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Abstract

This thesis deals with the formulation of pure and matter coupled supergravity theories
in three and four dimensions. Different supergravity Lagrangians are constructed in geo-
metrical terms, by using the useful properties of the abelian semigroup expansion method.
Furthermore, a supergravity model with partial breaking of N' = 2 to A/ = 1 supersymmetry
which, in the low energy limit, gives rise to a rigid supersymmetric theory, is presented.

In Chapter 1, we briefly review General Relativity in both, Einstein and Cartan formal-
ism. It is also revised a natural extension of Einstein theory to D-dimensions, namely the
Lanczos-Lovelock theory. Then, we study the Maxwell type algebras, and we show that
standard General Relativity can be obtained in a certain limit of Chern-Simons and Born-
Infeld theories, invariant under these algebras. Chapter 2 deals with the supersymmetric
extension of gravity. We mainly study the MacDowell-Mansouri supergravity and the AdS
Chern-Simons supergravity.

In Chapters 3, 4, 5, 6 and 7, we present our main results, which are based on five
articles written during the doctoral research. First, we present supersymmetric extensions
of the Maxwell type algebras. We show that considering different choices of semigroups,
inequivalent Maxwell superalgebras are obtained, when using the S-expansion procedure.
Then, we construct the N' = 1 supergravity action a la MacDowell-Mansouri from the
minimal Maxwell superalgebra. Interestingly, the action describes pure supergravity. Based
on the AdS-Lorentz superalgebra, we also build the minimal D = 4 supergravity action
which includes a generalized supersymmetric cosmological constant term. The construction
of the Chern-Simons supergravity action from a generalized minimal Maxwell superalgebra
is also presented.

Eventually, in Chapter 7 we present the multi-vector generalization of a rigid, partially
broken N = 2 supersymmetric theory as a rigid limit of a gauged N' = 2 supergravity with

electric and magnetic charges.
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Introduction

”Learn from yesterday, live for today, hope for tomorrow.
The important thing is not to stop questioning”
Albert Einstein

This year marks an outstanding milestone in the history of physics with the one-hundredth
anniversary of Einstein’s Theory of General Relativity. The theory of General Relativity
explains all gravitational phenomena we know, and it has been survived to various tests sup-
porting its validity. However, this theory requires extensions since it has certain shortcom-
ings; for instance, the failure to unify gravity with the other three fundamentals interactions
of nature, which are described consistently by the Standard Model (SM) through Yang-Mills
(YM) quantum theories. The SM is based on the gauge group SU(3) x SU(2) x U(1) and
defines a consistent quantum theory free of anomalies and widely verified experimentally.

Gravity is described by General Relativity as a dynamic manifestation of the geometric
properties of space-time. Thus, the possibility of unifying gravity with the other interac-
tions in a same geometric framework would require to incorporate internal and space-time
symmetries in a same group. A possible way to achieve this task is supersymmetry (SUSY),
a kind of symmetry against which we shall demand the laws of nature be invariant, at least
at a certain level. The idea that SUSY is actually an underlying symmetry of Nature is sup-
ported by various phenomenological arguments. For instance, the presence of this symmetry
makes field theories better behaved in the ultraviolet (UV) by virtue of the cancellation of
fermionic and bosonic contributions to divergent loop integrals. This is a very interesting
property from the point of view of a quantum gravity theory.

Supersymmetry is a symmetry that relates bosonic and fermionic particles. From a
theoretical point of view, SUSY has a most interesting aspect since it unifies bosonic space-
time symmetries with other internal bosonic symmetries (like the SU(3) x SU(2) x U(1)
invariance of the standard model), giving the possibility of unify gravity with the other



interactions in a same geometric framework. Indeed, the group containing supersymmetry
transformations generalizes the Poincaré group, and in addition to the Lorentz generators J,;,
and the space-time translations P,, we have also supersymmetry generators () and internal
generators B;. Then, the corresponding algebra is called the super-Poincaré algebra.

The supersymmetric extension of General Relativity is known as Supergravity (SUGRA)
and it is a theory of local supersymmetry. In SUGRA, the gravitational field is coupled
to its super-partners and possibly to other supermultiplets containing matter multiplets. In
its simplest version Supergravity can be viewed as the "gauge” theory of the super-Poincaré
group whose action is given by the Einstein-Hilbert term representing the graviton, plus a
Rarita-Schwinger kinetic term describing the gravitino 1, a spin-3/2 particle.

There are several different supersymmetric theories, which differ in the space-time di-
mension D and in the number A of supersymmetry charges. N supersymmetry generators
define an N-extended supersymmetry. SUGRA theories of particular relevance are defined
in D = 10 and D = 11 since they describe the low-energy dynamics of superstring theory
and M-theory, on at space-time, respectively. In supergravity, the limit on the amount N of
supersymmetry comes from the possibility of a consistent coupling to gravity, which restricts
the maximum spin of the fields to be two, thus implying N < 8.

On the other hand, the successful AdS/CFT (Anti-de-Sitter/Conformal Field Theory)
correspondence, that is the conjectured equivalence between superstring theory realized on
an anti-de Sitter space-time and the conformal field theory on its boundary at infinity, made
supergravity a useful tool for studying non-perturbative properties of gauge theories.

Global and local supersymmetric theories exhibit deep geometrical structures inherent
to the non-linear interactions of matter multiplets. In the D = 4, N/ = 2 case, the geomet-
rical structure is described by the Special Kahler geometry and the Hypergeometry, when
vector multiplets and hypermultiplets are present. When matter is added, the underlying
geometrical structure is much richer since N' = 2 matter hypermultiplets are associated with
quaternionic geometry.

The purpose of this thesis is to study different pure and matter coupled supergravity
theories in three and four dimensions. First, we will present a supersymmetric extension of
the Maxwell type algebras. Using the properties of the Abelian semigroup expansion method
(S-expansion), we will show that inequivalent Maxwell superalgebras can be obtained when
different semigroups are chosen. Thus, we will obtain a family of Maxwell superalgebras
having the Maxwell type algebras as subalgebras. The N-extended cases will be also studied.

Then, we will construct different supergravity Lagrangians in three and four dimensions

X1



following a geometrical approach and using the useful properties of the S-expansion. In four
dimensions, we will construct the N = 1 supergravity action a la MacDowell-Mansouri from
the minimal Maxwell superalgebra. Based on the AdS-Lorentz superalgebra, we will also
build the minimal supergravity action which includes a generalized supersymmetric cosmo-
logical constant term. In three dimensions, the construction of a Chern-Simons supergravity
action from a minimal Maxwell superalgebra will be a further result of this work.

Finally, we will construct an appropriate dyonic gauging of an N = 2 supergravity
coupled to n vector multiplets and to one hypermultiplet allowing for a well-defined rigid
limit to a multi-vector APT model. This will clarify the supergravity origin of the multifield
Born Infeld (BI) and, in particular, to understand the origin of the dyonic Fayet Iliopoulus
(FT) terms as deriving from electric and magnetic charges in the supergravity gauged model.

Furthermore, we will give a general proof of the Ward identity for generic dyonic gaugings.
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Chapter 1

General Relativity and Maxwell type

algebras

1.1 Introduction

One hundred years ago Albert Einstein wrote down the field equations of General Rel-
ativity, his masterwork describing gravity as the curvature of the space-time. The theory of
General Relativity explains all gravitational phenomena we know, such as falling apples and
orbiting planets, and it has been survived to various tests supporting its validity. For in-
stance, some experimental evidences are the gravitational lensing, the changes in the orbit of
Mercury, gravitational redshift of light, the deflection of light by the sun and frame-dragging
of space-time around rotating bodies.

General Relativity describes gravity as a dynamic manifestation of the space-time geom-
etry, and its main underlying assumptions are the requirements of general covariance and
second order field equations for the metric. On the other hand, the possibility that space-
time may have more than four dimensions is a standard assumption in high-energy physics.
Although many different approaches have been followed, most of them assume the simplest
generalization of General Relativity to higher dimensions, namely the Einstein-Hilbert ac-
tion. Based on the same principles of General Relativity, the most general metric theory of
gravity is the Lanczos-Lovelock gravity theory (LL) [I], [2]. This theory refers to a family
parametrized by a set of real coefficients «,, which are not fixed from first principles. In [5],
these parameters were fixed in terms of the gravitational and the cosmological constants.

As a consequence, the action in odd dimensions can be formulated as a Chern-Simons (CS)



theory of the AdS group, while in even dimensions the action has a Born-Infeld (BI) form
invariant only under local Lorentz rotations.

If CS and BI theories are the appropriate gauge theories to describe the gravitational
interaction, then these theories must satisfy the correspondence principle, namely they must
be related to General Relativity.

In this chapter, we shall show that standard odd-and even-dimensional General Relativ-
ity can be obtained from Chern-Simons and Born-Infeld like theories, invariant under the
Maxwell type algebras, when certain conditions are imposed [12], [I7], [19]. These Maxwell
type algebras are obtained from the AdS algebra and a particular choice of the semigroup
by means of the S-expansion procedure. Furthermore, we present the Einstein-Lovelock-
Cartan Lagrangian leading to General Relativity in a certain limit of the coupling constant,
both in odd and even dimensions [20].

Before introducing the Maxwell type algebras and its applications to gravity, let us briefly

review the first order formalism of gravity and the Lanczos-Lovelock theory.

1.2 First order formulation of gravity

General Relativity describes gravity as a dynamic manifestation of the space-time geom-
etry. This idea is encoded in the metric tensor g, (x), which provides the notion of distance

between the two nearby spacetime points x* and x* + da*
ds® = g, drtdz”. (1.1)

Another important concept in the understanding of the space-time geometry is parallelism,
which is encoded in the affine connection I'g (z): a vector €| 1s said to be parallel to the

vector £¢, if their components are related by “parallel transport”
i (r+dxsz) = € (v +dr) + dm“l“o‘uﬁﬁﬁ (x)
= & () + da [0,6* +T°,8" (2)] - (1.2)
The expression 0, + F‘Xw{ﬁ (x) corresponds to the covariant derivative of £*, and we will
denote it by
D&% = 0,8% +T4,56°. (1.3)
In General Relativity, the affine connection is required to be symmetric in the lower index,
ie,
aﬂﬂ = aﬁ#' (1.4)

2



This equation expresses the vanishing of the torsion tensor,

The affine connection I'g satisfying (1.4) is known as the connection or the Christoffel
symbol, and becomes a function of the metric

1
e = ggaA (0u9r8 + O39ru — OrGus) - (1.6)

Using the definition ([1.3), we can compute the commutator of two covariant derivatives
acting on a vector £,

[Dy, D)€" = R%,,, 6% — T, DrE" (1.7)

- SV Buv
where 77, is the torsion, and R% . 18 the Riemann tensor defined by

« = 8MPQV,B - a,/]_joitﬁ + Fa’u)\]_jkyﬂ - Fal/)\FA'uB (18)

Buv

Besides, we define the Ricci tensor R, = Rf,,, and the curvature scalar R = g""R,,,. We

use these ingredients to construct the Einstein-Hilbert (EH) action

SSI){ = /d4x\/—gR, (1.9)

where g = det(g,,) < 0. The variation of the action leads to the Einstein field equations

(in the vacumm),

1
Ruy = 59u R = 0. (1.10)

So far, we have reviewed the formulation of General Relativity considering that the met-
ric and affine properties are not independent. For this, it was necessary to introduce a
constraint: the torsion tensor was assumed to be zero. However, these properties can
be considered as independent notions. The formulation of General Relativity considering
the metricity and parallelism as independent properties is known as Cartan gravity (in the
differential forms formulation) or Palatini formalism (in the tensorial formulation).

Let us consider the mapping between the space-time D-dimensional manifold M and a
flat Minkowski tangent space T, which is a good approximation of the manifold on an open
set in the neighborhood of x. The relation between M and the collection {7} is given by

an isomorphism represented by means of a linear map e,

. 0z°

3



where the matrices e = ef.(z) (a = 1,..., D = dim M) are called the vielbein, and define a
local orthonormal frame on M. Thus the infinitesimal dz*(z) = dz* on M is mapped to

corresponding separation dz* in T,
dz" = edx’. (1.12)

Furthermore, the Lorentzian metric defined in Minkowski space can be used to induce a

metric on M through the isomorphism e%. In fact, from a given tetrad
el = n“bejbgij, (1.13)

one can find the metric on M,
Gij = e“iebjnab. (1.14)
The definition (1.11]) implies that e% transforms as a covariant vector under diffeomor-

phisms on M, and as a contravariant vector under local Lorentz rotations of T,,, SO(D—1,1).

In fact, under Lorentz transformation the vielbein are transformed as follows
et — €% =A¢(z)e, (1.15)

where A (z) € SO(D — 1,1). By definition of the Lorentz group, the matrices A (x) leave

the metric in the tangent space unchanged
AZ (LC) Achl (QZ) Nab = Tcd- (116)

We define now the vielbein 1-form

e* = e, dz", (1.17)
and its covariant derivative
De® = de® + we”, (1.18)
where w® = wgbd:c“ is called the spin connection 1-form and it is transformed as

Wl = W =A% () A (2) W + A% () dAS (2) (1.19)
This object plays the role of the gauge potential and defines the curvature two-form
R = dwf) + wiw. (1.20)

In addition, we introduce the torsion two-form



T = De® = de® + we’, (1.21)
which involves both the vielbein and the connection.

The equations ((1.20) and (|1.21) are called structure equations because they describe
the geometrical structure of the manifold M. These 2-forms satisfy the following Bianchi
identities

DT* = R%e, (1.22)
DR = 0. (1.23)

In the Cartan formalism the Einstein-Hilbert action is given by
S,(;” = / €apea RPeCe, (1.24)
M

where R = dw™ + w®w® is the two-form curvature and e is the vierbein. Moreover, we
have used that k = 1, with x the gravitational coupling constant. The action (1.11]) is
equivalent to the EH action in the tensorial formalism (|1.9)).

Considering the variation of the action , we have that (55}5% = 0 leads us to

-2 / eabcddwached + 2 / EabcdRab (560) €d =0. (125)

Because the variations 6w and de¢ are arbitrary, we have
€abcaR%e" = 0, (1.26)
€apeale? = 0. (1.27)

The first equation is equivalent to the Einstein field equations ([1.10]), while the second one
expresses the vanishing of the torsion

T = de® + w%e’ = 0. (1.28)

This equation can be solved for the spin connection w9, allowing to express it in terms of
the vielbein and its derivatives.

By construction, the action (|1.24]) is invariant under general coordinate transformations
and under (local) Lorentz transformations, but is not invariant under Poincaré local trans-

lationﬂ In fact, a gauge theory for the Poincaré group should be based on the one-form

!The invariance of the action requires to impose de condition 7% = 0. However, this constraint is not
invariant under Poincaré local translations, because §7% # 0, for de® = Dp®, 6w = 0.



connection A = e*P, + w®.J,, with {Jup, P.} the generators of the group. Since there is no
Poincaré-invariant 4-form that can be constructed with this field, then no Poincaré-invariant
gravity action can be constructed in D = 4 dimensions. An alternative approach could
be consider another group G containing the Lorentz transformations as a subgroup. The
smallest nontrivial choices for G are the de Sitter (dS) and the anti-de Sitter (AdS) groups.
These are semisimple groups, and the Poincaré group can be obtained as a contraction of
them. This property could mean that these groups are better candidates in order to become
physically relevant for gravity.

Nevertheless, so far it is not possible to describe gravity as a gauge theory for the dS
or AdS groups. The Einstein-Hilbert action is basically the only action for gravity
D = 4, but many more options exist in higher dimensions. As we will see next, in D = 2n—1
dimensions, gravity can be expressed as a gauge theory of the groups SO(D, 1), SO(D—1,2),
or ISO(D —1,1). This will not be the same for even dimensions, D = 2n.

1.3 Lanczos-Lovelock theory

So far, the possibility that space-time may have more than four dimensions is a standard
assumption in High-energy physics. Nevertheless, if we want to extend the space-time di-
mension to dimensions greater than four, the reformulation of the structure of the equations
for the gravitational field is required, and we have to critically examine the minimal require-
ments for a consistent theory of gravity in any dimension, including both general covariance
and second order field equations for the metric.

Although many different approaches have been followed, most of them assume the sim-
plest generalization of General Relativity to higher dimensions, namely the Einstein-Hilbert
action. Based on the same principles of General Relativity, the most general metric the-
ory of gravity satisfying the criteria of general covariance and leading to second-order field
equations is a polynomial of degree [D/2] in the curvature known as the Lanczos-Lovelock
gravity theory (LL) [1], [2]. The Lovelock action can be written as the most general D-form
invariant under local Lorentz transformations, constructed with the spin connection, the

vielbein and their exterior derivatives, without the Hodge dual [3] []

Sq = / > a, LW, (1.29)

p=0



where
L(p) = 6\a,lu-apfial(w et Ra2p71a2p€a2p+l tte eaD- (130>

Here R is the curvature two-form defined in , e® corresponds to the one-form vielbein
and the coefficients «,, p = 0,1, ..., [D/2], are arbitrary constants. The LL theories allow
to construct the most general gravity theory in D-dimensions as a natural extension of
the Einstein theory, and thus they have the same degrees of freedom (D(D — 3)/2) as the
Einstein-Hilbert Lagrangian in each dimension.

The Lanczos-Lovelock theory refers to a family parametrized by a set of real coefficients
a,, which are not fixed from first principles. In [5], R. Troncoso and J. Zanelli showed
that these parameters are fixed in terms of the gravitational and the cosmological constants,
through the requirement that the theory possess the largest possible number of degrees of
freedom. As a consequence, the action in odd dimensions can be formulated as a Chern-
Simons (CS) theory of the AdS group, while in even dimensions the action has a Born-Infeld
(BI) form invariant only under local Lorentz rotations, in the same way as the Einstein-
Hilbert action [5], [6], [7], [8]. Let us briefly review the approach developed in [5].

Consider the LL action , as a functional of the spin connection and the vielbein,
Sa = Sa [w“b, ea}. Varying with respect to these fields, the following field equations are

obtained
e = e, =0, Sw® — g4 = 0, (1.31)
where we have defined
[(D-1)/2]
ca= Y. 0,(D—2p)eh, (1.32)
p=0
[(D-1)/2]
e =Y opp(D—2p)e, (1.33)
p=1
and
el = 5ab1...bd71Rb1b2 oo Rbaw-1b2gbapir L pbo1 (1.34)
eV = Cabageay R -+ - R 020H1 02042 L 0D, (1.35)

Since the (D — 1)-forms ¢, and &, are independent Lorentz tensors they vanish indepen-
dently, which means that the metric and the affine properties are independent. If there were
algebraic relations among these tensors, then the fields w® and e® would be relate and as a

con sequence, some components of the torsion tensor must vanish freezing out some degrees



of freedom in the theory. On the other hand, considering the Bianchi identities (1.22)) and
(1.23), we have the following equations

[(D+1)/2]
Deo= Y, ap1(D—=2p+2)(D—2p+1)e, (1.36)
p=1

which by consistency with €, = 0 must also vanish. Furthermore, the exterior product of

eapwith eb gives us

[(D-1)/2]
epy = Z ap (D — 2p) €’el | (1.37)
p=1

which also vanish by virtue of €, = 0. If the coefficients a,, were generic, then the equations
would imply in general additional restrictions of the form e’c} = 0 for some p's. Thus,
different choices of «,, correspond, in general, to theories with different numbers of physical
degrees of freedom depending on how many additional off-shell constraints are imposed on
the geometry. As shown in [5] among all the possible choices for the «,, there is a special one
which occurs only in odd dimensions, and where non additional constraints are imposed. In
fact, equations and ([1.37)) are proportional to each other term by term for D = 2n —1

but for D = 2n, both equations have different number of terms.

1.3.1 D =2n—1: Local (A)dS Chern-Simons Gravity

As we said before, equations ((1.36)) and ((1.37)) have the same number of terms for odd
dimensions. Thus, the two series must be proportional term by term, leading to the following

recursion relation
ap1 p (D —2p)
a, (D—=2p+2)(D—-2p+1)

where 0 < p < n, and + is an arbitrary constant of dimension [length?]. The solution to

. (2n-1)(29)’ (n—-1
e ) o

ol (1.38)

this equation reads

where )

K , l
=i T swn (A) 5 (1.40)

Here « is the gravitational constant, A is the cosmological constant and [ is a length param-

&%)

eter.



With this choice of the «, parameters, the LL action is not only invariant under local
Lorentz rotations, but also under AdS boost
oe® = —DM\,
1
ab a/b b_a
ow® = B ()\ e’ — Ne ) .
Thus the LL Lagrangian in (1.29) with the coefficients ((1.39)), corresponds to the Euler-
Chern-Simons form for the AdS group [9],][10], [11],

n
(2n—1) _ Ck aiaz A2k —102k ,02k+1 a2n—1
Lins " = Keaoan D E A et e (1.41)
k=0

where

o = W(ngl) (1.42)

In this case, the vielbein and the spin connection can be seen as the different components
of an (A)dS connection, so that the local symmetry is extended from Lorentz to (A)dS, or
Poincaré when A — 0. In fact, in the limit [ — oo we obtain Chern-Simons gravity for the

Poincaré group,

2n—1 _ _ _
L( n—1) _ /’ffalma%_lRalm ... RA2n—302n—2 ,2n—1

1.3.2 D = 2n: Born-Infeld-Like Gravity

For even dimensions, equations and are not proportional term by term,
and the procedure is a little bit longer. In this case it was shown that the solution which
allows the maximum number of degrees of freedom leads to the following recursion relation
for the a,’s:

2y(n—p+1)a,—1 = pay, (1.43)

for some fixed . The solution to this equation is

ap = ag (27)" < ! ) : (1.44)

p

with 0 < p < n — 1. This formula can be extended to p = n, adding the Euler density to
the Lagrangian with the weight a,, = g (27)".

As in the odd dimensional case, the action depends only on the gravitational and the
cosmological constants. The choice of coefficients implies that the LI Lagrangian
takes the form

L= 2ﬁea1...a2nRala2 .. Roan-102n (1.45)
n



where R* = R + %%, and can be written as the Born-Infeld like form [6],

1
L=2""(n- 1)!/£\/det (Rab + Z—Zeaeb) (1.46)

In four dimensions (|1.45)) reduces to a particular linear combination of the Einstein-Hilbert
action, the cosmological constant and the Euler density:
K 2 1
Ll = 7 Cabed (R“bRCd + l—2R“beCed + Feaebeced) : (1.47)
Although the first term does not contribute to the field equations (it is a boundary term), it
plays a fundamental role in the definition od conserved charges for gravity theories in 2n > 4
dimensions [13], [14], [15].
It is important to note that in even dimensions, the Lagrangian (|1.45]) is invariant only
under local Lorentz transformations and not under the AdS group. In contrast, as shown

above, in odd dimensions it is possible to construct gauge invariant theories of gravity under
the full (A)dS group (or Poincaré).

1.4 Chern-Simons gravity and Maxwell type algebras

As seen before, the Chern-Simons forms can be used to construct gauge invariant actions.
In odd dimensions the LL action corresponds to a Chern-Simons form, when the coefficients
are chosen in a particular way. In this case the action is invariant not only under local Lorentz
rotations, but also under AdS boost. If CS theories are the appropriate gauge theories to
describe the gravitational interaction, then these theories must satisfy the correspondence
principle, namely they must be related to General Relativity.
In ref. [12] it was shown that the standard, odd-dimensional General Relativity can
be obtained from a Chern—Simons gravity theory for a certain 8,, Lie algebra, which was
called generalized Poincaré algebra (where the particular case 2B, corresponds to the so-

called Maxwell algebra [16]). The generalized Poincaré algebras can be obtained by a

N+1
a=0

resonant reduced S —expansionof the AdS Lie algebra using SEEN) ={\.} as a semigroup.
Subsequently, in Ref.[17] it was found that standard odd-dimensional General Relativity

emerges as a weak coupling constant limit of a (2p+1)-dimensional Chern-Simons Lagrangian

2See appendix A for a review of the S-expansion method
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invariant under By, 1, if and only if m > p. Let us briefly review here the results obtained
in [12] and [17].

Let us consider the S-expansion of the AdS Lie algebra, s0(2n,2), using as a semigroup

Sgn_l) = {0, A1, , Ao}, endowed with the multiplication law
Aot B h < 2n,
Ny = +p, when a4+ 5 <2n (1.48)
Aon, when o+ (> 2n.
The AdS generators {jab, ]56} satisfy the following commutation relations
[~aa pb- = jab7
[ ~aba ~c = nbcpa - nacpba (149)
|:jab,jcd - 7/]cbjaal - ncajbd + 77clbjca - ndajcb-
Let us consider the following subset decomposition SS”‘” = Sp U Sy, with
So = {)\gm, withsz,l...,n— 1}U{)\2n}, (150)
Sl = {)\2m+1, w1thm:0,1,n—1}U{/\2n}, (151)

where Ay, corresponds to the zero element of the semigroup (Ag, = 0g). After extracting
a resonant subalgebra and performing its Og-reduction, one finds the generalized Poincaré

algebra 8,1, whose generators defined by

J(ab2r) = Aop @ Tabs (1.52)
Plagk+1) = Aopr1 @ f’a, (1.53)
with £ =0, - - --,n — 1,satisfy the following commutation relations

11



(P P =25, [Jars e = e P — 0oy (1.54)
(Jab, Jed) = NevJad — Neadbd + NavJea — Ndadeb (1.55)
[Jav, Z89] = mue 2 — nachEi)7 (1.56)
28 P = o2 — 02, (1.57)
[Z{S?,Zc(j)- = e 20D — 1 28D (1.58)
I 28] = 1025 — a2t} + 128 — a2 (1.59)
12528 | = 025 = na 24y 4+ 102G~ nan 25 (1.60)
[Pa,Z§i>j =Z0 (20, Z0] = 78, (1.61)

where Jup = A®Jap, 25 = Ai®.Jap, Po = M@ P, and Z) = Ay @B, withi, j =1, ...,n—1.
The generalized Poincaré algebra is also known as the Maxwell type algebra Moy, 1 [17].
These algebras are particularly interesting in the context of gravity since, as we shall see
now, standard odd-dimensional General Relativity may emerge as the weak coupling constant
limit (I — 0) of a (2n+ 1)-dimensional Chern-Simons Lagrangian invariant under the Mo, 1
algebra.

1.4.1 General Relativity from Chern-Simons gravity

In this subsection, it is shown that the odd-dimensional Einstein-Hilbert Lagrangians
can be obtained from Chern-Simons Lagrangians invariant under the Maxwell type algebras.
According to Theorem VIL.2 from [15], the only non-vanishing components of a symmetric

invariant tensor of order n + 1 for the My, 1algebra, are given by

2nl2n 1
<<](a1a2,i1) te J(azn 1a2n zn)P(a2n+1 Int1) > = n—H ]551—',- zn+1€a1~-'a2n+17 (1'62>
where i,,7 =0,...,2n — 1, and the o;’s are arbitrary constants of dimension [length]_2n+1.
The Ms,1-valued, one-form gauge connection A takes the form
—[1 1
A= Z |:2 (ab, Qk)Jab 2%) le(a’2k+1)P(a,2k+1) : (163)
k=0

12



while the associated curvature two-form F' = dA + AA,is given by

n—

1
1

F = |: ab 2k ab 28) + l F(a 2k+1)P( 2k | (].64)

k=0

where
1

F(ab,Qk) — dw(ab,?k) + ncdw(ac,Qz) (db, 2])5Zk+] l (a 2i+1) (b 2j+1) 5z+]+17 (165)
F(a,2k+1) _ de(a,?k-‘rl) + 77bcw(ab ,21) c2])57{c+] (166)

From de definition of the one-form gauge connection A, we see that it depends on a scale
parameter [, which can be interpreted as a coupling constant that characterizes different
regimes within the theory. The (2n + 1)-dimensional Chern-Simons Lagrangian invariant
under the Mo, algebra can be written as [12]

M2n+1 2k—2 Tgt1 in
cs (2n+1) = E :l 00, . ing1 Oprrar T 5pn ktn—k

5a1.._a2n+1R(ala2721 . R(azk—1a2wk)6(a2k+1,p1)6(a2k+27q1) .

. e(a2nfl7pn—k)€(a2n7Qn—k)e(a2n+1»’in+1) ’ (167)

“ = ST

R(ab,Qk) _ d(JJ (ab,2k) + Nea w(ac 22) (db,29) 5;:-]

where

and «; are arbitrary constants which appear as a consequence of the S-expansion process.
Let us note that the S-expanded fields are related to the original AdS fields {d}“b,é“}:
w(@®2k) = \op @ 0%, @2+ = \op 1 @ é?.  The Lagrangian is called the Einstein-
Chern-Simons (ECS) Lagrangian.

In the limit [ — 0, the only non vanishing term in corresponds to the case k =1,
whose only non-vanishing component occurs for p = ¢; = - -+ = ¢2,1 = 0 and is proportional

to the Einstein-Hilbert Lagrangian in odd-dimensions [12]

2TL+1) n a1a a a
L( = Q95— 1Eq ... R*M192e% ... 20+l 1.68
os =0 2n —1 " araan ( )

13



Example for D =5

Let us consider as an example the case of D = 5 dimensions. In this case, the CS AdS
Lagrangian for gravity is given by (see eq.(|1.41)))

1 2 1
Lﬁs = K€abede (jRabRCdee + ﬁRabecedee + %e“ebecedee) ) (1.69)

From this Lagrangian, we see that neither the [ — oo nor the [ — 0 limits yield the EH term
€avede R%e%€%e¢.  Rescaling x properly, those limits will lead to either the Gauss-Bonnet
term or the cosmological constant term by itself, respectively.

Following the above definitions, let us consider the S-expansion of the AdS Lie algebra
50 (4,2), using o {0, A1, Ao, Az, Ay} as a semigroup.  After extracting a resonant subal-
gebra and performing its Og-reduction, one finds the new Lie algebra M5, whose generators

{Jabs Pay Zap, Zo }, satisty the following commutation relations

(Pa, By = Za, [Jab, Pe] = noe P — Nac Py
[Jab,Jed) = NevJad — Neadva + NavJea — Ndadeb
[Jav, Zel = MbeZa — NacZb,
(Zabs Pe] = MoeZa — Nac 2 (1.70)
[Jab, Zed] = NebZad — NeaZbd + NabZea — NdaZcb
(Zabs Ze] = [Pa, Zc] = [Zay Ze] = [Zab, Zea) = 0,

which are given in terms of the original AdS generators {Jab, Pa} as follows

Jab = /\o®jab7 Pa = /\1®pa7 (171>
Zay = M ®Japy, Zoa=N3® P, (1.72)

From the expression ([1.62]), we have that the only non-vanishing components of a symmetric

invariant tensor for the My algebra are

<JachdPe> = %lsaleabcdev
(JapJeaZe) = §l3a3€abcde> (1.73)
(JanZeaPe) = §13a36abcde-
Then the Mjs-valued, one-form gauge connection A takes the form
A= %w“bJab + %G“Pa + %kabZab + %h“Za, (1.74)

14



and the corresponding curvature 2-form is given by
1 1 1 1 1
F:ER%m+7wa+§<Qﬁw+ﬁ%ﬁza+juhm+mwﬂa. (1.75)

Using the dual formulation of the S-expansion in terms of the Maurer-Cartan forms [22], we

can write down the CS Lagrangian in D = 5 dimensions for the M3 algebra as
2
L/\élg ) — a1l2€abcdeRabRCd€€ + A3€abede <§Rab€c€dee + 212l€abRCdT6 + l2RabRcdhe> ) (176)

From this Lagrangian, we see that it is split in two independent pieces, one proportional to a;
and the other proportional to a3. The former corresponds to the Iiionii-Wigner contraction
[21] of the Lagrangian (1.69), and therefore it is the CS Lagrangian for the Poincaré Lie
group 150(4,1). The latter contains the EH term e,pcqe R%%e%e%e plus non-linear couplings
between the curvature and the new bosonic fields k4, and h,. Let us note that these couplings
are all proportional to [2.

Remarkably, considering the strict limit [ = 0 in the Lagrangian, we obtain solely the
EH term

2
L/\gg &),y = gageabcdeR“becedee. (1.77)

These results have been generalized in [I7], where we have shown that the (2n + 1)-

Momi1
CS (2n+1

Hilbert Lagrangian in a weak coupling constant limit, if and only if m > n. In fact, the

dimensional Lagrangians L ) invariant under the My, algebra, lead to the Einstein-

following theorem was announced:

Theorem 1 Let My, 1 be the Mazwell type algebra, which is obtained from the AdS alge-

1) LM2m+1
CS (2p+1)

(2p + 1)-dimensional invariant under the May,+1 algebra, then the (2p + 1)-dimensional

bra by a resonant reduced S(Eme -expansion. If is a Chern-Simons Lagrangian

Chern-Sitmons Lagrangian leads to the Einstein-Hilbert Lagrangian in a certain limit of the

coupling constant l, if and only if m > p.

1.5 Born-Infeld gravity and Lorentz type Maxwell al-

gebras

In even dimensions, the closest one can get to a Chern-Simons theory is with the so
called Born-Infeld theories [5], [6], [7], [8]. As seen before, the Born-Infeld Lagrangian is

15



obtained by a particular choice of the parameters in the LL action. In this case, the action is
invariant only under local Lorentz rotations, in the same way as the Einstein—Hilbert action.
If BI theories are the appropriate even-dimensional theories to provide a framework for
the gravitational interaction, then these theories must satisfy the correspondence principle,
namely they must be related to General Relativity.

In [19] it was shown that the standard, even-dimensional General Relativity can be ob-
tained from a Born-Infeld theory invariant under a certain Lorentz type algebra, £%(= £M).
This algebra can be obtained from the Lorentz algebra and a particular semigroup by means
of the S-expansion procedure, and corresponds to a subalgebra of the Maxwell type algebra.
Then, in [I7] it was found that standard even-dimensional General Relativity emerges as
a weak coupling constant limit of a 2p-dimensional Born-Infeld Lagrangian invariant under
gMem+1 - if and only if m > p.  Let us briefly review here the results obtained in [17] and
[19].

Let us consider the S-expansion of the Lie algebra so(2n — 1, 2) using as a semigroup the
sub-semigroup S(()%_l) = {0, A2, A1, . . ., Agp, } Of the semigroup Sg"_l) = {0, A1, A2, A3y oo, Ao b
The semigroup 862”_1) is endowed with the multiplication law

Aatp,  wh < 2n,
Ny = +8, when a+ 3 <2n (1.78)
Ao,  when a4+ > 2n.
The Lorentz generators {jab} satisfy the following commutation relations
[jab,jcdi| = ncbjad - ncajbd + 77clbjca - ndajcb- (179>

After performing a Og (= A9, )-reduction, one finds a new Lie algebra £M2n+1 whose genera-
tors Jup = Ao ® jab, Zé

- No; @ Jup with 4,7 = 1,...,n — 1, satisfy the following commutation

relations
[Jab,ch] = 77cb<]ad - ncand + ndeca - ndaJcbv (180>
[Jab,Zc(fl)} = TchZ((lfi) — 'r;caZ(fZ) + a2 — T}daZC(é), (1.81)
[Zéb)z(gl)} = 0257 = 1028 4+ Ny 28D — g 25 (1.82)

Comparing these commutators with egs. (1.55), (1.59) and ((1.55), we can see that the
Lorentz type algebra £M27+1 is a subalgebra of the Maxwell type algebra My, ;. As we shall

see now, standard even-dimensional General Relativity may emerge as the weak coupling

constant limit (I — 0) of a Born-Infeld Lagrangian invariant under the £M27+1 algebra.
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1.5.1 General Relativity from Born-Infeld gravity

In this subsection, it is shown that the even-dimensional Einstein-Hilbert Lagrangians
can be obtained from Born-Infeld Lagrangians invariant under the Lorentz type algebras.
Using Theorem VII.2 of [15], it is possible to show that the only non-vanishing components

of a symmetric invariant tensor for the £M2#+1 algebra are given by

277,—1[277,—2 .
<J(a1a2,i1) T J(a2n—1a2n,in)> = Tajdgﬁr---inear"azn? (183)
where j =0,...,2n — 2, and the «;’s are arbitrary constants of dimension [length]fQ"H.
In this case the curvature 2-form is given by
n—1
1
F=3 SF (1.84)
k=0
where .
F(ab,?k:) _ dw(ab,?k) +ncdw(ac,21) (db,2j) 5Zk+j 5 e(a 2i4+1) (b 2j+1) 5Z+j+1’ (185)

which depends on a scale parameter [ which can be interpreted as a coupling constant that
characterizes different regimes within the theory. Then, using the dual formulation of the S-
expansion in terms of the Maurer-Cartan forms, we find that the 2n-dimensional Born-Infeld

Lagrangian invariant under the £M2n+1 algebra can be written as [19)]

£M2n+1 [2k—2 5Zk+1 L in
BI (2n) — § : a; z1+ “+in - P1+q1 DPn—k+Tdn—k

Eal...a%R(alaQ’“) . R(a2k71a2kﬂk)€(a2k+l7p1)e(a2k+2:fh) .

.. e(“?n—lypn—k)e((mnv‘lnfk)’ (186)

where

R(ab,Qk) _ dw(ab,?k) + 77Cdu}(ow 21) (db, 2])5;’3_]7

and «; are arbitrary constants which appear as a consequence of the S-expansion method.
Let us note that the S-expanded fields are related to the AdS {&J“b,é“} fields: w(®2k) =
Ao @ @, e@2k+1) — \o 11 @ é®. The Lagrangian (1.86]) was called the Einstein-Born-Infeld
(EBI) Lagrangian.

In the limit [ — 0, the only non zero term in corresponds to the case k = 1, whose
only non-vanishing component occurs for p = ¢; = -+ = go,_1 = 0 and is proportional to
the Einstein-Hilbert Lagrangian in even-dimensions [19)

n 1 aias .a. a
L%I) o= éagn,Qaal...a%R 102003 .., g®2n (1.87)
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Example for D =4

Let us consider the case of D = 4 dimensions. In this case, the Born-Infeld Lagrangian
for gravity is written as (see eq.(|1.45))

LY) = “euea (RabRC‘i +

2 1
1 Z R%ece + —eaebeced) . (1.88)

2 [
From this Lagrangian, it is apparent that neither the [ — oo nor [ — 0 limit yields the
Einstein-Hilbert term alone. Rescaling x properly, those limits will lead either to the Euler
density or to the cosmological constant term by itself, respectively. Since the Euler density
is a topological invariant, it does not contribute to the equations of motion. Thus, in D =4
dimensions and considering [ — oo, the dominant term would be the EH term e,p.qR*e%e?.
Nevertheless, for D > 4 this statement is not valid anymore and we have that no limit allows
us to obtain the desired term.

Following the above definitions, let us consider the S-expansion of the Lorentz Lie algebra
50 (3,1) using the semigroup Sé?’) = { Ao, A2, Ay}, After performing its Og-reduction, we
find the new Lie algebra £M5 (or £%5 as was introduced in [19]), which corresponds to
a subalgebra of the Maxwell type algebra Mj. The generators defined by Ju, = AoJap,

Zob = Nodap (where J,p are the so (3,1) generators), satisfy

[Jaln ch] = nchad - 77cand + ndeca - ndaJcbv
[Jaba ch] = ncbZad - ncaZbd + ndeca - ndaZcba (189)
[Zaba ch] =0.

From ((1.83)) we find the £M5 invariant tensors, which are given by

(JabJed) ems = ol*Eapea; (1.90)
<Jachd>£M5 = a2l25abcd (191)

and the curvature two-form is

1 ab 1 ab 1ab
FIQR Jab+§(Dwk +l—2€€ Zab

Using the dual formulation of the S-expansion in terms of the Maurer-Cartan forms [22], we

can write down the Born-Infeld Lagrangian invariant under £M5 algebra, as follows

L5 ) = ol RV R + S eanea (R e’ + PDKPR) (1.92)
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This Lagrangian is split in two independent pieces, one proportional to ay and the other
proportional to as. The term proportional to ag corresponds to the Euler invariant, while
the piece proportional to as contains the EH term eg.qR%ee? plus a boundary term which
contains, besides the usual curvature R, a bosonic matter field k.
Then, considering the strict limit [ = 0 in the Lagrangian, we recover the four-dimensional
EH Lagrangian
25

LBI @|_y = 7€abcdRab666d. (1.93)

These results have been generalized in [I7], where we have shown that the 2n-dimensional
Lagrangians L%;;Q(’g;)l invariant under the £M2m+1 algebra, lead to the Einstein-Hilbert La-
grangian in a weak coupling constant limit, if and only if m > n. In fact, the following

theorem was announced:

Theorem 2 Let £M2n+1 be the algebra obtained from the Lorentz algebra by a reduced
SéQm_Q)-expansion, which corresponds to a subalgebra of the Moy, algebra.. If LSM%H)1
is a Born-Infeld type 2p-dimensional Lagrangian invariant under the £M2m+1 algebra, then
the 2p-dimensional Born-Infeld type Lagrangian leads to the Einstein-Hilbert Lagrangian in

a certain limit of the coupling constant [, if and only if m > p.

1.6 Einstein-Lovelock-Cartan gravity theory

In this section, we shall briefly discuss the main results of [20], where we have shown
that it is possible to construct an Einstein-Lovelock-Cartan (ELC) Lagrangian leading to
the Einstein-Chern-Simons Lagrangian in D = 2n — 1 invariant under the Ms, _; algebra ,
and to the Einstein-Born-Infeld Lagrangian in D = 2n invariant under the £M2m algebra.
The ECS and EBI theories are particularly interesting since as was shown in the previous
sections, General Relativity can be obtained as a certain limit of these gravity theories. For
our purpose, we shall use the useful properties of the S-expansion procedure using S](EDQ) as
the relevant semigroup.

The expanded action is given by [20]

(D/2]

SSL:CZ/ZM% 72, (1.94)

19



where o, and p;, with ¢ = 0,..., D — 2 are arbitrary constants and L(gp E’Zg is given by

Lépgc)' — ld_2(5§1+...+,‘d_p5a1a2-~-apR(al(m’h) . R(a2p—1a2pyip)e(a2p+17'ip+1) . e(ap,infp)’ (195)

where
R(@b20) — g y(ab20) |y o (ac2i),(db,20) p (1.96)

The expanded fields {e(®? 1) (@201 are related to the AdS fields {&?, &} as follows

w2 =\ @ o™ (1.97)

@24 — N1 ®é (1.98)

with A\, € SJ(ED#), and where SJ(EDQ) is the semigroup whose elements obey the following

multiplication law

(1.99)

3\ . — Aats, whena+p<D—1,
e Aon, when a+ 8> D — 1.

The Lagrangian in ((1.94]) corresponds to the Einstein-Lovelock-Cartan Lagrangian and can
be used in both odd and even dimensions. Following the same procedure of [5], and consid-
ering the action as a functional of the expanded fields Sgre = Sepe [e(“’j),w(“b’j)}, we have

that the variation of the action with respect to e(®”and w(@? lead to the following equations:

' [(D-1)/2] '
0= 3" oy (d—2p) el =0, (1.100)
p=0
‘ [(D-1)/2] '
e = > Hiopp(d—2p) e =0, (1.101)
p=1
where
a(lp7i) .= ldiz(sz?ﬁ-.‘.—&-id—pﬂ6ab1---bd71R(blb%il) e R(b%_lb%’ip)
x eltrwriivir) . g(bp-1dD—p1) (1.102)
8((1%i) = ld725§1+-..+id71)71gabag,---adR(asa%il) e R(a2p71a2p’ipil)

T(azp+15ip) plazpt2sip+1) | . e(aDvinpfl)

, (1.103)

and where T = de(®) + pgw®De(@)§i | is the expanded torsion 2-form . In general,

there are different ways of choosing the coefficients «,, which in general correspond to different

20



theories with different numbers of degrees of freedom. It is possible to choose the o, such
that £ and aa(;) are independent. This last condition corresponds to the maximum number
of independent components.

As in [5], we showed that in odd-dimensions the «,, coefficients are given by

a, = a M(n_l), (1.104)

"@n—-2p-1)\ p
where
K 12
ap = m; v = —sgn(A) oL (1.105)
and, for any dimension D, [ is a length parameter related to the cosmological constant by
AP 1§l(2D—2). (1.106)

With these coefficients the Lagrangian ([1.94) can be written as the Chern—Simons form

n—1
Moap_1 _ 2p—2 K n—1 i
LCS (2n-1) pz:;l ' 2 (n — p) —1 < P >’ui5il+"'+i2nlp

Earaga 1R(alazﬂ'l) . R(a2p71a2paip)€(a2p+lyip+l) . e(a2n71,i2n717p)'(1.107>

Thus, we conclude that in odd-dimensions the choice of the coefficients , allows us
to write the Lagrangian as a Chern-Simons form for the Maxwell type algebra M, 1,
called the Einstein-Chern-Simons Lagrangian in [I2]. Furthermore, let us note that the S-
expansion process did not modify the «, coefficients of [I§] for the odd-dimensional case.

In the even dimensional case the «, coefficients are given by

a, = ap (29) (”) (1.108)
p
With these coefficients the ELC Lagrangian ([1.94) is written as

eMan ~ K oo (N i
Ly (2n) = Z %l Y (p) M5i1+-~~+i2n_p

p=0
Rlaazi1) . plazp—1a2p,ip) (a2pt1sip+1) . . . e(a2nai2n—p)7 (1.109)

€a1a2“'a2n

which corresponds to the Einstein-Born-Infeld Lagrangian found in [19].
In this way, we have shown that the S-expansion procedure does not modify the «,’s
coefficients defined in [5]. Unlike the Lanczos-Lovelock action, the ELC action (1.94) has
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the property of leading to General Relativity in a certain limit of the coupling constant [, both
even and odd dimensions. The Einstein-Lovelock Lagrangian ( can be interpreted as
the most general D-form invariant under a Lorentz type subalgebra £M2n of the Maxwell
type algebra. This Lagrangian is constructed from the expanded vielbein and the expanded
spin connection @2+ y(ab2k) (b =0 .. n— 1) and their exterior derivatives.
Furthermore, in [20] we have shown that the Einstein-Lovelock-Cartan Lagrangian can

be generalized adding torsional terms, following a similar procedure to that of [5].

3When k = 0, e(®! and w(®0) are identified with the usual vielbein e and the spin connection w?,

respectively.
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Chapter 2

Supersymmetric extension of Gravity

2.1 Introduction

It is well known that the Standard Model describes consistently three of the four fun-
damental interactions of Nature, through Yang-Mills quantum theories. Despite numerous
attempts, the fourth fundamental interaction, gravity, has resisted quantization. Gravity is
described by General Relativity as a manifestation of the geometric properties of space-time.
The possibility of unifying gravity with the other interactions in a same geometric frame-
work would require to incorporate internal and space-time symmetries in a same group. A
possible way to achieve this task is supersymmetry, a kind of symmetry against which we
shall demand the laws of nature be invariant, at least at a certain level (for an introduc-
tion of supersymmetry see for instance [23]). The idea that SUSY is actually an underlying
symmetry of Nature is supported by various phenomenological arguments. For example,
the presence of this symmetry makes field theories better behaved in the UV by virtue of
the cancellation of fermionic and bosonic contributions to divergent loop integrals (see for
instance [24]). This solves an important problem with the Standard Model, namely the
hierarchy problem.

The supersymmetric extension of General Relativity is known as Supergravity (see refs.
[25], [26] and [27]) and it is a theory of local supersymmetry. In SUGRA, the gravitational
field is coupled to its super-partners and possibly to other supermultiplets containing matter
multiplets. Furthermore, it can be viewed as the gauge theory of the superPoincaré group,
which unifies space-time and internal symmetries. Mathematically, it is about a graded Lie

algebra, also called super Lie algebra (or superalgebra) having bosonic (B) and fermionic
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(F) generators satisfying (anti)commutation relations; [B, B] = B, [B,F| = F, {F,F} = B
(see for instance [23]).

Initially, Supergravity was conceived as a theory described by an action including the
Einstein-Hilbert term representing the graviton plus a Rarita-Schwinger kinetic term describ-
ing the gravitino. The N = 1 pure Supergravity was constructed first by D. Z. Freedman,
P. van Nieuwenhuizen, and S. Ferrara in [29], and was derived in the second order formalism,
i.e. writing w® in terms of the other fields by imposing the vanishing of the supertorsion.
Then, the same results were found by S. Deser and B. Zumino in the first order formal-
ism [29]. Subsequently, the model was extended to incorporate other features like enlarged
symmetries, matter couplings, higher dimensions with their corresponding reductions to four
dimensions and cosmological constant.

In the next section, we briefly describe some general aspects of supersymmetry and super-
gravity, which are essential concepts in this thesis. Then, we shall introduce a supergravity
theory with A" = 1 in four dimensions with cosmological constant. In particular, we consider
the geometrical approach presented by S.W. MacDowell and F. Mansouri in [28]. Eventu-
ally, in the last section we consider the construction of the most general three-dimensional

CS Supergravity action for the AdS superalgebra.

2.2 Supersymmetry and Supergravity: (General aspects

Supersymmetry is a symmetry that mixes bosonic and fermionic particles. As we said
before, the idea that this curious symmetry is actually an underlying symmetry of Nature
is supported by many phenomenological arguments. For instance, the presence of this
symmetry makes many field theories better behaved in the UV by virtue of the cancellation
of divergences of the bosons by divergences coming from the fermionic sector.  This is a
very interesting property from the point of view of a quantum gravity theory. In fact, it
was shown in [24] that in a supersymmetric extension of General Relativity, the ultraviolet
divergences at the one-loop level are exactly cancelled.

From a theoretical point of view, SUSY has a most interesting aspect since it unifies
bosonic space-time symmetries with other internal bosonic symmetries (like the SU(3) X
SU(2) x U(1) invariance of the standard model), giving the possibility of unify gravity with
the other interactions in a same geometric framework. In fact, the group containing super-
symmetry transformations generalizes the Poincaré group, and in addition to the Lorentz

generators J,;, and the space-time translations P,, we have also supersymmetry generators
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@ (the fermionic generators) and internal generators B;. Then, the corresponding algebra is
called the super-Poincaré algebra. Furthermore, we have that the action of the () generators

on the states |fermion) or |boson) is given by
@ |fermion) = |boson) ; @ |boson) = |fermion) (2.1)

The super-Poincaré algebra must be defined in terms of both commutators [,] and anticom-

mutators {, } as follows,
[B,B]~B, |[B,F|~F, {FF}~B, (2.2)

where the generators of the Poincaré group are included in the bosonic sector, and the F’s
are the supersymmetry generators. A Lie algebra containing fermionic generators obeying
anti-commutation relations as above is called a graded Lie algebra, or simply superalgebra.
For an arbitrary bosonic group is not always possible to find a set of fermionic generators
in order to close the superalgebra. In this way, a consistency condition is required and is

given by the super-Jacobi identity
[GI [Gjy GK]:I:] + + (_)U(JKI) [GJ) [GK7 Gf]j::| + + (_)U(KIJ) [GKa [GI7 GJ]:I:} + = 07 (23>

where G represents any generator in the algebra, [A, Blx = AB 4+ BA, and o corresponds
to the number of permutations of fermionic generators required for (IJK) — (JKI).

As said before, the supersymmetric extension of General Relativity is known as Super-
gravity and it is a theory of local supersymmetry. In its simplest version Supergravity
can be viewed as the ”gauge” theory of the super-Poincaré group whose action is given by
the Einstein-Hilbert term representing the graviton, plus a Rarita-Schwinger kinetic term

describing the gravitino 1, a spin-3/2 particle,

S = /GabcdRabeced + dpeyays D).

Standard SUGRAs are not gauge theories for a group or a supergroup, and the local
(super)symmetry algebra closes naturally on-shell only. When we said that Supergravity
can be viewed as the ”gauge” theory of the super-Poincaré group, we mean that the ”gauge
group” describes external, i.e. space-time symmetries. On the other hand, in the case of the
Standard Model, the gauge group is an internal symmetry, namely acts on internal degrees

of freedom.
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There are several different supersymmetric theories, which differ in the space-time di-
mension D and in the number N of supersymmetry charges. SUGRA theories of particular
relevance are defined in D = 10 and D = 11, since they describe the low-energy dynamics
of superstring theory and M-theory, on at space-time, respectively. Regarding the num-
ber of supersymmetry, N supersymmetry generators define an N-extended supersymmetry.
Theories which are only invariant under global superPoincaré transformations (rigid super-
symmetry), do not contain gravity and are thus defined on flat space-time. Renormalizability
requires their fields not to have spin greater than 1, and thus AV < 4. The N = 4 case
describes a supersymmetric extension of the Yang-Mills theory (super-YM theory). In Su-
pergravity, the limit on the amount A of supersymmetry comes from the possibility of a
consistent coupling to gravity, which restricts the maximum spin of the fields to be 2, thus
implying N < 8.

In particular, global and local supersymmetric theories display deep geometrical struc-
tures inherent to the non-linear interactions of matter multiplets. In the D = 4, N' = 2 case
the geometrical structure is described by the Special Kéhler geometry and the Hypergeome-
try, when vector multiplets and hypermultiplets are present. There are two kinds of special
Kahler geometry: the local and the rigid one. In the local case, the special Kahler geometry
describes the scalar field sector of vector multiplets in N' = 2 SUGRA, while in the latter
case the rigid special Kahler geometry describes the same sector in a N' = 2 Yang—Mills
theory.

When matter is added, the underlying geometrical structure is much richer, since N’ = 2
matter hypermultiplets are associated with the quaternionic geometry. There are four real
scalar fields for each hypermultiplet, which can be viewed (locally) as the four components
of a quaternion. As in the vector multiplet case, there are two kinds of hypergeometry, the
local and the rigid one. The former is called Quaternionic geometry, while the latter is called
the HyperKahler geometry.

A complete study of the NV = 2 Supergravity and N' = 2 Super Yang-Mills theory
coupled to vector multiplets and hypermultiplets can be found in [31I]. As we will see in
the Part III of this thesis, interesting results have been found in the study of rigid and local
supersymmetric N/ = 2 field theories in D = 4. In particular, in the study of spontaneous
breaking of N' = 2 to A/ = 1 in local supersymmetric theories, and the corresponding low
energy limit to a rigid supersymmetric theory, we have shown that a well-defined limit exists
where the low energy, N' = 1 residual theory appears as a supersymmetric Born-Infeld

theory.
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2.3 Mac Dowell-Mansouri Supergravity

Several supergravity theories are known for all D < 11. For D = 4 dimensions a super-
gravity action with a cosmological constant was first presented by P. K Towsand in [34] and
then by S.W. MacDowell and F. Mansouri [28]. Nevertheless, to find a supergravity action
with cosmological constant in an arbitrary dimension is a nontrivial task. For instance, in
the case of the standard supergravity in D = 11 dimensions [32] it has been shown that it is
not possible to accommodate a cosmological constant [35], [36].

In [28] S.W. MacDowell and F. Mansouri presented a geometric formulation of N = 1
supergravity in four dimensions, where the relevant gauge fields of the theory are those
corresponding to the Osp(4]1) supergroup. The resulting action, constructed exclusively
in terms of the components of the curvature, led to the N' = 1 supergravity plus cosmo-
logical and topological terms, and corresponds to a generalization of [29] with the addition
of cosmological terms.  In this section, we consider a brief review of this construction,
whose results will be essential in the formulation of new supergravity models which will be
presented throughout this thesis.

The (anti)-commutation relations for the osp (4]|1) superalgebra are given by

|:jab7 jcd: = Mhedad — NacTvd — MoaJac + NadJve, (2.4)
[jab, 150: = chpa - Uac]sm (2‘5)
P B = Jas (2.6)
i @a] = =5 (@) . [Pua] =5 (%@) . 27)
(00,05} = 3 [("0), ., Ju—2(°C) ] (28)

where Jy, P, and Q. correspond to the Lorentz generators, the AdS boost generators and
the fermionic generators, respectively. Here, C' stands for the charge conjugation matrix and
v, are Dirac matrices.

In order to write down a Lagrangian for this superalgebra, we start from the one-form
gauge connection

1 - 1 - 1 ~
| — = ab ZeP “0 2.
QW Jab + le a + \/Z¢ a ( 9)

and the associated curvature two-form F'=dA + AN A,

lows 1 .= 1 -
F=FAT, = §RabJab + TR P+ WpaQa, (2.10)
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where

1 1 -
R = dw™ + ww® + ﬁe“eb + iwvabw, (2.11)
1-
R = de® + w¥e? — —hy™p, (2.12)
2
1 1 1
p=diy+ Zwaw“bw + Ze“*yaz/z =Dy + Ze“fyaw. (2.13)

From the Bianchi identity VF = 0, where V = d + [A, ], it is possible to show that the

Lorentz covariant exterior derivatives of the curvatures are given by,

1 1 1-
ab __ a b a pb ab
DR" = R%e" 4 4"V, (2.15)
1 1 1
Dp = =Ry + — Ry, 1) — —e%y, V. 2.1
p= 7 Ran™d + Rt — ey (2.16)

The one-forms e?,w® and v are respectively the vierbein, the spin connection and the
gravitino field (a Majorana spinor, i.e, ¢ = 9T C, where C'is the charge conjugation matrix).

Unlike the original approach in [28], here we have introduced a length scale . This is
done because we have chosen the Lie algebra generators Ty = {jab? Pa, Qa} as dimensionless
and thus the one form connection A = AﬁTAdx“ must also be dimensionless. Nevertheless,
the vierbein e* = ¢, dz" must have dimensions of length if it is related to the spacetime
metric g,, through the usual equation g,, = e“ﬂebynab. This means that the "true” gauge
field must be considered as e®/l, with [ a length parameter. In the same way, as the gravitino
Y = 9,dx" has dimensions of (length)l/ 2 we must consider that v/ V1 is the gauge field of
supersymmetry.

The general form of an action constructed with the curvature 2-form is given by

5:2/<F/\F> :2/FA/\FB(TATB>. (2.17)

Let us note that if we choose (T4Tpg) as an invariant tensor (which satisfies the Bianchi
identity) for the Osp (4]|1) supergroup, then the action (2.17) is a topological invariant and
thus, gives no equations of motion. However, with the following choice of the invariant

tensor
Jab ch = €abed

TATg) = - .
it QaQs) =2 (15)s

(2.18)
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the action (2.17)) becomes
1 abpab 2 =
S =2 ZR R €abed T 70’750 (219)

which corresponds to the Mac Dowell-Mansouri action [28]. This choice of the invariant
tensor, which is required in order to reproduce a dynamical action, breaks the Osp (4]1)
supergroup to their Lorentz subgroup.

The explicit form of the action is given by,

1 2 1 2 -
S = /_€abcd <RabRcd + _Rabeced+ _6aebeced + ﬁwvabweced>

2 [? 4
4 _ . 4 -
+ l—ﬂ)@ Ya Vs D1p + 7d (Vs DY) . (2.20)
Here, we have used the gravitino Bianchi identity
1
DDy = 2 Rapy"0, (2.21)
and the gamma matrix identity
2Yabs = —€aved V", (2:22)
to recognize that
1 _ _ _
= €abecd ROV + 4Dy DY = 4d (¢ DY) . (2.23)

2
Thus the action can be written, modulo boundary terms, as follows

1 - 1 1 2 -

S = / l_z (EabcdRabeced + 4¢€a’7a’75D¢) + éeabcd <l_4€a€b€c€d + ﬁwvab,@beced) ) (224)
where R? = dw®+w®w®. The action (2.24) corresponds to the Mac Dowell-Mansouri action
for the osp (4|1) superalgebra. This action describes N' =1, D = 4 AdS Supergravity, and
the last term is the supersymmetric cosmological term. We can see that in the limit [ — oo

the usual N'= 1, D = 4 supergravity is recovered, namely

S = / (eabcdRabeced + 41/36“%75D¢) (2.25)

which is the simplest version of supergravity for the super-Poincaré group. In fact, this
limit corresponds to the Inénii-Wigner contraction of OSp(4|1) to the superPoincaré group.

The action (2.24) is not invariant under the osp (4|1) gauge transformations.  Never-
theless, the invariance of the action under supersymmetry transformations can be obtained

modifying the spin connection supersymmetry transformation [33].
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2.3.1 Osp(4|1) gauge transformations and supersymmetry

The gauge transformation of the one-form gauge connection A is
0,A=Dp=dp+ [A,p] (2.26)

where p is the Osp(4|1) gauge parameter,

%EQQQ. (2.27)

1 1
pP= ipabjab + ipapa +

Then, using

6 (AT4) = dp+ [APTy, p°T¢], (2.28)

the Osp(4|1) gauge transformations are given by

2 1
5wab _ Dpab + 1_26apb _ jg’yabd}a (229)
§e” = Dp® + ’p + ey™, (2.30)
5 = de + e + e L) — = (2.31)
= —W @ —e€ a€ — — a - 45 a¥- .
€ 1 Yab€ o Ya€ 4p Yab 2lp it

Although the MacDowell-Mansouri action (2.24)) is built from the Osp(4|1) curvature, it
is not invariant under the Osp(4|1) gauge transformations. Furthermore, the action does
not correspond to a Yang-Mills action, nor a topological invariant.

Moreover, the action is not invariant under gauge supersymmetry. In fact, if we consider
the variation of the action under gauge supersymmetry, we find that

4 _
OsusyS = —l—2/R“\I!7a75e. (2.32)

As in the super-Poincaré case, the action is invariant under gauge supersymmetry im-
posing the super torsion constraint R* = 0. This yields to express the spin connection w®
in terms of the vielbein and the gravitino fields, leading to the supersymmetric action for
the osp (4]1) superalgebra in second order formalism.

On the other hand, it is possible to have supersymmetry in first order formalism if we

b

modify the supersymmetry transformation for the spin connection w®. In fact, if we consider

the variation of the action under an arbitrary dw® we have

2

0,5 = B /eadeRaebéde, (2.33)
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thus the variation vanishes for arbitrary dw? if R* = 0. It is possible to modify dw® adding
an extra piece to the gauge transformation such that the variation of the action can be

written as

4 - 1
08 = 7 / R® (\I"ya%e — éeabcde%mmwc‘i) ) (2.34)
In order to have an invariant action, d.,w® must be given by
Seatraw™ = 26" (Weeyavse + Waeveyse — Vearveyse) €, (2.35)

with ¥ = U ,e%b.
Then, in the first order formalism the action is invariant under the following supersym-

metry transformations

1 — _ _
0w = =&y + 2 (Deeqayse + Vaererse = eaeyse) €, (2.36)
Je = ey, (2.37)
1 1
0 = de + L—Lwab’yabe + 2—le“fyae = Ve. (2.38)

2.4 AdS Chern-Simons Supergravity.

As we have seen before, in odd dimensions the Lanczos-Lovelock Lagrangian is a Chern-
Simons form for the (Anti)-de Sitter or Poincaré groups. In particular, in three dimensions
a CS theory for these gauge groups is equivalent to General Relativity, but with different
cosmological constants [38], [39]. CS models for gravity are interesting because they provide
with a truly gauge-invariant action principle in the fiber-bundle sense.

In general, in all odd-dimensions D = 2n — 1 a CS form is defined by the condition that
its exterior derivative be an invariant polynomial of degree n in the curvature F'. Thus, a
generic CS Lagrangian, ng_l) for a Lie algebra g can be written as dL(CQg_l) = (F™), where

(---) corresponds to a symmetric invariant tensor for g, and
! 1
Le ) —p / dt<A (tdA +t2A%)" > (2.39)
0

In D = 3 dimensions, the locally supersymmetric extension of General Relativity was done
in [40], and it has been shown that it can be written as a CS theory for the Poincaré or the

(anti)-De Sitter supergroups in [38], [39].
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As mentioned before, a good candidate to describe a three-dimensional CS supergravity
theory with cosmological constant is the AdS supergroup. The most generalized super-
symmetric extension of the three-dimensional AdS algebra is given by the direct product
[39]

0sp (2|p) ® osp (2[q) , (2.40)

describing a (p, ¢)-type AdS-Chern-Simons supergravity in presence of a cosmological con-
stant. Interestingly, the osp (2|p) ® osp (2|¢) superalgebra allows to construct a non minimal
three-dimensional AdS CS supergravity theory. In particular, the minimal AdS CS super-
gravity is obtained when p = 1 and ¢ = 0 (osp (2|1) ® sp (2)) [37]. As was pointed out in
ref. [39], the presence of N' = p + ¢ supersymmetries allows to introduce CS terms related
to the O (p) ® O (q) gauge symmetry.

In this section, we consider the construction of the most general three-dimensional CS
Supergravity action for the AdS superalgebra, osp (2|1) ®sp (2), containing a cosmological
constant. This corresponds to the supersymmetric extension of the most general action for
gravity in D = 3 dimensions, which apart from the Einstein-Hilbert term with cosmological
constant, contains the Lorentz-Chern-Simons form (or ”exotic” Lagrangian [§]) and a term
involving the torsion [41], [42].

The (anti)-commutation relations for the D = 3 AdS superalgebra are given by

[Jab, jcd: = NoeJad — NacToa — MoaJac + NadJbe; (2.41)
[Jab, J-:’c: = eLa = Nacl, [Pa, Pb] = Ju, (2.42)
[Pa, Qa: - —% (ra@)a, (2.43)
[Ju Qo = —% (rabég)a, (2.44)
{Qng}:—é[gwoxwiw—gawohﬁéﬁ, (2.45)

where jab, Pa and Qa are the generators of Lorentz transformations, the AdS boost and
supersymmetry, respectively. Here C stands for the charge conjugation matrix, I', are
Dirac matrices and Top = § [Tq, T).

The Chern-Simons action in (2 + 1) dimensions [9], [11] is given by
2
ﬁg”:k/<AGm+§ﬁ)>, (2.46)
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In our case A is the one-form gauge connection for the osp (2|1) @sp (2) superalgebra
1 ~ 1 =~ 1 ~
A=-w®Jy+ 5" Py + —1*Qa, 2.47
5" oy + e Pa+ \/Z¢ Q (2.47)
whose associated curvature two-form F' = dA + AN Ais

| R
F=FAT, = §R“bjab + 7 RPa+ \ﬁqﬂQa, (2.48)

with

ab ab a, cb 1 a, b L~ ab

RY = dw™ + wiw +l—26 e —i—awF Y,
1_
R = de” + w%eb — Ewrw,
1 1

U = V'¢ = d¢ + Z—lwabfabw + Ze“l“aw.
In (2.46]) the bracket (---) stands for the non-vanishing components of an invariant tensor

for the osp (2|1) ®sp (2) superalgebra in (2 + 1)-dimensions:
<jabjcd> = Mo (nadnbc - nacnbd) ) ( )
<jabpc> = M1€abe;, (250)
<papb> = HoTab, ( )
(Qu@s) = (10— 1) Cu, (2:52)

where 1o and py are arbitrary constants.

Considering ([2.49)-(2.52) and the one-form connection (2.47), the CS action ([2.46|) for

the osp (2|1) ®sp (2) superalgebra can be written as

2 2 2 -
Sg;l) = k/ to widw® + SwiwSwt + e T, + ST
M 2 3 [2 l

1 _

+ 'I% (eabc (R“beC + @e“ebec) — @U\I/) —d (g—;eabcw“bec> (2.53)
where T = de® + w4e® is the torsion 2-form and R%® = dw® + ww® is the Lorentz curva-
ture. This action describes the most general NV = 1, D = 3 CS supergravity action with
cosmological constant for the AdS supergroup [37]. There are two independent terms, the

one proportional to p contains the "exotic” Lagrangian and a term involving the torsion,
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while the second one proportional to p; contains the EH Lagrangian with a cosmological
constant.
It is straightforward to show that the action (2.47) is invariant (up to boundary terms)

under supersymmetry,
1
S =Ve, bt =el", Jw? = —Zgrabz/;. (2.54)

As no field equations are required in order to prove this invariance, we said that it is an
off-shell local SUSY.

Furthermore, the Inénii Wigner contraction of the the Osp (2|1) ® sp (2) group leads us
to the superPoincaré in three dimensions, in a similar way as the Poincaré group is obtained
as an Inont Wigner contraction of the AdS group.
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Part 11

N =1 Supergravity theories, Maxwell
and AdS-Lorentz superalgebras
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Chapter 3

Maxwell superalgebras and Abelian

semigroup expansion

3.1 Introduction

The derivation of new Lie algebras from a given one is particularly interesting in Physics
since it allows us to find new physical theories from an already known. In fact, an important
example consists in obtaining the Poincaré algebra from the Galileo algebra using a deforma-
tion procedure which can be seen as an algebraic prediction of Relativity. At present, there
are at least four different ways to relate new Lie algebras; deformation, contraction, exten-
sion and expansion. In particular, the expansion method leads to higher dimensional new
Lie algebras from a given one. The expansion procedure was first introduced by Hadsuda
and Sakaguchi in [43] in the context of AdS superstring. An interesting expansion method
was proposed by Azcarraga, Izquierdo, Picén and Varela in [44] and subsequently developed
in [45], [46]. This expansion method known as Maurer-Cartan (MC) forms power-series
expansion consists in rescaling some group parameters by a factor A, and then apply an
expansion as a power series in A. This series is truncated in a way that the Maurer-Cartan
equations of the new algebra are satisfied.

Another expansion method was proposed by F. Izaurieta, E. Rodriguez and P. Salgado in
[18] which is based on operations performed directly on the algebra generators. This method
consists in combining the inner multiplication law of a semigroup S with the structure con-
stants of a Lie (super)algebra g in order to define the Lie bracket of a new (super)algebra

® = S x g. This abelian semigroup expansion procedure, or simply S-expansion, can repro-
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duce all Maurer-Cartan forms power series expansion for a particular choice of a semigroup
S. Interestingly, different choices of the semigroup lead to new expanded Lie algebras that
cannot be obtained by the MC expansion.

Some examples of (super)algebras obtained as an S-expansion can be found in [I§],
[47] where the D’auria-Fré superalgebra introduced originally in [4§] and the M algebra are
derived alternatively as an S-expansion of osp (32|1). As we have seen in previous sections,
the S-expansion method allows to obtain the Maxwell type algebras M,, from the AdS
algebra using S](EN) = {/\a}gjol as the relevant semigroup.

The Maxwell algebra (and its supersymmetric extensions) has been extensively studied
in [50]-[59]. This algebra describes the symmetries of a particle moving in a background in
the presence of a constant electromagnetic field [50]. In [53] the minimal D = 4 Maxwell su-
peralgebra s M which contains the Maxwell algebra as its bosonic subalgebra was presented.
In [57] the Maurer-Cartan expansion allowed to obtain the minimal Maxwell superalgebra
and its N-extended generalization from the osp (4| V) superalgebra. This Maxwell superal-
gebra can be used to obtain the minimal D = 4 pure supergravity from the curvature 2-form
associated to sM [58].

In this chapter, we present the results of [60], where we have shown that the abelian semi-
group expansion is an alternative expansion method to obtain the Maxwell superalgebra and
the N-extended cases. In this way, we showed that the results of [57] can be derived alter-
natively as an S-expansion of the osp (4|N) superalgebra choosing appropriate semigroups.
In particular, the minimal Maxwell superalgebra sM is obtained as an S-expansion setting
a generator equals to zero. We finally generalize these results proposing new Maxwell su-
peralgebras namely, the minimal Maxwell type superalgebras sM,,,.» and the N-extended
superalgebras s./\/l,(flv J22, which can be derived from the osp (4|N) superalgebra.

As we will see in the next chapter, these superalgebras can be used to construct dynamical
actions in D = 4, leading to standard pure supergravity in a very similar way to the bosonic

case considered in [I7], [19].
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3.2 Maxwell algebra as an S-expansion

Before considering the supersymmetric case, let us review here how to obtain the
Maxwell algebra M as an S-expansion of AdS. This algebra describes the symmetries
of a particle moving in a background in presence of a constant electromagnetic field, and is
provided by {Jup, P, Zap}, where {P,, Jup} do not generate the Poincaré algebra. In fact, a
particular feature of the Maxwell algebra (which is also a feature shared by all the family of

Maxwell type algebras) is given by the relation
[Pm Pb] = Zab (31)
where Z,, commutes with all generators of the algebra except the Lorentz generators J,,

[Jab7 ch] = 77ch0Lcl - 7/IULchal - nbdjac + 77adeca (32>
[Zaba Pa] = [Zaln ch] = 0. (33)

The other commutators of the algebra are

[Jaba ch] = nchad - nachd - ndeac + nadjbca (34)
[Jaln Pc] - nbcPa - nach- (35>

Following [16] and [18], it is possible to obtain the Maxwell algebra M as an S-expansion of
the AdS Lie algebra g using S](;) as the appropriate abelian semigroup. Before applying the
S-expansion procedure it is necessary to consider a decomposition of the original algebra g

in subspaces V),
50 (3,2)

9250(3,2):50(3’1)@50(Tl)

=Vo® Vi, (3.6)

where Vj, is generated by the Lorentz generator J,, and V; is generated by the AdS boost

generator P,. The Jy,, P, generators satisfy the following relations

|:jab7 jcd = nbcjad - nacjbd - 77bc1JCLt: + 77adjbc; (37>
|:jab7 Pc - nbcpa - nacpb7 (38>
[ﬁa,ﬁb_ = T (3.9)

The subspace structure may be written as
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Let SSEQ) = {0, A1, A2, A3} be an abelian semigroup with the following subset decomposition
Sg) = Sp U S, where the subsets Sy, S are given by

So = {0, A2, A3}, (3.11)
S1 = {1, A3}, (3.12)

where A3 corresponds to the zero element of the semigroup (0s = A3). This subset decom-
position is said to be "resonant” because it satisfies [compare with egs.(3.10)).]

S(] . S() C So, S() : Sl C Sl, Sl : Sl C S(). (313)

In this case, the elements of the semigroup {\g, A1, A2, A3} satisfy the following multiplication

law

A h <
Aadg = { wbpr  Whemat f <3, (3.14)

A3, when o + 3 > 3.

Following the definitions of [18], after extracting a resonant subalgebra and performing
its Og-reduction, one finds the Maxwell algebra M = {Ju, P,, Za }, whose generators can be

written in terms of the original ones,

Jab = Ao ® Jap, (3.15)
P,=X\® P, (3.16)
Zab = >\2 & jab. (317)

Furthermore, as we have seen in previous sections, it is possible to extend this procedure

and obtain all the Maxwell type algebras using the appropriate semigroup [17].

3.3 S-expansion of the osp (4|1) superalgebra

In this section, we shall consider the AdS superalgebra osp (4|1) as a starting point.
We will see that different choices of abelian semigroup S lead to new D = 4 superalgebras.
In every case, before applying the S-expansion procedure it is necessary to decompose the

original algebra g as a direct sum of subspaces V),

g=osp(4]1) =s0(3,1) @

=VeViel, (3.18)
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where V[ corresponds to the Lorentz subspace generated by Jup, Vi corresponds to the
fermionic subspace generated by a 4-component Majorana spinor charge @, and Vi corre-
sponds to the AdS boost generated by P,. The osp (4|1) generators satisfy the (anti)commutation

relations given by (2.4) — (2.8)).

The subspace structure can be written as

[Vo, Vo] € Vo, Vi,Vil c Vo @ Vs, (3.19)
Vo, Vil € W4, Vi, Vo] C V4, (3.20)
Vo, Vol C Vo, [Vo, Vo] C Vh (3.21)

The next step consists in finding a subset decomposition of a semigroup S which is

"resonant” with respect to (3.19) — (3.21)).

3.3.1 Minimal D =4 Maxwell superalgebra

Let us consider S](;) = {0, A1, A2, A3, Ag, A5} as the relevant abelian semigroup whose ele-

ments obey the multiplication law

h <
Aads = { Aoty whenatf<5, (3.22)

s, when a4 3 > 5.

In this case, A5 plays the role of the zero element of the semigroup S](;‘), so we have for each
Ao € Sgl), AsAa = A5 = 05. Let us consider the decomposition S = Sy U S7 U Sy, with

SO = {)\07)\27)\47)\5}7 (323>
Sl — {)\1, )\3, )\5} y (324)
Sy = [, Ay As ) (3.25)

One sees that this decomposition is resonant since it satisfies the same structure as the

subspaces V, [compare with egs. (3.19)) — (3.21)]

So-SoC So, S-S C S NSy (3.26)
SO -5 C Sl, S-S5y C Sl, (327)
S() . SQ C SQ, SQ . SQ C So. (328)

Following theorem IV.2 of [18], we can say that the superalgebra

Gr=Wyd W, & Ws, (3.29)
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is a resonant super subalgebra of Sgl) X g, where

Wo = (So % Vo) = Ao, Az Aas Ak x { s} = { o Mo s, Aan s} (3.30)
Wi = (St % ) = {2 A} % {Qaf = {0Qas 2eQas 2sQu | (3.31)
W2 = (SQ X ‘/2) = {/\2, A4, /\5} X {jﬁa} = {)\2]5&,/\4}3&, /\5]511} . (332)

In order to extract a smaller superalgebra from the resonant super subalgebra &y it is
necessary to apply the reduction procedure.
Let S, = S, U S, be a partition of the subsets S, C S where

So={No; o M}, S ={As), (3.33)
Si={\ N}, S ={\s), (3.34)
Sy = {\}, Sy ={ M, As}. (3.35)

For each p, S'p N Sp = ¢, and using the product (3.22) one sees that the partition satisfies
[compare with ecs. (3.19) — (3.21])]
So'gocgo, Sl'glcgoﬂs’g,
S() . 5’1 - S’l, 51 . SQ C 5’1, (336)
So- Sy C Sy Sy Sy C S,

Then, following definitions of [I8], we have

Gr= (S0 x Vo) ® (S1 x V1) & (S2 x Va), (3.37)
6r=(Sox Vo) @ (Six Vi) @ (% x W), (3.38)

where
[653, éR] C B, (3.39)

and therefore ‘@ R| corresponds to a reduced algebra of &z. This S-expansion process can

be seen explicitly in the following diagrams:

As | Jabs | Qas | Pas As
i | Japa P4 M| Jaba
A3 Qa3 A3 Qa3
Az | Jav2 Py Ao | Jup2 P, : (3.40)
A1 Qa1 A Qo
Ao | Jabo o | Jabo
Voo Vi W Voo i W,
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where we have defined Jy,; = )\ijab, P,,= \, P, and Qa,i = )\iQa. We can observe that the

first diagram corresponds to the resonant subalgebra of the S-expanded superalgebra 5534) X

osp (4/1). The second one consists in a particular reduction of the resonant subalgebra.
Thus, the new superalgebra is generated by {Jab, Py, Zoas Zoab, Qa, Za} where these new

generators can be written in terms of the original AdS generators as

Jap = Jabo = Aodav,  Pa = Pap = AaF0,
Zab = Jab,Q - /\2Jab7 Zab = Jab,4 - /\4Jab7 (341>
Qa = Qa,l = >\1Qo¢7 Ea = Qa,3 - )\SQa-

These new generators satisfy the commutation relations

[Jaba ch] = nchad - 7/IULchal - ndeac + nadt]bca (342>
[Jaba Pc] = nbcPa - nacha [Paa Pb] = Zaba (343)
[Jaba ch] - nchad - nachd - nbdZac + nadeca (344>
1
[P(h Qa] = _5 (’Yaz)a ’ (345>
1
[Jaba Qa] = _5 (fVabQ)a 5 (346>
1
[Jab7 Za] = _5 <7abz>a ) (347)
1 _
{QuQs} = =5 | (17C) y Zun = 2(1°C) s P (3.48)
1
{QOH Zﬁ} = _5 (/yabo)aﬁ Zaba (349)
Jab7 Zab = nchad - nachd - 77bdZac + nadecu (35())
Zavs Zea| = MeZad — NacZd — M Zac + NadZbe, (3.51)
11
Zaba Qa - _5 (Vabz)a 5 (352>
others = 0, (3.53)

where we have used the multiplication law of the semigroup and the commutation
relations of the original superalgebra. The new superalgebra obtained after a reduced
resonant S-expansion of the osp (4|1) superalgebra corresponds to the minimal Maxwell
type superalgebra sM, in D = 4 . One can see that imposing Z,, = 0 leads us to the

minimal Maxwell superalgebra sM [55, 57]. This can be done since the Jacobi identities
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for spinors generators are satisfied due to the gamma matrix identity (C7*),5 (Ca) 15y = 0
(cyclic permutations of a, 3, 7).

In this case, the S-expansion procedure produces a new Majorana spinor charge Y. The
introduction of a second abelian spinorial generator has been initially proposed in [48] in
the context of D = 11 supergravity and subsequently in [59] in the context of superstring
theory.

The sM superalgebra seems particularly interesting in the context of D = 4 supergravity.
In fact, in [58], it was shown that the D = 4, N/ = 1 pure supergravity Lagrangian can be
written as a quadratic expression in the curvatures of the gauge fields associated with the
minimal Maxwell superalgebra. As we will see in the next chapter, the same result can
be found for the minimal Maxwell type superalgebra sM, (and its generalization sM,,2),

using the S-expansion method.

3.3.2 Minimal D =4 Maxwell type superalgebra sMj

In [I7] it was shown that the Maxwell type algebra M,, can be obtained from an S-
expansion of AdS algebra. These bigger algebras require semigroups with more elements
but with the same type of multiplication law. Since our main motivation is to obtain a
D = 4 Maxwell type superalgebra sM,, it seems natural to consider a semigroup bigger
than Sgl) = {0, A1, Ao, A3, Ay, A5} As in the previous case, we shall consider g = osp (4/1)
as a starting point with the subspace structure given by egs. — (3.21).

Let us consider Sgi) = {0, A1, A2, A3, A\, As, Ag, A7} as the relevant finite abelian semi-

group whose elements are dimensionless and obey the multiplication law

Aa+8 h <7,
Ndy = § Nt when o[ (3.54)
A7, when o + 3 > 7,
where A7 plays the role of the zero element of the semigroup Sg). Let us consider the
decomposition S = Sy U S7 U .Sy, with
SO = {>\07>\27>\47)\67)\7} ) (355>
Sl - {>\17>\37)\57)\7} ) (356>
SQ - {)\2,)\4,)\6,)\7} . (357)

This subset decomposition of 51(56) satisfies the resonance condition since it satisfies the same
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structure that the subspaces V, [compare with egs. (3.19) — (3.21))]

So - So C So, Sy -5, C Sy S, (3.58)
So-S1 C Sl, S1-5, C Sl, (359)
S() -5y C SQ, Sy - Sy C S(). (360)

Therefore, according to Theorem IV.2 of [18], we have that
Gr=Wo+ W, + Wy, (3.61)

with
W, =8, x V,, (3.62)

is a resonant super subalgebra of & = S x g.

As in the previous case, it is possible to extract a smaller superalgebra from the resonant
subalgebra & using the reduction procedure. Let S, = Sp U Sp be a partition of the subsets
S, C S where

So={Xo, A A}, So={De M), (3.63)
Si={A 0 , S ={\}, (3.64)
52 - {)\27 )\47 )\6} ) g2 == {)\7} . (365>

For each p, S’p N Sp = @, and using the product (3.54)) one can see that the partition satisfies
[compare with ecs. (3.19) — (3.21])]
So'gocgo, Sl'glcgoﬂSQ,
S() . Sl C S’l, Sl . gg C S’l, (366)
SO‘S’QCS’Q, SQ‘SQCS’O.

Then, we have

Gr=(Sox Vo) @ (S x Vi) @ (S2 x Va), (3.67)
Gp = (SO X V0> @ (31 X \/1) @ (Sz X V2> , (3.68)

where
[QSR,@SR] C &p, (3.69)

and therefore !@ R} corresponds to a reduced algebra of &p.
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The new superalgebra is generated by {Jab, P, Zu, Zab, Zg, Za, Qos2Xa, @a} where these

new generators can be written as
Jab = Jabo = Nodab,  Za = Paa = MP,
Po=Pi2=XFi Q= Qa1 =M,
Zay = Jaba = Maaps o = Qas = A3Qa;
Zab = Janz = Madap, Pa = Qus = AsQa
Zy = Pog = NP

These new generators satisfy the commutation relations

[Jabs Jea] = Moead — NacTbd = MbdSac + NadJe,
[Jabs Pe] = MhePa — Nac b, [Pa, By] = Zap,
[Jabs Zed] =

(Zabs P]

- nbc ad — nachd - nbdZac + nadeca
77bc a nach) [Jab7 Zc] = ncha - nacha

[Zaba ch - nchad - nachd - 7717ch0,(: + nadecy
[Jaba ch = nchad - naCZbd - nbdZac + nadecy
ncha - naCZl” |:Zab> Zc:| = ncha - nach

|:Jab7 Zc ncha - nachn

[Zab7 Pc_

o Qel = =3 Qs VBl = =5 ()
o @) = =5 (). [ZanQu] = 5 (D),
2, 50) = =5 Ga®)s Za @l = =5 (),
PaQel = =3 (uDas [Pa ] = =5 (B,
[20,0u] = 5 (u2),.
(Qu @5} = 3 [(5C) s Zus — 2(0), P
Qa0 = 3 [(70), ., Zu —2(C)y 2]
(Qur s} = (1°C) s Z = {5 55},
others = 0,

(3.70)
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where we have used the multiplication law of the semigroup and the commutation
relations of the original superalgebra — . The new superalgebra obtained after a
reduced resonant S-expansion of osp (4|1) superalgebra corresponds to a minimal Maxwell
type superalgebra sMs in D = 4. Interestingly, this new superalgebra contains the Maxwell
type algebra Ms = {Ju, Pu, Zap, Za} as a subalgebra [12], [17].

In this case, two new Majorana spinor charges > and ® appear as a consequence of the S-
expansion. These fermionic generators transform as spinors under Lorentz transformations.
One sees that the minimal Maxwell type superalgebra sMj requires new bosonic generators

<Zab, Za, Za> and X is not abelian anymore. It is important to note that setting Zab and

Z, equal to zero does not lead to a subalgebra. In fact, these generators are required
in Jacobi identity for (Qa,@g,%,) due to the gamma matrix identity (C7*) 5 (C7a) 5 =
(C’v“ﬁ)(aﬂ (C7as) .5y = 0 (cyclic permutations of a, 3,7).

3.3.3 Minimal D =4 Maxwell type superalgebra sM,, -

Let us generalize the previous setting. In order to obtain the minimal D = 4 Mawell
type superalgebra sM,, 2, it is necessary to consider a bigger semigroup. Let us consider
ng) = {0, A1, A2, -, Aaua1} as the relevant finite abelian semigroup whose elements are

dimensionless and obey the multiplication law

Aot s h < Ao,

Aadg = +8 when o+ < Ay (3.88)
Aot 1, when a + 8 > Agpy1.

where Ag,,11 plays the role of the zero element of the semigroup. Let us consider the

decomposition ng) = 5o U S1 U Sy, where the subsets Sy, S1, 52 are given by the general

expression

2m —p

S, = {A%ﬂ,, withn =0, { ”u{AQmH}, p=0,1,2. (3.89)

This decomposition is said to be resonant since it satisfies [compare with eqs. (3.19]) — (3.21))]

SO . S() C S(), Sl : Sl C S() N 52, (390)
S() . Sl - Sl, Sl . SQ C Sl, (391)
So-S5C Ss S35 C S (3.92)
Thus, we have that
Gr=Wyd W, & Ws, (3.93)
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with
W, =8, xV,, (3.94)
is a resonant subalgebra of & = S x g.
As in previous cases, it is possible to extract a smaller algebra from the resonant sub-

algebra By using the reduction procedure. Let S, = gp U Sp be a partition of the subsets
S, C S, with

So = {Aan, with n. = 0,--- ,2[m/2]}, So = {(Aam); Aams1 (3.95)
Sl = {)\2n+17 Wlth n = O, e, — 1} s 31 = {>\2m+1} N (396)
SQ = {/\2n+27 Wlth n = 0, cee ,2 [(m — 1) /2]} s SQ = {(/\Qm) s )\2m+1} s (397)

where (Ag,) means that Ay, € So if m is odd and Ag,, € Sy if m is even. For each p,
S*p N Sp = &, and using the product one sees that the partition satisfies [compare with
ccs. (19) - (B2D)

So- Sy C Sy, S-S CSyN Sy,

So-S8yC Sy, S-Sy Sy, (3.98)

So- Sy C Sy, Sy Sy C S,

Thus,
G =Wy @ W) ® W, (3.99)
corresponds to a reduced algebra of &g, where
Wo = (So x Vo) = {Aon, withn =0, ,2[m/2]} x {jab} : (3.100)
Wi = (S % Vi) = {Aaner, withn =0, m = 1} x {Qu} (3.101)
Wy = (S x Va) = {Agnsa, Withn =0, ,2[(m—1)/2]} x {ﬁa}. (3.102)

Here, Jy, P, and Q, correspond to the generators of osp (4|1) superalgebra. The new

superalgebra obtained by the S-expansion procedure is generated by

{Jur P 28 20, 200, 20, Q0. 30, 00} (3.103)
where these new generators can be written as
Jab = Jabo = Xoabs Z = Poa = AuP,
Po = Poz = AP, Qa = Qa1 = MQa,
25 = Jaar = Awda, S8 = Qa1 = A 1Qa (3.104)

Z,SIZ) = Jupar—2 = Aak—2Jab, o) = Qatir1 = Mit1Qu,
Z{ = Pyaiv2 = A2 Py
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with £ = 1,...]

(2], 1=1,...

Tt

It is important to note that the super indices &

and [ of spinor generators correspond to the expansion labels and they do not define an

N-extended superalgebra. The N-extended case will be considered in the next section.

These new generators satisfy the commutation relations

[Jab7 ch] - nchad
[Jaba Pc] - nbcpa

|:Jab7 ZC(S)

N

2.

o
23, 20

ab

k ]
[Z() Zc((]i)

k
= chZéd)

- nachd
- Uach,

[Fa,

- nchL(zk) - nacZ{Ek)7

[P0 2] = 25

29,29] = .
[Jab; 75

[Zfl’;), P,
7. 20
7.2

Zfll), 7 én)
74.28) =

= anZ(Ed
_ = nch((zk)

- _ nchékH)

] l+n)
=z

- nch

Z(k+J 1)

~k)

1_ nchL(lkHA) .

a Y

> (k+7)

— NacZpg
nacZ( ),

- nacZ

- nchék—H) - nacZ(Sk—H)a
- chZ(kﬂ) - nacZ(E )

- nachgs) - nbdZL(w) + naleg )

- ndeac + nadjbw
P =

1)
Zab )
)

[Jab, Zc(l)} = chZél)

20, 28] = 24

(k+5—1)
achd !

(k)

. Z(k+l71)

- nbch(Lc) + nadZIEc )

—nachfk“), [Z"“) Zc(l)

ab

)

[pa 20 >] Z

[Z(n Z(m] — Zlnn)

> (k+7)
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— Z(k+3)+na Z(k’ﬂ)7

l
- nacZ[E )7

— paZ D) 4 g 2,

— g ZEH 4 g Z Y,

|:Jab Z( )} = nch(gl) - nacZISl)a

} = oo ng“) e Zék”)

I+1)

ab
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[Jabs Qo) = —% (Yar @), » [Jap, S| = —% (Ya2®)_, (3.119)
AR —% (@), [Z;’;), Oul| = —% (wZ®)._, (3.120)
28,39 = —% (@ 70) |2, 0] = —% (= ®H) (3.121)
[ZCE’;), .| = —% (1 ®®) [ZCE’Z), Egﬂ - —% (=) | (3.122)
[Zg’g)@g)_ - —% (@) [P Qal = —% (7.2D) | (3.123)
[P 50) = —3 (@), [P 80) = —f (2") (3.124)
[200.Q.) = —5 (u®),,  [20,50)] = 5 (u50), (3.125)
200, 2] = _% (@) [20.Q.] = _% (12D (3.126)
[z, 2] = —% (@), [Z0, 0] = —% (Yo ZUH DY | (3.127)
(Qu @5} = —5 [(10),, 28 —2(°C) 2] (3.128)

{ " zg’“)} - —% :(yabo)aﬁ Z® —2(y°C),, Zg’ﬂ : (3.129)

{Qa, @g”} - —% :(’y“bC)aﬁ 780 20, Zé’)] , (3.130)
{50,590} = 2 [(50),, 25 — 2(1°0),,, 2857V (3.131)
{2009} = =5 [(0),, 25" = 2(5°C).y 2849 (3.132)

{o0, 0"} — -2 1(y2C),, 24D = 2(4C),, 204 | (3.133)

with k,7=1,..., [%}, Iln=1,..., [mT’l] These (anti)commutation relations are obtained
using the multiplication law of the semigroup and the (anti)commutation relations of
the original superalgebra — . One sees that when k£ +1 > [%] the generatos Tf(‘k)
and Tg) are abelian.

The new superalgebra obtained after a reduced resonant S-expansion of osp (4]1) su-
peralgebra corresponds to the D = 4 minimal Maxwell type superalgebra sM,,». This

superalgebra contains the Maxwell type algebra M,,.o = {Jab, P, 7 (%) Zél)} as a subalge-

ab
bra (eqs. (3.105) — (3.111))) [12], [I7]. Interestingly, when m = 2 and imposing Zéi) =0

we recover the minimal Maxwell superalgebra sM. The case m = 1 corresponds to D =4
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Poincaré superalgebra sP = {Ju, P,, Qo }. This is not a surprise since the reduced resonant
Sg)—expansion of osp (4|1) coincides with an Indnii-Wigner contraction.

In this case, the S-expansion method produces new Majorana spinors charge ¥*) and
®" . These fermionic generators transform as spinors under Lorentz transformations. One
can see that the Jacobi identities for spinors generators are satisfied due to the gamma matrix
identity (C") 5 (CVa) ) = (C’”y“ﬁ)(aﬁ (C7as) .5 = 0 (cyclic permutations of a, 8,7).

3.4 S-expansion of the osp (4|N') superalgebra

3.4.1 N-extended Maxwell superalgebras

We have shown that the minimal D = 4 Maxwell type superalgebras sM,, o can be
obtained from a reduced resonant ng)—expansion of 0sp (4|1) superalgebra. It seems natural
to expect to obtain the D = 4 N-extended Maxwell superalgebras from an S-expansion of
the osp (4|\V) superalgebra.

Let us consider the following decomposition of the original superalgebra g as a direct

sum of subspaces V,

g=o0sp(4N)=(s0(3,1)®so(N)) &

osp (4|NV) sp (4)
sp(4) dso(N)  s0(3,1)
=Vho Vo, (3.134)

where Vj corresponds to the subspace generated by Lorentz generators J,, and by W

internal symmetry generators T, V; corresponds to the fermionic subspace generated by N

Majorana spinor charges Qg (i=1,---,N;a=1,---,4) and V5 corresponds to the AdS
boost generated by P,. The osp (4|A) (anti)commutation relations read

[jaba jcd = 77bcjad - nacjbd - 7/}bdjac + nadjbca (

[TZJ7Tkl:| — 5jkTil o 5iijl . 5le7,k + 6ilTjk7 (

|:jab> pc = nbcpa - nacpba (

(

|:pa7 pb- = ~ab7
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[ ab:QZ:| =—c (’m@’) , [f’a,QQ] = —% (%@i)a, (3.139)
[ i } _ (5%@1 5%’“@;), (3.140)
(@@} = =307 [(070) I 20°C) B] + Coat, (341

where 4,5, k, 1 =1,...,N.

The subspace structure may be written as

Vo, Vol Vo, Vi,V C Vo Va, (3.142)
Vo,ilc v, W, Vo] €V (3.143)
Vo, Vo] C Vo, [Va, Vo] C VA (3.144)

Let us consider S](;) = {0, A1, A2, A3, Ag, A5} as the relevant finite abelian semigroup whose

elements obey the multiplication law

h <
Ny = Ao+,  when ao+ 3 <5, (3.145)
As, when o+ 3 > 5.
In this case, A5 plays the role of the zero element of the semigroup SS)
Let Sg) = Sp U S; USs be a subset decomposition of Sg) with
SO = {>\07>\27>\47>\5}7 (3146)
S1={A1, A3, A5}, (3.147)
SQ == {)\2, )\4, )\5} y (3148)

This subset decomposition satisfies the resonance condition since we have [compare with egs.
(3.142) — (3.144))]

SO'S()CS(), 51'31C80ﬂ82,
So-S51C Sy, Si-5CS, (3.149)
So Sy C Sy, S35 CSp.

Thus, according to Theorem IV.2 of [I§], we have that

Gr =Wy d W & Wy, (3.150)
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is a resonant subalgebra of Sj(;) X g, where

= (So x Vo) = {0, A2, Mg, As} X { abaT]} (3.151)
{)\ No s Mo AsTuns AT AT N, T AT } ,

= (S1 x V1) = {1, A3, A5} x { } = {/\1Qa, A3Qa, AsQa} ; (3.152)
= (Sy x Vo) = {Aa, Ay, As} < { } = {AQR, AP, A515a}. (3.153)

Imposing A\sT4 = 0, the Og-reduced resonant superalgebra is obtained. Thus, the new
superalgebra is generated by {Jab, Py, Zay, Zap, Zgy Q1,50 T4 Y Y } where

Jab = Jabo = Aodar, QL = QL1 =M@,
Pa - Pa,2 - )\2Pa> Z’a - 2273 - )\3@7;,
Zab = Jab,4 == )\4Jab; Tij == T% = )\(),I’ij7 (3154)
Zab = Jab,2 = )\2jab7 Yij = TL,ZL = )‘4Tij7
Zo=Pos=MP,, YU =T%=X\T7.

Then using the multiplication law of the semigroup (3.145) and the (anti)commutations
relations of the original superalgebra (3.135)) — (3.141]) we find the new superalgebra

[Jabs Jed) = Mbedad — NacIbd — Mbdac + NadJIbes ( )
[Jabs Pe) = b Pa — Nac P, [Pa; B] = Zap, ( )

[t ch] = MpeZad — NacLvd — MbdLac + NadLbes ( )
[Jab, o = = MoeZad — NacZbd — M Zac + Nad Zve, (3.158)
(3.159)

(3.160)

(3.161)

!

j

|

cd| — nchzzd - nachd - nbdZac + nadeca

= ncha - Uach,

Zaba
[Jaba Zc
[Zaba Pc = ncha - nacha

[T, T = Rt — Gl — ik 5k, (3.162)
[T, yH] = §ikyil — gikyil _ ity 4 gilyik (3.163)
[Tu’,f/kl} — gikyil _ gikyil _ giltyik oy gityik (3.164)
[~ i Yf“} — gikyil _ giky it _ gityik o gity ik, (3.165)
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|: ab) Ql} = % (’YabQ )a ) [Zaba Qla] = —% (’Yabzi)a, (3166)
[Jap, B4 ] = 1(mE) , [T, Q%] = (6%Q%, — 6" Q%) (3.167)
[T7,5k] = (67F%, — 6%, (3.168)
[Y” Qk} = (5F — gy (3.169)
[P, Q4] = ( 5. (3.170)
{QL.Q%} = —%5” [('y“”C)aﬁ Zap —2(7°C) 5 ] + oY, (3.171)
{Q..2%} = —%5” [(7“”O)a6 Zap —2(1"C) o5 } + ClpY ¥, (3.172)

others = 0. (3.173)

The new superalgebra obtained after a reduced resonant Sg)—expansion of osp (4|N)
superalgebra corresponds to the D = 4 N-extended Maxwell superalgebra s./\/lle). An
alternative expansion procedure to obtain the N-extended Maxwell superalgebra has been
proposed in [57]. Interestingly, this superalgebra contains the generalized Maxwell algebra
gM = {Jab,Pa,Zab,Zab,Za} as a subalgebra (see Appendix B). One sees that the S-
expansion procedure introduces additional bosonic generators which modify the minimal
Maxwell superalgebra [see eqs. , ] Naturally when Z, = Z,;, = Y9 = Y4 =
0, we obtain the simplest D = 4 N-extended Maxwell superalgebra sM™N) generated by
{Jats Py Zap, Q2 Top} . Eventually for N = 1, with T, = 0, the D = 4 minimal Maxwell
superalgebra s M is recovered.

It is important to note that setting some generators equals to zero does not always lead
to a Lie superalgebra. However, the properties of the gamma matrices in 4 dimensions allow
us to impose some generators equals to zero without breaking the Jacobi identity.

We can generalize this procedure and obtain the M -extended Maxwell type superalgebra
stQ as a reduced resonant S-expansion of asp (4|A) , when S™ = {Ag, A, A2, -+ , Aot}
is the relevant abelian semigroup. In fact, if we consider a resonant subset decomposition
SP™ = Sy U S U S,, where

2 —
Sp = {/\Qn-f—pa with n = Oa T |: m2 p:| } U {)‘2m+1} ) p= 07 17 27 (3174)
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and let S, = S, U S, be a partition of the subsets S, C S where

SO - {)‘2717 with n = 07 to 72 [m/Q]} ) SO = {(/\Qm) ) >\2m+1} ) (3175)
Sl = {)\2n+17 with n = O, cee,Mm — 1}, 5’1 = {)\2m+1} s (3176)
So = {danya, withn =0,---,2[(m—1)/2]}, Ss={(Nam), Noms1} (3.177)

where (Ay,,) means that Ay, € 30 if m is odd and Ay, € 5’2 if m is even. This decomposition

satisfies the resonant condition for any value of m and we find that

6R2<Sox%)@

corresponds to a reduced resonant algebra.

(51 ><V1)@

(Sy x Vo), (3.178)

This new superalgebra correspond to the N-

extended Maxwell superalgebra type s./\/lfnj\i)2 which is generated by

{Jab,P ZW 70 g®) 70 gi i) i) i yik) yiik >} (3.179)

These generators can be written as

Jab - Jab,O - /\OJab, Pa - Pa,2 - )\Qﬁ)a,u

ZC(L];) = Jabak = AaxJap, Zélz) = Japak—2 = Mk—2Jap,

Z{ = Py aiv2 = M2 Py, chl) = P,u = AuFy,, (3.180)

Q= Qui=h@ = Q= daa@i

(I) ) = — a 4l+1 — )\4Z+IQQ7 TZ] = Tl,jO = AOTijJ

yii(k) — Tik = AT, yii(k) — Tz,zlk72 = Ap_o T,
with £ = 1,..., [%], [ =1,..., [mT_l}, i,7 = 1,...,N. The new bosonic generators

{Zaba Zaba Zaa Za: Yija Y/ij

modify some anticommutators of the minimal Maxwell type su-

peralgebra ((3.128]) — (3.133))). Now we have
) . 1.7 ~
QL QLY = —=89 | (vC) 7 —2(1°C) 5 Pu| + CapV D, 3.181
@ ¥ p 2 aB “ab B
. . 1.7
[QL 20} = =507 [(170),., 2%~ 2("C), } T CogY 9, (3.182)
o 1.1 ~ o
{QL 0} = =509 |(770) 5 24TV = 2(1°C) 0y 28] + CagV IV, (3.183)
) . 1.7 ~ o
(50,500} = Ly [(190) , 2870~ 2.00),, 2057 4 ¥ 0, (318
. . 1 ...71
{Eg(k:)’ (b]ﬂ(l)} _ 551] (,Yabo)aﬁ Z((ZIZ—H) _ ( ac) k-i—l ] +C, YZ] k:-l—l) (3185)
. 1.7 . .
{010,040 = L3 [(0) 207 —200) , 200 4 Caf 0, (3150
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with k,¢ = 1,...,[2], Ln = 1,...,[%%], 4,j = 1,...,N. The internal symmetries
generators also brings some new commutation relations besides the commutators (3.105|) —
(13.127]),

[T, 179" = 79T — 597" — §IMTH9 4+ 599,
[TU y 9h( k)} gy ih(k) _ sigy ih(k) _ sihyrig(k) + (5ihng(k)
[Tij, y gh(k )] — §iayih(k) _ sigyih(k) _ sihyrig(k) + §ihyig(k)

[f/ij(k)’ th(q) — §layihlk+a) _ sigy ih(k+a) _ sihyrig(k+q) + 5ih{/jg(k+q),

(3.187)

(3.188)

(3.189)

[fﬂj(k)’ ?gh(q)_ — Siayihk+e=1) _ gigyjh(k+q=1) _ sihyrig(k+q—1) + (5ihng(k+q—1)’ (3.190)
(3.191)

[yij(k)’ ygh(q)} — §loyik+a) _ sigy ih(k+a) _ sihyrig(k+a) 4 5Z‘hng(k+q)7 ( )
(3.193)

[T9,Q.]) = (07*Q, — 6™Q5)

[T, 390)] = [yz‘j(m,chx} = (51950 — giaxih)) (3.194)
[T, p9®] = [yi®) Q1] = (5195i) — 5iogith)) (3.195)
[ymk)’@i(q)} = [y 53] = (goxithra) _ gioxyib+a)) (3.196)
[fn‘j(k)’ gg(q)} = (§9gpiltat) _ siagilkta—1)) (3.197)
[V @ol@)] = (sisgilhra) _ giagilk+a)) (3.198)

As in the case of the minimal Maxwell type superalgebra, one sees that when k+q > [%]
then the generators Tﬁ‘k) and T t(;q) are abelian. As in the previous case, the S-expansion
method produces new Majorana spinors charge ¥!*) and ®*") which transform as spinors
under Lorentz transformations.

The N-extended Maxwell type superalgebra SM%\QQ contains the Maxwell type algebra
Mpyo = {Jab, P,, ZC(LIZ), Zél)} as a subalgebra (eqgs. (3.105) — (3.111)) [I7]. We can see that

for m = 2, we recover the D = 4 N -extended Maxwell superalgebra SM&N). It is interesting
to observe that for m = 1, we obtain the D = 4 N-extended Poincaré superalgebra sPW) =
{Jap, Pa, Qo, T9}.  This is not a surprise because the reduced resonant SS)—expansion of
0sp (4|N') coincides with an Inonii-Wigner contraction.

In summary, we have shown that the Maxwell superalgebras found by the MC expansion
method in [57], can be alternatively derived by the S-expansion procedure. In particular,

the S-expansion of osp (4]1) allowed us to obtain the minimal Maxwell superalgebra sM.
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Then, choosing different semigroups we have shown that it is possible to define new minimal
D = 4 Maxwell type superalgebras sM,, o, which can be seen as a generalization of the
D’Auria-Fré superalgebra and the Green algebras introduced in [48], [59] respectively.

We also have shown that the D = 4, N-extended Maxwell superalgebra sMW) derived
initially as a MC expansion in [57], can be alternatively obtained as an S-expansion of
osp (4|N). Choosing bigger semigroups we have defined new D = 4 N-extended Maxwell
type superalgebras sM%QQ. Clearly, when m = 2 we recover the sM@W) superalgebra and
for ' = 1 we recover the Maxwell type algebra sM,, .

As we shall see in the next chapter, the minimal Maxwell type superalgebra sM, (and

its generalization sM,, 2) can be used to construct dynamical actions in D = 4.
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Chapter 4

N =1, D =4 Supergravity and
Maxwell Superalgebras

4.1 Introduction

The so-called Maxwell algebra M corresponds to a modification of the Poincaré sym-
metries, where a constant electromagnetic field background is added to the Minkowski space
[49], [50], [510, [52], [54], [61]. In D = 4 dimensions this algebra is obtained by adding to the
Poincaré generators {J,, P,} the tensorial Abelian charges Z,;, modifying the commutator

of the translation generators P, as follows
[P, By = Zg. (4.1)

In this way, the Maxwell algebra is an enlargement of Poincaré algebra, i.e., if we consider
Za = 0 we recover the Poincaré algebra. As we discussed above this Maxwell algebra can
also be obtained through an expansion procedure from the AdS Lie algebra so(3,2) [16],
[57] using Sg) = {0, A1, A2, A3}.  Moreover, this result was extended to all Maxwell type
algebras M,,, which can be obtained as an S-expansion of the AdS algebra using bigger
semigroups [17].

In the context of supersymmetry, the minimal D = 4 Maxwell superalgebra sM is
obtained as an enlargement of the Poincaré superalgebra [53]. This is particularly interesting
since it describes the supersymmetries of generalized N' = 1, D = 4 superspace in the
presence of a constant abelian supersymmetric field strength background. This superalgebra
can also be obtained using the Maurer Cartan expansion method [57], and can be used to

obtain the minimal D = 4 pure supergravity from the curvature 2-form associated to sM [5§].
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Furthermore, in the previous chapter we saw that this superalgebra and its generalization
$M 42 can be found as an S-expansion of the osp (4]|1) superalgebra [60].

In this chapter, we present one of the main results of this thesis. Following Ref.[62],
we shall construct the minimal D = 4 supergravity action from the minimal Maxwell type
superalgebra sM,. To this aim, we will apply the S-expansion procedure and we will build
a geometric action a la Mac Dowell-Mansouri with the expanded curvature 2-form. We
show that N/ = 1, D = 4 pure supergravity can be derived alternatively as the MacDowell-
Mansouri like action, which is constructed exclusively in terms of the curvatures of the
Maxwell type superalgebra sM,. Eventually, we extend this result to all minimal Maxwell

type superalgebras sM,, 1o in D = 4.

4.2 D =4 pure Supergravity from sM;,

In the previous chapter, we introduced the minimal Maxwell type superalgebra sM,
in D = 4. This superalgebra was obtained after a reduced resonant Sg)—expansion of
the osp (4|1) superalgebra, and its generators {Jab,Zab,Zab,Pa,Qa,Za} satisfy the (anti)-
commutation relations — (3.53).

In this section, we present a geometric formulation of N/ = 1 supergravity in four dimen-
sions, where the relevant gauge fields of the theory are those corresponding to the minimal
Maxwell superalgebra sM,. In order to write down an action for sM,, we start from the

one-form gauge connection

1 1., -~ 1 1 1
A= —w®, + §k;abZab + 5k“”Zab + Ze*P, + —10*Qq +

1 a

Vi

where the 1-form gauge fields are given by

wab _ w(ab,O) _ /\Oajab7 et = e(a?) — /\2éa’
Rt = WD = dom®, gy = @D = Age,
kb = wlabd) = N\t o = h(@3) = )\3&&’

where &%, & and 1) are the components of the osp (4]1) connection (see eq. (2.9)) and the
Ao are the elements of the Sg) = {0, A1, A2, A3, Ay, A5} semigroup.
The associated curvature two-form F' = dA + AN A is
1 1

VOQ, + —=°%,,  (4.3)

1 1 1~ -~ 1
F=FAT, = §R“bJab + -RP,+ ~F®Z , + -F%Z, + 7

I 2 2 Vi
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where

R = dw™ + ww®, (4.4)
R® = de” + w%e’ — w’yw (4.5)
Fob = d® 4 0wtk — Wb e Qllm“”@b, (4.6)
Fo = dk® 4 o ke — (b ko | RO %eaeb i %g—vab% (4.7)

¥ = do + wan™b = Dy, (4.8)

1 1- 1
==d —Wq, ab _ka ab _aa
€+4ww §+4 bY ¢+2567¢

1+ 1
= D¢+ Zkabfyabw + ﬂea%w. (4.9)

From the Bianchi identity VF = 0, with V = d + [A, -], one finds the Lorentz covariant

exterior derivatives of the curvatures,

DRab — 07 (410)
DR" = R%e" + ¢V, (4.11)
. . 5 1_
DFab — Rackcb - Rbckca o iw,.yab\p (412)
. - 1
DF™ = Rk = ROK + Pk — Foket + 55 L paeh — i (4.13)
1=, 1.,
T "y — 757 ", (4.14)
1
DY = £ Ruy™, (4.15)
- 1 1
D= = ZRaw“bf — aw“b‘lf + 4Faw“b¢ + R“ﬂyaw 5° v, . (4.16)

Then, the action can be written as [2§]
S:Q/(F/\F> :2/FA/\FB (TaTB) 1, » (4.17)

where (T'4Tp) corresponds to an S-expanded invariant tensor which is obtained from ([2.18]).

In fact, using Theorem VII.1 of [1§] it is possible to show that the non-vanishing components
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of the S-expanded invariant tensor are given by

(ot Tea) s, = @0 ( JovTea) (4.18)

<‘]“bZCd>SM4 = a5 (apJua) (4.19)

<Z‘“’Z“l>sM4 = s (apJua) (4.20)

(JabZea)ops, = 4 <jabj;d> , (4.21)

(QaQs) oty = 2 (Qus) (4.22)

(QaZ8) opg, = 4 (a5 ) (4:23)

where

(JasTea) = Catea (4.24)

(Quls) =203 (4:25)

are the invariant tensors required to reproduce the MacDowell-Mansouri action for the
osp (4]1) superalgebra [2§] (see Chapter 2, Section 2.3), and the «o’s are dimensionless arbi-
trary constants.

Considering the different non-vanishing components of the invariant tensor -
and the curvature two-form (4.3)), we found that the action can be written as

1 1 ~ 1
S = 2/ (Z—laoeabcdRabRCd + §a2€abcdRabFCd + §a4€abcdRabFCd

1 <o 2 - 4 -
+Z—la4€abchabFCd + 70&2\11’}/5\1’ + 70&4\11’}/55) (4.26)

or explicitly,
Qo ab ped ab My 1.cd 1 ab,7 . cd
S = ?EabcdR R 4+ amegpead | R DK + Q_ZR Py
4 " ab cd 1 7.ab My 1.cd 1 ab _c _d
+ 7a2D¢75D1/} + O4€4pcd R*DE + §Dk Dk + l_2R ece

1 -~ - ~ - 1 -
+2—leab¢’}/de+Rabkcfkfd+7Rab§’)/Cd¢)

8 . 2 . 4
+ j%DQ/J%Df + jOé4D¢75k’ab7ab¢ + 1—2044@/)6‘1%’75D¢ (4.27)
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where D = d + [w, -] . Using the gravitino Bianchi identity

1
DV = ZR“"%W, (4.28)

and the gamma matrix identity (C'1))

27ab'75 - _Eabcd76d7 (429>

it is straightforward to show that,

1 _ _ _

§€abcdRab¢”Yab¢ +4DYys DY = d (4D¢75¢) )
CaaRE) )+ 8DEys DY = d (SDEY)

1 - . .

S asea DRG0+ 208105750 = & (DA™ a750)

Thus the geometric Mac Dowell-Mansouri like action for the s M, superalgebra is given by

4
S = / %EabcdRabRCd + Oé2d (eabcdRabde + 7D¢751/1)

1 4 _
+ oy [ﬁeabcdRabeced + l—zlﬁea%%Dlﬁ

| 8 _ 1 _-
+d <eabcd <Ra%cd + 5Dkabkcd) + 75751)@0 + 7¢k“b%b%¢” (4.30)

From this action, we see that it is split into three independent pieces proportional to ag, as
and ay. The first term corresponds to the Euler invariant and can be written as a boundary
term.  The piece proportional to as is also a boundary term. The term proportional
to ay contains the Einstein-Hilbert term egp.qR%ee? plus the Rarita-Schwinger Lagrangian
dhe®y,v5 D1, and a boundary term.

From (4.30) we can see that the minimal Maxwell superalgebra sM, leads us to the
pure Supergravity action. In this way the new Maxwell gauge fields do not contribute to
the dynamics and enlarge only the boundary terms. Moreover, as a consequence of the
S-expansion procedure the supersymmetric cosmological term disappears completely from
the action for sM, [compare and ] Although the boundary terms does not
contribute to the dynamics of the theory, they play an important role in the context of
AdS/CFT correspondence [75].

The result found here can be seen as the supersymmetric case of [I7], [I9] where the

Einstein-Hilbert action was obtained from the Maxwell algebra as a Born-Infeld like action.
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Note that if we consider k% = 0, the term proportional to a4 corresponds to the action

found in [58], namely

1 _ 8 _
Sliab—g = 4 / 2 (€apcaR*e e + dpe Yy Doth) + d (EabcdRabde + 7575Dw@/)) (4.31)

which corresponds to four-dimensional pure supergravity plus a boundary term. This is not
a surprise but something expected because as we said before, setting Zay = 0 in sMy leads

us to the simplest minimal Maxwell superalgebra [57], whose curvature two-form allows the

construction of (4.31)) as was shown in [5§].

4.2.1 sM, gauge transformations and supersymmetry

The gauge transformation of the one-form gauge connection A is
0,A=Dp=dp+[A,p] (4.32)

where p is the sM, gauge parameter,
1 1., = 1 1 1 1
P = _pabJab + _ﬁabZab + _EabZab + _paPa + _lEaQa +

2 2 2 I Vi Nih

Then, using eq. (2.28) we have that the sM, gauge transformation are given by

¥, (4.33)

dw® = Dp®, (4.34)
~ ~ ~ 1
k™ = Drab — (/@1 P kbcpac) - 7", (4.35)
5kab _ D/ﬁab _ (kjacpbC _ k,bcpac> . <]%acl%bc . ]%bc/%ac>
2 1 1
+ l—Qean - 7?7“% - 7@@5’ (4.36)
Se” = Dp® + e’p + ey™, (4.37)
1 1
0 = de + Zwab%be — Zp“b’yabw, (4.38)
1 1 1 1
5S¢ =d _aba _a,a__aa__aba
& =do+ 1w™a + 57€"Va€ — 5P Vet — 1P Vabd
1~ 1
+ Zk“b’yabe - Zfzgab%bw. (4.39)

In the same way, from the gauge variation of the curvature
5,F = [F, ] (4.40)
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it is possible to show that the gauge transformations of the curvature F' are given by
SR™ = R*“pb — R®p" (4.41)
(')‘Fa,b (Rac Rbc a ( Fbc a ) o _’Yab\lf, (442>

(')‘Fab (Rac Rbc a) (Fac b Fbc a) . <Faci%b . Facga)

1_ 1
a b ab — _ab—
— = v — - = 4.4
SR" = R%p" + R'p" + ey, (4.44)
1

ov = ZR“b%be - Zp“b'yabllf (4.45)
5= = LR%0+ — R° L — Lo =g L Lty (4.46)

— 4 YabO 21 YVa€ lp Ya 4p Yab= 4 Yab€ 4’1 Yab ¥, .

Although the MacDowell-Mansouri like action is built from the sM, curvature, it
is not invariant under the s M, gauge transformations. As we can see the action does not
correspond to a Yang-Mills action, nor a topological invariant.

Furthermore, the action is not invariant under gauge supersymmetry. In fact, if we

consider the variation of the action (4.30)) under gauge supersymmetry, we find

OsusyS = —%%/RG\P%%G. (4.47)

As in osp (4|1) and super-Poincaré cases, the action is invariant under gauge supersym-

metry imposing that the super torsion vanishes R* = 0, leading to the supersymmetric action
for the sM, superalgebra in second order formalism.

Alternatively, it is possible to have supersymmetry in first order formalism if we modify

the supersymmetry transformation for the spin connection w?®. In fact, if we consider the

variation of the action under an arbitrary dw® we have that

2
0uS = l—2a4/eabcdR“eb5de, (4.48)

and thus the variation vanishes for arbitrary dw? if R* = 0. It is possible to modify dw®

adding an extra piece to the gauge transformation such that

4 _ 1
08 = —l—2a4/R“ (\11%756 — §€abcdeb5eztmw6d> ) (4.49)

In order to have an invariant action, d.pqw? is given by
Seatraw™ = 26" (Weeyavse + Waeveyse — Veaveyse) €, (4.50)
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with U = U e,
Then, the action in the first order formalism is invariant under the following supersym-

metry transformations

™ = 26 (W oevayse + Vaerevse — WeaVerse) €, (4.51)
Ok = —%ey“biﬂ, (4.52)
5k = —%E’yabf, (4.53)
de’ = ey, (4.54)
0 = de + iw“b%be = De, (4.55)
0 = %e“%e + il;;“b%be. (4.56)

Note that there is a new supersymmetry related to the spinor charge Y. The new supersym-

metry transformations are given by

dw™ = 0, 0k =0, (4.57)
1
5k = —7@7%, se* =0, (4.58)
1
5 =0, 06 = do+ Zw“b’yabg. (4.59)

Considering the variation of the action (4.30)) under the new gauge supersymmetry transfor-
mations, we find that the action is truly invariant

5,8 = 0. (4.60)

Then one can see that the action is off-shell invariant under a subalgebra of sM, given by

SLam, = {Jab, Zab, Lab,s Za} which corresponds to a Lorentz type superalgebra.

4.3 D =4 Supergravity from sM,,

In the previous chapter, we introduce the minimal Maxwell type superalgebra sM,, o
in D = 4. This superalgebra was obtained after a reduced resonant ng)—expansion of the
osp (4|1) superalgebra, and its generators {Jab, P,, Zgz), Zéf), Z(gl), Zgl), Qo, Z&p)} satisfy the

(anti)-commutation relations (3.105) — (3.133). In order to write down an action for this

64



superalgebra, we will consider a more compact notation for the (anti)-commutation relations,

namely

{Jab,(k)a Pa,(l)a Qa,(p)} ’ (461)

where these new generators can be written as

Jab,(k) = Aok Jab, (4.62)
Py = AP, (4.63)
Qa.r) = Azp-1Qa, (4.64)

with £ =0,...,m; l =p=1,...,m and where J,;, P, and Q, are the osp (4|1) generators.

The new generators satisfy the commutation relations

[ ) ])} Mo ad (k+7) — nachd (k+3) — Udeac (k+7) + 77(1dec (k+7)» (465)
[ abs(k)s Paty] = Moe Payot) — TacPo,(h41), (4.66)
[Pa.ty: Poimy) = Jab (l+n (4.67)

[ ab,(k)» ch P):| =75 ’YabQ a,(k+p) (468>
[Pow) Quw)] = —5 %Q (i) (4.69)

{@a @)= [( UC) 5 aborra) = 2(V°C) s P | - (4.70)

Naturally, when k£ + 7 > m the generators TXC) and T](Bj ) are abelian. If we redefine the

generators as

Jab = Jabo = AoJab, P, = Py = AP,

Z(ib = Jupar = NarJav, Z{ = Poaio = My P,
ZC(L]Z = Jubak—2 = Mr—2Jab, Z{ = Poa = P,

Qo =Qan = M Qo P = Qaab—1 = At—1Qas

o) = Qaakt1 = Ak 11Qa,

we obtain the (anti)commutation relations (3.105)) — (3.133]).

In order to write down a Lagrangian for sM,, o, we start from the one-form gauge

connection

Zw”’”’“ ot Ze Poy + ZZWQQ,@» (4.71)
p
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where the different components are given by

W) = X, (4.72)
e = Ny e, (4.73)
Po®) = Ny 1% (4.74)

in terms of &%, &% and 1) which are the components of the osp (4|1) connection.
The associated curvature two-form FF=dA+ AA A is

1 1 1
F = FATA = 3 Z Rab’(k)Jab7(k) + 7 Z Ra’(l)Pa,(l) + W Z \I/a’(p)Qay(p), (4.75)
k l p

where

) ) 1
RE = ) 1 0 A wBOGE |+ e O,

1-
+ Zw(p)yab A @ o | (4.76)
a a a (k n 1 a
RO = den® 4 2 0 7 b L 5@[1(”)7 AP D2 (4.77)
L ., 1
U = dg® 4 20y, Oy APOS 4 e Oy AT, (4.78)

with £ = 0,...,m; Il = p =1,...,m. Considering the Bianchi identity VF = 0, where
V =d+ [A,-], it is possible to show that

DRab (k) (Rac ,(2), , b,(+1) Rbc %) (]—l—l)) 5ic+]+1

+7 (R“’(Z)eb’(”) — e RMD) §F L — —¢ S AT (4.79)
DR = RebOe Wt 4 Roy »0HDgL 4 gy g @2, (4.80)
1 ab,(z 1 ab,(z
DY = 1 (R POy )5f+q 4 (w Py wl )) 0ft14q
1 a,(l 1 a,(l
+ = o (T (0 a¢(q)) o, 0~ o ( i )%\Ij(q)) 51;+q’ (4.81)
where D corresponds to the Lorentz covariant exterior derivative D = d + [w, -].
Then, the action can be written as
A B
S = 2/ (FANF) = Q/F NFP(TuTB) gp,, ., - (4.82)

where (T4Ts) corresponds to the non-vanishing components of an S-expanded invariant
tensor which is obtained from ({2.18)). Using Theorem VII.1 of [I8] it is possible to show that
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these components are given by

(Jab () Ted.(3)) sty = C2043) <jabjcd> , (4.83)

<Qa,(p)Qﬂ,(q)>st+2 = Q2(ptq-1) <Qa@,@> ) (4.84)
which can be written as

(Jab,(r) ch,(j)>st+2 = Q2(k+4j)€abed; (4.85)

(Qu»@8.@) sp,, 0 = 202+a-1) (V5)ag (4.86)

where the a’s are arbitrary independent constants and Jup, (k), Qa,(p) are given by (4.62)) , (4.64),
respectively. Using the different components of the invariant tensor (4.85) — (4.86|) and the
curvature two-form (4.75)), we found that the action is given by

o : . 4 _
S =9 / Z %EabcdRab,(k)Rcd,(J) + Z a2(p+q_1)7\p(p) A 75\11@)’ (4.87)
k.j P,

with k,7=0,... m;p,g=1,....,m.

4.3.1 sM,,.» gauge transformations and supersymmetry

Using the multiplication law of the semigroup (3.88) and eq. ([2.28) it is possible to
show that the gauge transformations are given by

5wab,(k) _ D,Oab’(k) N (wac,(i+1)pbc,(j) _ wbc,(i—i—l)pacg(j)) 5zk+j+1

n l%ea,a) Pk %g<p>7ab¢(q> 52 (4.88)
5e@ D = Dpa) 4 Wabv(’f“)pb,(n)(;’lﬁw+1 + ebv(n)pba»(k)(;ﬁﬁk + g(p)7a¢(q)5§iq7 (4.89)
5P — de®) 1 iwabm%be(q) 5, Qlleaxl)%e(q)(gﬁq
_ 411 LMY - % 007, (4.90)
where the sM,,, 12 gauge parameter is
p= % ; pab’(k)Jab,(k) + % ; pa,(l)p%(l) + % Z EQ’(p)Qa,(p), (4.91)
p

and where we have written the components of the gauge parameter as an S-expansion of the
component of the osp (4|1) gauge parameter,

pab,(kz) _ )\Qkﬁab, pa7(l) — )\2lﬁaa Eaa(P) — /\2p_1g0z7
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withk=0,...,m;l=p=1,...,mand Ao € ST™ = {Xo, A1, A2, , Aomp1}-
In the same way, from the gauge variation of the curvature d\F = [F, A] , it is possible

to show that the gauge transformations of the curvature F' are given by

5Rab,(k) _ (Rac,(i)pcb,(j) . 7€cb,(i)paC ,(7) ) 551] + 7 Ra, b(n 5l+n

_ 1 gP) abqj(q 52k

2 (4.92)
SR = R W b gl RE p a0y P yap@g2 (4.93)

SuP) — ZRab’(k)%bE q)(gzﬂ 2lRa7 q)5f+q _ lep ,(K) Ya b\ll(q 517
— OB, (194)

withk=i1=757=0,...m;l=n=p=q=1,....m

Although the Mac Dowell-Mansouri like action (4.87)) is built from the sM,,, 5 curvature,
it is not invariant under sM,, o> gauge transformations.

Moreover, the action is not invariant under gauge supersymmetry. In fact, if we consider
the variation of the action under gauge supersymmetry related to Q(y, we find

susy = / Z anR 7565;:—197 (495)

with £ = 2,...,m; [,p > 1 and where € is the gauge parameter associated to the spinor
charge Q).

As in the previous case the action is invariant for every value of k under gauge super-
symmetry imposing the expanded super torsion constraint R»®") = 0. This yields to express
the expanded spin connection w®*) in terms of the expanded fields as we can see in ,
leading to the supersymmetric action for the sM,, o superalgebra in the second order for-
malism.

Alternatively, since the a’s are arbitrary and independent we can study the supersym-
metry in each term separately. Then if we consider the variation of the action proportional

to ap, under gauge supersymmetry transformations asociated to € x—1), we find

4 _
63usyS = _ﬁQZk/Ra\Ij’ya’YE)e(kl);

with k£ = 2,...,m and where e*~1 is the gauge parameter associated to the spinor charge
Q—1)- Here R* and ¥ correspond to R*M and ¥ respectively.
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It is possible to have invariance under supersymmetry in first order formalism in every
term if we modify the supersymmetry transformation for every expanded spin connection.

In fact, if we consider the variation of the action under an arbitrary dw®*=2) we find

2
(5wS = l_2a2k/€abcdRaeb5wcd,(k2)’ (496)
with k£ = 2,...,m; R* = R*" and e* = e»(). One can see that the variation vanishes for

arbitrary dw®(*=2) if R* = (.

Nevertheless, it is possible to modify dw® *~2) by adding an extra piece such that the
variation of the action (~ awy) can be written as

0SS = —éagk / R (\T/’ya”yg,e(kl) — leabcdebéextmww’(kz)) . (4.97)
12 2
Thus the transformation of the w® *~2) field leaving the term proportional to agy, invariant
is
Oeatraw™ ¥ = 26" (W5 + Waeyeyse® ™D — Wogyerse™) e,

with U = U e,

Note that the term proportional to apgy is truly invariant under gauge supersymmetry
transformations associated to ()4, with ¢ > k. Moreover, when m = 2 in sM,,, 12 we obtain

the results presented in the previous section.

4.3.2 Pure supergravity from sM,, -

Since we are interested in obtaining the Einstein-Hilbert and the Rarita-Schwinger La-
grangians, we will consider only the terms proportional to as. Then, the following choice

for the non-vanishing components of an invariant tensor is requiered

(Jab,(0) Ted,(4)) Moy — 4 < Jab ~cd> ; (4.98)

<Jab,(2)ch,(2)>SMm+2 = Qy < ~abjcd> ; (4.99)

(Qa)Q8.3) sptynsy = <Qa@ﬁ> : (4.100)
which can be expressed as

(Jab () Jed (4) ) ya,,.,, = Vd€abed: (4.101)

<Jab7(2)J0d,(2)>st+2 = Q4€abed; (4.102)

(Qa@5.3)) o,y = 204 (V5) a5 - (4.103)
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Thus, we only have to consider curvatures the two-form associated to the Jup o), Jab,(2);
- @

Y
J(abay, Qa,1y and Qg (3) generators, which can be derived from (4.76)) -
Considering the non-vanishing components of the invariant tensor and the respective

curvatures two-form we obtain the following action for the S-expanded superalgebra

S = 2ay / <%eabcd7zabv<°>7zcd’<4> ieadeR“" IR (2 +§\If(3> /\75\11(1)>, (4.104)
which can be written explicitly as follows
S:a4/€abcdl (Rab(o “@eb @) 4 4pM e Ry s Dyl )
d < b <Rab,(0) @ | % D™ u}cd,(2))
=DM + 1/1 a5yt > (4.105)
=1 R“b'yab\lf and the matrix gamma

Here we have used the gravitino Bianchi identity DW¥(

identity (4.29 - to show that
€abeaR™ VP yedp) 1 8Dy DY = D (8D@Z(1)%¢(3))

1 _
§€abcdDwab’(2)¢(1)70d¢( + 20 Wy s Dy
Then, using the following identification

wab,(O) _ wab, W

(?/j(l)wab’@)%b%%b(l)) .

wab,(4) — k:ab7 e®
Rab,(O) — Rab, w(l) _ wa
v =,

the action is given by

S = a4/eabcdl (R“be +41Ze“7a75Dw)

1~ - 8 _ 1_-
+d (eabcd (R“%Cd + §Dwk“bk0d) + 78Dy + 7¢k“b%b%¢> : (4.106)
Here, we can see that the action proportional to ay contains the Einstein-Hilbert term
€apcaRee?, the Rarita-Schwinger Lagrangian 41e%y,v5 D1 and a boundary term involving
the new fields k,, l;;ab, ¢ and the original ones
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Unlike the Mac Dowell-Mansouri Lagrangian for the osp (4|1) superalgebra the supersym-
metric cosmological constant does not appear explicitly in this action. This is due to the
S-expansion procedure since if we want to obtain the supersymmetric cosmological constant

L oabed, Lo a ca

qaeeee —|—l—3w’y Yele
in the action, it should be necessary to consider the components <Jab,(4) ch7(4)> and <Jab7(2) ch7(4)>
which are proportional to ag and ag, respectively.

Regardless of the number of new generators of the Maxwell type superalgebra, the new
Maxwell fields do not contribute to the dynamics of the term proportional to ay. In this
way, we have shown that N' = 1, D = 4 pure supergravity can be obtained as a Mac

Dowell-Mansouri like action for the minimal Maxwell superalgebras sM,,, 1o (with m > 1).
1 _
S =ay / B [eabcdR“beced + 4@06“%75D¢} + boundary terms. (4.107)

It is important to note that the m = 1 case corresponds to the Poincaré superalgebra
SP = {Jaw, P., Qo }. Nevertheless, in this case we cannot derive the pure supergravity action
as a Mac Dowell-Mansouri like action since it is not possible to obtain the Eintein-Hilbert
term from (J,pJ.q) for sP.

In sumary, we have derived the minimal D = 4 supergravity action from the minimal
Maxwell type superalgebra sM,. The action was constructed in geometrical terms as the
Mac Dowell-Mansouri like action and interestingly describes pure supergravity. Then we have
obtained the minimal supergravity action in four dimensions from the sM,,, 5 superalgebra.

The invariance under supersymmetry was also discussed.
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Chapter 5

N =1, D =4 Supergravity with

supersymmetric cosmological term

5.1 Introduction

It is well-known that a cosmological constant can be introduced in gravity when we
consider the (A)dS algebra instead of Poincaré. As was pointed out in [63], [64] the presence
of a cosmological constant seems to be an interesting alternative in order to describe the dark
energy. Furthermore, the supersymmetric extension of gravity including a cosmological
constant can be derived in geometrical terms from the AdS superalgebra. As we have seen
in a previous chapter, in this approach the theory is built in terms of the osp (4|1) curvature
and the action is known as the Mac Dowell-Mansouri action [28].

Recently, an alternative way of introducing a generalized cosmological constant term in
gravity was proposed using the Maxwell symmetries [55]. Moreover, the deformations of
these symmetries lead to the so(D —1,2)®so(D—1,1) algebra [65], [66]. In [66] this algebra
was found as a semi-simple extension of the Poincaré algebra. From now on we will refer
to this algebra as the AdS-Lorentz (AdS — L,) algebra.

The AdS — L, algebra (and its generalizations) has been extensively studied in [16]. In
particular, it was shown that a generalized cosmological constant can be included in a four-
dimensional Born-Infeld like action constructed out from the curvature 2-form of the AdS-
Lorentz algebra. Interestingly, this algebra can also be obtained as an abelian semigroup
expansion (S-expansion) of the AdS algebra [67].

In this chapter we analyze the physical consequences of considering the supersymmetric
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extension of the AdS-Lorentz algebra in the construction of a minimal supergravity theory.
Following [68] we present an alternative way of introducing the supersymmetric cosmological
constant to supergravity. Based on the AdS-Lorentz superalgebra we build the minimal D =
4 supergravity action which includes a generalized supersymmetric cosmological constant

term.

5.2 AdS-Lorentz superalgebra

Following [18], [69] in this section we will show the procedure to obtain the AdS-Lorentz
superalgebra as an S-expansion of the osp (4|1) superalgebra using S/(\i) as the abelian semi-
group.

Before applying the S-expansion method it is necessary to consider a decomposition of
the original algebra in subspaces g = osp (4|1) = Vo @ Vi @V, , where V; is generated by the
Lorentz generator Jap, Vi corresponds to the fermionic subspace generated by a 4-component
Majorana spinor charge Q, and Vs corresponds to the AdS boost generated by P,. These
generators satisfy the (anti)commutation relations given by — (2.9).

The subspace structure can be written as

Vo, Vol C Vo, Vi, VAl C Vo @ Vs,
Vo, Vo] C Va,  [Va, V5] C V4.

Let Sﬁa) = {0, A1, A2} be an abelian semigroup whose elements satisfy the multiplication

law,
h <2
)\a)\ﬁ — >\Ol+/37 when « + /8 — (52)
Aatp—2, When a+ 3 > 2
Let us consider the subset decomposition S — So U S1US,, with
So = { o, A2}, (5.3)
S1={\}, (5.4)
Sy ={Aa}. (5.5)

One sees that this decomposition is said to be resonant since it satisfies the same structure
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as the subspaces V,, [compare with eqs (5.1])]

SO'S()CS(), 51'31C80ﬂ82,
So-51CSy, Si-5 CS, (5.6)
So-S3 C Sy, Sy-85,C Sy

Following theorem IV.2 of [18], we can say that the superalgebra
®R: W()EBWl@WQ, (57)

is a resonant subalgebra of S/(a) X @, where

Wo = (So % Vo) = Lo, Ao} % {j } {)\ojab,AQLb}, (5.8)
Wi= (S x Vi) = D} x {@a} = {M@a (5.9)
Wy = (Sh x 13) = {Ao} x {Pa} - {Agﬁa} . (5.10)

Thus, we obtain a new superalgebra generated by {Jup, Py, Zap, Qo }. These new generators

can be written as

Jab - /\0jab7 Pzz - )\2Pa
Zab = >\2jab> Qoz = Al@aa

and satisfy the following (anti)commutation relations

[Jaba ch] - nbc ad — nachd - ndeac + nadem (511>

[Jaba ch] - 77bc ad — nachd - 77bdZac + 770,de07 (512)

[Zaba ch] - nbc ad — nachd - nbdZac + nadem (513)

[Jaby Pc] - nbc a nacha [Pm Pb] - Z(zb7 (514>

[Zaln P] - 77bc a nacpba (515>

1

[Jaba Qa] = _5 (’Yab@)a 5 [Paa Qa] = _5 (WQQ)CV ) (516>
1

[Zaby Qa] = _5 (WabQ)a P (517)
1

{Qu: Qs} = =5 [ (1"C) s Zun = 2(1°C) s P (5.18)

where we have used the multiplication law of the semigroup (5.2) and the commutation

relations of the osp (4|1) superalgebra. The new superalgebra obtained after a resonant
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Sﬁ)—expansion of 0sp (4]1) corresponds to the AdS-Lorentz superalgebra in four dimensions,
which will be denote as sAdS — L4 .

From the above relations we see that the AdS-Lorentz superalgebra contains the AdS —
L, algebra = {Ju, Py, Zab}ﬂ as a subalgebra. Unlike the Maxwell superalgebra the Z,,
generators are not abelian and behave as a Lorentz generator.

On the other hand, it is well known that an Inonii-Wigner contraction of the AdS-Lorentz

superalgebra leads to the non-standard Maxwell superalgebra [70]. In fact, the rescaling
Zap = W2 2, P, — uP, and Q. — puQa (5.19)

provides the Maxwell superalgebra in the limit p — oo,

[Jabs Jea] = Mocdad = Nacoa — MbdSac + NadJbe, 5.20

[Jabs Zed) = MbeZad — NacZbd — MbdZac + Nad Zbe, 5.21
[Jabs Pe] = Mo Po — Nac D, [Pa, By] = Zap, 5.22
[Zab, Pe] = (Zap; Zea) = 0 5.2

ot
[\)
g

[Jaba Qa] = 3 (’Vab@)a )
[Zaba Qa] = 07 [Paa Qa] =0
1
{Qu.Qs} = —5 (4C) . Zan

~~ I~ I~ I~ N
o
[\]
(@)

o
)
D

5.3 Supergravity action for sAdS — L,

In this section, we present a geometric formulation of NV = 1 supergravity in four
dimensions, where the relevant gauge fields of the theory are those corresponding to the
AdS-Lorentz superalgebra sAdS — L£4. The action will be constructed exclusively in terms
of the curvature 2-form following the same approach of [2§8], and using the useful properties
of the S-expansion procedure.

The one-form connection is given by

1 1
A= ATy = —w™J, ap k”bZa
A=W b+l€ + 5 b—i—\/_

I Also known as Poincaré semi-simple extended algebra.

V*Qa; (5.27)
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where the one-form gauge fields are given in terms of the AdS fields {d}ab, e, 12"‘},

wab —_ )\Owab’ kab — )\2(;}(11),

et = )\Qéa, ¢a = )\1’!7206.

The associated curvature two-form F' = dA + A A A is given by

F=FT, = %R‘”’Jab + %R“Pa + %F“bza,, + \%\IJQQ&, (5.28)
where
R = dw™ + ww?, (5.29)
R = de® + we’ + ke’ — %w’y“w, (5.30)
Fb = dk® 1 @3 — (o g 4 ke l%eaeb X %Qhabw’ (5.31)
U =diy + iwab’yabw + %ea’yaw + ikaw“bw. (5.32)

Let us note that the presence of the generator Z,, implies the introduction of a bosonic
"matter” field £%°, which modifies the definition of the curvatures.
From the Bianchi identity VF = 0, with V = d+[A, -], we can write the Lorentz covariant

exterior derivatives of the curvatures as

DR =0, (5.33)
DR" = R%e" + F4e® + Rk 4 7"V, (5.34)
1
DFab — Rackcb o Rbckca + F(chb . Flikca + l_2 (Raeb o €aRb)
1= ab
+ 707, (5.35)
D\If _ 1R abw 4 1F abw 1]€ ab‘y + 1 Ra w
- A ab” A ab” A ab” 2] Va
1
— —ey, V. .
e, (5.36)

The MacDowell-Mansouri like action for the AdS-Lorentz superalgebra can be written as
S =2 / FANFPATATB)  pas—r. - (5.37)

where (TATB) 445 ¢, are non-vanishing components of an invariant tensor which can be

derived from the components of the invariant tensor (2.18]). In fact, using Theorem VII.1
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of [18], it is possible to show that the non-vanishing components of (TaTg), 45_,, are given

by
(JabJed) s pas— £y — @0 JabJea
(JabZea)
(ZavZea)
<QaQﬁ>sAds £, = @ <Qa@ﬁ :

where g and as are dimensionless arbitrary constants and

<jabjcd> = €abed,
<QaQ5> =2(¥5)ug »

(5.42)

(5.43)

are the invariant tensors requiered to reproduce the MacDowell-Mansouri action for the

osp (4]1) superalgebra (see Chapter 2, Section 2.3). This choice of the invariant tensor

breaks the AdS-Lorentz supergroup to their Lorentz like subgroup.

Then considering the invariant tensors ((5.38) — (5.41) and the curvature 2-form ([5.28)),

it is possible to write down the action a la Mac Dowell-Mansouri as follows

1 1 1 2 -
S = 2/ <Z—laoeabcdR“bRCd + 5062€abcdRabFCd + ZO&QGGdeFabFCd + 70&2\11’)/5\11) .

or explicitly,

S= / C;O 6abcdRabRCd + Q9€4bed <Rakacd + Rabkc ked L2 Rab

1 - 1 1
_|__Rab¢,ycdw_|_ —DkakaCd+DkabkC€ked+ Z_Dkabeced

21

203

2 - B 1.
+7D¢75k“wab¢ + l_g,@bea’)’a%@b%%b + ﬁ@be“%%kbc%(jw

1 =
+4_l¢kab’yab’y5kcd76dw) :

77

L Dkttt + k“ RIRGR + 5 L je phllece! + 3 k kI Pyl

1 1 7 5
T bw,_)/cdw + 6a€b€c€d> + <7D¢”Y5D¢ + l—2¢e“fya’y5D¢

(5.44)

(5.45)



The action can be written in a more compact way using the gamma matrix identity (C.1)

1

YabY5 = _§€abcd’76da (5.46)

and the gravitino Bianchi identity
DDy = iR“”%bm (5.47)

to show the following relations
a5y + 4Dfns D = d (4DGs0) (5.48)
5 aa DR G+ 2Dkt = & (FK150). (5.49)
Furthermore,

e yayse W = %eaeb@’fdw%bcd, (5.50)
TPk ey = — K G (5:51)
Ve Vs k  Yoeth = €apeak ™ e Yy NP, (5.52)

where we have used the identities (C.2)) — (C.5]) and that v57, is an antisymmetric matrix.
Thus the MacDowell-Mansouri like action for the sAdS — L4 superalgebra is

S = / Q0 pea RR 4 p 2 (€abeaRee? + diey,75 D)
1 1
+ o€ubed (Rakacd + Rabkceked + —Dk)akaCd + Dkabkceked 4 §kafk'fbkcgk'gd>

+ 9€abed (l2 Dk%ece? + — B k“ fbeced + e%ebrhyeda)

+ kabec¢7 v+ e“ebeced> + aod (4DYys + 1/_1k“b%b75¢) : (5.53)

We have separated the action in five pieces in order to analyze each one of them. The first
term is proportional to oy and corresponds to the Gauss Bonnet term. The second term
contains the Einstein-Hilbert term plus the Rarita-Schwinger Lagrangian. The third piece
corresponds to a Gauss Bonnet like term and does not contribute to the dynamics because
it can be written as a boundary term. The fourth term corresponds to a generalized

supersymmetric cosmological term which contains the usual supersymmetric cosmological
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constant plus three additional terms depending on the field £%°. The last piece is a boundary
term.

Then, the action written a la MacDowell-Mansouri for the AdS-Lorentz superalgebra
describes a supergravity theory with a generalized supersymmetric cosmological term. From
(5.53)) we can see that the bosonic part of the action corresponds to the one found in [16]
for AdS-Lorentz algebra. Moreover, the action contains the generalized cosmological term
introduced in [55] for the Maxwell algebra.

Neglecting boundary terms, the action can be written as

_ 1 1
o= / (€apcaR™ee? + 4pe 375 DY) + Qpapea (ﬁD kece? + ﬁkafkf beced

1
+l3 e®ebrhryeda) + k:ab iy —|— “ebeced> , (5.54)

and using that
1
Eabcde‘abeced = QEQdek’ached +d <l—26abcdkabeced) ,

. 1 - 1-
1% = Det — Siy"p = T - S99, (5.55)
it can be rewritten as follows
o _
S = /l_; (eabcdR“beced + 4we“fyafy5Dw)

1 1
+ 2€0bed ([2 kebTeed 4 — 2 k:a kflecel 4+ = l el + e“ebeced) (5.56)

5.4 The equations of motion of D = 4, N = 1 AdS-

Lorentz supergravity

Let us find the equations of motion associated to the four independent space-time fields

w® k% e® and ¢p. The variation of the Lagrangian with respect to the spin connection w?

yields (modulo boundary terms)

0L = 0;22 €abed (25w“bDeced + 20w k:fbeced) + %ﬁea%%&uc‘i%w

2@2

- 2 6(JLbcd(SWGLb (TC + kc F— —?/JVCw)

2cv
= l—22€abcd5wabRc€d. (557)
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Thus, for arbitrary éw® we have that J,£ = 0 leads to the following field equation
2eapeaRe? = 0. (5.58)

Considering now the variation of the Lagrangian with respect to the vielbein e*, we found

2 _ 2
0L = %eabcd <2Rabec + 2Dk%ef + 2kafkfbec + iwvabwec + l—Qe“ebeC) se?
8] — _
+ —2 (4 ya75 DY + wvdvs,k“”mw) ded

2@2

[2

where we have used the AdS-Lorentz curvatures 2-form (5.28|) and eqgs.([5.50) — (5.51). Then
the field equation is obtained imposing §.£ = 0

—Z€abed (R“bec + F% C) sed -I— — (4¢7d75\11) se, (5.59)

2€apea (R + F™) € + 45V = 0. (5.60)

The variation of the Lagrangian with respect to the new AdS-Lorentz field k% gives

1 _
ol = %em (2(5k“bDeCed + 26k ket + ﬁakabmweC)
2062
R
20&2
R

where we have used the gamma matrix identities and - Thus, 0L = 0 leads to
the same field equation that 6,L = 0,

1
Eabcdékab (Tc + kcfef - §w70¢) €d

Eabcd5/€abRC€d, (561)

2eapeaRe? = 0. (5.62)
Let us consider the variation of the Lagrangian with respect to the gravitino field 1,
oy L = (45we Va5 DY — 4DYe Y, 7500 4 41p De 7501
l2 — €abed (Qkab Oy T + b5¢76d¢>
= %&Z (86“%75D1D — 475t De® 4+ 2V, sk ) — dyayskiely + ?e“%%ebmﬂp)

o _
= l—;(w (8¢™ a5 ¥ — 4ya75t RY) . (5.63)
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Then, we find the following field equation,
8¢ Va5V — 4y, 15 R* = 0. (5.64)

We can see that the presence of a generalized supersymmetric cosmological constant leads
to field equations very similar to those of standard supergravity. The differences appear in

the definition of the curvatures two-form due to the presence of the new matter field £%.
As we said before, from egs. (5.58]) and (5.62)), we see that the equation of motion coming

from the variation of the Lagrangian with respect to the bosonic field k% reduces to that of

ab

the spin connection w®. From this equation we have that

RY=T" + k%" — %mw =0. (5.65)
Let us define a new bosonic field as
w?® = W 4 kP, (5.66)
and its respective covariant derivative,
D=d+w. (5.67)
Then, eq. can be written as
De" — %z/}yw =0. (5.68)

This allows to express the bosonic field @ in terms of the vielbein e and gravitino field

1. The equation can be solved considering the following decomposition,

w® = %% + &%, (5.69)
where © corresponds to the solution of De® = 0 and is given by
@ = (50l lea + €50nEpea — €0 elnea) €N (5.70)

Now we have that ]
De® = de® + ey, + &%, = izﬁfy“w, (5.71)

implies
1-
wive,p = iw,ﬁwu. (5.72)
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Then we may solve & in terms of the two other fields,

@Zb = iea)\ebv (@/_JWM/JV + 1/_&%% - &V%ﬂ/})\ - QZ//YV¢A - &V’Y/\@Du + @Z_)Ar)/,uqu)u) . (57?’)

Thus, the bosonic field ™ is completely determined in terms of e, and ¢ and does not carry
additional physical degrees of freedom. In fact, when the supertorsion R* = De® — %@”ycw
is set equals to zero, the number of bosonic degrees of freedom is 2 as the Einstein-Hilbert

gravity theory.

5.5 Supersymmetry transformations and action invari-

ance

Although the action is built from the AdS-Lorentz superalgebra, it is not invariant under
gauge transformations. The variation of the action (5.53|) under gauge supersymmetry can

be derived using d F' = [F) €], with € the supersymmetry parameter,

40&2
_l_2

SsusyS = R, vs€. (5.74)

Thus in order to have gauge supersymmetry invariance it is necessary to impose the AdS-
Lorentz supertorsion constraint

R* = 0. (5.75)

However this leads to express the spin connection w® in terms of the others fields {e“, kb, w}.
Nevertheless, it is possible to have supersymmetry invariance in the first formalism adding
an extra piece to the gauge transformation 6w such that the variation of the action can be

written as
4062

5

_ 1
5S = R® [\IJ%%E — §eabcdebdemwcd , (5.76)

where the supersymmetry invariance is fullfilled when

5extrawab = 2€abcd (@607d756 + \IldefchYE)E - ‘I]cd76756) 667 (577>

with U = W ,e%eP.
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Thus, the action (5.53) in the first order formalism is invariant under the following

supersymmetry transformations

5w“b = 2€abcd (\Ilec'Yd’}%e + \I/d670756 - \Ilcd’y€’y5€) ee’

1
6kab — _7g,yab¢7
et = e,
1

1 1
(5——d—|——“ba—|——“ba+—“a.
(0 € 4w Yab€ 41{: Yab€ 2le’ye

5.78)
9)
)
)

(@3
N

ot
0

(
(
(5.80
(

5.81

Let us note that supersymmetry is not a gauge symmetry of the action, since it is broken to

a Lorentz like symmetry.
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Chapter 6
Maxwell Chern-Simons Supergravity

Analogously to the four dimensional case seen above, the AdS-Lorentz superalgebra in
D = 3 can be derived as an S-expansion of the osp (2|1) ©sp (2) superalgebra [69]. Further-
more, as we said before, the non-standard Maxwell superalgebra sM can be obtained as a
Inénii-Wigner contraction of the AdS-Lorentz superalgebra [16], [70]. Then it seems natu-
ral to derive the non-standard Maxwell superalgebra combining the S-expansion procedure
with the Inonii-Wigner contraction. In particular, as we will see later the non-vanishing
components of an invariant tensor for this superalgebra can be found in this way.

Following [71], in this chapter we construct a D = 3 supergravity action from a minimal
Maxwell superalgebra sM?9. The sM9 superalgebra is obtained as an S-expansion of the
osp (2|1) ® sp (2) superalgebra by considering an appropriate semigroup, and corresponds to
a supersymmetric extension of the generalized Maxwell algebra MY (see Appendix B).

Let us first consider an algebraic construction of a three-dimensional supersymmetric
action invariant under the usual Maxwell supergroup. To this aim, we shall combine the S-
expansion procedure and the Inonii-Wigner contraction in order to derive the non-standard
sM superalgebra and the non-vanishing components of an invariant tensor for this superal-

gebra.

6.1 CS supersymmetric action from sM

In this section, we present a D = 3 Chern-Simons supersymmetric action for the non-
standard Maxwell superalgebra. As we will see next, the Maxwell superalgebra sM can be
obtained alternatively combining the S-expansion method and the Inéni-Wigner contrac-

tion.
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6.1.1 D = 3 Maxwell superalgebra sM

Following [69] and [I§], it is possible to obtain the AdS-Lorentz superalgebra as an S-
expansion of the osp (2|1)®sp (2) superalgebra using Sy = {\g, A1} as the relevant semigroup.
As in the previous cases, we have to consider a decomposition of the original algebra in
subspaces g = osp (2|1) D sp (2) = Vod V1 @ Vs, where V) corresponds to a Lorentz subalgebra
and it is generated by the Lorentz generator J,,, Vi corresponds to the fermionic subspace
generated by a 3-component Majorana spinor charge Q. and Vs corresponds to the AdS boost
generated by P,. These generators satisfy the (anti)commutation relations — .
The subspace structure may be written as

Vo, Vo] € Vo, V1, V4] C Vo @ Vs,
Vo, Vo] C Vo, [Vo, Vo] C 4.

Consider the abelian semigroup S, = {Ag, A1} whose elements are dimensionless and satisfy

A ifa=05=1
My — 4 o dta=0 (6.2)
Ao, all others

the multiplication law,

Let us consider the subset decomposition S, = Sy U .S; U Sy, with
So=1{Xo, M}, Si={XN}, Sa={\o}. (6.3)

One sees that this decomposition is said to be resonant since it satisfies the same structure

as the subspaces V), [compare with eqgs. (6.1])]

So - Sog C Sy, Sp1-51C SynN.Ss,
S() . Sl C Sl, Sl . SQ C Sl, (64)
SO'SQCSQ, SQ'SQCSO.

Following theorem IV.1 of [18], we can say that the superalgebra
GSr =Wy D W, ® Wy, (6.5)
is a resonant subalgebra of S\ x g, where
Wo = (So % Vo) = Loy A} % {jab} - {Aojab,Aljab} , (6.6)
Wi = (8% Vi) = (o} > {Qap = {Mo@a (6.7)
Wy = (S x V3) = {Ag} x {Pa} - {)\Of’a} . (6.8)
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The new superalgebra is generated by {Jup, Py, Zap, Qo }, where these generators are defined
by

Jab — )\ljaba Pa - >\0pa7 (69>
Zab = NoJab, Qo = 20Qa- (6.10)

and satisfy the (anti)commutation relations

[Jabs Jed Moead — NacIvd — MbdJac + NadJbe,

[ ab» nbc ad — nachd - nbdZac + nadeca

Jed) = (6.11)
Zed) = (6.12)
[Zabs Zea) = Mead — NacZbd — MbdZac + Nad Zbe; (6.13)
e) = (6.14)

e) = (6.15)

(6.16)

[Jab, Pe] = e Po = NacPo;  [Pa, Py) = Za, 6.14
(Zap, Pe] = nbc o = Tac Py, 6.15
o @l = =3 Ca@s [P0 @) = =3 (T,Q),. 616
(Zap, Qa) = ——( b @) (6.17)
{Qa: @} = —3 [(F“”C)aﬁ Zuy = 2(1C)y P (6.18)

where we have used the multiplication law of the semigroup and the commutation re-
lations of the original superalgebra — . The new superalgebra obtained after a
resonant Sx-expansion of osp (2|1) @ sp (2) corresponds to the AdS-Lorentz superalgebra in
three dimensions. As we have seen in the previous chapter this superalgebra has an inter-
esting application in D = 4 supergravity since it allows to include a generalized cosmological
constant in a MacDowell-Mansouri like action [68]. The generalization of the AdS-Lorentz
superalgebra - and its extension to A supersymmetries can be found in [6§]
and [74], respectively.

Let us now consider the Inonii-Wigner contraction of the AdS-Lorentz superalgebra ap-
plying the rescaling presented in [70],

Zay = 022y, P, — 0P, and Q, — 0Q,. (6.19)
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Then the limit ¢ — oo provides us with the following (anti)commutation relations

[Jaln ch] - nbc ad — nachd - 77bclJ0Lc + nadt]bca (6 20)
[ ab» d] - nbc ad — nachd - nbdZac + 77adeca (6 21)
[ ab; ] 77bc nach’ [Pm Pb] - ZalM (6 22)
[Zaba ch] [Zalh P} = 07 (6 23)
[Jab, Qa] = ——( b @) (6.24)
[Zaby Qa] = 7 [Pay Qa] = 07 (6 25)
(6.26)

{QOHQB} = _% (Fab0>a5 Z b 6.26

The new superalgebra obtained after a resonant S-expansion of osp (2]1) ® sp (2) and an
Ino6nii-Wigner contraction corresponds to the Maxwell superalgebra sM in D = 3. This
superalgebra contains the Maxwell algebra M = {Jy, P, Za } and the Lorentz type algebra
LM = {Juw, Zu} as subalgebras. In particular, the study of a 3-dimensional gravity using
the Maxwell algebra was considered in [72], [73].

Let us observe that the Maxwell superalgebra s M does not contain a necessary relation
in supergravity, expressing momenta as bilinears of supercharges. Indeed, from relation
(6.26)) we see that it supersymmetrizes only tensorial central charges. As we will see later,
this situation is completely different in the case of a minimal Maxwell superalgebra. Before
presenting the construction of a CS supergravity action for a minimal Maxwell superalgebra,
let us first consider an algebraic construction of a three-dimensional supersymmetric action

for the non-standard Maxwell superalgebra sM.

6.1.2 Three-dimensional Maxwell CS supersymmetric action

Here we present a geometrical construction of a CS supersymmetric action using the
Maxwell superalgebra and the properties of the S-expansion procedure. As seen from the
definition of a CS Lagrangian (see (2.46))), a fundamental ingredient in the construction of a
CS action is the existence of symmetric invariant tensors for the corresponding gauge group.
As we have discussed in previous chapters a useful property of the S-expansion method is
that it provides us with an invariant tensor for the S-expanded algebra. In fact, by Theorem
VIL.2 of [I§], the invariant tensor of an S-expanded (super)algebra & is given in terms of

an invariant tensor of the original (super)algebra g as follows
(TawT(B)s = @Koy (TaTs),, (6.27)
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where &, are arbitrary constants and KaﬂV corresponds to a 2-selector. Starting from the
AdS superalgebra (2.41|—2.45) and using the Theorem VIIL.2, it is possible to show that
the non-vanishing components of an invariant tensor for the 3-dimensional AdS-Lorentz

superalgebra are given by

(JabJed) ags—r = 01 < >

( achd> s = Qg <jabjcd> o APuPy) pys—r = <15a ~b> : (6.28)
<Zachd> s_r = Qg <jabjcd> v (Qa@p) ggs_r = < ) Q6> 5 .
(JabPe) pas—r = G0 jabpc>7

where <jabjcd> , <jablf’c> , <Papb> and <QQQ5> are the components of an invariant tensor
for the osp (2|1) @ sp (2) superalgebra [see egs. — ([2.52)].

It seems natural to derive a Chern Simons action for the Maxwell superalgebra by com-
bining this result with the corresponding Inonii-Wigner contraction in the generators .
Nevertheless, the rescaling in the generators leads to trivial invariant tensors for the Maxwell
superalgebra and consequently to a trivial Chern Simons action. A possible way to avoid
this problem is to generalize the Inonii-Wigner contraction by considering the rescaling not
only of the generators but also of the invariant tensors. Interestingly, there is just one

rescaling that preserves the structure of curvatures in the action and is given by

Bo — 02507 ag — ooy, P — P (6.29)

where
Bo = doplo, a0 = Qopr, P = aape.
Then, considering the rescaling of both generators (6.19) and constants (6.29) in (6.28)),

one can see that the limit ¢ — oo leads to the non-trivial non-vanishing components of an

invariant tensor for the Maxwell superalgebra sM,

( achd>sM B1 (MbeNad = NacNed) ( )
(JabZea)spn = Bo (1hbeNad — NacTlba) , (6.31)
(JabPe) spq = Q0€abe; (6.32)
)sm (6.33)
) (6.34)

<

(PaPy) g = BoNabs
<QaQ,B sM 50004,8
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In order to write down a CS action for the sM superalgebra we start from the one-form

gauge connection

1 1 1 1
A= AATA = §wab ab T+ 7€aPa + §]€abZab + %waQa’ (635)

@ kb and 1) are respectively the vielbein, the spin connection, a ”matter” bosonic

where e, w
field and the gravitino field. These one-forms are the corresponding expanded fields of the

osp (2|1) P sp (2) gauge fields {Jﬂb, e, @0‘} ,

wab — w(ab,l) — )\lajab, et — e((JL,O) — >\Oéa7

z 6.36
Lab — w(ab,O) — /\()(Ilab, ¢oz — 1/1(04,0) — )\01/}04’ ( )
The associated curvature two-form is,
F =FAT, = Sy b+ Ypop, 4 Lpag b+ i\lﬂ@ (6.37)
2 a l a 2 a \/Z )y *

where

Rab — dwab 4 wacwcb’
R® = de® + w‘ﬁ)eb =T,

1 1 -
Fab — dkab 4 wackcb o wbckca + Z_Qeaeb 4 ﬂwrabw’

1
U =dy + Zwabrabw = D).

Then, when we insert the one-form connection (|6.35]) into the general expression of the CS ac-
tion (2.46)) and using the invariant tensor (6.30|— 6.34)), we can write the CS supersymmetric
action for the Maxwell superalgebra sM. Explicitly, it is given by

1 2 «
Sg;l) = I@'/ —B1 [ whdw®, + Swiwtws, ) + it (eabCR“bec)
L2 3 [
a 1.b 1 a 1 1 a1.b Qo ab _c

By | RoK, + e T+ 790 ) — =d (,Bow e+ eaneo™e ) , (6.38)
The action ([6.38) is split into three independent pieces proportional to 51, ap and Sy.
The term proportional to §; corresponds to the exotic Lagrangian [§], [38]. The piece
proportional to ay is invariant under Poincaré and corresponds to the Einstein-Hilbert term.
On the other hand, the term proportional to By contains the torsional term, the fermionic

term and the coupling between the new gauge field k%° and the Lorentz curvature R%. The
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gauge field k® associated to the Z,, generator appears also in the boundary term. Let us
note that the cosmological constant term egp.e%e’e® does not appear in the action.
Up to boundary terms, the full action is invariant under gauge transformations of the

Maxwell supergroup and under supersymmetry,

1
S =0, Ok = =€y, (6.39)

0’ =0, 6 = De, (6.40)

As no field equations are requiered in order to prove this invariance, we said that it is an off-
shell SUSY. Furthermore, we can see that the bosonic part of the action (|6.38]) corresponds
to the CS gravity action found in [72] and [73] for the Maxwell algebra. Clearly, when we
consider ¢ = 1 in the rescalings and we obtain the CS supergravity action for
the AdS-Lorentz superalgebra presented in [69].

6.2 Maxwell-Chern-Simons Supergravity

Let us now consider the construction of a Chern-Simons supergravity action for the
minimal D = 3 Maxwell superalgebra sM9. As we will see, this superalgebra can be
derived as an S-expansion of osp (2|1) @ sp (2) using an appropriate semigroup.

As in the previous section we will consider the splitting of the AdS superalgebra into
subspaces g =V ® V; @ Vs, where V) = {jab} Vi = {Qa} and V5 = {Pa} The next step
consists in finding a subset decomposition of a semigroup S which is "resonant” with respect
to the subspace structure . Let us consider S](;) = {0, A1, A2, A3, Ay, A5} as the relevant
abelian semigroup whose elements obey the multiplication law . Let us consider a
subset decomposition SW — So U S1US,, with

SO = {A07A27A47>\5}7 (641)
Sl — {)\1, )\3, )\5} y (642)
Sy = [, Aty As ) (6.43)

This subset decomposition is said to be "resonant” since it satisfies the same structure as
the subspaces V,, [compare with eqs. (6.1])]

S()'S()CS(), Sl'Slc»SoﬂSQ,
So -5 C Sl, S8y C Sl, (644)
S()'SQCSQ, SQ'SQCSO.
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Imposing the 0g-reduction condition A\s7T4s = 0, we find a new Lie superalgebra generated

by {Jab, P, Zab, Zab, Za, Qa, Ea} where these new generators can be written as

Jab = Nodavy  Za = MP,
Zapy = Nodapy, Qo = MQa,
Zap = Moy Lo = A3Qa-
P, = \P,,

and satisfy the following (anti)commutation relations

[Jaba ch] = nchad - nachd - ndeac + nadecy

[Japs Pe] = b Pa — Nac P, [Pa, By] = Zap,
[Jabs Zed] = MbeZad — NacZbd — MbdZac + NadLbe,

[PaQul = —5 (T3,

[Jab, Qal = —% (T @), 5

o Bl = —5 (T,
Q0. Qs = —3 [(10),., Zuy —2(1°C) , P.]
(Qu, 5} = —% [(rabc)aﬁ Zuy —2(1°C),,, Za}

[Jaba Zab = 7flchad - nachd - nbdZac + nadeca

[Zaln ch = nchad - nachd - 7/]bdZac + nadeca

|:Jab7 ZNC - ncha - nach7 [Zaln Pci| - ncha - 77(1ch7

1

|:Zab> Qa = _5 <7ab2)a s

others = 0

(6.45)

(6.52)

(6.53)

(6.54)
(6.55)
(6.56)

(6.57)
(6.58)

where we have used the multiplication law of the semigroup (3.22) and the commutation
relations of the AdS superalgebra (2.41|—2.45). The new superalgebra obtained after a
0s-reduced resonant S-expansion of osp (2|1) ®sp (2) corresponds to the minimal Maxwell

superalgebra sM9. This superalgebra can be seen as the supersymmetric extension of the

generalized Maxwell algebra MY in D = 3 dimensions [60] .
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6.2.1 Three-dimensional Maxwell CS supergravity action

In order to write down an CS action for the minimal Maxwell superalgebra sM?Y we

start from the one-form gauge connection

1 1~ .~ 1 1 1~ - 1 1
A== abJa —kabZa —k‘abZa —e*P, + -h"Z, + —=1U*Q, + —=£*2,, 6.59
v b+2 b+2 b+l€ +l +\/Z¢Q +\/Z€ ; (6.59)

where the 1-form gauge fields are given in terms of the components of the osp (2|1) ® sp (2)

connection %, @™ and 1:

wab — )\O(Daba kab — )\Q(Z)Gb kab — )\4wab’

e = \pé?, he = \yé, Y = >\1772;a’
£ = Az
The associated curvature two-form is given by
A 1 ab 1 a 1 rrab 7 1 ab
F=F TA:§R Jab+7RPa+§F Zab+§F Zab
1~ = 1 1
+-HZ,+ —=V*Q, + —==“%, 6.60

where
Rab — dwab + wanCb,
1-
R* = de® + w%e’ — §¢Fa¢,
O = dh 4 W+ e — ETy,
. - - - 1 -
F = dk®™ + w0 k® — W k™ + Wzr%, (6.61)
- 1 1_
Fab — dk,ab + wackcb - wbckca + kacka + l_2€aeb + igl—\abw’
1
V= d¢ + Zwabrab¢7
= =df+ Ly rev¢ + Ly [ + Lar 0
- — 4 ab A ab 9] a¥-
Considering (6.27)) it is possible to show that the only non-vanishing components of a sym-

metric invariant tensor for the Maxwell superalgebra sM?Y, can be found in terms of the
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invariant tensors for osp (2|1) ® sp (2) [see egs. (2.49) — (2.52))]

<Jachd>3Mg = 0 (nadnbc - nacnbd) (662)
<Jachd>SMg = 0y (nadnbc - nacnbd) (663)
<Zachd> W (JavZea) = s (NadMbe — Nacbd) (6.64)

<Jach>5Mg = (1€abc (665)

<Zach>SMg - <Jach> = Q3€ahc (666>

(PaPo) sp1o = QaMan (6.67)
(QaQp) o = (2 — 1) Cog (6.68)
(QaXp) o = (1 — a3) Cog (6.69)

where we have used the following definitions

ap = Qoplg, Q1 = Qafl, Qg = Qafl

Q3 = Oyfly, Oy = Oyllp.

Considering (6.62]) — and the one-form connection (6.59) in the general expression
for the CS action ([2.46]), we find that the CS supergravity action for the minimal Maxwell

superalgebra s MY is given explicitly by
2 _
Sg‘;"l) = k/ [@ (wabdwba + _wacwcbwba> + ﬂ (Eabc-RabeC - 77Z)\Ij)
vl 2 3 l
- 1- - - _ _
Fay ( akb o+ iw) n % <ea,,c (R“bhc n Dk“bec> . ¢E)
1 1- 1-
+ oy ( Y, + l—zeaTa + —5\1’ + —¢E)
—d ( S Cancts™e” +2 Srean (k“bec + wath) 92 g 4 Wapd )] (6.70)

Pt

where 7% = De® is the torsion 2-form. This is the most general supergravity action in
(2 4+ 1) dimensions invariant under the minimal Maxwell superalgebra sMY. The first term
corresponds to the so called exotic Lagrangian and it is Lorentz invariant [8]. The second
term describes pure supergravity without cosmological constant. The terms proportional to

a9, a3 and ay contain the coupling of the spin connection to the new gauge fields l%“b, kb
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and h¢. In particular the new Majorana spinor field £ appears in the terms proportional to
a3 and ay. This action can be seen as a supersymmetric extension of [72], [73] where new
extra fields have been added in order to have well defined S-expanded invariant tensors.

Furthermore, note that the new fields appear also in the boundary term. The inclusion
of boundary contributions to (super)gravity models has been extensively studied in [13], [76],
[, [78].

Up to boundary terms, the full action (6.70]) is invariant under local gauge transforma-
tions of the Maxwell supergroup and also under both supersymmetries, the one associated

to the () generator

(5wab — O, 5]%0,1) — _%g,yabw, 5kab — _%Ef}/abg, ]
det = ey™),  Oh® = eyi€, 0 = Le"Va€ + TEVare, (6.71)
01 = De.

and the other associated to the ¥ generator

dw =0, 6k® =0, 0k =—1pydy

de* =0, Oh* =gy 06 =do+ ;W Yae,
51 = 0.

In summary, in this chapter we have derived the D = 3 Chern-Simons supersymmetric action
from the non-standard Maxwell superalgebra sM. We have shown that the superMaxwell
symmetries can be obtained from the osp (2|1)®sp (2) superalgebra combining the semigroup
expansion procedure with the Inonii-Wigner contraction. This procedure allowed to obtain
the invariant tensors for the Maxwell superalgebra and to build the most general D = 3
CS supersymmetric action invariant under the Maxwell supergroup. However, since in this
superalgebra the four-momentum generators P, are not expressed as bilinears expressions
of fermionic generators (), we have that the supersymmetric action constructed out of the
non-standard Maxwell superalgebra, does not describe a supergravity action but an exotic
alternative supersymmetric action.

The CS supergravity action from a minimal Maxwell superalgebra sM?9¢ has also been
constructed. We have shown that this superalgebra can be derived from the osp (2|1) ®sp (2)
superalgebra using the semigroup expansion method.

The CS formalism used here represents a toy model in order to approach problems present

in higher dimensions or in higher N -extended supergravity theories.
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Part 111

N =2 Supergravity Theory
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Chapter 7

Observations on BI from N =2
supergravity and the General Ward
Identity

7.1 Introduction

Recently, there has been a particular dedication to the study of Born-Infeld (BI) theory
and its generalization to multi-vectors, in relation to supersymmetric theories. This theory
describes a non-linear electrodynamics in four dimensions and enjoys of relevant features,
such as electric-magnetic duality symmetry. In particular, the supersymmetric version of
the BI Lagrangian was constructed in [79],[80]. These non-linear theories emerges as a low-
energy limit of partially broken U (1)" rigid N' = 2 supersymmetric theory [81], in which
the supersymmetric breaking scale is sent to infinity [82]. As shown in [83], this mechanism
requires the introduction of magnetic Fayet-Iliopoulos (FI) terms besides the electric ones,
with the condition that the dual FI terms be not mutually local. On the other hand, the
rigid partially broken A/ = 2 theory with one vector multiplet of [83] (APT model), was
also obtained as a flat limit of a suitable N' = 2 supergravity in [84]. This defines a N’ = 2
supergravity origin of the original one-vector BI theory.

In the original rigid limit of [84], the gauging was electric and partial supersymmetry
breaking required the use of a specific choice of symplectic frame in which the prepotential
of the special geometry does not exist. More general, partially broken A" = 2 supergravities

were constructed in [85] using an analogous choice of symplectic frame. This restriction,
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which is forced within the framework of standard (i.e. electric) gaugings by some no-go
theorems [86], can be avoided in the context of dyonic gaugings. In fact, as shown in [87]
partial supersymmetry breaking can occur in any symplectic frame (and in particular in
one in which the prepotential does exist) using an embedding tensor [88, 189 [90] with both
electric and magnetic components. Consistency of such gaugings requires the introduction
of antisymmetric tensor fields dual to scalars [011 [92] 93], 94] 95].

In this chapter we present the results obtained in [96], where we have generalized the
results of [84] to the case of n vector multiplets. Our starting point is the construction of
an appropriate dyonic gauging of an N’ = 2 supergravity coupled to n vector multiplets and
to hypermultiplets allowing for a well-defined rigid limit to a multi-vector APT model, and
thus generalizing [84]. This would clarify the supergravity origin of the multifield BI of [82]
and, in particular, to understand the origin of the dyonic FI as deriving from electric and
magnetic charges in the supergravity gauged model.

A crucial part of our analysis is the definition of the rigid limit: Rescalings of the fields
and of the embedding tensor by powers of y = Mp;/A (where Mp; is the Planck mass Mp;
and A is the supersymmetry breaking scale) have to be devised in order for the original
supersymmetries to survive the limit y — oo.

Although they decouple for Mp, — oo, the gravitini and the hyperini (the fermion fields
in the hypermultiplets) have a role in defining the general features of the resulting partially
broken rigid supersymmetry: Their supersymmetry transformation laws survive the rigid
limit and contribute a non-trivial traceless constant matrix C4? to the scalar potential

Ward identity of the final supersymmetric theory:
Vo +Ca” = 0APoNia, (7.1)
i=1

where V is the scalar potential and A4 and A4 = 9i7 )\j;l are the chiral and anti-chiral
components of the gaugini. The constant matrix C47, is an essential ingredient in order
for the partial supersymmetry breaking to occur in the rigid theory. In [84] it was shown
that originates from the supergravity Ward identity. We show the same feature in our
generalized dyonic setting.

Eventually, we give in a self-contained form, all the relevant identities related to the most
general gauging of special Kahler and quaternionic Kahler isometries in a generic N' = 2
model, including the potential Ward-identity [97]. The general proof of the Ward-identity

for generic dyonic gaugings is a further result of our work.
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7.2 General N =2 Gauging Identities

In the present section we give some identities which hold for the most general gauging
of N' = 2 supergravity involving both electric and magnetic charges. In particular, the Ward
identity [07] which is required by the supersymmetry invariance of the gauged Lagrangian,
is considered. Here we shall work in Poincaré supergravity using the symplectic covariant
description of the special Kdhler manifold and generalize the identities given in [31] to
electric-magnetic gaugings and the analysis in [91] to non-abelian gauge groups. In the later
sections these results will be applied to the very specific electric-magnetic abelian gauging,
in which the rigid limit of spontaneously broken N = 2 supergravity is discussed.

We start from an N' = 2 supergravity coupled to n vector multiplets and ny hyper-
multiplets.  The scalar sector consists of n complex scalars z* and 4ny hyperscalars q¢“
parametrizing a special Kahler manifold Mgx [98], 99, [100] and a quaternionic Kéahler man-
ifold Mg [101], 102] T03], respectively, so that the scalar manifold has the form:

Mscalar == MSK (n) X MQK (nH> . (72)

A deep and self-contained study of the properties of special Kahler and quaternionic Kahler

manifolds can be found in [3I]. The main concepts are reviewed in Appendix D.

7.2.1 Some useful relations on the sigma-model geometry.

A special Kahler manifold is locally described by a choice of complex coordinates z* and

a section of the flat holomorphic bundle defined on it:
XA
OM(2) = G Ao n M=1..2042 (7.3)
Fi(?)
in terms of which the Kéahler potential reads:

K(z,2) = —1ogli Q(z)TCQ(2)], (7.4)

In terms of ©Q and K one defines the covariantly holomorphic section VM = es QM (see
Appendix D).

A holomorphic function f,(z) and a symplectic matrix M[g] = (M[g]s")

are associated
with each element g of the identity-connected component Gsx of the isometry group of Mgk
such that, if g : 2" — 2/ = 2""(2):

Q) =e"OM[gTQ(2) & K(Z,Z)=K(z2) - fo(2) = f,(2), (7.5)
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where M7 = (M~H)7.
If {t,} are the infinitesimal generators of Gg and k, = k’(2)0; + k% (2)0; are the corre-

sponding Killing vectors satisfying the closure conditions:
[ta, to] = fap“te  [Kas Bo] = —fu" ke, (7.6)
then equations imply:
0OM = KoM = —t MO + £ ()M | ¢ /c_: KLOK + KLOK = —(fa + fu) K(7.7)

LV = (k04 KOV = g My Ja L=l Ja . (7.8)

where f, = 0,fk and t,ny™ is the symplectic matrix representation of the generator ¢, on

covariant vectors: t,n"Cugp =0, (£,2)Y = —t,n™ QY.

Denote by P,(z, z) the moment map corresponding to k,, defined as follows [99]:

k. =ig7 0Py, kL =—ig" 0Py, (7.9)

a

and satisfying, under general assumptions on Ggg,

igiy ko ki) = fab( —Co), (7.10)

where C. is constant vector in the adjoint of Ggx which can be reabsorbed by the redefinition
Pc - CC % Pc-
Egs. (7.9) are solved by:
P, = —% (KLOiK — K.0.K) + Im(f,) =
= k0K +ifo=—iklOK —i fa, (7.11)
where we have used the second of (|7 . and - On the other hand, using (7.8)) and -

we find:
KUM= —t MV +ip, VM (7.12)

Contracting the above equation with CV and using the special geometry relations V'CV =
i, VICU; = 0, (see Appendix D), we find:

Pa = —VN taNMVM = _VN taNM VP7 (713>
where we have defined t,nvy = tan” Crar = tann.
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Moreover, we have the general property:
tamnQMON =0, Vi, . (7.14)

which follows by contracting (7.7)) with CQ and using the third of (D.10)), i.e. VICU; = 0,
which implies
QfcoN=0. (7.15)

The geometry of the quaternionic Kéhler manifold is recalled in Appendix D, where the
general properties of the quaternionic isometries ¢,, and their description in terms of Killing

vectors £, and tri-holomorphic momentum maps Py, are reviewed.

7.2.2 Symplectically-covariant gaugings of N' = 2 supergravity.

Let us consider the gauging of a gauge group G in the isometry group of the scalar man-
ifold M.aar- The gauge generators are conveniently written as components of an electric-
magnetic vector Xy = (Xj, X?), according to the notation of [03] and expanded in the
generators {t,, t,,} of the isometry groups of Mgy and Mgg through the embedding ten-
sor:

Xy =00t +O0"t,. (7.16)

The symplectic electric-magnetic duality action of X}, is described by the symplectic matri-
ces: Xynt = Oy %t,nT . Consistency of the gauging is guaranteed by the following set of

linear and quadratic constraints on the embedding tensor:

Xounpy = Xun“Coipy = 0, (7.17)
O ON furt + XunT ©p° =0, (7.18)
@Mm@anmnp+XMNP®Pp: s (719)
Oy CMNON" = 0 CMVON" = 0" CMNON" =0 . (7.20)

Conditions (7.18]), (7.19)) are closure constraints, i.e. are equivalent to
[(Xar, Xy = —Xun" Xp. (7.21)

The first two equalities in ([7.20]) follow from (7.17)) and (7.18)), (7.19)) while the last one has

to be imposed independently [93]. We can define gauge Killing vectors and momentum maps
as follows:
kv =00"ke, Pu=0yu"Ps, Py=0u"P . (7.22)
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From the quadratic constraints and Eqgs.(7.10) and (D.36]) we find the equivariance condi-

tions:

igig ki Ky = %XMNP Pp, (7.23)
QKL kY KN + €V PL Py = Xun' P, (7.24)
where we have used A = —1.
Using the linear constraint we can prove the following identities:

Pud™ =0, K, Q" =0. (7.25)

To prove the first one we write for the gauge-momentum maps:
Pu = —& XynpQ QF . (7.26)
Contracting both sides with QM we find:
(7.27)

K
QMPM = —6’C QMXMNPQNQP = %QNXNMPQMQP = O,

where we have used the linear constraint ([7.17) and the symplectic property of the matrices

XMNPS
2X(MP)N = —XNMP, (728)

being Xy np = Xyyn%Cop. Last equality in (7.27)) then follows from (7.14)).
Let us now prove the second of (|7.25))

OM KL, =i g7 QM 0Py =i g7 0,(QY Py) =0, (7.29)
where we have used the first of .
From we can deduce the following relations:
Di(VMPy) =0 = UMPy+VMOP=0 = UMPy +igykl,VM=0. (7.30)
Contracting with the embedding tensor we find:
K, UP = —XyunP vy +iPy VP, (7.31)
Contracting both sides with 7" and using the first of we find:
(7.32)

VY, U = — X" VIV
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Next we contract both sides with ©p, where ©p can be either ©p® or ©p™ and use the
quadratic constraints ((7.21)) which imply that the generalized structure constants Xy n* are
antisymmetric in the first two indices only if contracted to the right by ©p: Xy nyT0p =

—XnuPOp. By virtue of this feature we find:
M P PTM N PiM N My 77
VikyU Op=—Xyn V V'Op=Xyy V VVOp=-VVEk,U,; Op. (7.33)

The identities ((7.25) and (7.33]) were proven in the electric case in [99]. Here, for the first
time, we give a general, compact proof of their generalization to a generic dyonic gauging,

showing that they directly follow from the linear constraint on the embedding tensor.

7.2.3 The general Ward identity

The supersymmetry Ward identity [97] is required by the cancelation of the supersym-
metry variation terms of the gauged Lagrangian, which are quadratic in the embedding
tensor. It expresses a relation between the fermion shift matrices and the scalar potential

V(z,Z,q) and has the following form:
Gy WiAW e + 2 NA N — 1284550 = 65 V(2, 2,q) (7.34)

where WiAC N% S, 5 are the supersymmetry shift-matrices of the gaugini \‘, hyperini ¢*
and gravitini ¥4, respectivelyﬂ. In this case we have that these fermion shifts have the
following symplectically-invariant expressions:

{

Sap = 7 (0")a%pc Py VY, (7.35)
WiAB _  AB ki, M (O_:p)cBGC’AzP]ﬁ gijﬁé\/f’ (7.36)
NA = 2UA ke VY Ny = (N = —2 Uy 4% K, VY (7.37)

Let us now prove the Ward identity [97] for the generic dyonic gauging of N” = 2 supergravity.
We shall evaluate each term in the left hand side of ([7.34)) separately.

Let us firt evaluate the square of the gaugini shifts:
WA W hogy = 03 kkhaa V" VY —i (09" (K, VTN — k8, T 0Y) Pyt
+(o%o¥) g Py, PLUMY (7.38)

'We use the following convention for rising and lowering symplectic indices:

va = €eap v’ UAzeBAvB, UazCang, vo‘z(CﬁavB.
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where UMN = UN g7 U;V, see (D.20)). On the r.h.s of the above expression we split the terms
proportional to §7 from those proportional to (¢%)p* and use Eq. (7.33) to find:

WA ey = o (KakhgaV VY + PEPEUMY) 4 i) (=2 Xun" VY VY Pt
+ €= Py PLUMNMY (7.39)
Now using Eqs. (D.20)) and the locality constraint (7.20) we can write:
PUPLUMN = — L py pr ey _py pr M yN — _py pr My (7.40)
MPEN =57 ulN MIN = —FMPN ; :
so that we finally find:
WA ey = o (KikhoaV" VY + PEPEUMY) i) (=2 Xun" VY VY Pt
— VI PY P, VMVN> (7.41)
Let us now consider the evaluation of the square of the hyperini shifts:
2NLA N = 8UMN Uy o Ky K3 V' VN = 4 (8 + 1 (0%) 5 K2,) Ky k3 VI VN L (7.42)
where we have used Eq. (D.31)). Finally let us consider the square of the gravitini shifts:

—1254C Spe = =3 (0%0¥) A PLPL VMTY = 3Pz, Pz VMUY 13 vz py pr VYN (67) g4

(7.43)
In this way, we find the following expression:
Gis WA 0 + 2 Ny A Ny — 1254530 = 68V (2, 2,q) + 1 Z° (0) 5™, (7.44)
where
Vi(z2,q) = (ki kL gy + 4 huokl K3V VY 4 (UMY — 3y My yprpe (7.45)

is the general symplectic invariant expression of the scalar potential given in [93] as a gen-

eralization of [31] to the case of dyonic gaugings, and
7% = (=2 X' PE A+ 26 PYPL + A K K k) VI VY (7.46)

From the equivariance condition ([7.24)) it follows that Z* = 0, so that the Ward identity is

proven.
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7.2.4 Abelian gauging of quaternionic isometries

The previous discussion holds for the gauging of a gauge group G in the isometry group
of the scalar manifold M.q.-. In what follows, we will consider a gauging which involves
an abelian group of quaternionic isometries. In this way, being only quaternionic isometries
gauged, the generalized structure constants vanish: Xy;x* = 0. Then, implies

1
K5, Ky ke = =3¢ Py P

Using this identity, it is easy to show that in this case the three fermion-shift contribute to

Z* and show that they cancel against one another:

g@-jWiACW;C — —exyZP}QPfVVMVN, (7.47)
ONANYE = —2evpYPLVIVY (7.48)
—1284CSpe — 3evEPYPLVIVY. (7.49)

In what follows, we will be interested in the limit of a gauged N = 2 supergravity of this
kind to a rigid supersymmetric theory of n vector multiplets [81] (rigid limit), along the lines
of [84]. In particular, the rigid limit of the Ward identity [83, 84, 104, 105] will be a
crucial point in our analysis.

The Ward identity of an N' = 2 (abelian) rigid supersymmetric theory of n vector mul-
tiplets is given by the general expression [83, 84 T05]:

o A~
GgWHAW e = 65 Vj(\ij:PéT)(zv )+ Cp?, (7.50)

where Vj(\f:PQT)(z, Z) is the N/ = 2 scalar potential in the spontaneously broken rigid theory,
which reproduces the APT scalar potential in the case of one-vector multiplet, Cz? is a
su(2)-traceless matrix, g;; is the metric of the rigid special Kéhler manifold describing the
scalar fields 2’ in the vector multiplets and WiAC are the gaugini shift-matrices.

As shown in [83] [84], partial breaking of supersymmetry can occur only if C# # 0. This
happens in the presence of mutually non-local electric and magnetic Fayet-Iliopoulos terms
[83].

The symplectically-covariant relations (7.47),(7.48)),(7.49) allow to elucidate the meaning
of the matrix Cz? by relating the rigid Ward identity to the supergravity one .
In fact, let us rewrite the Ward identity in the form:

gis WS = 68 V(2,2,q) — 2N,  N° g + 12 54 S (7.51)
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As we will see in the next section, all squared fermion-shift matrices in (7.51)) survive in the
rigid limit (Mp; — oo). In particular the left-hand-side of ([7.51]) reproduces that of ([7.50)),
while the constant matrix Cp? receives contribution from the terms in Ny, N5, SA¢Spe
proportional to ¢®, which are given in ([7.48)), (7.49). More specifically we will find that:
Mp —
Opr= lim =2 (—i €V P@PJZVVMVN(UZ)BA> , (7.52)

Mp;—o0 A4

where A is the supersymmetry-breaking scale. The same hyperini and gravitini shift-matrices
also contribute terms proportional to §5 which affect the form of the scalar potential in the
resulting rigid theory. These terms were explicitly computed in and so that we
can identify:
(APT) : Mp, _ w ¢ pa \TM1 N
VAPD — fim 2P [Y(z 7, q) — (4 hew kYK — 3PPV Y ] . (7.53)

Mp;—o0 A4
As we shall prove in the next section, in the rigid limit, the leading order terms in O 5"V
are independent of 2%, z, but only depend on the hyperscalars ¢, so that:

M4
VA — lim =2 [V(z,7,9)] + A(g) - (7.54)

Mp;—o0 A4

Since the fluctuations of ¢“ are suppressed by a factor M ;ll, in the rigid theory the hy-
perscalars are non-dynamical, i.e. constants. As a consequence of this the NV = 2 scalar

potential of the rigid theory VAFT)

is given by the rigid limit of the supergravity potential
YV modulo an unphysical additive constant. This was already observed in [84] in a particular

model.

7.3 Multi-vector generalization of the APT model

In this section, we present a supergravity model with partial breaking of N' = 2 to
N = 1 supersymmetry which, in the low energy limit, gives rise to a rigid supersymmetric
theory corresponding to the generalization of the APT model [83] to a generic number n of
vector multiplets. As we will see, this procedure admits a well defined limit to many-vectors
supersymmetric Born-Infeld theory.

The minimal underlying supergravity model consists of A/ = 2 supergravity coupled
to n vector multiplets and a single charged hypermultiplet, whose scalars parametrize the
quaternionic manifold

SO (4,1)
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Following the procedure adopted in [84], let us consider a special geometry symplectic
section XA( )
. 2*

oM (7 :( ) A=0,1, I,i=1,...,n, 7.56

( ) FA (21) ( )

(where ¢ are holomorphic-coordinate indices) in a symplectic frame where a holomorphic

prepotential exists. Using special coordinates z* = §7 X7/X" it takes the form:

F (XY = =i (X9 F(X7/X°) (7.57)
so that, choosing:
0_
XA:{ Xi=1 , (7.58)
X’L — 27,
we found
_ 0_ _; _ i
Py — Fy=0F/0X" = ~ (2f' 2'0; f) | (7.59)
F, =0F/0X"' = —i0;f
and
1
M = ° 7.60
—i0; f

In terms of the holomorphic sections the Kéhler potential reads
K=—In[i(X"Fy— X"F))],
——W[2(f+]) - (=2 (& - 3T)|. (7.61)

In order to generalize the procedure in [84] to the case of n vector multiplets, we should
consider a rigid limit (u = Mp;/A — oo, where Mp; denotes the Planck scale and A the
supersymmetry breaking scale), leading to partial breaking N' =2 — N = 1 in a rigid
supersymmetric theory. In the derivation of [84] for partial breaking N' =2 —+ N =1, an
essential point was the presence of a linear term (in the holomorphic special coordinate z)

in the expansion of the prepotential f(z) in powers of /%:

1z ¢(2) 1
f)=-+—+—"+0(—= ). (7.62)
I I
In this way, for the case of many vector multiplets we need to introduce a set of n constant

parameters 7);, so that the holomorphic prepotential takes the form

p 1 2t (2! 1
f(z):;l+772—u+2(72)+0(ﬁ). (7.63)

106



Using the standard formula for the Kihler potential (7.61]) one derives, up to order =3

KOk
- _+—27”
nooop
N 2
o om(z+2) 1 i (09— 0id _(m(ZH))
— ; e dp+o—(2—2) < 5 5
so that
gi]—:(?iale
1, 1 1 ,—
= Egz‘j = E {ninj 5 (aijqb + az’jqb)} ; (7.64)

where ¢;; corresponds to the rigid special Kahler metric. Let us note that the rigid special

Kéhler metric can be found, in terms of the (rigid) Sp(2n)-symplectic section

om_ [ = [ & M=1, .2 7.65
(aif) (%(mmzj_ai@), e, (7.65)

from the (rigid) prepotential

F=2|m) -] (7.66)
In fact,

Ny
S

|
o5

)
iajJr 25 (77i775 - @aj(b)

(aiaj¢ - aiaj¢) + % (77i77] 3 (aiaﬂb + aiaj¢))

PSRN

S i
(az'aj¢ - aiaj¢) + §gij7
which can be written as

Fiz = Ty + 1Tz,

and where we have defined

i
Ty = Z(&@]—gb—aﬁﬂﬁ), (767)
i = % (7.68)
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The covariantly holomorphic symplectic section VM = X/2QM has the following expansion

L= g (24 2) +0(1/p?)
M =g (24 2) 47 + 0 (1/47%)
B LR U A CE N Rl
— s+ 0 (1/p)

(7.69)

Furthermore, the Kahler-covariant derivative of the symplectic section defined by,

oK

UM = D,vM = 9,vM + 5

VM (7.70)
takes the form
Lt (— (0:6 + 0id) + Dis [z — 2V + 3mim; [2 + z]j) +0 (1))
5 = & (3m (o +2)" & +0?) + 0 (1/3#)
52 ([0:6 = 30] — B0 2 + 2 + 227 ) + O (1)
—5.2 (0536 — min) + O (1/11°)

(7.71)

As we will see in the following subsection, a natural interpretation of the constant parameters
7; appearing in the symplectic section OM and in the metric gi7 of the rigid theory, can be
given in supergravity as charges associated with the gauging procedure, when a different
choice of symplectic frame is considered.

Let us now consider the gauging of two translational isometries in the hypermultiplet
sector involving both electric and magnetic charges [91), 92]. This gauging can be described
in terms of a (redundant) symplectic vector of gauge generators X, = (X, X*), expressed
as linear combinations of the isometry generators t,,, m = 1,...,dim G, of the quaternionic
Kéhler manifold through an embedding tensor [90, O3]:

Xor = On™ b - (7.72)

We choose the gauging involving only two translational isometries ¢,, (m = 1,2) and the

embedding tensor ©,;"

O,' 6y e/u* o/u’
@]\4& = (61\41’@]\42) = @01 @02 = O 0 ) (773)
Qi1 @i? mi/p 0
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depending on constant charges e, o, m’, and satisfying the locality condition

0 1
CMNO,"ey" =0, where CMV = ( 10 ) . (7.74)

The embedded Killing vectors k,; = (kA“, kA “) are related to the geometrical Killing
vectors k" (o =1,...,dimG) generating the isometry group G of Mg by:

kol = O,k . (7.75)

The introduction of the embedding tensor allows to write the fermion shifts 5 of the
supersymmetry transformation laws in a symplectic covariant way. For N' = 2 supergravity,

they are given by

SONA =W ABep, (7.76)
04 = iSapy.e”, (7.77)
69)¢ = Nge?, (7.78)
where the fermion shifts are given by [see (7.35]) - (7.37)]:

WiAP = igl (6%) " “AUM O, P, (7.79)

i
Sap =15 (6),C epcVMO, " PE, (7.80)
N = =2U5 ki VYO, (7.81)

where we have set k%, = 0, since our gauging does not involve special Kahler isometries.
Denoting by ¢ and ¢ = {q', ¢*, ¢*} the four hyper-scalars in the solvable parametrization,

the metric of the quaternionic Kéhler manifold has the following form

o1

d
¥ 73

(do® + e*?dq - dJ) , (7.82)

and the corresponding vielbein U, appearing in the supersymmetry shift-matrices of the

|

hyperini, reads [84]:
1
Ui = Ug,dq" = —560‘6 [dip +ie?dq - G, 4, (7.83)

where (%) AC are the standard Pauli matrices and Py, are the quaternionic momentum maps

associated with the quaternionic isometries via the relation:

Pr = —k "t (7.84)

m m u?
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where w? denotes the SU(2)-connection on Mgg. The metric is invariant under
constant translation of the three axions: ¢ — ¢+ ¢ We shall choose to gauge the two
translations ¢, acting on ¢, ¢>.

The gauging under consideration involves two traslational isometries ¢, whose

momentum maps can be chosen as follows
Pr, = (Pr,Py) = 0e”,
with

P =(0,1,0)€”, (7.85)
P =(0,0,1) e”. (7.86)

In the next section, the two hyperscalars ¢?, ¢> will be dualized into antisymmetric tensor
fields Bn| -

7.3.1 Partial supersymmetry breaking and rigid limit

Here we will consider the prescription of [84]E|. The partial supersymmetry breaking is
recovered considering the limit py = % — 00. Since the fermionic shifts are written in
natural units ¢ = h = Mp; = 1, and in order to explicitly perform the limit, it is convenient
to reintroduce the appropriate dependence on the Planck Mass and on the supersymmetry
breaking scale A, due to the gauging, in the supergravity expressions. Since the scale A is re-
lated to the gravitino mass by A? = Mp;m 3, and that the special-Kahler sigma-model metric
rescales according to , then the canonically normalized kinetic terms are recovered by

the rescaling [84]:

¥ — Mpat, € — M%ZE,
Up = MptP0,, A= (MpA?) 72N ¢ = M
(7.87)

2In the next Section, we will consider the low energy limit of the Lagrangian starting from a different,
p-independent, symplectic frame of the supergravity theory, and thus we will approach the rescaling in a

different way.
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If we use the above rescaling we find that the shifts of the fermions read

SN A = —A2e0A {g”_ (e;-” — Tim” z) + %mi m] (JE)CB e¥ep,
A? o
0o y = —7630 [eﬂc _ 2-772_ij ac} (Ux)AC 6@637
8¢ = —iA%e [e”” — ZZ—JmJ m} (O'x)ﬁ Ae“"eA, (7.88)

where the following definitions have been used:

¢’ =(0,e,0) = (0,e"),
m'® = (0,m",0) = (0,m™), (7.89)

xr x
e; = ne’.

Let us note that, as we will see in detail by the analysis of the Lagrangian in the rigid limit,
the hypermultiplet decouple in the rigid theory and the momentum maps Pj; reduce to
constant Fayet-Iliopoulos terms P4, = (m™,ef). The relation between them can be read

explicitly from the gaugino shift:

GIUMP = 197 (eF — mim” ™) + %mi o = §IuMPy,, (7.90)
where UM are related to the rigid symplectic sections introduced in by UM = 9;OM.
We emphasize here that in this formulation of the rigid limit, the FI terms are expressed
not only in terms of the parameters e, o, m; defining the embedding tensor (the gauging
parameters), but also in terms of the parameters 7; characterizing the special geometry
through the choice of the prepotential . In the next subsection we shall discuss a
different formulation in which the FI terms only descend from the supergravity gauging
parameters.

For the case of one vector multiplet, n = 1, eq. reproduces the results of [84]
leading to the APT model.

7.3.2 Some comments on the interpretation of the constant pa-

rameters 7,

It is well known that partial breaking of rigid supersymmetry crucially requires, in order

to evade previously stated no-go theorems[108] [109], that the quantity £*, defined by

1 |
6" = eV Crgy = el (7.91)
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with e?, m* given by (7.89)), be different from zero[[| This relation looks like a non-locality
condition. Nevertheless, the choice of embedding tensor as in ([7.73]) implies that the locality

condition
O C oy = 201mO7 = 0 (7.92)

is satisfied in the rigid theory so that, the condition e*¥*P¥MPNC, v = 0, with P =
Pr Oy, is satisfied in the chosen frame. This is not in contradiction with since the
FI parameters P5, of the rigid theory are not the simple restriction of the supergravity
momentum maps to the Sp (2n, R)-index M. In fact, the momentum maps in supergravity
and the Fayet-Iliopoulos terms of the rigid theory are related through , which non-
trivially involves the contribution from the index 0 of the symplectic section, keeping a
memory of the graviphoton. On the other hand, as eq.s and show, the geometry
of the rigid theory wn the chosen coordinate frame depends in a non trivial way on the constant
parameters 7);, also appearing in through the charges e = e¥n;.

As we will see, the embedding of the theory in supergravity allows to clarify the topolog-
ical role of all the constant parameters involved in the gauging, showing that the n; required
in the special geometry of the rigid theory in order to have partial supersymmetry breaking
(with its BI low energy limit), can be traded with charges via a symplectic rotation involving
a redefinition of the special coordinates in the underlying supergravity theory.

Indeed, consider the (electric) symplectic transformation in supergravity:

L n/pw 0 0
0 i1, o 0
S(n,p) = K 7.93
w =1, " 1 o (7.93)
0 0 =i Mln
which induces the following rotation in the symplectic section ([7.69)):
X0 ¢ i n; X X0
B 1y Xz
oM =5.0M = " =1 - 1. (7.94)
Fy Fy
pd — miFo F;

The new holomorphic prepotential is F(X) = F(X). Since the new special coordinates

3As shown in [I05], this condition is also necessary to achieve, in the low energy limit, a multi-field

generalization of the Born-Infeld Lagrangian.
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are related to the old ones by ‘
zZ

NERE

) —

1 .

z = —uw', (7.95)
0
then the reduced prepotential f(%) is related to f(z) by (see (7.57)):

fe) =+ %mzj)Qf(Z)

that is
7o) = (3 + 329 + 010 (7.96)

where ¢(3) = ¢(z) — $(miZ")? = ®(w). Note that in the new frame the linear term in
Z has disappeared from (7.96). Moreover, after the symplectic rotation, the covariantly
holomorphic symplectic sections VM = ¢5QM and UM = §,V™ can be written in a generic

coordinate frame and behave, in the rigid limit © — oo, as:

X0 0
- 0 1] X'(w)
VM= + = +0 (1/p2) 7.97
" p 0 (1/1?) (7.97)
0 Fr(w)
0
N 1| 9,x7
uM = — +0 (1/17) | (7.98)
Iz 0
Oy

where QM = (X1 Fy) (I = 1,---n) denotes the symplectic section or the rigid theory (in

0P
Ow?

Sp(2n +2) of the supergravity theory flows in the rigid limit to a manifest Sp(2n) structure.

special coordinates X1 (w) = w', Fy(w) =

). In the new frame the symplectic structure

In particular, the O-directions have a different p-rescaling with respect to the M-directions.
They are then directly associated to the Hodge-bundle of the local special geometry (that
is to the graviphoton direction) and are projected out in the low energy limit. Still, the
special-geometry sigma-model metric in supergravity is related to its counterpart g;; in the
rigid limit by:
L,

Gi7 = Egijy (7.99)

while the relations of special geometry imply a low-energy rescaling of the vector-kinetic-

matrix Ny corresponding to the following identification of the matrix Nis: of the rigid
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theory:

o o 1 -
Noo=Now, Ng=N, No= ;/\/61- (7.100)
The symplectic transformation (7.93)) acts on the embedding tensor ([7.73)) as follows
Am m — 1 m m im im I m
M — ®N ’ (S I)NM = E (6 y TIRe L, me s, m ) = E@M’ (7101)

where @ﬂ is the embedding tensor of the rigid theory. In this way, in the new frame the

parameters n; play the role of charges, since (:);" = 1n;e™

are the electric charges associated
with the vector multiplets and %" = 5;m® is the magnetic charge associated with the
graviphoton. Note that in the old frame both of them were zero.

As a consequence, the new embedding tensor satifies the same locality condition

(7.74)) as the old one, but now
o o o 1 ‘
OMNme =0 = My = -6} = —emnm™ £ 0. (7.102)
U

This expresses a sort of "non-locality” of the rigid theory, and hints toward a high-energy in-
terpretation of it in terms of a non-triviality of the fiber bundle associated with the gravipho-
ton. In the new frame the graviphoton is identified with the 0 direction of the vector field
strengths, what is not true in the old frame. More specifically, if we denote by Aﬁ = (Ag, A/ﬂ),
the n—+1 supergravity vector fields, in the new symplectic frame, Ag is consistently identified
with the graviphoton while Aﬁ with the vector fields of the resulting rigid theory. Since in
the rigid limit the graviphoton decouples from the spectrum, we find that the rigid super-
symmetric theory found as low energy limit of supergravity in the new frame is actually non
local. However, as we are going to discuss, the non-locality only affects the fermionic direc-
tions of superspace, while it does not emerge as a non-locality on space-time. This clarifies
the meaning of , which expresses indeed the non locality of the rigid theory, when all
the constant parameters needed for the partial breaking of supersymmetry are expressed as
electric and magnetic charges in the embedding tensor.

Moreover, this non-locality poses no obstruction to a correct definition of the vector fields
AfL in the rigid theory, by virtue of an interesting mechanism which is at work in the rigid
limit: A generic feature of magnetic gaugings in supergravity is the fact that the vector fields
Aﬁ corresponding to non-vanishing magnetic components ©*™ of the embedding tensor, are

not well defined since the corresponding field strengths F /j\,/ are not covariantly closed
DF* x ©*dB,, +---#0, (7.103)
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By being antisymmetric tensor fields. This poses no problem because such vector fields,
in a vacuum, are "eaten” by the tensor ones B, and become their longitudinal components
by virtue of the ”anti-Higgs” mechanism [I07]. This is the case of the vectors Al which
are thus not well defined in the chosen supergravity gauging. In the rigid limit however,
as we shall show, the antisymmetric tensor fields decouple, thus preventing the anti-Higgs
mechanism from taking place, so that the vectors Aﬁ survive and, at the same time, become
well defined. As we shall illustrate, the magnetic character of the FI parameters ™ in
the rigid theory can be also related, besides to their position within the Sp(2n, R)-covariant
parameter vectors (©;™, ©1™), to the following feature of the vector field strengths: While
dFT vanish in space-time, they do not vanish in superspace since:

dF! = %@fmpjg (0 D Ayt AVE£0. (7.104)

In other words, the magnetic FI terms parametrize a non-locality only along the fermionic
directions of superspace, thus not affecting the well-definiteness of Ai.

The effects of the non-locality are directly related to the supersymmetric structure
of the theory. As said before, the non locality of the rigid theory is related to the non-
triviality of the fiber bundle associated with the graviphoton in the rigid limit. Because of
this and as already noted in [84], the supergravity modes associated with the underlying
N = 2 supergravity theory still freely propagate in the rigid theory (see ) even if
decoupled from the visible sector. As a consequence, the SU(2)-Lie algebra valued term
C 4P appearing in the supersymmetry Ward-identity of the spontaneously broken rigid theory
can be understood as the contribution to the Ward identity from gravitini and hyperini, still
propagating in the rigid theory.

On the other hand, it is known from [97) 03] [95] T06] that, in the presence of magnetic

An in supersymmetric theories, the natural symplectic frame to deal with them is

charges m
rotated with respect to the purely electric frame, allowing for the presence of antisymmetric
tensors By, coupled to the gauge fields A% in the combinations F [i\v = F ;i\v + ZmA”BnW
E|. The N = 2 supersymmetric Free Differential Algebra in four dimensions contains in

particular, in the case where the antisymmetric tensors dualize scalars in the quaternionic

4The fermionic shifts found in [84] and generalized to n vector multiplets in this work are in fact naturally
recovered in the symplectic frame where some of the hyper-scalars are dualized to tensor fields, as one can
explicitly check by comparison with Section 3 of [91], and in particular egs. (3.13) - (3.15) there.
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sector

FOM = dA* + 2m™ B, + (L*(2)¢pa A ¥pe™® + h.c) (7.105)
H® = dB, + %P;’f (0) g A yap AV (7.106)

where L* are the upper-part of the special geometry symplectic sections V¥ and P2 are

functions of the hyperscalars [92]. From ([7.105)) and (7.106)) we obtain
dFN = @hn (an — P (0%) P g Ayatht A va> , (7.107)

where we have identified mA™

with ©*". In the low energy limit the hyperscalars are not
suppresed but tend to constants, in such a way that ©;P% becomes constants O ;IP¥ # 0
whose restriction to the non-zero indices © {4P? yield the FI parameters. Then, from the
expression , taking account the decoupling of the tensor fields, the clousure of the

free differential algebra gives
dFT oci®I P2 (0%) P hp Ay A A VO £0. (7.108)

From (|7.108)) we see that the non-locality only affects the fermionic directions of superspace,
while it does not emerge as a non-locality on space-time.

7.4 Rigid limit of the N = 2 supergravity Lagrangian

In this section, we consider the rigid limit of the N' = 2 supergravity Lagrangian cor-
responding to partial breaking of supersymmetry, and whose gauge structure has been dis-
cussed in the previous section.

We shall work in the symplectic frame where the gauging structure of the theory is
unveiled and shown to involve the presence of magnetic charges. In this way, the natural
framework to perform the limit is the version of the Lagrangian where some of the scalars of
the hypermultiplets are Hodge-dualized to antisymmetric tensors B, [91], 92, 03, 95|, 106].

In order to perform the rigid limit, it is convenient to reintroduce in the Lagrangian
(usually written in natural units ¢ = A = 1, but with also Mp; = 1) the appropriate
scale dimensions. We will consider the limit process in two main steps: We will first
explicitly write the correct Planck-mass dependence of the physical fields in the supergravity
Lagrangian and then, after considering the low energy (@ — o0) behavior of the special-
geometry sigma-model sector, we will get the appropriate redefinitions of the physical fields

appearing in the rigid supersymmetric theory.
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The canonical scale dimensions of the fields in natural units ¢ = A = 1 are:

@] =M [0 =M, [Ag]=[Buwl =M, [Zean)) = [Gfean)) = M,
[l = W =[¢" = M2, [t = M2,

while the embedding tensor is adimensional. For the embedding tensor we will consider
its symplectic-covariant expression . Since the scalars 2z, ¢“ appear in the theory
through non-linear sigma-models, we will keep them adimensional (that is we will consider
2= Zécan.)/MPl? q“ = qZLcanA)/MPl)'

Following this prescription, the Lagrangian in [92] can be split in terms of Planck-scale

powers and reads, up to four fermions terms:

L= £(4) + ﬁ(g) + ﬁ(l) + L‘(o) + ﬁ(_l) (7.109)
where
Lay = MpV(2,q) (7.110)
R S
Lo = Mp (—5 + 9i;0"2' 0,77 + huvﬁuqua”q”> (7.111)
GMVPU m " 1 . A 1 An
‘C(l) = Mpl (_\/_—g) 2Hm|VpUAu a,uq + §Bm|;w@1\ ]:pg - MPZEQ Bn|po’ +

+ (284U VWY + igig WP Ny bl + 20Nyl
F MG+ MECAE + MNP +he)} (7.112)
ﬁ(o) = 1 (J\_fAzﬁ,LA]:"_ZW — NAzf;VA}A"JFZ””) + 6Mm”7{mw,p7-ln“"p +

E;w)\a _ i

+\/_—g (w/f’}/l/pAMo - QZJAW’Yfog) 297,j (S\ZA’YMVMAQ + S\QVMVM)\ZA> —+

—1 (EOC,YNVMCQ + Ea'}/uvuca) +

—gi70,7 (VAN = N 4hy, + hec.) — 2USA0,q" (WhCa — Cay™than + hoc.)
(7.113)

L 7y ; T AV 1 i v j
Ly = Ma{Ft s [L%A%BVEAB — X e SVPAY N et
—L¥("™ (5C] + hoc. +
+ 2MTH P UAY (340G + PanCar) + IAE CiYmpC?] } . (7.114)

where hy,,, A7, M™" are the components of the quaternionic metric after dualizition of the
scalars ¢™ to antisymmetric tensors By, ]:";},, = FA4 %M Pl @AmBM,,m are the gauge field-

strengths undergoing the anti-Higgs mechanism introduced in (7.105) (in our case ©A™ =
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mA™ = ym™), and Ft = 5 (FD, £ €upoF ) denotes projection on (anti)self-dual

part E| Furthermore, the mass-matrices are given by [31], 92]

M = —UUIP eap0 7 VIV, (7.116)
& = —4US O,k UM, (7.117)

i - m xr
Miajp = 3 (0267") 15 OM" PRV, U, (7.118)

To perform the rigid limit % = p — oo of the Lagrangian, we must first consider the limit

of the various couplings in the Lagrangian, and clarify the relation between supergravity
fields and their rigid counterparts correspondingly. We will identify the fields of the rigid
supersymmetric theory with a ring, to distinguish them from the supergravity fields.

From the previous section we know that the special-Kéhler metric rescales as , SO

that the kinetic terms of scalars and spinors in the vector multiplets in the rigid limit read

(from (7.111)) and ([7.113]):

1

gy | MAPZ0,5 — 5 (V0 + MV,

?
2
This implies that the gaugini of the rigid theory should be related to their supegravity

relatives as follows: )
A = N4 (7.119)
I

while the holomorphic scalars should not be rescaled

Z =Z.

Thus, we have that
Lo =g | A29*319 g L NANYT N oAy A
rig = """ Gij ZOpz 5 VIV AL T ARV +

Furthermore, since the components of the gauge kinetic matrix Ny, rescale as ((7.100)), then
the gauge vector should not be redefined:

Ab =AY (7.120)

5In a symplectic frame, where the gauge fields undergo the standard Higgs-mechanism by coupling to the
scalars in the quaternionic sector (not dualized to antisymmetric tensors), the gauge-covariant derivative in
the quaternionic sector is defined as

Vug" = 0uq" + Mp AL,k " (7.115)
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and the gauge kinetic term reads, at low energies:
o o 2 o
Ins P, F5 = IogF O + Iy FL P 210 FO FTW + O(1/1%)
I

where Iy =Im(Nyy).
Given ([7.97)),(7.98),(7.101)) and (7.120)), we can identify the low energy limit of the self-
dual components of the graviphoton 7/, and of the matter vectors G’;lf We find that

1

T, = IxwLF,” — IoX°F,° + O(M) (7.121)
i ) B i o oy 1
095G = Sl [AE — ﬂI, JHE + 0(}7) (7.122)

showing that, in the rigid limit, the gauge-index 0 corresponds to the graviphoton direction,
while the gauge-index I to the matter-vectors directions.
The rescalings of the fermion shifts and spinor mass matrices follow from the low energy

limit of the symplectic sections and embedding tensor discussed in the previous section.

They are:
iAB _ Liiian o L s
WA = =W AR MO = M (7.123)
p W
1 - N 1.
Sap = _QSAB, iB — E iB > (7.124)
« 1 T 1 -
N%y=—=N%,  Mijp = —Miss. (7.125)
H z
As a consequence, the scalar potential rescales as
1 -
V=1V (7.126)

1
In this way, the different contributions to the Lagrangian (7.109)), when written in terms of
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the rescaled fields, read:

R (7.127)
( 5 T huwdug"9"q ) +A%g;0" 20,2 (7125
{ 7 {QHWPC,Aumqu“ + %Bmmuéﬁ (pra - Aﬁpl 59 AnB””")} "
n

/7 (2SABwA W + WA Nyl + 2iN2C 0 + . ) +

M (M“ﬁcacg + ME%CANE + hee. )}

+A (/\;liAjBi\iAj\jB + hC) . (7129)

Lo - z’(NAEJ:";VAﬁ*E“”—NAEJ:"jVAﬁ+Z“”> M, HI
GMV)\J _

A YA A 1A 1 J i 1A
\/_—g (¢M TvPANe wA|y7up)\g) QQU ()\ V )\ + )\ A V )\ >
—t (Eaﬁyuvuga + éof)ﬂuv,uca) +
L e e o
—;gﬁ[aﬂzﬂ ( BAT = Nt wAu) + h.c] = 22U 0,q" (Ve — GV Y ay + hoc.)

+

° 1 0,9, o .
Ly = A—lf;yI]]J [§Ving)\ZA7W)\jB€AB] -~ M; [4ij>\ AP —l—h.c.} "
+M13l1{]:;fyofoooi0 [P esp — (a7 (sC* + hc.] +

FRMIHLS U (Bith g+ D) + 38, Gt (] - (7.130)
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and it reduces, in the limit 4 — oo, to:

Ly =

AYV(z,q) (7.131)

ME, (—§ + huvauq“aﬂq“> + A2G,0" 0,7 (7.132)
eMvre ° oo

=2 My Honjo A3/ 0u" + A (MiaipA VB 4 he.) (7.133)

i (NasF 0 = N FJ M ) e GM™ Hos M1 4
GMVAU

_ _ 7. 2, o~ o 0
=7 (L wpane = Papwpis) = 59 (A VN N VA A) +

—1 (EQ’YMVMC& + Ea’Y“VuCO‘) - 2]/{3146#(]” ('I,EZCQ - Eof}/ijAV + hC)

%_

(7.134)
o o 1 - o .
AF L g [V N A N Beap + e (7.135)

Note that after the appropriate rescalings and the low energy limit, the supergravity La-

grangian reduces to an observable sector corresponding to the rigid Lagrangian of [83], under-

going spontaneous breaking to N/ = 1 supersymmetry, plus a hidden sector, still propagating

but fully decoupled from the observable sector:

where

Lapr

£hidden

Esugra — £APT + Ehidden (7136>

. in -7 1, 2. o= o o
= A?§;0"2'0,7 — 591 ()\ AW”VMJA + Ny VA A) +

+i (J\EIUF;J FImw J\Eﬁjf f”“”) +
+A4f) -+ A (./\;liAjBiiAS\jB + hC) +

o ° 1 0,9, o .
ATV F L g[SV N A A e 4 b (7.137)

R . Z — — v ° 14
= M}%’l (—5 + hw@uquﬁ“q”> +1 <N00flwof On —NOQF:VOF_‘—OH ) +

nvpo
HEM M Ho 1P — 2 — MpHuniipo A7/ Op" +
ENVAU 1A 7 A - (o ~ «a
+\/_—g (7% ’yl/f)AP\o _¢A|,uﬁ)/l/p)\g) —1 (C fyuv,uCa + Ca’Y“VuC ) +
—2UD,q" (V4G — CaV" b + hec.) (7.138)
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Let us note that in the low energy limit the space-time metric, the graviphoton, the anti-
symmetric tensors and the scalars of the hypermultiplet sector, together with their fermionic
super partners obey the field equations of free waves not interacting with the rest. In par-
ticular, the metric can be chosen as a constant background, the hyperscalars can be set to

constant values.

In conclusion, in this chapter we have investigated the supergravity origin of a U(1)",
rigid, partially-broken A/ = 2 supersymmetric theory whose infra-red limit is described by
the multi-field BI action of [82].

The high-energy supergravity is characterized by a visible sector described by the n
vector multiplets surviving the rigid limit, and by a hidden one consisting of the gravitational

multiplet and by a hypermultiplet, which decouple as the Planck mass is sent to infinity.
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Conclusions

In this thesis, we studied pure and matter coupled supergravity theories in different
frameworks. Standard supergravity was extended to incorporate other interesting features
like enlarged symmetries, matter couplings and cosmological constant. In particular, we
constructed different supergravity Lagrangians in three and four dimensions following a geo-
metrical approach, and using the useful properties of the S-expansion procedure. Moreover,
we presented the multi-vector generalization of a rigid, partially broken N' = 2 supersym-
metric theory as a rigid limit of a gauged N = 2 supergravity with electric and magnetic
charges.

In Chaper 3, we presented supersymmetric extensions of the Maxwell type algebras in
D = 4 dimensions. Using the properties of the S-expansion method we showed that in-
equivalent Maxwell superalgebras can be obtained when different semigroups are chosen.
Thus, we obtained a family of Maxwell superalgebras having the Maxwell type algebras as
subalgebras. In particular, the S-expansion of osp (4|1) allowed us to obtain the minimal
Maxwell superalgebra sM,. Then choosing different semigroups we defined new minimal
D = 4 Maxwell type superalgebras sM,, 2, which can be seen as a generalization of the
D’Auria-Fré superalgebra and the Green algebras introduced in [48], [59] respectively.

We also showed that the D = 4, N-extended Maxwell superalgebra sMWN) derived
initially as a MC expansion in [57], can be alternatively obtained as an S-expansion of
osp (4|V). Choosing bigger semigroups presented new D = 4 N-extended Maxwell type
superalgebras. The method considered here could play an important role in the context of
supergravity in higher dimensions.

In Chapter 4, we presented a geometric formulation of N' = 1 supergravity in four
dimensions, where the relevant gauge fields of the theory are those corresponding to the
minimal Maxwell superalgebra sM,. We showed that N’ = 1, D = 4 pure supergravity
can be derived alternatively as the MacDowell-Mansouri like action, which is constructed
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exclusively in terms of the curvatures of the Maxwell type superalgebra sM,. Then we
obtained the minimal supergravity action in four dimensions from the sM,,, o superalgebra.
The invariance under supersymmetry was also discussed. A future work could be consider
the N-extended Maxwell superalgebras and the construction of N-extended supergravities
in diverse dimensions in a very similar way to the one shown here.

In Chapter 5, we analyzed the physical consequences of considering the supersymmetric
extension of the AdS-Lorentz algebra in the construction of a minimal supergravity theory.
Based on the AdS-Lorentz superalgebra sAdS — £, we built the minimal D = 4 supergrav-
ity action which includes a generalized supersymmetric cosmological constant term. In this
way, an alternative way of introducing the supersymmetric cosmological constant in super-
gravity was presented. We also derived the equations of motion of and the supersymmetry
transformations.

In Chapter 6, we derived the D = 3 Chern-Simons supersymmetric action from the
(standard) Maxwell superalgebra sM. We showed that the Maxwell superalgebra can
be obtained from the osp (2|1) ® sp (2) superalgebra combining the semigroup expansion
procedure with the Inonii-Wigner contraction. This procedure allowed to obtain the non-
vanishing components of an invariant tensor for the Maxwell superalgebra and to build the
most general D = 3 CS supersymmetric action invariant under the Maxwell supergroup. The
action describes an "exotic” supersymmetric theory without cosmological constant in three
dimensions. The CS supergravity action from a generalized minimal Maxwell superalgebra
sMY was also constructed. We showed that this generalized minimal Maxwell superalgebra
can be derived from the osp (2|1)®sp (2) superalgebra using the semigroup expansion method
and choosing a particular semigroup.

Eventually, in Chapter 7 we presented the multi-vector generalization of a rigid, partially
broken N = 2 supersymmetric theory as a rigid limit of a suitable gauged N' = 2 supergravity
with electric and magnetic charges. We considered a new frame in which, in the rigid limit,
manifest symplectic invariance is preserved and the electric and magnetic Fayet-Iliopoulos
terms are fully originated from the components of the embedding tensor. Furthermore, we

gave a general proof of the Ward identity for generic dyonic gaugings.
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Appendix A

S-expansion method

In this appendix, we review the principal aspects of the S-expansion method introduced
in [I8]. The S-expansion procedure consists in combining the inner multiplication law of
a semigroup S with the structure constants of a Lie (super)algebra g. This approach is
entirely based on operations performed on the (super)algebra generators, and thus differs

from the expansion method introduced in [44], where the dual Maurer-Cartan formalism was

used.
Let S = {\.} be a finite abelian semigroup with 2-selector K, ;" defined by
1 hen A Ag = A,
K, =4 VAR Aads = (A1)
0, otherwise,

and g a Lie (super)algebra with basis {T 4} and structure constants C, 3¢,

(T4, Tp] =C 5 Te. (A.2)
Then, the direct product & = S x g is also a Lie (super)algebra with structure constants
c, .
C(A@)(B”B) @ — K, C,5©, given by
_ (C)
[Taay Tms] =Cammss T (A.3)

The Lie algebra & defined by & = S x g is called S-expanded algebra of g.

When the semigroup has a zero element Og € S, it plays a somewhat peculiar role in the
S-expanded algebra. The algebra obtained by imposing the condition 0sT4 = 0 on & is
called Og-reduced algebra of &.

There are different ways of extracting smaller algebras from & = S x g. Nevertheless,

before extracting smaller algebras it is necessary to apply a decomposition of the original
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algebra g. Let g = @pe ; Vp be a decomposition of g in subspaces V,, where I is a set of
indices. Then for each p,q € I it is always possible to define i(, 4 C I such that

Vp? V @ V. (A.4)

T€l(p,q)

Now, let S =J,.; S, be a subset decomposition of the abelian semigroup S such that

pel

Sp-SeC | S (A.5)

€% (p,q)

When such subset decomposition exists, then we say

6r=EP S, xV, (A.6)
pel
is a resonant subalgebra of & = S x g.
Another case of smaller algebra can be obtained when the semigroup has a zero element
O0s € S. The algebra obtained after imposing the condition 0gT4 = 0 on & is called Og-
reduced algebra of &. Interestingly, there is a way to extract a reduced algebra from a
resonant subalgebra. Let & = @p Sp XV, be a resonant subalgebra of & = 5 x g. Let
Sy, = S, US, be a partition of the subsets S, C .S such that

S,N8, =@, (A7)
Sp-Syc () S (A8)

T€i(p,q)

Then, these conditions induce the decomposition

= @Sp X V,, (A.9)

pel
6r=EP 3, xV, (A.10)
pel
with
[éR, éR] C QBR, (All)

and therefore !Qvﬁ R} corresponds to a reduced algebra of &g.

Finding the invariant tensors for an arbitrary (super)algebra is not only an interesting

mathematical problem, but also a physical one. As we have seen in the previous chapters
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an invariant tensor is a crucial ingredient in the construction of supergravity Lagrangians in
odd and even dimensions.

A useful property of the S-expansion procedure is that it provides us with an invariant
tensor for the S-expanded algebra & = S X g in terms of an invariant tensor for g. As was
shown in [18] the theorem VIIL.1 provides a general expression for an invariant tensor for an
expanded algebra.

Theorem VII.1: Let S be an abelian semigroup, g a Lie (super)algebra of basis {T 4},
and let (Ty, ---T4,) be an invariant tensor for g. Then, the expression

(Tar00) Thnan)) = 04Ky, "(Ta, -+ Ta,) (A.12)

a1

where «., are arbitrary constants and K,

Q- Qn

7 is the n-selector for S, corresponds to an

invariant tensor for the S-expanded algebra & = S x g.

Furthermore, as was pointed out in [I§] we can find the components of an invariant tensor
for the resonant subalgebra &z = P, S, x V. In fact, the &g-valued components of (A4.12)
are given by

(T o Tayap)) = K, T

Qpq " Qpy

Ty, ), with Ay, € 5,

apy,Qp;) Aapy

It is important to note that since the Og-reduced algebra is not a subalgebra, in general
the Og-reduced algebra-valued components of (A.12)) do not lead to an invariant tensor. In
[18] it was announced a theorem providing a general expression for an invariant tensor for a

Og-reduced algebra.

Theorem VII.2: Let S be an abelian semigroup with nonzero elements A;, 2 =0, ..., N,
and Ayy1 = Og. Let g be a Lie (super)algebra of basis {T4}, and let (T4, ---T4,) be an

invariant tensor for g. The expression
<T(A1,7;1) e T(An,’in)> = a]Kllln j<TA1 U TAn> (A13)

where «; are arbitrary constants, corresponds to an invariant tensor for the Og-reduced
algebra obtained from & = S x g.

The proof to these definitions and Theorems can be found in [I§].
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Appendix B

Generalized Maxwell algebra

In this appendix we show how to obtain the D-dimensional generalized Maxwell algebra
MY from so (D — 1,2), using the S-expansion procedure. As in previous cases, we have to

consider a subspaces decomposition of the original algebra so (D — 1,2),

so(D—1,2)

=Vo® W, (B.1)

where V; is generated by the Lorentz generator Ju, and V; is generated by the AdS boost
generator P,. The J,,, P, generators satisfy the commutations relations (3.7) — (3.9)), thus

the subspace structure can be written as

Let S(EQ) = {0, A1, A2, A3} be a finite abelian semigroup whose elements are dimensionless and
obey the multiplication law (3.14). Let us consider a subset decomposition S @) So U 51,
with

SO = {)\07)\17)\27)\3}7 (B3>
Sl = {)\17 >\27 >\3} ) (B4)

This subset decomposition is said to be "resonant” because it satisfies [compare with eqgs. (B.2))]
So-Sog C Sy, So-S1CSy, Si-S;C S (B.5)

Imposing the Og-reduction condition A\374 = O,we find a new Lie algebra generated by
{Jab,Pa,Zab,Zab,Za}. These generators are defined in terms of the AdS generators as
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follows

Jab = Jab,O = )\Ojaba Pa = Pa,l = Alpa;
Zab = Jab,l = Aljaby Za = Pa,? = )\2paa
Zapy = Jabz = NaJup,

and satisfy the commutation relations

[Jabs Jea) = MbeJaa —
[Jab, Pe] = mpePa
[Pas By) = Zap,

[Jabs Zea) = e Z,

|:Jab> ~cd = nchad

|:Zab7 cd :nchad

[Jaba Zc_ - ncha

|:Zab7 Pc_ - anZ

others = 0,

nachd - ndeac + nadeca
nacPln

ad — NacZbd — ModZac + Nad Lbe,
— NacZvi — MoaZac + NadZve,
= NacZbd — MbdZac + NadLbe
- Uach,

a nacha

—~
I N = O ©

—
ot

W W W W w W W
: O, : SO

o~ o~ o~ o~~~ o~~~

—_
~J

where we have used the multiplication law of the semigroup (3.14)) and the commutation

relations of the original algebra. The new algebra obtained after a Og-reduced resonant S-

expansion of 50 (3, 2) corresponds to a generalized Maxwell algebra MY [57] in D-dimensions,

and contains the Maxwell algebra M as a subalgebra .

M9 algebra is very similar to the Maxwell type algebra Mg introduced in [12] [17].

It is interesting to observe that the
In fact,

one could identify Z, Zab and Z with Z , Zﬁ) and Z, of Mg respectively. However, the
commutation relations ( m, and (B.16)) are subtly different of those of Maxwell

type algebra M.
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Appendix C

Notations and conventions

In this Appendix we summarize our notation and conventions used in Chapters 2, 3, 4
and 5 for the gamma matrices in D = 4.
Nay = (_]-7 17 17 1) ) { %a%} = _277ab7 h/av’yb} = 2’yab
o= —omrerrs =L {1 = [swl =0

We are working with Majorana spinors, satisfying ¢» = " C, where C' is the charge conju-
gation matrix.
Furthermore, we are using that Cy, and Cv,, are symmetric, while C, Cv5 and Cvy57,

are antisymmetric gamma matrices.

C.1 Useful identities

Yab V5 = _§6abcd70d7 (C1>
YaVo = Yab — Tabs (C.2)
ab — ab _ 46[‘1 b] _ 2(51117 C 3
T Ved = € cd5 (¢ Vd] ed> (C.3)
,yab,yc — zv[a(;g] . Eabcd,ys,yd’ (C4>
Yy = =296 — ey, (C.5)

" 1 T 1 7. ab
vy = 5%¢’Y Y — g%bWY Y, (C.6)
%WZV% = 07 (C7>
Yapoy P = 0. (C.8)
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Appendix D

Special Kahler and Quaternionic
Kahler Manifolds

In this appendix we review the main properties of special Kahler and quaternionic
Kéhler manifolds. We shall consider a N' = 2 supergravity theory that contains 2n + 4ngy

scalar fields interacting through a o-model based on the following scalar manifold:
Mscalar = MSK (TL) X MQK (nH) 5

where Mgk (n) is a special Kéhler manifold with n complex dimensions and Mgg (ng) is

a quaternionic manifold with ng quaternionic dimensions.

D.1 Special Kahler Manifolds

The special Kahler geometry arises in the coupling of vector multiplets to N' = 2, D = 4
supergravity. In this case the complex scalar fields sitting in the vector multiplets span a
manifold Mgx which is not only Kahlerian but also special Kahlerian.

A special Kéahler manifold is a K&hler manifold of restricted type (Hodge manifold)

endowed with a flat, symplectic, holomorphic bundle, and with a hermitian metric
ds® = giz (2,2) dz' @ d77, (D.1)

such that the (1,1)-form
K =igi;(z,2)dz" NdZ (D.2)

132



is closed (dK =0). As in all Kdhler manifolds the metric has the form:
gi; = 0,0,K (D.3)

On a special Kahler manifold one can always introduce a tensor bundle whose holomor-
phic section will be denoted by Q(z) = (QM (z)), M = 1,...,2n + 2, and will have the

following structure

XA

o) = (FE) Ao (D.4)
Fa(2)

The Kahler potential can be written in terms of this holomorphic section as follows
K(z,2) = —1ogli Q(2)TCQ(2)] (D.5)

where C = (Cy;y) is the Sp(2(n + 1), R)-invariant matrix;

(o0 1
c= (_1 0). 09

The transition functions connecting overlapping coordinate patches Uy, U, on Mgk, act on
Q(2) as follows
Qm = efmannQn

where fun = fun (2) is @ holomorphic function and M, is a constant Sp(2(n + 1), R) matrix.

Moreover, the action on K amounts to a Kéahler transformation:
}Cm — ICn - fmn - .fmnv (D7)
We can define a covariantly holomorphic section V (z, z) as follows

LA

My

V(z,2) = (VM(z,2) = ( ) =20 (2). (D.8)

satisfying
1=i(V|V)=1i(L"My — MgL¥), ViV =0.

The last equality implies that V' is covariantly holomorphic. The action of the transition
functions on V' amounts to a constant symplectic transformation combined with a U(1)-phase

related to the Kahler transformation:
Vo = e M, V
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We define the U (1)-covariant derivative on V' as follows:
1 A
2 hsy;

Furthermore,
Vz‘Uj = iCijkgklU[
where Cjjj is a covariantly holomorphic symmetric three-tensor. Thus, in a special Kahler

manifold the section V' and its covariant derivative U; need to satisfy the following properties:

oK ‘ 7 _ _ _
Vil; = 0.U; + —-U; - TEUy, = iCyd™'U, ViU, = gV, VICU; =0, VICUz=0
(D.10)
Now we can introduce the period matrix via the relations
My = NasL*,  hyg = Neaf) (D.11)

which can be solved introducing the vectors

o i
o-(2). (1)

NAZ = hAu ¢} (f*l)lE . (D.12)

Using V' and its covariant derivatives, we can construct the following matrix:

and setting

L(z,2)My = (V,&, 0., VY, e/UM), (D.13)

where e;’ are the inverse vielbein matrices g;; = Y.;_;_, e;’&;', and N is a holonomy group

index. Egs. (D.10)) imply the following property of L:

LICL = w, (D.14)

(1 0
w=—i (0 _1> . (D.15)

If we change the complex index N into a real one by means of the Cayley matrix A, thus

where

defining:

V2 \1 —il
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Eq. 1) expresses the condition that the real matrix Lg, be symplectic since @ = ACA!.
As a consequence of this also JLéFp is symplectic and this implies an other set of identities

which can be cast in the following compact form:
LolL! =C. (D.17)

Let us define in terms of IL the following symmetric, negative-definite, symplectic matrix

encoding all the information about the coupling of the vector fields to the scalars:
M(z,2) = (Mpyy)=CLLIC = M(z,2)7,
MCM = C. (D.18)

Furthermore, under an isometry transformation g : z — 2’ in Ggg, using ([7.5)), we find that
M transforms linearly:

M(z,2) = M(Z,Z) =Mlg]" M(z, 2)M][g] . (D.19)

From the previous properties of V' and U; we find the following general symplectic covariant
relation: 1 .

UMY = gTUMUN = — MM - %(CMN vy (D.20)

where MMN are the components of M~ = —LLLT.
If k, is the Killing vector defining an infinitesimal isometry, then the invariance of the
Kéhler form K, ¢,K = 0, implies

(K =d(i,K)=0 = (,K =—dP,, (D.21)

where ¢, denotes the contraction of K with k,. The last equation defines the momentum
maps and is equivalent to Egs. (7.9).

D.2 Quaternionic Kahler manifolds

Let us now consider the hypermultiplet sector of a A" = 2 theory. Here there are four
real scalar fields for each hypermultiplet and, at least locally, they can be seen as the four
components of a quaternion. In this sector the scalar manifold Mgk (ng) has dimension
multiple of four, dimMgx = 4ny.

A quaternionic manifold is a 4ny-dimensional real manifold endowed with a metric h:
ds* = hyy (¢) dg" ® dq°, u,v=1,...,4ng (D.22)
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and three complex structures (J*)" , x = 1,2, 3 that satisfy the quaternionic algebra
JEJY = =" + €V J*. (D.23)
The triplet of two-forms K*
K* = K d¢" Ndq¢®; K, = huw (JO)., (D.24)
is covariantly closed with respect to an SU (2) ~ Sp(2) connection w”

VK® = dK® + ¢™2w0¥ A K7 = 0,

with curvature given by
1
0 = dw” + §exyzwy Aw® = AK", (D.25)

where A = —1 is fixed by supersymmetry, together with appropriate normalizations for the

kinetic terms in the Lagrangian.
Equations ((D.24)) and ([D.23]) imply the following relation

K* WS KY = —§%h,, + eV K?

uv’

(D.26)

where h"* are the components of the inverse metric.

As a consequence of this structure the manifold Mgg (ng) has a holonomy group
H = Hol(Q(ng)) =SU(2)® H', (D.27)

where H' € Sp (2ng,R). Then, introducing flat indices {A, B,C' = 1,2} ,{a, 8,7y =1, ...,2ng}
that run, respectively, in the fundamental representations of SU (2) and Sp (2ny), we can

introduce a vielbein 1-form

UL = U (q) dg" (D.28)
such that
hm, = UfQUEﬁCQQEAB (D29)
where C,3 = —Cg, and €45 = —epa are, respectively, the flat Sp(2ny) and Sp(2)

SU (2) invariant metrics. The vielbein 4 is covariantly closed with respect to the SU (2)-

connection w® and to some Sp (2ny)-Lie algebra valued connection A% = AP« .

VUA = dyie 4 %wx (e056) AUBY + AP AUMCy, = 0 (D.30)
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where (am)/i3 are the standard Pauli matrices. Furthermore the 1-forms U4 satisfy the

following relations:

Z/{Aa = (UAQ)*:GABCaguBB
1

o 1
uAauZ/{yB - éhuvdf - 9

K% (o%) 7. (D.31)

Let us now consider infinitesimal isometries generated by t,,, whose action on the scalar
fields is described by Killing vectors k,,, = k!, 0,, closing the isometry algebra:

[tma tn] = fmnp tp ) [krm kn] = _fmnp kpv (D32>
and leaving the 4-form Zizl K* A K* invariant [99]. This condition amounts to require:
0, K* =™ KYW? | (D.33)

where W7 is an SU(2)-compensator. This equation is solved by writing the Killing vectors

k, in terms of tri-holomorphic momentum maps P* as follows [99]:

b K® = =VPr = —(dP; + €"*w? P7), (D.34)
provided

Pr = A" 1w” — W) = W — 1,w", (D.35)
where we have used A = —1. For those isometries with vanishing compensator, W7 = 0, the

momentum maps have the simple expression:
xr __ u x
Pl =—k wy,.

Just as for the special Kahler manifolds, the momentum maps satisfy Poisson brackets

described by the following equivariance condition:

2 Ky kU KY, — N2 PYPE = —fr, P PE (D.36)

137



138



References

[1]

[10]

C. Lanczos, A Remarkable Property of the Riemann-Christoffel Tensor in Four Di-
mensions, Ann. Math. 39, (1938) 842.

D. Lovelock, The FEinstein tensor and its generalizations, J. Math. Phys. 12, (1971)
498.

B. Zumino, Gravity theories in more than four dimensions, Phys. Rep. 137 (1986) 109.

C. Teitelboim, J. Zanelli, Dimensionally continued topological gravitation theory in
Hamiltonian form, Class. Quantum Gravity 4 (1987) L125.

R. Troncoso, J. Zanelli, Higher-dimensional Gravity, Propagating Torsion and AdS
Gauge Invariance. Class. Quantum Grav. 17 (2000) 4451 [hep-th/9907109].

M. Banados, C. Teitelboim and J. Zanelli, Lovelock-Born-Infeld Theory of Gravity in
J.J. Giambiagi Festschrift, H. Falomir, E. Gamboa-Saravi, P. Leal, and F. Schaposnik
(eds.), World Scientific, Singapore, (1991).

M. Banados, C. Teitelboim, J. Zanelli, Dimensionally continued black holes, Phys. Rev.
D 49 (1994) 975-986.

J. Zanelli, Lecture notes on Chern-Simons (super-)gravities. Second edition (February
2008), hep-th/0502193.

A. H. Chamseddine, Topological Gauge Theory of Gravity in Five and All Odd Dimen-
sions. Phys. Lett. B 233 (1989) 291.

A. H. Chamseddine, D. Wyler, Topological Gravity In (1 + 1)-Dimensions, Nucl. Phys.
B 340 (1990) 595.

139



[11]

[12]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. H. Chamseddine, Topological Gravity and Supergravity in Various Dimensions.
Nucl. Phys. B 346 (1990) 213.

F. Izaurieta, P. Minning, A. Perez, E. Rodriguez, P. Salgado, Standard General
Relativity from Chern-Simons Gravity, P. Salgado, Phys. Lett. B 678, 213 (2009).
arXiv:0905.2187 [hep-th].

R. Aros, M. Contreras, R. Olea, R. Troncoso, J. Zanelli, Conserved charges for gravity
with locally AdS asymptotics, Phys. Rev. Lett. 84 (2000) 1647. [gr-qc/9909015].

R. Aros, M. Contreras, R. Olea, R. Troncoso, J. Zanelli, Conserved charges for even
dimensional asymptotically AdS gravity theories, Phys. Rev. D 62 (2000) 044002. [hep-
th/9912045].

J. Criséstomo, R. Troncoso and J. Zanelli, Black Hole Scan, Phys. Rev. D62 (2000)
084013.

P. Salgado, S. Salgado, so (D — 1,1) ® so (D — 1,2) algebras and gravity, Phys. Lett.
B 728 5 (2014).

P.K. Concha, D.M. Penafiel, E.K. Rodriguez, P. Salgado, Chern-Simons and Born-
Infeld gravity theories and Mazwell algebras type, Eur. Phys. J. C 74 (2014) 2741.
arXiv:1402.0023 [hep-th].

F. Izaurieta, E. Rodriguez, P. Salgado, Expanding Lie (super)algebras through Abelian
semigroups, J. Math. Phys. 47 (2006) 123512 [hep-th/0606215].

P.K. Concha, D.M. Penafiel, E.K. Rodriguez, P. Salgado, Fven-dimensional General
Relativity from Born-Infeld gravity, Phys. Lett. B 725, 419 (2013). arXiv:1309.0062
[hep-th].

P.K. Concha, D.M. Penafiel, E.K. Rodriguez, P. Salgado, Generalized Poincare algebras
and Lovelock-Cartan gravity theory, Phys. Lett. B 742 (2015) 310. arXiv:1405.7078
[hep-th].

E. Inonii, E. Wigner, On the Contraction of Groups and Their Representations Proc.
Nat. Acad. Sci.U.S. 39 (1953) 510.

F. Izaurieta, A. Pérez, E. Rodriguez, P. Salgado, Dual Formulation of the Lie Algebra
S-expansion Procedure. J. Math. Phys. 50 (2009) 073511.

140



[23]
[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

M. F. Sohnius, Introducing Supersymmetry, Phys. Rept. 128 (1985) 39.
P. van Nieuwenhuizen, Supergravity, Phys. Rep. 68, 189-398 (1981).

J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton, USA: Univ. Pr.
(1992) 259 p

L. Castellani, R. D’Auria and P. Fre, Supergravity and superstrings: A Geometric
perspective. Vol. 1: Mathematical foundations, Singapore, Singapore: World Scientific
(1991) 1-603; L. Castellani, R. D’Auria and P. Fre, Supergravity and superstrings: A
Geometric perspective. Vol. 2: Supergravity, Singapore, Singapore: World Scientific
(1991) 607-1371.

D. Z. Freedman and A. Van Proeyen, Supergravity, Cambridge, UK: Cambridge Univ.
Pr. (2012) 607 p.

S.W. MacDowell and F. Mansouri, Unified Geometric Theory of Gravity and Super-
gravity, Phys. Rev. Lett 38 (1977) 739.

D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, Phys. Rev. D 18, (1976) 8214.
S. Deser and B. Zumino, Consistent Supergravity, Phys. Lett. B 62 (1976) 335.

L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fre and T.
Magri, N=2 supergravity and N=2 superYang-Mills theory on general scalar manifolds:

Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997)
111 [hep-th/9605032].

E. Cremmer, B. Julia, and J. Scherk, Supergravity theory in eleven dimensions, Phys.
Lett. B 76, 409-412 (1978).

P. van Nieuwenhuizen, Supergravity as a Yang-Mills theory, in 50 years of Yang-Mills
theory, G. 't Hooft ed., World Pub. Co. (2004), pg. 433 [hep-th/0408137].

P.K. Townsend, Cosmological constant in supergravity, Phys. Rev. D 15, 2802-2804
(1977).

K. Bautier, S. Deser, M. Henneaux and D. Seminara, No cosmological D=11 super-
gravity, Phys.Lett. B406, 49-53 (1997),

141



[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

S. Deser, Uniqueness of d = 11 supergravity, in Black Holes and the Structure of the
Universe, C. Teitelboim and J. Zanelli, editors, World Scientific, Singapore (2000).

A. Giacomini, R. Troncoso, S. Willison, Three-dimensional supergravity reloaded, Class.
Quant. Grav. 24 (2007) 2845 [hep-th/0610077].

E. Witten, (2+1)-Dimensional Gravity as an Ezactly Soluble System. Nucl. Phys. B
311 (1988) 46.

A. Achtcarro and P. K. Townsend, A Chern-Simons action for three dimensional anti-
de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89.

S. Deser and J. H. Kay, Topologically Massive Supergravity, Phys. Lett. B 120, 97
(1983).

E. W. Mielke and P. Baekler, Topological gauge model of gravity with torsion, Phys.
Lett. A 156, 399 (1991).

A. Mardones and J. Zanelli, Lovelock-Cartan theory of gravity, Class. Quant. Grav. 8,
1545 (1991).

M. Hatsuda, M. Sakaguchi, Wess-Zumino term for the AdS superstring and generalized
Inonu- Wigner contraction, Prog. Theor. Phys. 109 (2003) 853 [arXiv:hep-th/0106114].

J.A. de Azcarraga, J.M. Izquierdo, M. Picén, O. Varela, Generating Lie and gauge
free differential (super)algebras by expanding Maurer-Cartan forms and Chern-Simons
supergravity, Nucl. Phys. B 662 (2003) 185 [arXiv:hep-th/0212347].

J.A. de Azcarraga, J.M. Izquierdo, M. Picon, O. Varela, Ezrtensions, expansions, Lie
algebra cohomology and enlarged superspaces, Class. Quant. Grav 21 (2004) S1375
[arXiv:hep-th/0401033].

J.A. de Azcarraga, J.M. Izquierdo, M. Picén, O. Varela, Expansions of algebras and
superalgebras and some applications, Int. J. Theor. Phys. 46 (2007) 2738 [arXiv:hep-
th/0703017].

F. Izaurieta, E. Rodriguez, P. Salgado, Eleven-dimensional gauge theory for the M
algebra as an Abelian semigroup expansion of osp(32—1), Eur. Phys. J. C 54 (2008)
675 [arXiv:hep-th/0606225].

142



[48]

[49]

[50]

[51]

[52]

[53]

R. D’Auria, P. Fré, Geometric Supergravity in d=11 and Its Hidden Supergroup, Nucl.
Phys. B 201 (1982) 101.

H. Bacry, P. Combe and J. L. Richard, Group-theoretical analysis of elementary par-
ticles in an external electromagnetic field, Nuovo Cim. A 67 (1970) 267.

R. Schrader, The mazxwell group and the quantum theory of particles in classical ho-
mogeneous electromagnetic fields, Fortsch. Phys. 20 (1972) 701.

D.V. Soroka, V.A. Soroka, Tensor extension of the Poincaré algebra, Phys. Lett. B
607 (2005) 302 [arXiv:hep-th/0410012 |.

J. Gomis, K. Kamimura and J. Lukierski, Deformations of Maxwell algebra and their
Dynamical Realizations, JHEP 08 (2009) 039 arXiv:0906.4464 [hep-th].

S. Bonanos, J. Gomis, K. Kamimura and J. Lukierski, Mazwell Superalgebra and
Superparticle in Constant Gauge Backgrounds, Phys. Rev. Lett. 104 (2010) 090401
arXiv:0911.5072 [hep-th].

G. W. Gibbons, J. Gomis and C. N. Pope, Deforming the Maxwell-Sim Algebra, Phys.
Rev. D 82 (2010) 065002 arXiv:0910.3220 [hep-th].

J.A. de Azcarraga, K. Kamimura, J. Lukierski, Generalized cosmological term from
Mazwell symmetries, Phys. Rev. D 83 (2011) 124036 arXiv:1012.4402 |[hep-th] .

K. Kamimura, J. Lukierski, Supersymmetrization Schemes of D=4 Mazwell Algebra,
Phys. Lett. B 707 (2012) 292 arXiv:1111.3598 [math-ph].

J.A. de Azcarraga, J.M. Izquierdo, J. Lukierski, M. Woronowicz, Generalizations
of Mazwell (super)algebras by the expansion method, Nucl. Phys. B 869 (2013) 303
arXiv:1210.1117 [hep-th].

J.A. de Azcarraga, J.M. Izquierdo, Minimal D=4 supergravity from the superMaxwell
algebra, arXiv:1403.4128 [hep-th].

M.B. Green, Supertranslations, Superstrings and Chern-Simons Forms, Phys. Lett. B
223, 157 (1989).

P.K. Concha and E.K. Rodriguez, Mazwell Superalgebras and Abelian Semigroup Ex-
pansion, Nucl. Phys. B 886 (2014) 1128.

143



[61]

[64]

[65]

[66]

[67]

[72]

S. Bonanos, J. Gomis, A Note on the Chevalley-FEilenberg Cohomology for the Galilei
and Poincare Algebras, J. Phys. A: Math. Theor. 42 (2009) 145206. arXiv:0808.2243
[hep-th].

P.K. Concha, E.K. Rodriguez, N=1 supergravity and Mazwell superalgebras, JHEP
1409 (2014) 090. arXiv:1407.4635 [hep-th].

J. Frieman, M. Turner, D. Huterer, Dark Energy and the Accelerating Universe, Ann.
Rev. Astron. Astrophys. 46, 385-432 (2008). arXiv:0803.0982 [astro-ph].

T. Padmanabhan, Dark energy and its implications for gravity, Adv. Sci. Lett. 2, 174
(2009). arXiv:0807.2356 [gr-qc].

R. Durka, J. Kowalski-Glikman, M. Szczachor, Gauged AdS-Mazwell algebra and grav-
ity, Mod. Phys. Lett. A 26 (2011) 2689. arXiv:1107.4728 [hep-th].

D.V. Soroka, V.A. Soroka, Semi-simple extension of the (super)Poincare algebra, Adv.
High Energy Phys. 2009 (2009) 34147 [hep-th/0605251].

J. Diaz, O. Fierro, F. Izaurieta, N. Merino, E. Rodriguez, P. Salgado, O. Valdivia, A
generalized action for (2+1)-dimensional Chern-Simons gravity, J. Phys. A 45 (2012)
255207. arXiv:1311.2215 [gr-qc].

P.K. Concha, E.K. Rodriguez, P. Salgado, Generalized supersymmetric cosmological
term in N=1 Supergravity, JHEP 08 (2015) 009, arXiv:1504.01898 [hep-th].

O. Fierro, F. Izaurieta, P. Salgado, O. Valdivia, (2+1)-dimensional supergravity in-
variant under the AdS-Lorentz superalgebra, arXiv:1401.3697 [hep-th].

J. Lukierski, Generalized Wigner-Inonu Contractions and Mazwell (Super)Algebras,
Proc. Steklov Inst. Math. 272 (2011) 183. arXiv:1007.3405 [hep-th].

P.K. Concha, O. Fierro, E.K. Rodriguez, P. Salgado, Chern-Simons Supergravity in
D=3 and Mazwell superalgebras, Phys. Lett. B 750 (2015) 117. arXiv:1507.02335
[hep-th].

P. Salgado, R. J. Szabo, O. Valdivia, Topological gravity and transgression holography,
Phys. Rev. D 89 (2014) 084077. arXiv:1401.3653 [hep-th].

144



[73]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]
[84]

[85]

S. Hoseinzadeh, A. Rezaei-Aghdam, (2+1)-dimensional gravity from Mazwell and
semisimple extension of the Poincaré gauge symmetric models, Phys. Rev. D 90 (2014)
084008. arXiv:1402.0320 [hep-th].

D.V. Soroka, V.A. Soroka, Semi-simple o(N)-extended super-Poincaré algebra,
arXiv:1004.3194 [hep-th].

J.M. Maldacena, The Large N limit of superconformal field theories and supergravity,
Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200].

P. Mora, R. Olea, R. Troncoso, J. Zanelli, Finite action principle for Chern-Simons
AdS gravity, JHEP 0406 (2004) 036 [hep-th/0405267].

P. van Nieuwenhuizen, D.V. Vassilevich, Consistent boundary condition for supergrav-
ity, Class. Quant. Grav. 22 (2005) 5029 [hep-th/0507172].

L. Andrianopoli, R. D’Auria, N=1 and N=2 pure supergravities on a manifold with
boundary, JHEP 1408 (2014) 012. arXiv:1405.2010 [hep-th].

S. Deser and R. Puzalowski, Supersymmetric Nonpolynomial Vector Multiplets and
Causal Propagation, J. Phys. A 13 (1980) 2501.

S. Cecotti and S. Ferrara, Supersymmetric Born-infeld Lagrangians, Phys. Lett. B 187
(1987) 335.

J. Hughes and J. Polchinski, Partially Broken Global Supersymmetry and the Super-
string, Nucl. Phys. B 278 (1986) 147.

S. Ferrara, M. Porrati and A. Sagnotti, N = 2 Born-Infeld attractors, JHEP 1412
(2014) 065 [arXiv:1411.4954 [hep-th]].

I. Antoniadis, H. Partouche, T.R. Taylor, Phys. Lett. B 372 (1996) 83.
S. Ferrara, L. Girardello, M. Porrati, Phys. Lett: B 376 (1996) 275.

P. Fre, L. Girardello, I. Pesando and M. Trigiante, Spontaneous N=2 — N=1 local
supersymmetry breaking with surviving compact gauge group, Nucl. Phys. B 493 (1997)
231 [hep-th/9607032].

145



[30]

[87]

E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253;
S. Cecotti, L. Girardello and M. Porrati, Two Into One Won’t Go, Phys. Lett. B 145
(1984) 61.

J. Louis, P. Smyth and H. Triendl, Spontaneous N=2 to N=1 Supersymmetry Breaking
in Supergravity and Type II String Theory, JHEP 1002 (2010) 103 [arXiv:0911.5077
[hep-th]].

F. Cordaro, P. Fre, L. Gualtieri, P. Termonia and M. Trigiante, N=8 gaugings revisited:
An Ezhaustive classification, Nucl. Phys. B 532 (1998) 245 [hep-th/9804056].

H. Nicolai and H. Samtleben, Mazimal gauged supergravity in three-dimensions, Phys.
Rev. Lett. 86 (2001) 1686 [hep-th/0010076].

B. de Wit, H. Samtleben and M. Trigiante, “On Lagrangians and gaugings of maximal
supergravities,” Nucl. Phys. B 655 (2003) 93 [hep-th/0212239].

G. Dall’Agata, R. D’Auria, L. Sommovigo and S. Vaula, D = /, N=2 gauged supergrauv-
ity in the presence of tensor multiplets, Nucl. Phys. B 682 (2004) 243 [hep-th/0312210].

R. D’Auria, L. Sommovigo and S. Vaula, N = 2 supergravity Lagrangian coupled
to tensor multiplets with electric and magnetic fluzes, JHEP 0411 (2004) 028 [hep-
th,/0409097].

B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory,
JHEP 0509 (2005) 016 [hep-th/0507289].

B. de Wit, H. Samtleben and M. Trigiante, The Maximal D=/ supergravities, JHEP
0706 (2007) 049 [arXiv:0705.2101 [hep-th]].

L. Andrianopoli, R. D’Auria and L. Sommovigo, D=4, N=2 supergravity in the pres-
ence of vector-tensor multiplets and the role of higher p-forms in the framework of free
differential algebras, Adv. Stud. Theor. Phys. 1 (2008) 561 [arXiv:0710.3107 [hep-th]].

L. Andrianopoli, P. K. Concha, R. D’Auria, M. Trigiante and E. K. Rodriguez,
Observations on BI from N = 2 Supergravity and the General Ward Identity.
arXiv:1508.01474 [hep-th].

146



[97]

[100]

[101]

[102]

103]

[104]

[105]

[106]

107]

108

[109]

S. Ferrara and L. Maiani, An Introduction To Supersymmetry Breaking In Extended
Supergravity, CERN-TH-4232/85; S. Cecotti, L. Girardello and M. Porrati, Constraints
On Partial Superhiggs, Nucl. Phys. B 268 (1986) 295;

A. Strominger, Special Geometry, Commun. Math. Phys. 133 (1990) 163.

R. D’Auria, S. Ferrara and P. Fre, Special and quaternionic isometries: General cou-
plings in N=2 supergravity and the scalar potential, Nucl. Phys. B 359 (1991) 705.

A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Duality transformations in
supersymmetric Yang-Mills theories coupled to supergravity, Nucl. Phys. B 444 (1995)
92 [hep-th/9502072].

J. Bagger and E. Witten, Matter Couplings in N=2 Supergravity, Nucl. Phys. B 222
(1983) 1.

N. J. Hitchin, A. Karlhede, U. Lindstrom and M. Rocek, Hyperkahler Metrics and
Supersymmetry, Commun. Math. Phys. 108 (1987) 535.

K. Galicki, A Generalization of the Momentum Mapping Construction for Quater-
nionic Kahler Manifolds, Commun. Math. Phys. 108 (1987) 117.

M. Rocek and A. A. Tseytlin, Partial breaking of global D = /J supersymmetry, con-
strained superfields, and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-
th/9811232].

L. Andrianopoli, R. D’Auria, S. Ferrara and M. Trigiante, Observations on the
partial breaking of N = 2 rigid supersymmetry, Phys. Lett. B 744 (2015) 116
[arXiv:1501.07842 [hep-th]].

L. Sommovigo and S. Vaula, D=/, N=2 supergravity with Abelian electric and magnetic
charge, Phys. Lett. B 602 (2004) 130 [hep-th/0407205].

S. Cecotti, S. Ferrara and L. Girardello, Massive Vector Multiplets From Superstrings,
Nucl. Phys. B 294 (1987) 537.

E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253.

S. Cecotti, L. Girardello and M. Porrati, Two Into One Won’t Go, Phys. Lett. B 145
(1984) 61.

147



	Acknowledgements
	Publications
	Abstract
	Introduction
	I Gravity, Maxwell symmetries and Supergravity
	General Relativity and Maxwell type algebras
	Introduction
	First order formulation of gravity
	Lanczos-Lovelock theory
	D=2n-1: Local (A)dS Chern-Simons Gravity
	D=2n: Born-Infeld-Like Gravity

	Chern-Simons gravity and Maxwell type algebras
	General Relativity from Chern-Simons gravity

	Born-Infeld gravity and Lorentz type Maxwell algebras
	General Relativity from Born-Infeld gravity

	Einstein-Lovelock-Cartan gravity theory

	 Supersymmetric extension of Gravity
	Introduction
	Supersymmetry and Supergravity: General aspects
	Mac Dowell-Mansouri Supergravity
	Osp(4|1) gauge transformations and supersymmetry

	AdS Chern-Simons Supergravity.


	II N=1 Supergravity theories, Maxwell and AdS-Lorentz superalgebras
	Maxwell superalgebras and Abelian semigroup expansion
	Introduction
	Maxwell algebra as an S-expansion
	S-expansion of the osp( 4|1)  superalgebra
	Minimal D=4 Maxwell superalgebra
	Minimal D=4 Maxwell type superalgebra sM5
	Minimal D=4 Maxwell type superalgebra sMm+2

	S-expansion of the osp( 4|N)  superalgebra
	N-extended Maxwell superalgebras


	N=1, D=4 Supergravity and Maxwell Superalgebras
	Introduction
	D=4 pure Supergravity from sM4
	sM4 gauge transformations and supersymmetry

	D=4 Supergravity from sMm+2
	sMm+2 gauge transformations and supersymmetry
	Pure supergravity from sMm+2


	N=1, D=4 Supergravity with supersymmetric cosmological term
	Introduction
	AdS-Lorentz superalgebra
	Supergravity action for sAdS-L4
	The equations of motion of D=4, N=1 AdS-Lorentz supergravity
	Supersymmetry transformations and action invariance

	Maxwell Chern-Simons Supergravity
	CS supersymmetric action from sM
	D=3 Maxwell superalgebra sM
	 Three-dimensional Maxwell CS supersymmetric action

	Maxwell-Chern-Simons Supergravity
	Three-dimensional Maxwell CS supergravity action



	III N=2 Supergravity Theory
	Observations on BI from N=2 supergravity and the General Ward Identity
	Introduction
	General N=2 Gauging Identities
	Some useful relations on the sigma-model geometry.
	Symplectically-covariant gaugings of N=2 supergravity.
	The general Ward identity
	Abelian gauging of quaternionic isometries

	Multi-vector generalization of the APT model
	Partial supersymmetry breaking and rigid limit
	Some comments on the interpretation of the constant parameters i

	Rigid limit of the N=2 supergravity Lagrangian

	Conclusions
	Appendix
	S-expansion method
	Generalized Maxwell algebra
	Notations and conventions
	Useful identities

	Special Kähler and Quaternionic Kähler Manifolds 
	Special Kähler Manifolds
	Quaternionic Kähler manifolds



