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Abstract: In this paper, we present an alternative derivation of the entropy production in turbulent1

flows, based on a formal analogy with the kinetic theory of rarefied gas. This analogy allows2

proving that the celebrated k − ε model for turbulent flows is nothing more than a set of coupled3

BGK-like equations with a proper forcing. This opens a novel perspective on this model, which4

may help in sorting out the heuristic assumptions essential for its derivation, such as the balance5

between turbulent kinetic energy production and dissipation. The entropy production is an essential6

condition for the design and optimization of devices where turbulent flows are involved.7

Keywords: Thermodynamics of Irreversible Processes (TIP); turbulence modeling; Reynolds8

averaging; entropy production; second law9

1. Introduction and motivation10

Even though it is omnipresent around us, turbulence remains one of the last unsolved problems11

in classical physics. We can find turbulent flows in astrophysical plasmas, atmospheric winds, ocean12

currents, planetary boundary layers, rivers, fluid dynamics around all kind of vehicles, internal13

combustion engines, heat exchangers and, even, blood flows. Turbulence indicates certain complex14

and unpredictable motions of a fluid with an entire hierarchy of structures called eddies. An overview15

of this topic is too broad to be reported here, and it can be found in Ref. [1]. Interesting historical16

notes can be found in Ref. [2]. In spite of the tremendous work done in the last century and the17

new possibilities offered by direct numerical simulation of turbulent flows, the theoretical progress18

in understanding turbulence are proceeding slowly. One of the reasons may be that turbulence is19

deeply rooted in fluid mechanics, while fluid dynamic equations are not derived from fundamental20

considerations and the mathematical theory of fluids is not yet fully developed [3]. Still nowadays,21

the most important contribution to the theory of turbulence is due to the Russian mathematician22

Andrei Kolmogorov. In 1941, a conceptual framework for turbulence (K41 theory) was defined by23

Kolmogorov [4–6]. The K41 which was originally derived for homogeneous and isotropic turbulence24

(i.e. statistically invariant under translations and rotations). After more than 70 years, it has been25

found out that the K41 theory may also explain turbulent flows over rough walls, by rationalizing26

the empirical scaling of Blasius and Strickler included in the Nikuradse’s experiments [7]. From a27

technological point of view, this finding has tremendous implications for heat transfer enhancement28

techniques [8–10].29

Fundamental experiments in turbulence are extremely difficult, because they are expensive and30

require long runs for collecting enough statistical data on the fluctuating quantities of interest. This is31

the reason why direct numerical simulations of turbulence are considered valuable alternatives. Von32

Neumann predicted in 1949 a revolution in the study of turbulence thanks to the advent of digital33

computers, because of the possibility to simulate the fluid dynamic equations in 3D turbulent regimes34
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[1]. However, the first three-dimensional simulations of turbulence were carried out only many35

years after, when the advent of supercomputers and the development of (pseudo)-spectral numerical36

techniques based on fast Fourier transform algorithms unlocked adequate simulation capabilities:37

Steven Orszag and G.S. Patterson could achieve such a goal just in 1972 [11]. Clearly, numerical38

simulations offer the advantage of accessing the entire velocity field and other quantities of interest39

(e.g. vorticity, local energy dissipation, etc.) [1]. The mesh size of these simulations (nowadays, up40

to tens of billions of grid-points) determines the spatial resolution, which depends on the maximum41

Reynolds number of the turbulent flow: the higher is the Reynolds number, the bigger is the mesh42

size. Due to recent progresses in high performance computing, the feasible Reynolds numbers are43

approaching those recovered in experimental facilities. However, many times history has shown44

that the main speedup in numerical computations comes from more efficient algorithms rather than45

better hardware [12,13]. More than 20 years ago, the lattice Boltzmann method [14–20] was proposed46

as a powerful numerical method, which is prone to take advantage of the modern resources of47

high performance computing, especially for multi-physics and multi-scale simulations. The range48

of applications of the lattice Boltzmann method is very broad, including thermal radiation [21],49

thermal conduction [22], combustion [23–26], porous media [27,28], multi-component flows [29,30]50

and turbulence [31–33], to mention a few. In particular, it was argued that turbulence can be more51

efficiently modeled by extended kinetic (Boltzmann) equation rather than continuum Navier-Stokes52

equations [31,32], by means of a proper discretization (lattice). Recently, a further improvement in53

computational performances was achieved by link-wise artificial compressibility method [34], which54

can be considered as a subsequent refinement of the lattice Boltzmann algorithm. Moreover, stability55

of kinetic schemes can be also improved using the pioneering idea of limiters [35].56

In most of the engineering applications where turbulent flows are involved, the direct numerical57

simulation is still unfeasible. Large eddy simulations and Reynolds averaged Navier-Stokes58

simulations are commonly used, instead [36]. Large eddy simulations using the lattice Boltzmann59

method have been carried out [37–40], as well as those using Reynolds averaged Navier-Stokes60

(RANS) equations [41,42]. However, in the context of lattice Boltzmann method, engineering61

turbulence models are still lacking thus more research efforts are required [19]. Among the closure62

models for the Reynolds averaged equations, the k − ε model is one of the most popular [36]. The63

model takes its name from the turbulent kinetic energy k and the turbulent dissipation rate ε. The64

role of k − ε model in the theory of turbulence can be found in Ref. [43]. The first two-equation65

model for predicting turbulent flows was proposed by Kolmogorov in 1942 [44], using fluctuation66

energy and frequency as main variables. In 1968, Harlow and Nakayama proposed the k− ε model67

for turbulence [45], which was later refined [46]. However, the true development of the model is68

credited to Launder, Hanjalic and Jones [47,48], whereas the collaboration with Spalding brought out69

the superiority of this model to a broad scientific audience [49–51].70

In spite of its success from the practical point of view, the theoretical foundations of the k − ε71

model are still unclear. In fact, the model is made by two phenomenological equations and, in72

particular, the equation for the dissipation rate of turbulent kinetic energy is guessed by analogy with73

the kinetic energy one [36]. The idea to apply statistical mechanics to the study of fully developed74

turbulent flows is quite old, and it dates back to the pioneering work by Reynolds in 1883 [3]. Indeed,75

the statistical approach is one of the main approaches to turbulence (along with the structural and76

deterministic ones). In particular, non-extensive statistical mechanics [52] and the recently proposed77

fluctuation theorems [53] appear promising in understanding turbulence. However, a fundamental78

problem still remains in investigating the relation between the definition of entropy in case of79

non-equilibrium flows and the most popular turbulent models (e.g. k − ε model), which is exactly80

what we investigate here.81

Recent trends in thermodynamics may help in achieving this goal. Starting from the theoretical82

framework introduced by Lars Onsager, Ilya Prigogine paved the way to the Thermodynamics83

of Irreversible Processes (TIP) by extending the fundamental Gibbs relation to non-equilibrium84
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states [54,55]. Such extension assumes that local equilibrium is achieved throughout the system,85

namely all subparts of the system are close to equilibrium condition and can be safely described by86

thermodynamic relationships and variables. Extended Irreversible Thermodynamics (EIT) [56,57]87

is another active field of investigation, where the local equilibrium assumption can be eventually88

overcome. The basic idea underlying EIT is that thermodynamic quantities are related to dissipative89

fluxes, which are considered as independent variables. Hence, the generalized Gibbs relation for90

non-equilibrium states can be obtained from the differential form of the generalized entropy, and91

it satisfies the following requirements: 1) in the limit of quasi-static processes, it can be reduced to92

the equilibrium Gibbs relation; 2) it is Galilean invariant; 3) results are supported by experimental93

evidences [58]. This procedure is not even limited to bulk flows, as it can be successfully adopted for94

studying non-equilibrium interfaces [59–61].95

Surprisingly enough, only recently Extended Irreversible Thermodynamics has paid attention to96

turbulent flows [62–65]. There are two main approaches in literature. In the first approach, Jansen97

[66] and Hauke [67] have extended entropy-based stability analysis to turbulent flows. The key idea98

consists in applying the Reynolds time averaging to the entropy transport equation obtained by99

the Thermodynamics of Irreversible Processes, i.e. by assuming that local equilibrium assumption100

holds. This approach has been somehow re-proposed recently and even applied to commercial101

codes [68–71]. However, the entropy transport equation is highly non-linear, and several ways to102

perform the Reynolds time averaging could be adopted. For example, multiplying this equation by103

the temperature before applying the time-averaging leads to simplified calculations, but a closure104

problem appears (for fluctuating temperature and entropy production correlations) and different105

models have been proposed [72]. In fact, the mean entropy production cannot be easily expressed106

by other mean flow variables alone [72]. We believe that these difficulties arise from understanding107

the local equilibrium assumption. Hence, we aim to clarify the derivation of entropy production in108

turbulent flows. The entropy production is helpful in the design and optimization of devices dealing109

with turbulent flows (e.g. by the entropy generation minimization approach [75,76]).110

In this work, materials and methods representing the starting point of our analysis are briefly111

summarized in Section 2; then, the main results for turbulent flows are reported in Section 3, where112

the k− ε model is recast by a kinetic approach. Finally, Section 4 presents some considerations derived113

from the reported results; whereas conclusions are drawn in Section 5.114

2. Materials and methods115

In the asymptotic limit of low Mach number flows, the incompressible limit of the116

Navier-Stokes-Fourier system of equations for Newtonian fluids with constant transport coefficients117

[73,74] can be written as118

∇ · u = 0, (1)
∂u
∂t

+ u · ∇u =
Du
Dt

= − 1
ρ0
∇p + ν∇2u, (2)

∂h
∂t

+ u · ∇h =
Dh
Dt

=
λ

ρ0
∇2T + 2ν(∇Su)2 +

1
ρ0

Dp
Dt

, (3)

where ρ0 is the average fluid density (assumed constant and different from the actual fluid density ρ),119

u is the fluid velocity, p is the pressure, ν is the kinematic viscosity, h is the enthalpy, λ is the thermal120

conductivity, and ∇Su = 1/2
(
∇u +∇Tu

)
is the strain rate tensor. Alternative formulations of (1)121

may be expressed in terms of the internal energy or total energy, instead of enthalpy.122

It is well known that, in regimes where momentum convection prevails on momentum diffusion
(u · ∇u � ν∇2u) or, equivalently, Reynolds number is larger than a flow-dependent threshold, the
flow field is characterized by rapid variations of pressure and velocity in space and time, i.e. by
chaotic coherent structures called turbulent eddies. This discussion can be more rigorous by adopting
characteristic quantities, which can be defined in different ways according to what they refer to (fields
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or operator). On the one hand, the characteristic quantity uc gives the magnitude of the velocity field,
being uc = max(u) in the considered domain. On the other hand, operators may involve more
difficult definitions. For instance, the characteristic length lc is defined by

lc =
O(ϕ)

O(∇ϕ)
= max

i

(
O(ϕ)

O(∂ϕ/∂xi)

)
, (4)

where ϕ is a generic field property of the fluid flow. Hence, u · ∇u = O(u2
c /lc) and ν∇2u =123

O(νuc/l2
c ). This clarifies the reason why the inequality u · ∇u � ν∇2u implies large Reynolds124

numbers: Re = uclc/ν� 1.125

As originally suggested by Reynolds in 1895, let us consider the time-averaged equations of126

motion for fluid flows, i.e. the so-called Reynolds-averaged Navier Stokes equations (RANS) [36].127

First, let us introduce the filter operator 〈·〉 for the generic quantity ϕ128

〈ϕ〉 = lim
τ→∞

1
τ

∫ t

t−τ
ϕ(t′, x) dt′, (5)

where 〈ϕ〉 is assumed independent on the initial condition t (in the context of chaotic dynamical129

system, this means that the system can only have one strange attractor).130

From a practical point of view, the limit in (5) is truncated to some finite time, which is assumed
much larger than the characteristic time of turbulent fluctuations. The previous definition allows one
to introduce the average velocity field ū = 〈u〉 and the corresponding velocity fluctuation u′ = u− ū
or, equivalently, to decompose the actual velocity field, namely u = ū + u′. Introducing the previous
decomposition in the divergence-free condition given by Eq. (1) and taking the time average 〈·〉
shown in Eq. (5) yield

∇ · ū = 0 (6)

and consequently∇·u′ = 0, meaning that both the average and fluctuating fields are divergence-free.
Proceeding in a similar way for Eq. (2) yields

∂ū
∂t

+ ū · ∇ū + 〈u′ · ∇u′〉 = − 1
ρ0
∇ p̄ + ν∇2ū, (7)

where p̄ = 〈p〉. The term 〈u′ · ∇u′〉 represents the novel physical content of the RANS momentum
equation. Of course, in order to derive a set of closed RANS equations, the latter term must be
modeled by quantities depending on the averaged quantities (or their gradients) only. First of all, this
term must be made symmetric. Taking into account that ∇ · u′ = 0, the following condition holds

〈u′ · ∇u′〉 = ∇ · 〈u′ ⊗ u′〉. (8)

Next, let us consider the Boussinesq’s eddy viscosity assumption, namely

〈u′ ⊗ u′〉 = −νt (∇ū +∇ūT) = −2 νt∇Sū, (9)

where νt is the eddy viscosity (additional kinetic viscosity due to turbulent eddies beyond molecular
one) and ∇Sū is the strain rate tensor defined as ∇Sū = (∇ū +∇ūT)/2. It is easy to prove that
∇ū = ∇Sū +∇W ū and, more importantly, ∇Sū : ∇W ū = 0, where ∇W ū = (∇ū−∇ūT)/2 is the
vorticity tensor. Substituting the Boussinesq’s eddy viscosity assumption into Eq. (7), and taking into
account that 2∇ · ∇Sū = ∇2ū (because of Eq. (6)), yield

∂ū
∂t

+ ū · ∇ū = − 1
ρ0
∇ p̄ + (ν + νt)∇2ū. (10)
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It is clear that working with RANS is a successful approach, as far as an accurate model is defined
to compute the corrective factor (ν + νt) in Eq. (10). Clearly, the key idea is to investigate the part of
kinetic energy due to turbulent fluctuations. Let us substitute ∇2u with 2∇ · ∇Su in (2) and let us
multiply the result by u, namely

∂ek
∂t

+ u · ∇ek =
Dek
Dt

= − 1
ρ0
∇p · u + 2ν (∇ · ∇Su) · u, (11)

where ek = u2/2 is the total kinetic energy. After some simple algebra, the previous equation can be
rewritten as

∂ek
∂t

+∇ ·
[
(ek + pk)u− 2ν u · ∇Su

]
= −εk ≤ 0, (12)

where pk = p/ρ0 is the kinetic pressure and εk = 2ν(∇Su)2 is the (positively defined) dissipation131

function of the total kinetic energy (the square power (∇Su)2 simply means∇Su : ∇Su). Similarly to132

what has been done for the velocity field, let us now decompose both the total kinetic energy ek and133

its dissipation function εk, namely ek = 〈ek〉 + e′k and εk = 〈εk〉 + ε′k, respectively. In this case, the134

main difference is that the time average of the previous quantities, e.g. 〈ek〉, does not coincide with135

the same definition applied to averaged quantities, e.g. ēk. In particular, the following relations hold136

〈ek〉 =
1
2
〈(ū + u′) · (ū + u′)〉 = ēk + k, (13)

〈εk〉 = 2ν〈∇S(ū + u′) : ∇S(ū + u′)〉 = ε̄k + ε, (14)

where ēk = ū2/2, k = 〈(u′)2〉/2 is the turbulent kinetic energy, ε̄k = 2ν(∇Sū)2 and ε = 2ν〈(∇Su′)2〉
is the turbulent dissipation function. For example, the previous definitions imply that e′k = ū · u′ +
u′ · u′/2− k and consequently 〈e′k〉 = 0, even though 〈ek〉 6= ēk. The turbulent kinetic energy k is
the excess of kinetic energy due to turbulent fluctuations beyond the one caused by the average flow.
Similarly, the turbulent dissipation ε is the excess of dissipation due to turbulent fluctuations. These
are the two main quantities defining this approach to turbulence modeling, and this is the reason why
this method is called k− ε model [36]. The second key idea is that the eddy viscosity νt depends on
k and ε only. The physical dimensions of ε are those of kinetic energy divided by time, thus it can
be interpreted as the dissipation rate of turbulent kinetic energy. Based on dimensional analysis, the
following phenomenological relation is assumed for the eddy viscosity

νt = Ct
k2

ε
, (15)

where Ct is a tunable constant of the model (see next).137

The next step consists in deriving a closed set of equations for k and ε. Let us substitute the
previous decompositions in Eq. (12) and then perform the time averaging. Some difficulties may
arise from cubic (third-order) terms with respect to velocity, i.e. 〈eku〉, but the following condition
allows one to sort them out:

〈eku〉 = 〈ek〉ū + 〈u′ · u′u′〉/2 + ū · 〈u′ ⊗ u′〉, (16)

where the last term can be expressed by the Boussinesq’s eddy viscosity assumption (9). Exploiting138

the condition (16), it follows:139

∂〈ek〉
∂t

+∇ ·
[
(〈ek〉+ p̄k) ū + 〈(u′ · u′/2 + p′k)u′〉 . . .

· · · − 2(ν + νt) ū · ∇Sū− 2ν 〈u′ · ∇Su′〉
]
= −ε̄k − ε ≤ 0. (17)
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On the other hand, multiplying Eq. (7) by the average velocity ū yields

∂ēk
∂t

+∇ ·
[
(ēk + p̄k) ū− 2(ν + νt) ū · ∇Sū

]
= −ε̄k −

νt

ν
ε̄k ≤ 0. (18)

Subtracting Eq. (18) from Eq. (17) and taking into account that k = 〈ek〉 − ēk (because of Eq. (13))
yield

∂k
∂t

+∇ ·
[
k ū + 〈(u′ · u′/2 + p′k)u′〉 − 2ν 〈u′ · ∇Su′〉

]
=

νt

ν
ε̄k − ε. (19)

Taking into account the following equivalence

− 2ν 〈u′ · ∇Su′〉 = −ν∇k + 2ννt∇Sū, (20)

Eq. (19) can be rewritten as

∂k
∂t

+∇ ·
[
k ū− ν∇k + 〈(u′ · u′/2 + p′k)u′〉+ 2ννt∇Sū

]
=

νt

ν
ε̄k − ε, (21)

which is the standard form for the turbulent kinetic energy equation (TKE).140

Some simplifications are usually applied to the flux of turbulent kinetic energy. First of all, the
last term of such a flux is usually negligible at high Reynolds number flows, because it is proportional
to ννt (even though νt can be up to roughly ten times ν, still this term is proportional to ν2). Secondly,
the (leading) term 〈(u′ · u′/2)u′〉 clearly shows the turbulent transport of the quantity u′ · u′/2,
which is the argument of the turbulent kinetic energy k. Hence, the key idea is to generalize the
gradient-diffusion approximation [36], namely

〈(u′ · u′/2 + p′k)u′〉+ 2ννt∇Sū ≈ 〈(u′ · u′/2 + p′k)u′〉 ≈ − νt

σk
∇k, (22)

where σk is a tunable constant of the model (see next). Consequently, the equation of the turbulent
kinetic energy in the k− ε model becomes

∂k
∂t

+∇ · [k ū− (ν + νt/σk)∇k] =
νt

ν
ε̄k − ε. (23)

In the latter equation, the sign of the right hand side is no more uniquely prescribed. Here, the
quantity (νt/ν)ε̄k acts as turbulent energy production, moving kinetic energy from the mean flow
to the turbulent fluctuations; while ε acts as turbulent energy dissipation, moving energy in the
opposite direction. The same theoretical framework is used to derive the equation for turbulent
dissipation. However, the equation of turbulent dissipation in the k− ε model is completely heuristic,
being substantially derived by analogy with the previous equation [36]. The source/sink of turbulent
dissipation is derived by dividing the right hand side of Eq. (23) by a proper characteristic time
(∼ k/ε) and introducing ad-hoc some tunable constants, namely

∂ε

∂t
+∇ · [ε ū− (ν + νt/σε)∇ε] =

ε

k

(
Cε1

νt

ν
ε̄k − Cε2ε

)
, (24)

where σε, Cε1 and Cε2 are tunable constants of this model. The standard k− ε model is defined by Eqs.141

(6, 10) for the average fluid flow, by Eq. (15) for the eddy diffusivity, by Eqs. (23, 24) for the turbulent142

kinetic energy and turbulent dissipation and, finally, by the following set of constants, Ct = 0.09,143

Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3 [36].144

3. Results145

Let us start considering the entropy production of (incompressible) laminar flows.
Non-equilibrium thermodynamics of laminar flows can be obtained by an entropy production
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equation, which can be derived by following the typical guidelines of Thermodynamics of Irreversible
Processes (TIP) [54,55]. Let us assume that all subparts of the system are close to equilibrium
conditions, so that they can be described by classical thermodynamics. In equilibrium conditions, the
fundamental Gibbs relation allows to relate entropy with other thermodynamic potentials, namely
Tds = dh − dp/ρ0, being T the temperature and s the entropy. Here, we assume that this relation
holds also in non-equilibrium conditions, where the Gibbs relation becomes the entropy definition.
However, this definition must be Galilean invariant and thus Lagrangian time derivatives must be
considered, namely

T
Ds
Dt

=
Dh
Dt
− 1

ρ0

Dp
Dt

. (25)

Substituting Eq. (3) into Eq. (25) yields

T
Ds
Dt

=
λ

ρ0
∇2T + 2ν(∇Su)2. (26)

The previous equation can be rewritten as

Ds
Dt

=
cp α

T
∇2T +

2 ν

T
(∇Su)2, (27)

where α = λ/(ρ0 cp) is the thermal diffusivity. By further elaborating on the first term at the right
hand side of the previous expression yields

Ds
Dt

+∇ ·
(
−

cp α

T
∇T
)
=

cp α

T2 (∇T)2 +
2 ν

T
(∇Su)2 ≥ 0, (28)

or equivalently
∂s
∂t

+∇ ·
(

s u−
cp α

T
∇T
)
= σ′α + σ′ν ≥ 0, (29)

where
σ′α = α

( cp

T2

)
(∇T)2 ≥ 0, (30)

σ′ν = ν

(
2
T

)
(∇Su)2 ≥ 0. (31)

Note that the prime notation is used to indicate the entropy production per unit of mass, i.e. σ′,146

instead of the more common production per unit of volume, i.e. σ = ρ0σ′. In the previous equations,147

each specific transport phenomenon is a source of entropy production, namely: σ′α and σ′ν represent148

the entropy produced by heat transfer (ruled by temperature gradient) and by fluid flow (ruled149

by strain rate), respectively. Clearly, each entropy source is in agreement with the second law of150

thermodynamics, namely σ′α ≥ 0 and σ′ν ≥ 0. Same considerations can be done for the global entropy151

production, namely σ′α + σ′ν ≥ 0. This confirms that the hypothesis reported in Eq. (25) is valid for152

non-equilibrium states, at least as far as laminar flows are concerned.153

In case of turbulent flows, the situation is more complex. First, the entropy production due to
velocity gradients σ′ν (Eq. (31)) bears a strong resemblance with the dissipation function εk appearing
in the kinetic energy equation (12), namely

σ′ν =
εk
T

. (32)

The above observation paves the way to a meaningful formal analogy. In fact, kinetic models are often
used to explain microscopically the entropy production; hence, the previous observation suggests
that the same kinetic models may be useful to explain also the turbulent dissipation function εk
and, consequently, the turbulent kinetic energy k. The simplest kinetic model is the celebrated
Bhatnagar-Gross-Krook (BGK) model [77]. Here, we propose to interpret the k− ε turbulence model
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as a set of coupled BGK-like equations. Let us reformulate Eq. (23), which is the only one rigorously
derived in k− ε model, as follows:

Dk
Dt
−∇ · [(ν + νt/σk)∇k] =

1
τk

(
keq − k

)
, (33)

where τk = k/ε is the characteristic relaxation time and keq is the local equilibrium for the turbulent
kinetic energy, namely

keq = k
ε̄k
ε

νt

ν
. (34)

Similarly, Eq. (24) can be recast as

Dε

Dt
−∇ · [(ν + νt/σε)∇ε] =

1
τε

(
εeq − ε

)
− 1

τε

(
1− Cε1

Cε2

)
εeq, (35)

where τε = τk/Cε2 is the second characteristic relaxation time and εeq is the local equilibrium for the
turbulent dissipation function, namely

εeq = ε̄k
νt

ν
. (36)

The last term in Eq. (35) is an empirical forcing. It is worth the effort to elaborate further on the154

analogy with the kinetic equations for rarefied gas. In the Boltzmann equation, the external forcing155

is described by the term g · ∇v f , where g is the acceleration vector due to the external force field, v156

is the single-particle velocity vector and f is the single-particle distribution function [78]. Assuming157

f ≈ feq, where feq is the Gaussian distribution function, yields g · ∇v f ≈ −g · (v− u)/e feq, where158

e is the specific internal energy. In the last expression, g · (v− u)/e is the characteristic frequency of159

the external force field, which remarkably corresponds to 1/τε (1− Cε1/Cε2) in the last term of Eq.160

(35). Hence, the celebrated k− ε model for turbulent flows is nothing more that a set of two coupled161

BGK-like equations (34, 36) with an empirical forcing. Realizing this formal analogy represents the162

most important result of the present paper, with important consequences discussed in the following.163

Before proceeding further, it is worth to highlight an important simplification. In Eq. (28),
some terms proportional to the product between (1/T) (generalized intensive quantity) and ∇T
(generalized force) appear. In the following, Reynolds decomposition will be considered only if the
temperature is the argument of a spatial gradient (owing to the small size of the turbulent eddies).
On the other hand, the average value of temperature will be considered for the intensive quantity
1/T̄, because turbulent fluctuations around the room temperature are negligible (this is not the case
for u′, because ū can be eventually zero). Introducing the usual Reynolds decompositions for T (in
generalized force only), s, h and u, and performing the time averaging 〈·〉 yield

Ds̄
Dt

+ 〈u′ · ∇s′〉+∇ ·
(
−

cp α

T̄
∇T̄
)
=

cp α

T̄2 (∇T̄)2 + 〈
cp α

T̄2 (∇T′)2〉+ ε̄k + ε

T̄
. (37)

Let us consider the advection term, namely 〈u′ · ∇s′〉 = ∇ · 〈s′ u′〉. The argument of the divergence
operator can be expressed by the gradient-diffusion approximation [36], namely

〈s′ u′〉 = −β∇s = −β∇s(T̄, ρ0) = −
cp γ

T̄
∇T̄, (38)

where β and γ are tunable transport coefficients and, in particular,

γ = β
T̄
cp

∂s
∂T̄

∣∣∣∣
ρ0

. (39)
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Substituting Eq. (38) into Eq. (37) yields

∂s̄
∂t

+∇ ·
[

s̄ ū−
cp (α + γ)

T̄
∇T̄
]
=

cp α

T̄2 (∇T̄)2 + 〈
cp α

T̄2 (∇T′)2〉+ ε̄k + ε

T̄
. (40)

We now have to find out some approximated expressions for the main quantities, namely k and
ε. Let us consider again the BGK-like equation (33), which is more rigorous than Eq. (35) and is
also easier to be analyzed because there is no forcing term. The main fluid flow characteristic time
is defined as τc = lc/uc (see above). Clearly, the characteristic relaxation time of turbulent kinetic
energy τk is much shorter than the fluid flow characteristic time, namely τk/τc � 1, because the
turbulent structures are much smaller. Hence, it is possible to find out an approximated solution of
the set of BGK-like equations defining the k − ε model in the asymptotic limit τk/τc � 1. For our
purposes, it is enough to consider the following formal expansion, without expanding the differential
operators [78], namely

k = k(0) + (τk/τc) k(1) + (τk/τc)
2 k(2) + (τk/τc)

3 k(3) + . . . (41)

Substituting the previous ansatz into Eq. (33) and collecting terms with the same order of magnitude
with regards to τk/τc [78], we obtain k(0) = keq at the leading order. This means that k = keq +

O(τk/τc) and k ≈ keq in the asymptotic limit τk/τc � 1 or, equivalently, ε ≈ εeq. Substituting ε ≈ εeq

into (40) yields

∂s̄
∂t
+∇ ·

[
s̄ ū−

cp (α + γ)

T̄
∇T̄
]
=

cp α

T̄2 (∇T̄)2 + 〈
cp α

T̄2 (∇T′)2〉+
(

1 +
νt

ν

) ε̄k
T̄

. (42)

The derivation proposed here is based on the formal analogy of Eq. (33) with kinetic equations, in
particular with BGK-like equations. However, this is consistent with the canonical derivation based
on ε ≈ (νt/ν) ε̄k, which means that there is substantially a balance between turbulent kinetic energy
production and dissipation. The condition ε = (νt/ν) ε̄k also implies

ν (∇Su′)2 =
νt

ν
ν (∇Sū)2, (43)

which allows computing (∇Su′)2 by means of (∇Sū)2, where the latter term is usually the only one
available in practical calculations. The same idea can be applied to simplify the entropy production
due to temperature gradient as well. It is easy to verify that the balance between turbulence
production and dissipation implies

α (∇T′)2 =
αt

α
α (∇T̄)2, (44)

where αt = νt/Prt and Prt is the turbulent Prandtl number. Substituting Eq. (44) into Eq. (42) yields

∂s̄
∂t

+∇ ·
[

s̄ ū−
cp (α + γ)

T̄
∇T̄
]
=

cp (α + αt)

T̄2 (∇T̄)2 +
2 (ν + νt)

T̄
(∇Sū)2 ≥ 0, (45)

which is valid for both laminar and turbulent flows, and it represents the generalization of the second164

law of thermodynamics for turbulent flows.165

4. Discussion166

Equation (45) confirms the applicability of the Thermodynamics of Irreversible Processes to167

(incompressible) laminar and turbulent flows. Some comments are reported in the following.168

1. In this paper, we present an alternative derivation of Eq. (45) based on a kinetic approach. This169

approach provides a novel perspective on the k − ε turbulence model, which remains one of170
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the most successful models for many engineering applications, even though it is still affected171

by empirical assumptions for the turbulent dissipation function. In particular, our approach172

clarifies that this model is nothing more than a set of coupled BGK-like equations with a proper173

forcing, see the last term in Eq. (35). Note that the formal expansion proposed for k in Eq. (41)174

may not be suitable for ε, because the forcing term would change the local equilibrium, which175

must be unique in kinetic theory. Hence, some further investigations are required to find out176

the most suitable expansion for analyzing the high-order asymptotics. This is not surprising,177

because different asymptotic approaches (Chapman-Enskog, Hilbert, Grad, etc.) have been long178

debated in kinetic theory of rarefied gas [78].179

2. Equation (45) proves that four terms are the main sources of entropy production rates in180

turbulent flows: 1) direct dissipation, 2) indirect (turbulent) dissipation, 3) heat conduction181

driven by average temperature gradients and 4) heat conduction driven by fluctuating182

temperature gradients [68–70]. These production rates (and their sum) are positively defined,183

consistently with the second law of thermodynamics.184

3. In Eq. (45), the entropy production can be expressed as

σ′ = ∑
k

η′k X2
k , (46)

being η′k the phenomenological coefficients of irreversible phenomena (η′1 = (α + αt) cp/T̄2 and185

η′2 = (ν + νt) 2/T̄) and Xk the generalized thermodynamic forces (X1 = ∇T̄ and X2 = ∇Sū).186

We selected k subscript as equal to the dimensionality of the corresponding thermodynamic187

force (vector k = 1, tensor k = 2). Consequently, X2
k = Xk ∗ Xk, where the generalized product188

∗means scalar product · for k = 1 and saturation product : for k = 2.189

5. Conclusions190

In this paper, we present an alternative derivation of the entropy production in turbulent flows,191

based on a formal analogy with the kinetic theory of rarefied gas. This analogy allows proving192

that the celebrated k − ε model for turbulent flows is nothing more than a set of coupled BGK-like193

equations with a proper forcing. This opens a novel perspective on this model, which may help in194

sorting out the heuristic assumptions essential for its derivation: for example, the balance between195

turbulent kinetic energy production and dissipation. Moreover, this has also important implications196

for applications, because the second law of thermodynamics for turbulent flows given by Eq. (45) is197

very popular in the design and optimization of devices dealing with hypersonic flows (e.g. by the198

entropy generation minimization approach [75,76]). The new perspectives introduced by this work199

may find application in a broad variety of fields, spanning from aerospace (e.g. aeroelastic study of200

flexible flapping wings [79]) to materials (e.g. nature-inspired structures for fluid drag reduction [80])201

research, from biomedical (e.g. turbulent blood flow [81]) to heat transfer (e.g. turbulent heat transfer202

in heat exchangers [82]) applications, from automotive (e.g. air conditioning components [83]) to203

atmosphere [84] modeling.204
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