needed to transmit the
rotation angle, therefore the comparison with the DCT is not
completely fair, even if the required overhead for the SDCT
is very low.

A. Angle quantization

To obtain a finite set of angles, we perform an uniform
quantization of the angles between 0◦ and 90◦. Since the
SDCT needs to transmit as side information the rotation angle
that we used for the transform, it is important to have a small
number of possible angles. We have evaluated the performance
of the SDCT as a function of the number of available angles.
The results obtained using 8×8 blocks are shown in Figure
5. From the results, we can see that increasing the number
of angles improves the performance of the SDCT, but after a
while this improvement becomes not significant, for example
the performance using 16 angles and 128 angles is nearly the
same. For the tests presented in the following sections, we
decided to use quantization onto 16 possible angles.

B. Effect of block size

The proposed SDCT can be applied to square blocks of any
size. However, in our experiments we have noticed that the
gain of the SDCT depends on the block size used. In Figure 6
we show the performance curves obtained with different block
sizes. On average, we have a coding gain of 1.5 dB with 4×4
blocks, 0.7 dB with 8×8 blocks and 0.25 dB with 16×16
blocks. We can clearly see that the effectiveness of the SDCT
increase when we use small blocks, because in larger blocks
it is more difficult to find just one predominant direction.

A detail of the significant improvement obtained by the
SDCT can be visually appreciated in Figure 7 and 8. As
can be seen, the SDCT provides much better visual quality,
minimizing artifacts along the edges thanks to the alignment
of the transform to the edge direction.



Fig. 6. M -term non-linear approximation using different block sizes.

C. Comparison with DDCT

In the case of 8×8 blocks, we have also made a comparison
with the DDCT presented in [2]. In Figure 9, the results
obtained with some test images are shown. We can see that
the performances of the two methods are very similar, even if
the proposed SDCT is slightly better with an average coding
gain of approximately 0.1 dB. Even if the performances of the
two transforms are similar, the SDCT presents a more general
framework for image coding that can be further extended using
more than one rotation angle. In order to show the potential of
the proposed framework, we have ordered the pairs of vectors
using the zigzag ordering and divided them in four subbands
of equal size, then we have used a different rotation angle for
each subband. The results obtained are plotted in Figure 9. We
can see that the improvement over the SDCT and the DDCT

(a) DCT (b) SDCT

Fig. 7. Visual comparison between the conventional DCT and the proposed
SDCT: a detail of the House image reconstructed from M = 6 coefficients
using 8×8 blocks.

(a) DCT (b) SDCT

Fig. 8. Visual comparison between the conventional DCT and the proposed
SDCT: a detail of the Lena image reconstructed from M = 3 coefficients
using 4×4 blocks.

is significant, with an average quality gain of 0.45 dB over
the SDCT and of 1.15 dB over the standard DCT.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce a completely new framework
for block-based directional DCT. The proposed transform has
an elegant mathematical definition: exploiting the properties
of the graph transform of a grid graph, we obtain a new
transform basis that can be steered in any chosen direction.
This new transform is strongly related to the 2D DCT and
it can be easily computed starting from there. The proposed
method provides a significant improvement over the DCT and
it slightly outperforms the DDCT.

Furthermore, it is very important to underline that, differ-
ently from other directional transforms, the proposed mathe-
matical framework is highly general. The SDCT can be applied
to blocks of any size, it can be oriented in any direction and
we can use more complex steering patterns than a single pure
rotation. In addition, future work might also include the use of
the proposed SDCT for intra prediction coding. In this case,
we intend to implement the proposed SDCT into HEVC so that
the rotation angle could be derived from the intra prediction



Fig. 9. Performance comparison between DCT, SDCT and DDCT.

mode chosen for the block, avoiding the use of overhead bits
to represent the rotation angle.
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