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Abstract: In this paper, we present an alternative derivation of the entropy production in turbulent
flows, based on a formal analogy with the kinetic theory of rarefied gas. This analogy allows for
proving that the celebrated k − ε model for turbulent flows is nothing more than a set of coupled
BGK (Bhatnagar–Gross–Krook)-like equations with a proper forcing. This opens a novel perspective
on this model, which may help in sorting out the heuristic assumptions essential for its derivation,
such as the balance between turbulent kinetic energy production and dissipation. The entropy
production is an essential condition for the design and optimization of devices where turbulent
flows are involved.

Keywords: thermodynamics of irreversible processes (TIP); turbulence modeling; Reynolds
averaging; entropy production; second law

1. Introduction

Even though it is omnipresent around us, turbulence remains one of the last unsolved problems
in classical physics. We can find turbulent flows in astrophysical plasmas, atmospheric winds, ocean
currents, planetary boundary layers, rivers, fluid dynamics around all kinds of vehicles, internal
combustion engines, heat exchangers and even blood flows. Turbulence indicates certain complex
and unpredictable motions of a fluid with an entire hierarchy of structures called eddies. An overview
of this topic is too broad to be reported here, and it can be found in [1]. Interesting historical notes
can be found in [2]. In spite of the tremendous work done in the last century and the new possibilities
offered by direct numerical simulation of turbulent flows, the theoretical progress in understanding
turbulence is proceeding slowly. One of the reasons may be that turbulence is deeply rooted in
fluid mechanics, while fluid dynamic equations are not derived from fundamental considerations
and the mathematical theory of fluids is not yet fully developed [3]. Up to now, the most important
contribution to the theory of turbulence is still due to the Russian mathematician Andrei Kolmogorov.
In 1941, a conceptual framework for turbulence (K41 theory) was defined by Kolmogorov [4–6].
The K41 theory was originally derived for homogeneous and isotropic turbulence (i.e., statistically
invariant under translations and rotations). After more than 70 years, it has been found out that the
K41 theory may also explain turbulent flows over rough walls, by rationalizing the empirical scaling
of Blasius and Strickler included in the Nikuradse’s experiments [7]. From a technological point of
view, this finding has tremendous implications for heat transfer enhancement techniques [8–10].

Fundamental experiments in turbulence are extremely difficult because they are expensive and
require long runs for collecting enough statistical data on the fluctuating quantities of interest. This
is the reason why direct numerical simulations of turbulence are considered valuable alternatives.
Von Neumann predicted in 1949 a revolution in the study of turbulence thanks to the advent of
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digital computers because of the possibility to simulate the fluid dynamic equations in 3D turbulent
regimes [1]. However, the first three-dimensional simulations of turbulence were carried out only
many years later, when the advent of supercomputers and the development of (pseudo)-spectral
numerical techniques based on fast Fourier transform algorithms unlocked adequate simulation
capabilities: Steven Orszag and G.S. Patterson could achieve such a goal in 1972 [11]. Clearly,
numerical simulations offer the advantage of accessing the entire velocity field and other quantities
of interest (e.g., vorticity, local energy dissipation, etc.) [1]. The mesh size of these simulations
(nowadays, up to tens of billions of grid-points) determines the spatial resolution, which depends
on the maximum Reynolds number of the turbulent flow: the higher the Reynolds number, the
bigger the mesh size. Due to recent progress in high performance computing, the feasible Reynolds
numbers are approaching those recovered in experimental facilities. However, many times, history
has shown that the main speedup in numerical computations comes from more efficient algorithms
rather than better hardware [12,13]. More than 20 years ago, the lattice Boltzmann method [14–20] was
proposed as a powerful numerical method, which is prone to take advantage of the modern resources
of high performance computing, especially for multi-physics and multi-scale simulations. The range
of applications of the lattice Boltzmann method is very broad, including thermal radiation [21],
thermal conduction [22], combustion [23–26], porous media [27,28], multi-component flows [29,30]
and turbulence [31–33], to mention a few. In particular, it was argued that turbulence can be
more efficiently modeled by the extended kinetic (Boltzmann) equation rather than continuum
Navier–Stokes equations [31,32], by means of a proper discretization (lattice). Recently, a further
improvement in computational performances was achieved by link-wise artificial compressibility
method [34], which can be considered as a subsequent refinement of the lattice Boltzmann algorithm.
Moreover, stability of kinetic schemes can be also improved using the pioneering idea of limiters [35].

In most of the engineering applications where turbulent flows are involved, direct numerical
simulations are still unfeasible. Large eddy simulations and Reynolds averaged Navier–Stokes
simulations are commonly used instead [36]. Large eddy simulations using the lattice Boltzmann
method have been carried out [37–40], as well as those using Reynolds averaged Navier–Stokes
(RANS) equations [41,42]. However, in the context of the lattice Boltzmann method, engineering
turbulence models are still lacking, thus more research efforts are required [19]. Among the closure
models for the Reynolds averaged equations, the k − ε model is one of the most popular [36]. The
model takes its name from the turbulent kinetic energy k and the turbulent dissipation rate ε. The
role of k − ε model in the theory of turbulence can be found in [43]. The first two-equation model
for predicting turbulent flows was proposed by Kolmogorov in 1942 [44], using fluctuation energy
and frequency as its main variables. In 1968, Harlow and Nakayama proposed the k − ε model
for turbulence [45], which was later refined [46]. However, the true development of the model is
credited to Launder, Hanjalic and Jones [47,48], whereas the collaboration with Spalding brought out
the superiority of this model to a broad scientific audience [49–51].

In spite of its success from the practical point of view, the theoretical foundations of the k− ε

model are still unclear. In fact, the model is made by two phenomenological equations and, in
particular, the equation for the dissipation rate of turbulent kinetic energy is guessed by an analogy
to the kinetic energy one [36]. The idea to apply statistical mechanics to the study of fully developed
turbulent flows is quite old, and it dates back to the pioneering work by Reynolds in 1883 [3]. Indeed,
the statistical approach is one of the main approaches to turbulence (along with the structural and
deterministic ones). In particular, non-extensive statistical mechanics [52] and the recently proposed
fluctuation theorems [53] appear promising in understanding turbulence. However, a fundamental
problem still remains in investigating the relationship between the definition of entropy in case of
non-equilibrium flows and the most popular turbulent models (e.g., k − ε model), which is exactly
what we investigate here.

Recent trends in thermodynamics may help in achieving this goal. Starting from the theoretical
framework introduced by Lars Onsager, Ilya Prigogine paved the way to the Thermodynamics
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of Irreversible Processes (TIP) by extending the fundamental Gibbs relation to non-equilibrium
states [54,55]. Such extension assumes that local equilibrium is achieved throughout the system,
namely all subparts of the system are close to equilibrium condition and can be safely described by
thermodynamic relationships and variables. Extended Irreversible Thermodynamics (EIT) [56,57]
is another active field of investigation, where the local equilibrium assumption can be eventually
overcome. The basic idea underlying EIT is that thermodynamic quantities are related to dissipative
fluxes, which are considered as independent variables. Hence, the generalized Gibbs relation for
non-equilibrium states can be obtained from the differential form of the generalized entropy, and it
satisfies the following requirements: (1) in the limit of quasi-static processes, it can be reduced to
the equilibrium Gibbs relation; (2) it is Galilean invariant; (3) results are supported by experimental
evidence [58]. This procedure is not even limited to bulk flows, as it can be successfully adopted for
studying non-equilibrium interfaces [59–61].

Surprisingly enough, only recently Extended Irreversible Thermodynamics has paid attention to
turbulent flows [62–65]. There are two main approaches in literature. In the first approach, Jansen [66]
and Hauke [67] have extended entropy-based stability analysis to turbulent flows. The key idea
consists in applying the Reynolds time averaging to the entropy transport equation obtained by the
Thermodynamics of Irreversible Processes (TIP), i.e., by assuming that local equilibrium assumption
holds. This approach has been somehow re-proposed recently and even applied to commercial
codes [68–71]. However, the entropy transport equation is highly non-linear, and several ways to
perform the Reynolds time averaging could be adopted. For example, multiplying this equation by
the temperature before applying the time-averaging leads to simplified calculations, but a closure
problem appears (for fluctuating temperature and entropy production correlations) and different
models have been proposed [72]. In fact, the mean entropy production cannot be easily expressed
by other mean flow variables alone [72]. We believe that these difficulties arise from understanding
the local equilibrium assumption. Hence, we aim to clarify the derivation of entropy production in
turbulent flows. The entropy production is helpful in the design and optimization of devices dealing
with turbulent flows (e.g., by the entropy generation minimization approach [73,74]).

In this work, materials and methods representing the starting point of our analysis are briefly
summarized in Section 2; then, the main results for turbulent flows are reported in Section 3, where
the k− ε model is recast by a kinetic approach. Finally, Section 4 presents some considerations derived
from the reported results; whereas conclusions are drawn in Section 5.

2. Materials and Methods

In the asymptotic limit of low Mach number flows, the incompressible limit of the
Navier–Stokes–Fourier system of equations for Newtonian fluids with constant transport
coefficients [75,76] can be written as

∇ · u = 0, (1)
∂u
∂t

+ u · ∇u =
Du
Dt

= − 1
ρ0
∇p + ν∇2u, (2)

∂h
∂t

+ u · ∇h =
Dh
Dt

=
λ

ρ0
∇2T + 2ν(∇Su)2 +

1
ρ0

Dp
Dt

, (3)

where ρ0 is the average fluid density (assumed constant and different from the actual fluid density
ρ), u is the fluid velocity, p is the pressure, ν is the kinematic viscosity, h is the enthalpy, λ is the
thermal conductivity, and∇Su = 1/2

(
∇u +∇Tu

)
is the strain rate tensor. Alternative formulations

of Equation (1) may be expressed in terms of the internal energy or total energy, instead of enthalpy.
It is well known that, in regimes where momentum convection prevails on momentum diffusion

(u · ∇u � ν∇2u) or, equivalently, Reynolds number is larger than a flow-dependent threshold, the
flow field is characterized by rapid variations of pressure and velocity in space and time, i.e., by
chaotic coherent structures called turbulent eddies. This discussion can be more rigorous by adopting
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characteristic quantities, which can be defined in different ways according to what they refer to (fields
or operator). On the one hand, the characteristic quantity uc gives the magnitude of the velocity field,
being uc = max(u) in the considered domain. On the other hand, operators may involve more
difficult definitions. For instance, the characteristic length lc is defined by

lc =
O(ϕ)

O(∇ϕ)
= max

i

(
O(ϕ)

O(∂ϕ/∂xi)

)
, (4)

where ϕ is a generic field property of the fluid flow. Hence, u · ∇u = O(u2
c /lc) and ν∇2u =

O(νuc/l2
c ). This clarifies the reason why the inequality u · ∇u � ν∇2u implies large Reynolds

numbers: Re = uclc/ν� 1.
As originally suggested by Reynolds in 1895, let us consider the time-averaged equations of

motion for fluid flows, i.e., the so-called Reynolds-averaged Navier–Stokes equations (RANS) [36].
First, let us introduce the filter operator 〈·〉 for the generic quantity ϕ

〈ϕ〉 = lim
τ→∞

1
τ

∫ t

t−τ
ϕ(t′, x) dt′, (5)

where 〈ϕ〉 is assumed independent on the initial condition t (in the context of chaotic dynamical
system, this means that the system can only have one strange attractor).

From a practical point of view, the limit in Equation (5) is truncated to some finite time, which
is assumed to be much larger than the characteristic time of turbulent fluctuations. The previous
definition allows one to introduce the average velocity field ū = 〈u〉 and the corresponding velocity
fluctuation u′ = u− ū or, equivalently, to decompose the actual velocity field, namely u = ū + u′.
Introducing the previous decomposition in the divergence-free condition given by Equation (1) and
taking the time average 〈·〉 shown in Equation (5) yield

∇ · ū = 0 (6)

and consequently∇·u′ = 0, meaning that both the average and fluctuating fields are divergence-free.
Proceeding in a similar way for Equation (2) yields

∂ū
∂t

+ ū · ∇ū + 〈u′ · ∇u′〉 = − 1
ρ0
∇ p̄ + ν∇2ū, (7)

where p̄ = 〈p〉. The term 〈u′ · ∇u′〉 represents the novel physical content of the RANS momentum
equation. Of course, in order to derive a set of closed RANS equations, the latter term must be
modeled by quantities depending on the averaged quantities (or their gradients) only. First of all, this
term must be made symmetric. Taking into account that ∇ · u′ = 0, the following condition holds

〈u′ · ∇u′〉 = ∇ · 〈u′ ⊗ u′〉. (8)

Next, let us consider the Boussinesq’s eddy viscosity assumption, namely

〈u′ ⊗ u′〉 = −νt (∇ū +∇ūT) = −2 νt∇Sū, (9)

where νt is the eddy viscosity (additional kinetic viscosity due to turbulent eddies beyond molecular
one) and ∇Sū is the strain rate tensor defined as ∇Sū = (∇ū +∇ūT)/2. It is easy to prove that
∇ū = ∇Sū + ∇W ū and, more importantly, ∇Sū : ∇W ū = 0, where ∇W ū = (∇ū − ∇ūT)/2 is
the vorticity tensor. Substituting the Boussinesq’s eddy viscosity assumption into Equation (7), and
taking into account that 2∇ · ∇Sū = ∇2ū (because of Equation (6)), yield

∂ū
∂t

+ ū · ∇ū = − 1
ρ0
∇ p̄ + (ν + νt)∇2ū. (10)
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It is clear that working with RANS is a successful approach, as far as an accurate model is defined
to compute the corrective factor (ν+ νt) in Equation (10). Clearly, the key idea is to investigate the part
of kinetic energy due to turbulent fluctuations. Let us substitute ∇2u with 2∇ · ∇Su in Equation (2)
and let us multiply the result by u, namely

∂ek
∂t

+ u · ∇ek =
Dek
Dt

= − 1
ρ0
∇p · u + 2ν (∇ · ∇Su) · u, (11)

where ek = u2/2 is the total kinetic energy. After some simple algebra, the previous equation can be
rewritten as

∂ek
∂t

+∇ ·
[
(ek + pk)u− 2ν u · ∇Su

]
= −εk ≤ 0, (12)

where pk = p/ρ0 is the kinetic pressure and εk = 2ν(∇Su)2 is the (positively defined) dissipation
function of the total kinetic energy (the square power (∇Su)2 simply means∇Su : ∇Su). Similarly to
what has been done for the velocity field, let us now decompose both the total kinetic energy ek and
its dissipation function εk, namely ek = 〈ek〉 + e′k and εk = 〈εk〉 + ε′k, respectively. In this case, the
main difference is that the time average of the previous quantities, e.g., 〈ek〉, does not coincide with
the same definition applied to averaged quantities, e.g., ēk. In particular, the following relations hold

〈ek〉 =
1
2
〈(ū + u′) · (ū + u′)〉 = ēk + k, (13)

〈εk〉 = 2ν〈∇S(ū + u′) : ∇S(ū + u′)〉 = ε̄k + ε, (14)

where ēk = ū2/2, k = 〈(u′)2〉/2 is the turbulent kinetic energy, ε̄k = 2ν(∇Sū)2 and ε = 2ν〈(∇Su′)2〉
is the turbulent dissipation function. For example, the previous definitions imply that e′k = ū · u′ +
u′ · u′/2 − k and consequently 〈e′k〉 = 0, even though 〈ek〉 6= ēk. The turbulent kinetic energy k
is the excess of kinetic energy due to turbulent fluctuations beyond the one caused by the average
flow. Similarly, the turbulent dissipation ε is the excess of dissipation due to turbulent fluctuations.
These are the two main quantities defining this approach to turbulence modeling, and this is the
reason why this method is called k− ε model [36]. The second key idea is that the eddy viscosity νt

depends on k and ε only. The physical dimensions of ε are those of kinetic energy divided by time,
thus it can be interpreted as the dissipation rate of turbulent kinetic energy. Based on dimensional
analysis, the following phenomenological relation is assumed for the eddy viscosity

νt = Ct
k2

ε
, (15)

where Ct is a tunable constant of the model (see next).
The next step consists in deriving a closed set of equations for k and ε. Let us substitute the

previous decompositions in Equation (12) and then perform the time averaging. Some difficulties
may arise from cubic (third-order) terms with respect to velocity, i.e., 〈eku〉, but the following
condition allows one to sort them out:

〈eku〉 = 〈ek〉ū + 〈u′ · u′u′〉/2 + ū · 〈u′ ⊗ u′〉, (16)

where the last term can be expressed by the Boussinesq’s eddy viscosity assumption Equation (9).
Exploiting the condition in Equation (16), it follows:

∂〈ek〉
∂t

+∇ ·
[
(〈ek〉+ p̄k) ū + 〈(u′ · u′/2 + p′k)u′〉 . . .

· · · − 2(ν + νt) ū · ∇Sū− 2ν 〈u′ · ∇Su′〉
]
= −ε̄k − ε ≤ 0. (17)
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On the other hand, multiplying Equation (7) by the average velocity ū yields

∂ēk
∂t

+∇ ·
[
(ēk + p̄k) ū− 2(ν + νt) ū · ∇Sū

]
= −ε̄k −

νt

ν
ε̄k ≤ 0. (18)

Subtracting Equation (18) from Equation (17) and taking into account that k = 〈ek〉 − ēk (because
of Equation (13)) yield

∂k
∂t

+∇ ·
[
k ū + 〈(u′ · u′/2 + p′k)u′〉 − 2ν 〈u′ · ∇Su′〉

]
=

νt

ν
ε̄k − ε. (19)

Taking into account the following equivalence

− 2ν 〈u′ · ∇Su′〉 = −ν∇k + 2ννt∇Sū, (20)

Equation (19) can be rewritten as

∂k
∂t

+∇ ·
[
k ū− ν∇k + 〈(u′ · u′/2 + p′k)u′〉+ 2ννt∇Sū

]
=

νt

ν
ε̄k − ε, (21)

which is the standard form for the turbulent kinetic energy equation (TKE).
Some simplifications are usually applied to the flux of turbulent kinetic energy. First of all, the

last term of such a flux is usually negligible at high Reynolds number flows, because it is proportional
to ννt (even though νt can be up to roughly ten times ν, still this term is proportional to ν2). Secondly,
the (leading) term 〈(u′ · u′/2)u′〉 clearly shows the turbulent transport of the quantity u′ · u′/2,
which is the argument of the turbulent kinetic energy k. Hence, the key idea is to generalize the
gradient-diffusion approximation [36], namely

〈(u′ · u′/2 + p′k)u′〉+ 2ννt∇Sū ≈ 〈(u′ · u′/2 + p′k)u′〉 ≈ − νt

σk
∇k, (22)

where σk is a tunable constant of the model (see next). Consequently, the equation of the turbulent
kinetic energy in the k− ε model becomes

∂k
∂t

+∇ · [k ū− (ν + νt/σk)∇k] =
νt

ν
ε̄k − ε. (23)

In the latter equation, the sign of the right hand side is no more uniquely prescribed. Here,
the quantity (νt/ν)ε̄k acts as turbulent energy production, moving kinetic energy from the mean
flow to the turbulent fluctuations; while ε acts as turbulent energy dissipation, moving energy in
the opposite direction. The same theoretical framework is used to derive the equation for turbulent
dissipation. However, the equation of turbulent dissipation in the k− ε model is completely heuristic,
being substantially derived by analogy with the previous equation [36]. The source/sink of turbulent
dissipation is derived by dividing the right hand side of Equation (23) by a proper characteristic time
(∼ k/ε) and introducing ad hoc some tunable constants, namely

∂ε

∂t
+∇ · [ε ū− (ν + νt/σε)∇ε] =

ε

k

(
Cε1

νt

ν
ε̄k − Cε2ε

)
, (24)

where σε, Cε1 and Cε2 are tunable constants of this model. The standard k − ε model is defined
by Equations (6) and (10) for the average fluid flow, by Equation (15) for the eddy diffusivity, by
Equations (23) and (24) for the turbulent kinetic energy and turbulent dissipation and, finally, by the
following set of constants, Ct = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3 [36].
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3. Results

Let us start considering the entropy production of (incompressible) laminar flows.
Non-equilibrium thermodynamics of laminar flows can be obtained by an entropy production
equation, which can be derived by following the typical guidelines of TIPs [54,55]. Let us assume
that all subparts of the system are close to equilibrium conditions, so that they can be described
by classical thermodynamics. In equilibrium conditions, the fundamental Gibbs relation allows
for relating entropy with other thermodynamic potentials, namely Tds = dh − dp/ρ0, being T the
temperature and s the entropy. Here, we assume that this relation holds also in non-equilibrium
conditions, where the Gibbs relation becomes the entropy definition. However, this definition must
be Galilean invariant and thus Lagrangian time derivatives must be considered, namely

T
Ds
Dt

=
Dh
Dt
− 1

ρ0

Dp
Dt

. (25)

Substituting Equation (3) into Equation (25) yields

T
Ds
Dt

=
λ

ρ0
∇2T + 2ν(∇Su)2. (26)

The previous equation can be rewritten as

Ds
Dt

=
cp α

T
∇2T +

2 ν

T
(∇Su)2, (27)

where α = λ/(ρ0 cp) is the thermal diffusivity. By further elaborating on the first term at the right
hand side of the previous expression yields

Ds
Dt

+∇ ·
(
−

cp α

T
∇T
)
=

cp α

T2 (∇T)2 +
2 ν

T
(∇Su)2 ≥ 0, (28)

or equivalently
∂s
∂t

+∇ ·
(

s u−
cp α

T
∇T
)
= σ′α + σ′ν ≥ 0, (29)

where
σ′α = α

( cp

T2

)
(∇T)2 ≥ 0, (30)

σ′ν = ν

(
2
T

)
(∇Su)2 ≥ 0. (31)

Note that the prime notation is used to indicate the entropy production per unit of mass, i.e.,
σ′, instead of the more common production per unit of volume, i.e., σ = ρ0σ′. In the previous
equations, each specific transport phenomenon is a source of entropy production, namely: σ′α and
σ′ν represent the entropy produced by heat transfer (ruled by temperature gradient) and by fluid flow
(ruled by strain rate), respectively. Clearly, each entropy source is in agreement with the second law
of thermodynamics, namely σ′α ≥ 0 and σ′ν ≥ 0. The same considerations can be made for the global
entropy production, namely σ′α + σ′ν ≥ 0. This confirms that the hypothesis reported in Equation (25)
is valid for non-equilibrium states, at least as far as laminar flows are concerned.

In case of turbulent flows, the situation is more complex. First, the entropy production due
to velocity gradients σ′ν (Equation (31)) bears a strong resemblance with the dissipation function εk
appearing in the kinetic energy Equation (12), namely

σ′ν =
εk
T

. (32)
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The above observation paves the way to a meaningful formal analogy. In fact, kinetic models
are often used to explain microscopically the entropy production; hence, the previous observation
suggests that the same kinetic models may be useful to explain also the turbulent dissipation function
εk and, consequently, the turbulent kinetic energy k. The simplest kinetic model is the celebrated
Bhatnagar–Gross–Krook (BGK) model [77]. Here, we propose interpreting the k− ε turbulence model
as a set of coupled BGK-like equations. Let us reformulate Equation (23), which is the only one
rigorously derived in k− ε model, as follows:

Dk
Dt
−∇ · [(ν + νt/σk)∇k] =

1
τk

(
keq − k

)
, (33)

where τk = k/ε is the characteristic relaxation time and keq is the local equilibrium for the turbulent
kinetic energy, namely

keq = k
ε̄k
ε

νt

ν
. (34)

Similarly, Equation (24) can be recast as

Dε

Dt
−∇ · [(ν + νt/σε)∇ε] =

1
τε

(
εeq − ε

)
− 1

τε

(
1− Cε1

Cε2

)
εeq, (35)

where τε = τk/Cε2 is the second characteristic relaxation time and εeq is the local equilibrium for the
turbulent dissipation function, namely

εeq = ε̄k
νt

ν
. (36)

The last term in Equation (35) is an empirical forcing. It is worth the effort to elaborate further on
the analogy with the kinetic equations for rarefied gas. In the Boltzmann equation, the external forcing
is described by the term g · ∇v f , where g is the acceleration vector due to the external force field, v
is the single-particle velocity vector and f is the single-particle distribution function [78]. Assuming
f ≈ feq, where feq is the Gaussian distribution function, yields g · ∇v f ≈ −g · (v− u)/e feq, where
e is the specific internal energy. In the last expression, g · (v− u)/e is the characteristic frequency
of the external force field, which remarkably corresponds to 1/τε (1− Cε1/Cε2) in the last term of
Equation (35). Hence, the celebrated k− ε model for turbulent flows is nothing more than a set of two
coupled BGK-like Equations (34) and (36) with an empirical forcing. Realizing this formal analogy
represents the most important result of the present paper, with important consequences discussed in
the following.

Before proceeding further, it is worth highlighting an important simplification. In Equation (28),
some terms proportional to the product between (1/T) (generalized intensive quantity) and ∇T
(generalized force) appear. In the following, Reynolds decomposition will be considered only if the
temperature is the argument of a spatial gradient (owing to the small size of the turbulent eddies).
On the other hand, the average value of temperature will be considered for the intensive quantity
1/T̄, because turbulent fluctuations around the room temperature are negligible (this is not the case
for u′, because ū can be eventually zero). Introducing the usual Reynolds decompositions for T (in
generalized force only), s, h and u, and performing the time averaging 〈·〉 yield

Ds̄
Dt

+ 〈u′ · ∇s′〉+∇ ·
(
−

cp α

T̄
∇T̄
)
=

cp α

T̄2 (∇T̄)2 + 〈
cp α

T̄2 (∇T′)2〉+ ε̄k + ε

T̄
. (37)

Let us consider the advection term, namely 〈u′ · ∇s′〉 = ∇ · 〈s′ u′〉. The argument of the
divergence operator can be expressed by the gradient-diffusion approximation [36], namely

〈s′ u′〉 = −β∇s = −β∇s(T̄, ρ0) = −
cp γ

T̄
∇T̄, (38)
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where β and γ are tunable transport coefficients and, in particular,

γ = β
T̄
cp

∂s
∂T̄

∣∣∣∣
ρ0

. (39)

Substituting Equation (38) into Equation (37) yields

∂s̄
∂t

+∇ ·
[

s̄ ū−
cp (α + γ)

T̄
∇T̄
]
=

cp α

T̄2 (∇T̄)2 + 〈
cp α

T̄2 (∇T′)2〉+ ε̄k + ε

T̄
. (40)

We now have to find out some approximated expressions for the main quantities, namely k and
ε. Let us consider again the BGK-like Equation (33), which is more rigorous than Equation (35) and
is also easier to be analyzed because there is no forcing term. The main fluid flow characteristic time
is defined as τc = lc/uc (see above). Clearly, the characteristic relaxation time of turbulent kinetic
energy τk is much shorter than the fluid flow characteristic time, namely τk/τc � 1, because the
turbulent structures are much smaller. Hence, it is possible to find out an approximated solution of
the set of BGK-like equations defining the k − ε model in the asymptotic limit τk/τc � 1. For our
purposes, it is enough to consider the following formal expansion, without expanding the differential
operators [78], namely

k = k(0) + (τk/τc) k(1) + (τk/τc)
2 k(2) + (τk/τc)

3 k(3) + . . . (41)

Substituting the previous ansatz into Equation (33) and collecting terms with the same order
of magnitude with regards to τk/τc [78], we obtain k(0) = keq at the leading order. This means
that k = keq + O(τk/τc) and k ≈ keq in the asymptotic limit τk/τc � 1 or, equivalently, ε ≈ εeq.
Substituting ε ≈ εeq into Equation (40) yields

∂s̄
∂t
+∇ ·

[
s̄ ū−

cp (α + γ)

T̄
∇T̄
]
=

cp α

T̄2 (∇T̄)2 + 〈
cp α

T̄2 (∇T′)2〉+
(

1 +
νt

ν

) ε̄k
T̄

. (42)

The derivation proposed here is based on the formal analogy of Equation (33) with kinetic
equations, in particular with BGK-like equations. However, this is consistent with the canonical
derivation based on ε ≈ (νt/ν) ε̄k, which means that there is substantially a balance between
turbulent kinetic energy production and dissipation. The condition ε = (νt/ν) ε̄k also implies

ν (∇Su′)2 =
νt

ν
ν (∇Sū)2, (43)

which allows computing (∇Su′)2 by means of (∇Sū)2, where the latter term is usually the only one
available in practical calculations. The same idea can be applied to simplify the entropy production
due to temperature gradient as well. It is easy to verify that the balance between turbulence
production and dissipation implies

α (∇T′)2 =
αt

α
α (∇T̄)2, (44)

where αt = νt/Prt and Prt is the turbulent Prandtl number. Substituting Equation (44) into
Equation (42) yields

∂s̄
∂t

+∇ ·
[

s̄ ū−
cp (α + γ)

T̄
∇T̄
]
=

cp (α + αt)

T̄2 (∇T̄)2 +
2 (ν + νt)

T̄
(∇Sū)2 ≥ 0, (45)

which is valid for both laminar and turbulent flows, and it represents the generalization of the second
law of thermodynamics for turbulent flows.
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4. Discussion

Equation (45) confirms the applicability of the Thermodynamics of Irreversible Processes to
(incompressible) laminar and turbulent flows. Some comments are reported in the following.

1. In this paper, we present an alternative derivation of Equation (45) based on a kinetic approach.
This approach provides a novel perspective on the k− ε turbulence model, which remains one of
the most successful models for many engineering applications, even though it is still affected by
empirical assumptions for the turbulent dissipation function. In particular, our approach clarifies
that this model is nothing more than a set of coupled BGK-like equations with a proper forcing,
see the last term in Equation (35). Note that the formal expansion proposed for k in Equation (41)
may not be suitable for ε, because the forcing term would change the local equilibrium, which
must be unique in kinetic theory. Hence, some further investigations are required to find out
the most suitable expansion for analyzing the high-order asymptotics. This is not surprising,
because different asymptotic approaches (Chapman–Enskog, Hilbert, Grad, etc.) have been long
debated in kinetic theory of rarefied gas [78].

2. Equation (45) proves that four terms are the main sources of entropy production rates in
turbulent flows: (1) direct dissipation; (2) indirect (turbulent) dissipation; (3) heat conduction
driven by average temperature gradients and (4) heat conduction driven by fluctuating
temperature gradients [68–70]. These production rates (and their sum) are positively defined,
consistently with the second law of thermodynamics.

3. In Equation (45), the entropy production can be expressed as

σ′ = ∑
k

η′k X2
k , (46)

being η′k the phenomenological coefficients of irreversible phenomena (η′1 = (α + αt) cp/T̄2 and
η′2 = (ν + νt) 2/T̄) and Xk the generalized thermodynamic forces (X1 = ∇T̄ and X2 = ∇Sū). We
selected k subscript as equal to the dimensionality of the corresponding thermodynamic force
(vector k = 1, tensor k = 2). Consequently, X2

k = Xk ∗ Xk, where the generalized product ∗
means scalar product · for k = 1 and saturation product : for k = 2.

5. Conclusions

In this paper, we present an alternative derivation of the entropy production in turbulent
flows, based on a formal analogy with the kinetic theory of rarefied gas. This analogy allows for
proving that the celebrated k − ε model for turbulent flows is nothing more than a set of coupled
BGK-like equations with a proper forcing. This opens a novel perspective on this model, which may
help in sorting out the heuristic assumptions essential for its derivation: for example, the balance
between turbulent kinetic energy production and dissipation. Moreover, this has also important
implications for applications, because the second law of thermodynamics for turbulent flows given by
Equation (45) is very popular in the design and optimization of devices dealing with hypersonic flows
(e.g., by the entropy generation minimization approach [73,74]). The new perspectives introduced by
this work may find application in a broad variety of fields, spanning from aerospace (e.g., aeroelastic
study of flexible flapping wings [79]) to materials (e.g., nature-inspired structures for fluid drag
reduction [80]) research, from biomedical (e.g., turbulent blood flow [81]) to heat transfer (e.g.,
turbulent heat transfer in heat exchangers [82]) applications, from automotive (e.g., air conditioning
components [83]) to atmosphere [84] modeling.
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