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Abstract

Best Theory Diagrams (BTDs) are reported in this paper for the static analysis of metallic
and laminated composite plates. A BTD is a curve that synthetically provides the minimum
number of unknown variables of a structural theory for a fixed error. The error is related to
a given variable with respect to an exact or quasi-exact solution. The theories that belong to
the BTD have been obtained by means of the Axiomatic/Asymptotic technique, and a genetic
algorithm has been employed to obtain the BTD. The Carrera Unified Formulation (CUF) has
been employed to obtain refined models, since the CUF can generate automatically, and in
a unified manner, any type of plate model. Equivalent Single Layer (ESL) and Layer Wise
(LW) kinematics are discussed. Closed-form, Navier - type solutions have been employed, and
attention has therefore been restricted to simply-supported plates. The influence of various
geometries, material properties and layouts has been considered, and their influence on the
BTD has been evaluated. Furthermore, some known theories have been evaluated and compared
with the BTD curve. The results suggest that the BTD and the CUF can be considered as tools
to evaluate the accuracy of any structural theory against a reference solution in a systematic
manner.
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1 Introduction

Laminated composite and metallic plates are widely employed in several engineering applica-
tions. An accurate analysis of such structures is fundamental for a realistic and reliable struc-
tural design. Several mathematical tools are currently available. The solution of 3D elasticity
equations offers the most accurate evaluation of the elastic response, but the computational
cost can be significantly high. As an alternative, a 2D approach can be used. In the field
of 2D approaches for plate analysis, the first model that was developed was the Kirchoff-Love
model ([1], [2]). According to this model, the thickness strain and the transverse shear deforma-
tions are neglected. The Classical Lamination Theory (CLT) belongs to this group. Improved
theories can be obtained if at least one of Kirchhoff’s hypotheses is removed. For example, a
constant through-the-thickness transverse shear deformation can be taken into consideration.
This is the case of the Reissner-Mindlin theories ([3], [4]), also known as the First-Order Shear
Deformation Theory (FSDT). Further improvements have been introduced in Vlasov’s ([5]) or
Hildebrand-Reissner-Thomas’s theories ([6]), which are based on higher-order expansions of the
displacement components on the reference surface. The transverse stress and displacement com-
ponents in a multilayer plate are continuous functions along the z direction; these significant
particular features of layered structures were defined as C0

z -requirement in [7, 8]. The continu-
ous displacement field is defined as the Zig-Zag effect (ZZ), and the transverse stress continuity
at the interfaces is defined as Interlaminar-Continuity (IC). These two particular features make
classical models inefficient for the analysis of multilayered plates, since they were originally de-
veloped for metallic one-layered plates. Moreover, classical models can be inaccurate for thick
plate analysis.

Several refined models have been proposed in order to consider ZZ and IC effects. As
reported in [9], the first scientist who proposed a theory that was able to provide the Zig-Zag
condition was Lekhnitskii ([10]) who, in 1935, proposed a Zig-Zag solution for the analysis of
multilayered beams. Another author who proposed a Zig-Zag theory was Ambartsumian ([11]).
He extended the Reissner-Mindlin theory to layered, anisotropic plates and shells. Another
author who made a fundamental contribution to the analysis of multilayered plates and shells is
Reissner, who proposed a variational theorem that provides interlaminar continuity of transverse
stresses ([12, 13, 14, 15]). It should be mentioned that a distinction among plate models should
be made. As reported in the book by Reddy [16], it is possible to define the Equivalent Single
Layer (ESL) and the Layer Wise (LW) approaches. According to the ESL approach, a plate/shell
model can be analyzed considering it as a single equivalent lamina. In this case, the number of
unknowns is independent of the number of layers of the plate/shell. In the LW approach, the
displacement field is defined independently in each layer and the continuity at the interfaces is
imposed. In this case, the number of unknowns depends on the number of layers of a plate/shell.
The present work is embedded in the framework of the Carrera Unified Formulation (CUF).
According to the CUF, the displacement field, in the case of plate analysis, is defined as an
expansion of the thickness coordinate. The governing equations are defined in terms of a
few fundamental nuclei whose form does not depend on the particular expansion order that
is employed. Further details can be found in these books [17, 18, 19]. The CUF has been
developed for plates and shells according to both ESL and LW approaches, as reported in [20],
and both the Finite Element Method and closed-form Navier-type solutions have been employed.
Examples can be found in [20]. The use of a refined theory for the analysis of plates leads to
a better response analysis but, on the other hand, a higher computational cost is required.
The possibility of obtaining accurate results for the analysis of plates/shells and, at the same
time, of lowering the computational cost is offered by the axiomatic/asymptotic technique,
developed by Carrera and Petrolo, and reported in [21]. The key idea of this technique is that,
for a given problem, some terms of a refined model do not contribute to the evaluation of the
behavior of a structure; in other words, if these terms are deactivated, it is possible to reduce
the computational cost without degrading the accuracy of the full model. In [21], the technique
was based on the deactivation of one displacement variable at a time, and the measurement
of the introduced error was performed with respect to a reference solution. The effectiveness
of a term was defined according to an a-priori error threshold: if the error was below that
threshold, the term was considered not to be critical and was discarded. In that case, reduced
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models were obtained for several kinds of plates (according to the material properties and the
geometry). It was found that the material properties and the geometry influence the number
and the order of the retained terms. Examples of axiomatic / asymptotic analyses can be found
in [22], where the authors evaluated refined plate models, and the Finite Element Method was
employed. Refined models for beams have also been considered, and the results are reported in
[23] and in [24]. In particular in [24], the authors analyzed the influence of each displacement
variable in the evaluation of the frequencies of beams. One of the latest works on axiomatic
/ asymptotic techniques is reported in [25], where the authors obtained LW reduced models
and proposed some new criteria for the evaluation of the error. As in the previous works on
reduced models for plates, the results showed that the number and the order of the retained
terms were dependent to a great extent on the studied problem. Moreover, the authors analyzed
refined models for multilayer shells in [26]; both ESL and LW models were analyzed, and the
influence of Murakami’s function was also considered (the use of Murakami’s function in the
CUF is reported in [20]). In [27], the authors proposed and analyzed several criteria for the
measurement of the error.

In [28], the authors analyzed some refined models for isotropic plates by means of the
axiomatic/asymptotic technique, and considered several boundary conditions and loading con-
ditions. The authors analyzed the influence of the accuracy on the selection of terms by varying
the error: as a result, several reduced models were obtained, and they were reported in an
”Error vs Number of Degrees of Freedom” Cartesian plane (E/NDOFs plane). The result was
a curve which has been defined as the Best Theory Diagram, which can be employed to deter-
mine the effectiveness of a given theory in terms of accuracy and computational cost. In one
case, the errors of all the reduced models obtainable as a combination of the model terms were
computed, and it was demonstrated that the BTD represents the best theory (in other words,
the least cumbersome) for a given error. BTDs were systematically obtained and discussed in
[29]: refined models for multilayered plates were considered, and the influence of several param-
eters (such as geometry and boundary conditions) was considered. It was demonstrated that
the geometry, boundary conditions and material properties of a plate influence the BTDs. In
that work, the Finite Element technique was employed and a genetic-like algorithm was used
to obtain the BTDs.

In this work, BTDs are obtained for several types of plates. Unlike from the work reported in
[28] and in [29], Navier-type, closed-form solutions are employed and LW models are analyzed.
The use of the closed-form solution makes it possible to consider a large number of reduced
models with a minimal computational effort: this fact is exploited in order to construct a
number of BTDs. In addition, in some cases, the errors of all the obtainable reduced models
are computed and presented in the Error/NDOFs plane: in this case, it is possible to assess the
proposed BTDs and to analyze the error distribution. In addition, in some cases, some refined
models that are available in the scientific literature are analyzed and positioned in the above
mentioned Cartesian plane in order to highlight their accuracy.

The BTDs are obtained by means of a genetic algorithm. The use of such an algorithm was
first proposed by Holland and his co-workers in the 1960s and 1970s ([30]). An overview of the
multiple-objective optimization method, using genetic algorithms, is presented in [31] and in
[32]. An overview of the use of genetic algorithms in engineering is presented in [33]. The paper
is organized as follows: the considered theories are presented in Section 2 and the governing
equations are introduced in Section 3. The axiomatic/asymptotic technique is introduced and
the implementation of the genetic algorithm is discussed in Section 4. The results are commented
in Section 5 and the conclusions are discussed in Section 6.

2 Carrera Unified Formulation for Plates

The plate geometry is reported in Fig. 1, the reference surface is denoted as Ω and its boundary
as Γ. The reference system axes which belong to the reference surface Ω are denoted as x, y,
and z is the reference axis normal to the reference surface. The length side dimensions of the
plate are indicated as a and b and the thickness of the plate is defined as h.

In the framework of the Carrera Unified Formulation the displacement field of a plate can
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be described as

u(x, y, z) = Fτ (z) · uτ (x, y) τ = 1, 2, . . . ,M (1)

where u is the displacement vector (ux uy uz) whose components are the displacements
along the x, y, z reference axes. Fτ are the expansion functions and uτ = (uτx, uτy, uτz)
are the displacement variables. M is the number of terms of the expansion. The expansion
functions Fτ can be defined on the overall thickness of the plate or for each k-layer. In the
former case Equivalent Single Layer (ESL) approach is followed and in the latter case a Layer
Wise (LW) approach is used. Examples of ESL and LW schemes are reported in Fig.s 2a and
2b respectively. A transverse section of a multilayered plate is reported, the number of layers
is equal to NL. A generic displacement component distribution is presented according to linear
and higher-order expansions for these two approaches. In the following ESL and LW approaches
are discussed in detail.

2.1 Equivalent Single Layer theory

According to the ESL scheme the behavior of a multilayered plate is analyzed considering it as
a single equivalent lamina. In this case Fτ functions can be Mc-Laurin expansions of z defined
as Fτ = zτ−1. In the following the ESL models are synthetically indicated as EDN, where N is
the expansion order. An example of an ED4 displacement field is reported

ux = ux1 + z ux2 + z2 ux3 + z3 ux4 + z4 ux5

uy = uy1 + z uy2 + z2 uy3 + z3 uy4 + z4 uy5

uz = uz1 + z uz2 + z2 uz3 + z3 uz4 + z4 uz5

(2)

In the range of the ESL scheme, higher-order theories from open literature can be derived
via CUF; some of these models are considered in this paper for comparison purposes. A first
example can be the model proposed by Pandya (see [34]), the displacement components are:

ux = ux1 + z ux2 + z2 ux3 + z3 ux4

uy = uy1 + z uy2 + z2 uy3 + z3 uy4

uz = uz1

(3)

Another example is offered by Kant (see [35]), the displacement field is defined as:

ux = ux1 + z ux2 + z2 ux3 + z3 ux4

uy = uy1 + z uy2 + z2 uy3 + z3 uy4

uz = uz1 + z uz2 + z2 uz3 + z3 uz4

(4)

It is important to underline that CUF allows us to choose the higher-order terms to be included
with no restrictions. For instance, one can consider a plate theory where incomplete fourth-order
expansions are adopted:

ux = +z ux2 + +z3 ux4 + z4 ux5

uy = +z uy2 + z2 uy3 + +z4 uy5

uz = uz1 + z uz2 + z2 uz3 + +z4 uz5

(5)

As mentioned in [21], classical models such as CLT and FSDT can be considered as special
cases of the full linear expansion (ED1).
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2.2 Layer Wise theory

According to the Layer Wise scheme the displacement field exhibits only C0-continuity through
the laminate thickness. LW models can be conveniently built by using Legendre’s polynomials
expansion in each layer. The displacement field is described as

uk = Ft · ukt + Fb · ukb + Fr · ukr = Fτu
k
τ τ = t, b, r r = 2, 3, . . . , N k = 1, 2, . . . , Nl (6)

where k is the generic k-layer of a plate and Nl is the number of the layers. Subscripts t and
b correspond to the top and the bottom of a layer. Functions Fτ depend on a coordinate ζk, its
range is −1 ≤ ζk ≤ 1; its representation is reported in Fig. 2b. The extremal values −1 and 1
are reached at the bottom and at the top of the layer. Functions Fτ derive from the Legendre’s
polynomials according to the following equations.

Ft =
P0 + P1

2
Fb =

P0 − P1

2
Fr = Pr − Pr−2 r = 2, 3, . . . , N (7)

The Legendre’s polynomials for the fourth-order theory are

P0 = 1 P1 = ζk P2 =
3ζ2
k − 1

2
P3 =

5ζ3
k − 3ζk

2
P4 =

35ζ4
k

8
−

15ζ2
k

4
+

3

8
(8)

LW models ensure the compatibility of displacement at the interfaces ’zig-zag’ effects by
definition, that is

ukt = uk+1
b k = 1, . . . , Nl − 1 (9)

In the following LW models are denoted by the acronym as LDN, where N is the expansion
order. An example of LD4 layer displacement field is

ukx = Ft u
k
xt + F2 u

k
x2 + F3 u

k
x3 + F4 u

k
x4 + Fb u

k
xb

uky = Ft u
k
yt + F2 u

k
y2 + F3 u

k
y3 + F4 u

k
y4 + Fb u

k
yb

ukz = Ft u
k
zt + F2 u

k
z2 + F3 u

k
z3 + F4 u

k
z4 + Fb u

k
zb

(10)

3 Governing equations and Navier-type solution

The analysis of a plate can be conducted by means of the Principle of Virtual Displacement
(PVD) which states that:

δ Lint = δ Lext (11)

where δLint is the virtual variation of the internal work, δLext is the virtual variation of the
work made by the external loadings. Strain components can be grouped into in-plane (p) and
out-of-plane (n) components, that is

εkp =
[
εkxx ε

k
yy ε

k
xy

]T
εkn =

[
εkxz ε

k
yz ε

k
zz

]T
(12)

where T denotes the transpose operation. This grouping leads to

εkp = Dpu
k εkn = Dnu

k (13)

by defining

Dp =

 ∂
∂x 0 0

0 ∂
∂y 0

∂
∂y

∂
∂x 0

 (14)
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Dn =

 ∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y

0 0 ∂
∂z

 =

DnΩ︷ ︸︸ ︷ 0 0 ∂
∂x

0 0 ∂
∂y

0 0 0

+

Dnz︷ ︸︸ ︷ ∂
∂z 0 0

0 ∂
∂z 0

0 0 ∂
∂z

 (15)

Stress components for a generic k layer can be obtained by means of the Hooke law,

σk = C̃kεk (16)

The dependence of the elastic coefficients C̃ij on Young’s modulus, Poisson’s ratio, the shear
modulus and the fiber angle is not reported. A detailed discussion is reported in the book
by Reddy [16]. The stress components can be grouped into in-plane (p) and out-of-plane
components as the strain components, i.e.

σkp =
[
σkxx σ

k
yy σ

k
xy

]T
σkn =

[
σkxz σ

k
yz σ

k
zz

]T
(17)

In this case the Hooke law can be defined as

σkp =C̃ppε
k
p + C̃pnε

k
n

σkn =C̃npε
k
p + C̃nnε

k
n (18)

In the case of orthotropic materials it is possible to write

C̃k
pp =

 C̃k11 C̃k12 C̃k16

C̃k12 C̃k22 C̃k26

C̃k16 C̃k26 C̃k66

 C̃k
nn =

 C̃k55 C̃k45 0

C̃k45 C̃k44 0

0 0 C̃k33

 C̃k
pn = C̃kT

np =

 0 0 C̃k13

0 0 C̃k23

0 0 C̃k36


(19)

The virtual variation of the internal work can be computed as

δLint = δLext (20)

where δLint is the virtual variation of the internal work and δLext is the virtual variation of the
external work. The PVD can be written as

Nl∑
k=1

∫
Ωk

∫
Ak

(
δεk

T

p σ
k
p + δεk

T

n σ
k
n

)
dz dΩk =

Nl∑
k=1

δLkext (21)

Further details about the CUF and its implementation through the use of variational principles
can be found in [19].
The governing equations can be written as

δuks : Kkτs
d · ukτ = Pk

τ (22)

and the boundary conditions are
Πkτs
d ukτ = Πkτs

d ukτ (23)

where Pk
τ is the external load. The fundamental nucleus, Kτs

d is assembled through the indexes
τ and s. Superscript k denotes the assembly at the layer level. The explicit form of the
fundamental nucleus is

Kτ s
d =

{
(−Dp)

T
[
C̃k
ppEsτ Dp + C̃k

pnEsτDnΩ + C̃k
pnEsτ,z

]
+

(−DnΩ)T
[
C̃kT

pnEsτDp + C̃k
nnEsτDnΩ + C̃k

nnEsτ,z

]
+

+
[
C̃kT

pnEs,zτDp + C̃k
nnEs,zτDnΩ + C̃k

nnEs,zτ,z

]}
(24)
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and for the boundary conditions it is

Πk τ s
d =

{
(Ip)

T
[
Ck
ppEsτ Dp + Ck

ppEsτ Ap + Ck
pnEsτDnΩ + Ck

pnEsτAn + Ck
pnEsτ,z

]
+ (InΩ)T

[
CkT

pnEsτDp + CkT

pnEsτAp + Ck
nnEsτDnΩ + Ck

nnEsτAn + Ck
nnEsτ,z

]}
Hk
αH

k
β

(25)

The analyses herein reported were based on the Navier closed-form solution for simply supported
orthotropic plates, loaded by a transverse distribution of harmonic loadings. The following
properties hold

C̃pp16 = C̃pp26 = C̃pn36 = C̃nn45 = 0 (26)

The terms ukτ for an LW model are expressed as:

ukατ =
∑

m,n Û
k
ατ · cos

(
mπαk
ak

)
sin
(
nπβk
bk

)
k = 1, Nl

ukβτ =
∑

m,n Û
k
βτ
· sin

(
mπαk
ak

)
cos
(
nπβk
bk

)
τ = 1,M

ukzτ =
∑

m,n Û
k
zτ · sin

(
mπαk
ak

)
sin
(
nπβk
bk

)
m,n ∈ N

(27)

where Ûkατ , Ûkβτ and Ûkzτ are the amplitudes, m and n are the numbers of waves (they range

from 0 to ∞) and ak and bk are the plate lengths in the αk and βk directions, respectively.
The same solution can be applied to the ESL approach, in this case the displacement variables
appear without the superscript k.

4 The axiomatic/asymptotic method and the Best Theory Di-
agram

Accurate plate analyses can be obtained by increasing the order of the expansion. As a draw-
back, the computational cost could increase significantly with respect to the classical formula-
tions. For a given problem, some terms of a refined model may not contribute to the evaluation
of the behavior of a structure, as shown in [21]. In order to detect the ineffective variables for a
given plate problem, the axiomatic/asymptotic method was introduced in that work. Through
this method, it is possible to retrieve the ineffective terms in order to reduce the computational
cost without accuracy penalties. In the following, the axiomatic/asymptotic technique is de-
scribed, the Best Theory Diagram (BTD) is introduced and then a method to construct the
BTD based on genetic algorithms is described.

4.1 Axiomatic/asymptotic technique

The possibility to construct reduced models is offered by the axiomatic/asymptotic technique
which consists of the following steps:

1. parameters such as geometry, boundary conditions, loadings, materials and layer layouts
are fixed;

2. a set of output parameters is chosen, such as displacement or stress components; in the
following analyses σxx is considered;

3. a starting theory is fixed (axiomatic part), that is the displacement variables to be ana-
lyzed are defined; usually a theory which provides 3D-like solutions is chosen; a reference
solution is defined (in the present work LD4 and ED4 approaches are adopted, since these
fourth-order models offer an excellent agreement with the three-dimensional solutions as
highlighted in [21] and in [25]);
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4. the CUF is used to generate the governing equations for the considered theories;

5. the effectiveness of each term of the adopted expansion is evaluated by measuring the
error due to its deactivation, a term is considered as ineffective if the error is negligible;

6. the most suitable structural model for a given structural problem is then obtained by
discarding the non-effective displacement variables.

A graphical notation is introduced in order to synthetically represent the results. This
consists of a table with three rows, and a number of columns equal to the number of the
displacement variable used in the expansion. As an example, an LD4 model for a two layer
shell is shown in Table 1 (full model). Table 1 also shows the reduced model in which the first
layer term u1

z2 and the second layer term u2
x2 are deactivated. The meaning of the symbols are

shown in Table 2. The symbol � is used to denote the terms that cannot be deactivated in the
LW since this would introduce an extra constraint.

4.2 The Best Theory Diagram (BTD)

It is possible to associate to each reduced refined model the number of the active terms and its
error computed with respect to a reference solution, as in Fig. 3. The error values are reported
on the abscissa and the number of active terms is reported on the ordinate. Each black dot
represents a reduced refined model and its position on the Cartesian plane is defined considering
its error and the number of the active terms. In addition the synthetic representation of the
active/non-active terms is reported for some reduced models. By considering all models, it is
possible to note that some of them provide the lowest error for a given number of active terms.
These models are labeled in Fig. 3 as 1, 2, 3, 4, 5 and they represent a Pareto front for the
considered problems. This Pareto front is defined in this work as the Best Theory Diagram. The
existence of such curve was already demonstrated in the work reported in [29]. This curve can be
constructed for several problems, for example considering several type of materials, geometries
and boundary conditions. BTD makes it possible to evaluate the minimum number of terms,
Nmin, that have to be used in order to achieve a desired accuracy.

4.3 BTD construction by means of genetic algorithms

The number of all possible combinations of active/not-active terms for a given refined model is
equal to 2M , where M is the number of terms (i.e. degrees of freedom) of the model. In the
case of an ESL model, M can be computed as M = (N + 1) 3. In the case of a LW model,
M = 3 (N − 1) NL since, as mentioned above, some terms of the displacement field cannot be
discarder to impose the interface compatibility. As the expansion order increases, the number
of the combinations to consider increases. The computational cost required for the BTD con-
struction can be very significant. In order to construct BTDs with a lower computation effort,
a different strategy was employed that was based on genetic algorithms.
The genetic algorithms are inspired by the evolution theory explained in ”The origin of species”,
written by Darwin ([36]). In nature, weak and unfit individuals within their environment are
faced with extinction by natural selection. The strong ones have a greater opportunity to pass
their genes down to future generations via reproduction. In the long run, the species carrying
the correct combination in their genes become dominant in their population. Sometimes, during
the slow process of evolution, random changes may occur in the genes. If these changes provide
additional advantages within the challenge of survival, new species evolve from the old ones.
Unsuccessful changes are eliminated by natural selection. In the genetic algorithm terminology,
a solution vector x ∈ X, where X is the solution space, is called individual or chromosome.
Individuals are made of discrete units called genes. Each gene controls one or more features
of the individual. The present genetic algorithm use the mutation operator to generate new
solutions from existing ones. The mutation operator introduce random changes into the char-
acteristics of the chromosome. Mutation is generally applied at the gene level. Each individual
has a fitness value based on its rank in the population. The population is ranked according to
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the dominance rule reported in [32]. The fitness of each chromosome is evaluated through the
following formula:

ri(xi, t) = 1 + nq(xi, t) (28)

where nq(x, t) is the number of solutions that are dominated by x at the generation t. A lower
rank corresponds to a better solution.
In the present work, each plate theory has been considered as an individual. The genes are the
terms of the expansion and each gene can be active or not active, the deactivation of a term
is obtained by exploiting a penalty technique. A synthetic representation of this approach is
shown in Fig. 4. The meaning of the symbols N and M is reported in Table 2. Each individual
is therefore described by the number of active terms and its error that is computed with respect
to a reference solution. the dominance rule is applied through these two parameters in order to
evaluate the individual fitness. The generation of new refined theories starting from a generic
population is inspired to the reproduction of bacteria; for each individual (plate theory) a
number of copies are created according to its dominance and then, a number of mutations are
applied in order to vary the set of new individuals. The purpose of this analysis is to find
the individuals which belong to the Pareto front, that is, the subset of individuals which are
dominated by no other individuals. Via preliminary analyses, the number of generations, i.e.
iterations, was set equal to 10 and the number of the initial population was set to 400. The error
of the reduced models with respect to a reference solution was evaluated through the following
formula:

e = 100

∑Np
i=1 |Qi −Qiref|

maxQref
· 1

Np
(29)

where Q can be a stress/displacement component (σxx in this paper) and Np is the number of
points along the thickness on which the entity Q is computed.

5 Results and discussion

The results of the axiomatic/asymptotic analyses are reported hereafter. A transverse pressure
was applied to the top surface of the plate,

pz = p0
z sin

(mπ

a
x
)

sin
(nπ
b
y
)

(30)

where m = n = 1. The reference system layout is reported in Fig. 1. All the reduced models
are developed for stress σxx, which is computed at [a/2, b/2, z] with −h

2 ≤ z ≤ h
2 , where h is

the total thickness of the plate.

5.1 Metallic plate

A metallic plate was first considered. The material properties are E = 73 GPa and ν = 0.34
(aluminum). The length-to-thickness ratios (a/h) are equal to 2.5, 5 and 50.

First, an ED4 model assessment was carried out. The results are reported in Table 3; the
three-dimensional exact elasticity results are obtained as in [37, 38]. It is possible to note that
the results offered by the ED4 model are in excellent agreement with the reference solution.
This makes the ED4 model suitable for the computation of the reference solution of the ax-
iomatic/asymptotic analysis for the metallic plate. Table 4 reports the top and bottom values
of σxx.

The first method that was used to build the BTD is based on the evaluation of all the
possible combinations given by the 15 terms of an ED4 model, that is, 215 = 32768 theories;
Fig. 5a shows the error of each theory. It is possible to note that some empty regions are
present, and these regions are labeled as 1 and 2 in the figure. In this case, it is possible to
state that the construction of reduced refined models is not always possible; in fact, there are
no reduced models within some error intervals. The BTD is given by those combinations (i.e.
plate theories) which, for a given error, require the lowest number of unknown variables. Two
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BTDs are shown in Fig. 5, where the ”All Combinations” BTD was built by evaluating all
the 215 combinations. The ”Genetic” curve was built by exploiting a genetic algorithm. The
genetic algorithm for the axiomatic/asymptotic technique evaluates around 400 individuals for
10 generations, this means that only about 4000 out of 32768 theories were evaluated. It is
possible to note that almost all the models on the Pareto front were detected. The thickness
locking was corrected in all those theories that have only linear or constant terms in the uz
displacement field. This choice is valid throughout this paper.

The influence of the plate geometry on BTD construction was considered, and the results
are reported in Fig. 6. The curves suggest that, as a metallic plate becomes thinner, the
BTD tends to be defined in a smaller region of the error/number-of-degrees-of-freedom plane
(Error/NDOFs plane). Four classical theories from literature are also reported in the same
graphs, that is, the CLT and FSDT theories and the theories of Pandya ([34]) and Kant ([35]).
As the plate becomes thinner (i.e. a/h increases), the accuracy of the classical models increases.
It is worth noting that none of the four models lie on the BTD. This means that for this problem
and by considering σxx either the accuracy of the classical models can be achieved with fewer
unknown variables, or that it is possible to obtain a better accuracy with the same number of
variables. It can be noted that, for the thin plate case (a/h = 50), the best accuracy is given
by a 13-term theory, that is, two terms in an ED4 model are not effective for the particular
problem considered. In addition, the accuracy offered by 10, 11 and 12 term models is almost
equal to the accuracy offered by the 13-term theory.

It is possible to detect different plate theories that compute the required output with a
different approximation by keeping the number of active terms constant. These models are
labeled 1, 2, and 3 (Fig. 6). Models 1, 2 and 3 and their errors are reported in Table 5 in
which ME indicates the ratio between the number of active variables and the number of the full
model variables. It is possible to note that, for moderately thick and thin plates, the models
that offer the lowest possible error have the same term arrangement. In addition, the models
that belong to the BTD (models 1) have the terms ux1, uz1, ux2, uy2 and uz2 in common. It
is worth noting that, for a given plate geometry, the relevance of a term cannot be predicted
easily. As an example, by considering the models labeled 1, 2 and 3 for a/h = 2.5, the term uy4

is included in models 2 and 3, but is not included in model 1. Examples of the explicit form of
the reduced refined models are reported hereafter,

Model 1, a/h=2.5
ux = ux1 + z ux2 + +z3 ux4

uy = z uy2

uz = z1 + z uz2 + +z3 uz4

Model 2, a/h=5
ux = ux1 + z ux2 + +z3 ux4

uy = z uy2

uz = uz1 + z uz2 + z2 uz3

Model 3, a/h=50
ux = ux1 + z ux2

uy = z uy2

uz = uz1 + z uz2 + z2 uz3 + z3 uz+z3 ux44

(31)

The σxx distributions along the thickness are reported for different plate thickness in Fig. 7.
The evaluation of the σxx stress is performed by means of the reduced models reported in Table
5. It can be noted that the stress distributions computed by means of the reduced models,
which belong to the BTD (i.e. the models labeled as 1), are in perfect agreement with the
reference solution. Moreover, it is possible to state that, for a given error interval, as a plate
becomes thinner, different reduced models are able to compute the stress distribution with high
accuracy. The results herein reported for the metallic plate suggest that

• for a given problem, it is possible to define a BTD that represents the set of reduced
models which offer the lowest possible error with respect to a reference solution;

• a genetic algorithm makes it possible to construct a BTD with a lower computational
cost;
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• it is difficult to predict the relevant terms for a given problem;

• in most cases, the BTD models allow one to obtain better accuracies than classical models
with the same number of variables, or to have the same accuracy with fewer variables.

5.2 Laminated plates

Axiomatic/asymptotic analysis results are reported for ED4 and LD4 models, considering sym-
metric and asymmetric laminated plates. The reference results have been obtained by means of
the LD4 model. The assessment reported in Table 6 proves that LD4 model offers results that are
in excellent agreement with the exact solutions available in the open literature. The exact solu-
tions are taken from [39] and [40], and the material properties are EL/ET = 25, GLT /ET = 0.5,
GTT /ET = 0.2, νLT = νTT = 0.25. In the following, the axiomatic/asymptotic analyses con-
sider laminated plates whose layer properties are EL = 40 × 109 Pa, ET = Ez = 1 × 109 Pa,
GLT = 0.5× 109 Pa, Gz = 0.6× 109 Pa, ν = 0.25. The ply sequences considered are 0◦/90◦/0◦

for the symmetric plate and 0◦/90◦ for the asymmetric plate; each layer has the same thickness.
For the sake of brevity, only the most significant values of the stress distribution employed as
a reference solution are reported in Tables 7 (symmetric case) and 8 (asymmetric case). The
ED4 model BTDs for different plate geometries are reported in Fig.s 8 and 9, for a symmetric
and an asymmetric plate, respectively. Comparing the BTDs for the two type of plates, it
is possible to observe that the BTDs for the symmetric plates are defined in a smaller error
interval than the BTDs for the asymmetric plate. It is worth noting that the maximum num-
ber of terms considered for all the BTDs reported is not equal to the total number of all the
displacement variables of the ED4 model (15). It is possible to state that, in some cases, some
terms of an ED4 model are ineffective. CLT, FSDT, Pandya and Kant model accuracies are
also reported. It can be stated that, as a plate becomes thinner, the accuracy of the models
increases, although none of them belongs to the BTDs. This means, as already mentioned for
the metallic plate case, that either the accuracy of these models can be improved by considering
a different term disposition (constant number of terms), or that their computational cost can be
reduced considering a smaller number of terms (constant accuracy). Three additional models
are also reported in Fig.s 8 and 9, and are labeled 1, 2 and 3. These models have the same
number of terms, and they show that, for a given number of terms, it is possible to detect
different theories that provide different accuracies. The equivalent model representations are
reported in Tables 9 and 10, for symmetric and asymmetric plates, respectively. The reduced
models for the symmetric plate reported in Table 9 underline that models which belong to the
BTD are similar in some cases; the models labeled 1 for the thick and moderately thick plates
(a/h = 2.5÷ 5) are identical. It is possible to conclude that, for a symmetric plate, the reduced
models that were found for a particular problem can be profitably used in some cases to analyze
different geometrical configurations. In the case of an asymmetric plate (Table 10), it can be
noted that the reduced models which belong to the BTD curves mainly present the displace-
ment variables related to the ux expansion, this is due to the fact that σxx is being considered.
As already noted for the ED4 model related to a metallic plate, the relevance of the terms for
a given geometry cannot be predicted easily. The positions of all the ED4 reduced models in
the Error/NDOFs plane are reported in Fig. 10, considering a thick asymmetric plate. The
number of evaluated combinations is equal to 32768 (215). In this case, and in the following
ones, the reported BTDs are obtained only by means of the genetic algorithm: around 400
individuals are considered for 10 generations. It can be noted that all the models which belong
to the BTD are detected, although a fraction of all the possible combinations is considered
(400× 10/32768 = 4000/32768). It should be underlined that the 15-term and 14-term models
are not included in the BTD since they offer same accuracy as the 13-term model, but with a
higher computational cost. Moreover, it is worth noting that no empty region is present, unlike
the case reported in Fig. 5a. The stress distribution for the symmetric and asymmetric plates
are reported in Fig.s 11 and 12, respectively. It can be noted that the reduced models which
belong to the BTD make it possible to compute distributions that are in agreement with the
reference solution. In addition, it can be noted that as the a/h increases, more reduced models
are able to provide a satisfactory stress distribution.
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BTDs are considered for LD4 models hereafter. The results are reported for the symmetric case
in Fig. 13, and for the asymmetric case in Fig. 14. It can be observed that, as already noted
for the ED4 models, as a plate becomes thinner, the error interval in which the BTD curves are
defined reduces. In order to highlight the effect of the error and of the number of terms on the
selection of the terms, the models labeled 1T, 2T, 3T, 1E, 2E and 3E are reported. Models 1T,
2T and 3T are obtained for a constant number of terms, and their synthetic representation is
reported in Tables 11 and 12 for symmetric and asymmetric plates, respectively. Considering
the reduced models for both types of plate, it is possible to observe that, as a plate becomes
thinner, fewer higher-order terms are necessary. This is particularly evident for the symmetric
plate (Table 11): the fourth-order terms are only present in the reduced models for the thick
plate (a/h = 2.5, 5). It can again be noted that the relevance of the terms cannot be easily
predicted. The models labeled 1E, 1E and 3E are obtained for a constant error. The rela-
tive synthetic representations are reported in Tables 13 (symmetric plate) and 14 (asymmetric
plate). It should be mentioned that, like the constant number-of-term case, it is not easy to pre-
dict which terms are included, as a different total number of terms is considered. The positions
of all the LD4 reduced models in the Error/NDOFs plane are reported in Fig. 15, considering
a thick asymmetric plate. The number of evaluated combinations is equal to 262144 (218).
Around 400 individuals are considered for 10 generations. It can be noted that all the models
which belong to the BTD are detected, although a fraction of all the possible combinations is
considered (400 × 10/262144 = 4000/262144). The presence of empty regions can be observed
for the LD4 model, these regions are labeled 1 and 2. The stress distributions are reported in
Fig. 16 and 17 (symmetric and asymmetric plates, respectively), where it is possible to observe
the good agreement with the reference solution and, as already noted for the ED4 model, it is
possible to state that, for a given error interval, as a plate becomes thinner, different models
can be used successfully. The analyses reported for the laminated plates suggest that

• a BTD can be built by considering ESL and LW approaches; in addition.

• Genetic algorithms are very effective in building BTDs since far fewer model combinations
are needed.

• It is difficult to predict which terms can be included in a reduced model.

• The computational cost reduction given by the reduced models is generally far more
evident in the LW models than in the ESL models.

6 Conclusion

The axiomatic/asymptotic technique has been employed to detect the ”best” reduced models for
ESL and LW that belong to Best Theory Diagrams (BTDs). The BTDs have been reported for
different problems, considering different geometries (length-to-thickness ratio, a/h) and material
properties. Simply-supported plates have been analyzed by means of the CUF and an analytical
solution (Navier-type) has been employed. A genetic-like algorithm has been employed in order
to build BTDs. The following conclusions may be drawn:

1. for a given model, plate geometry and material configuration, it is possible to identify a
number of reduced models which present the lowest possible error; in other words, it is
possible to define a Best Theory Diagram (BTD).

2. the axiomatic/asymptotic technique, conducted by means of the genetic algorithm, is able
to detect the reduced models that belong to the BTD;

3. in the case of the ED4 and LD4 models, it has been found that, for a given model, problem
and interval in the Error/NDOFs plane, it is not always possible to define a reduced model;

4. the geometric parameter (a/h) and the material properties influence the selection of terms;
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5. the classical and refined models reported in the literature are accurate, although, according
to the results here reported for a given problem and output (σxx in this paper), either
higher accuracies can be achieved (constant number of terms) or lower computational
costs can be obtained (constant accuracy);

6. the relevance of the terms for a model cannot be predicted easily as the error (constant
term number) or the total amount of active terms (constant accuracy) vary.

The CUF theory has proved to be a useful means of generating refined models and of
considering the accuracy of the results as an input. In addition, the use the analytical solution
has made it possible to compute the error of a large number of combination of terms with a
low computational effort. In the future, the present approach could be applied to multifield
problems and shell/beam models.

Appendix: fundamental nucleus components

The nine components of the fundamental nucleus for a generic layer k are herein reported
explicitly

K̂kτs
11 =− C̃k11Eτ s∂

2
,x − C̃k16Eτ s∂

2
,xy − C̃k16Eτ s∂

2
,yx − C̃k66Eτ s∂

2
,y + C̃k55Eτ,zs,z

K̂kτs
12 =− C̃k12Eτ s∂

2
,xy + C̃k16Eτ s∂

2
,x − C̃k26Eτ s∂

2
,y − C̃k66Eτ s∂

2
,yx + C̃k45Eτ,zs,z

K̂kτs
13 =− C̃k13Eτ,z s∂,x − C̃k36Eτ,z s∂,y + C̃k55∂,xEτ s,z + C̃k45∂,yEτ s,z

K̂kτs
21 =− C̃k12Eτ s∂

2
,yx − C̃k26Eτ s∂

2
,y − C̃k16Eτ s∂

2
,x − C̃k66Eτ s∂

2
,xy + C̃k45Eτ,zs,z

K̂kτs
22 =− C̃k22Eτ s∂

2
,y − C̃k26Eτ s∂

2
,yx − C̃k26Eτ s∂

2
,xy + C̃k66Eτ s∂

2
,x + C̃k44Eτ,zs,z

K̂kτs
23 =− C̃k23Eτ,z s∂,y − C̃k36Eτ,z s∂,x + C̃k45∂,xEτ s,z + C̃k44∂,yEτ s,z

K̂kτs
31 =− C̃k55Eτ,z s∂,x − C̃k45Eτ,z s∂,y + C̃k13∂,xEτ s,z + C̃k36∂,yEτ s,z

K̂kτs
32 =− C̃k45Eτ,z s∂,x − C̃k44Eτ,z s∂,y + C̃k23∂,yEτ s,z + C̃k36∂,xEτ s,z

K̂kτs
33 =− C̃k55Eτ s∂

2
,x − C̃k45Eτ s∂

2
,xy − C̃k54Eτ s∂

2
,yx − C̃k44Eτ s∂

2
,y + C̃k33Eτ,zs,z (32)

Symbols ∂2
,xx, ∂2

,yy, ∂
2
,xy, ∂,x and ∂,y denote synthetically the differential operators ∂2

∂x2 , ∂2

∂y2 ,
∂2

∂x∂y , ∂
∂y and ∂

∂y . The components of the fundamental nucleus for the boundary conditions

considering a generic layer k are

Π̂kτs
11 =C̃k11Eτ s∂,x + C̃k16Eτ s∂,y + C̃k16Eτ s∂,x + C̃k66Eτ s∂,y

Π̂kτs
12 =C̃k12Eτ s∂,y + C̃k16Eτ s∂,x + C̃k26Eτ s∂,y + C̃k66Eτ s∂,x

Π̂kτs
13 =C̃k13Eτ,z s − C̃k36Eτ,z s

Π̂kτs
21 =C̃k12Eτ s∂,x + C̃k26Eτ s∂,y + C̃k16Eτ s∂,x + C̃k66Eτ s∂,y

Π̂kτs
22 =C̃k22Eτ s∂,y + C̃k26Eτ s∂,x + C̃k26Eτ s∂,xy + C̃k66Eτ s∂,x

Π̂kτs
23 =C̃k13Eτ,z s − C̃k36Eτ,z s

Π̂kτs
31 =C̃k55Eτ,z s + C̃k45Eτ,z s

Π̂kτs
32 =C̃k45Eτ,z s + C̃k44Eτ,z s

Π̂kτs
33 =C̃k55Eτ s∂,x − C̃k45Eτ s∂,y − C̃k54Eτ s∂,x − C̃k44Eτ s∂,y (33)
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Figure Caption List

1. Figure 1: Plate geometry and notation.

2. Figure 2: Linear and higher-order ESL and LW examples.

• Figure 2a: Equivalent Single Layer scheme.

• Figure 2b: Layer Wise scheme.

3. Figure 3: NDOFs vs error plot example.

4. Figure 4: Displacement variables of a refined model and genes of an individual.

5. Figure 5: Genetic algorithm assessment, ED4 reduced models, metallic plate, a/h = 2.5.

• Figure 5a: BTD.

• Figure 5b: BTD for error < 7%.

6. Figure 6: BTDs for simply-supported metallic plates, ED4 reduced models for different
a/h.

• Figure 6a: a/h = 50.

• Figure 6b: a/h = 5.

• Figure 6c: a/h = 2.5.

7. Figure 7: σxx distribution along the thickness for metallic plates, ED4 reduced models,
reduced models from Table 5.

• Figure 7a: a/h = 50.

• Figure 7b: a/h = 5.

• Figure 7c: a/h = 2.5.

8. Figure 8: BTDs for simply-supported symmetric laminated plates, ED4 reduced models
for different a/h.

• Figure 8a: a/h = 50.

• Figure 8b: a/h = 5.

• Figure 8c: a/h = 2.5.

9. Figure 9: BTDs for simply-supported asymmetric laminated plates, ED4 reduced models
for different a/h.

• Figure 9a: a/h = 50.

• Figure 9b: a/h = 5.

• Figure 9c: a/h = 2.5.

10. Figure 10: Genetic algorithm assessment, ED4 reduced models, asymmetric laminated
plate, a/h = 2.5.

11. Figure 11: σxx distribution along the thickness for symmetric laminated plates, ED4
reduced models, reduced models from Table 9.

• Figure 11a: a/h = 50.

• Figure 11b: a/h = 5.

• Figure 11c: a/h = 2.5.
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12. Figure 12: σxx distribution along the thickness for asymmetric laminated plates, ED4
reduced models, reduced models from Table 10.

• Figure 12a: a/h = 50.

• Figure 12b: a/h = 5.

• Figure 12c: a/h = 2.5.

13. Figure 13: BTDs for simply-supported symmetric laminated plates, LD4 reduced models
for different a/h.

• Figure 13a: a/h = 50.

• Figure 13b: a/h = 5.

• Figure 13c: a/h = 2.5.

14. Figure 14: BTDs for simply-supported asymmetric laminated plates, LD4 reduced models
for different a/h.

• Figure 14a: a/h = 50.

• Figure 14b: a/h = 5.

• Figure 14c: a/h = 2.5.

15. Figure 15: Genetic algorithm assessment, LD4 reduced models, asymmetric laminated
plate, a/h = 2.5.

16. Figure 16: σxx distribution along the thickness for symmetric laminated plates, LD4
reduced models, reduced models from Table 11.

• Figure 16a: a/h = 50.

• Figure 16b: a/h = 5.

• Figure 16c: a/h = 2.5.

17. Figure 17: σxx distribution along the thickness for asymmetric laminated plates, LD4
reduced models, reduced models from Table 12.

• Figure 17a: a/h = 50.

• Figure 17b: a/h = 5.

• Figure 17c: a/h = 2.5.
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Full model representation Reduced model representation
� N N N � N N N �
� N N N � N N N �
� N N N � N N N �

� N N N � M N N �
� N N N � N N N �
� M N N � N N N �

Table 1: Model representations
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Table 2: Symbols to indicate the status of a displacement variable.

Active term Inactive term Non-deactivable term

N M �
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Table 3: ED4 model assessment for the metallic plate, σxx = σxx
p0
z (a/h)2 .

a/h 100 10 5 2
Ref. [37, 38] 0.2037 0.2068 0.2168 0.3145

ED4 0.2037 0.2068 0.2168 0.3165
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Table 4: ED4 model assessment for the metallic plate, top and bottom σxx values.

a/h = 50 a/h = 5 a/h = 2.5

ED4
0.2038 0.2168 0.2680
−0.2037 −0.2083 −0.2145
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Table 5: ED4 reduced models for a simply-supported isotropic plate for different accuracies and
constant number of terms.

1 2 3 ME

a/h = 50

N N M M M
M N M N M
N N N M M

N N M N M
M N M M M
N N N M M

N N M M M
M N M M M
N N N N M

7/15

Error 5.0143× 10−3 % 6.4419× 10−3 % 9.8327× 10−3 %
a/h = 5

N N M M M
M N M N M
N N N M M

N N M N M
M N M M M
N N N M M

N N M M M
N N M M M
N N N M M

7/15

Error 0.5212 % 0.6510 % 0.9225 %
a/h = 2.5

N N M N M
M N M M M
N N M N M

N N M M M
M N N N M
N N M M M

N N N M M
M M M N M
N N N M M

7/15

Error 2.0478 % 2.8970 % 4.1000 %
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Table 6: Stresses and displacement for 3-layer and a 5-layer simply-supported laminated plates,
uz = uz 100ET h

3

p0
z a

4 , σxx/yy/xy =
σxx/yy/xy

p0
z (a/h)2 , σxz/yz =

σxz/yz
p0
z (a/h)

.

a/h = 100
3-layer laminate

σxx(z = ±h/2) σyy(z = ±h/6) σxz(z = 0) σyz(z = 0) σxy(z = ±h/2)
Ref. [39] ±0.539 0.181 0.395 0.0828 ∓0.0213

LD4 ±0.539 0.181 0.395 0.0828 ∓0.0214
5-layer laminate

σxx(z = ±h/2) σyy(z = ±h/3) σxz(z = 0) σyz(z = 0) uz(z = 0)
Ref. [40] ±0.539 ±0.360 0.272 0.205 1.006

LD4 ±0.539 ±0.360 0.272 0.206 1.006
a/h = 4

3-layer laminate
σxx(z = ±h/2) σyy(z = ±h/6) σxz(z = 0) σyz(z = 0) σxy(z = ±h/2)

Ref. [39] 0.801 −0.755 0.534 −0.556 0.256 0.2172 −0.0511 0.0505
LD4 0.801 −0.755 0.534 −0.556 0.256 0.2180 −0.0511 0.0505

5-layer laminate
σxx(z = ±h/2) σyy(z = ±h/3) σxz(z = 0) σyz(z = 0) uz(z = 0)

Ref. [40] 0.685 −0.651 0.633 −0.626 0.238 0.229 4.291
LD4 0.685 −0.651 0.634 −0.626 0.238 0.229 4.291
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Table 7: ED4 and LD4 model assessments for the symmetric plate, top and bottom σxx values.

LD4
a/h = 50 a/h = 5 a/h = 2.5

0.5636 0.6792 1.0802
−0.5637 −0.6500 −0.7573

ED4
0.5635 0.6608 0.9736
−0.5635 −0.6314 −0.6646
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Table 8: ED4 and LD4 model assessments for the asymmetric plate, top and bottom σxx values.

a/h = 50 a/h = 5 a/h = 2.5
LD4

0.0642 0.0939 0.1665
−0.8374 −0.8532 −0.8473

ED4
0.0641 0.0918 0.1636
−0.8371 −0.8357 −0.8077
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Table 9: ED4 reduced models for a simply-supported symmetric plate for different accuracies
and constant number of terms.

1 2 3 ME

a/h = 50
N N M N M
M N M M M
N N N M M

N N M N N
M N M M M
N M N M M

N N M N M
N N M M M
N N M M M

7/15

Error 2.0339× 10−2 % 2.1568× 10−2 % 2.2652× 10−2 %
a/h = 5

N N N N M
M N M M M
N N M M M

N N M N M
M N M N M
N N M M M

M N N N M
M N M N M
N N M M M

7/15

Error 1.7773 % 1.8510 % 2.0909 %
a/h = 2.5

N N N N M
M N M M M
N N M M M

N N N N M
M M M M M
N N M N M

N N N M M
M N M N M
N N M M M

7/15

Error 4.0948 % 6.2448 % 9.4185 %
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Table 10: ED4 reduced models for a simply-supported asymmetric plate for different accuracies
and constant number of terms.

1 2 3 ME

a/h = 50
N N N N M
N N M M M
N M M M M

N N M M N
N N M M M
N M M N M

N N N N M
N M M M M
N N M M M

7/15

Error 4.0673× 10−2 % 0.5226 % 31.1968 %
a/h = 5

N N N M N
N N M M M
N M M M M

N N M M M
M N N M N
N M M N M

N N M N N
N N M M M
N M M M M

7/15

Error 2.8403 % 3.9886 % 5.6545 %
a/h = 2.5

N N N N N
M M M M M
N M M M N

N N N M N
M M M N M
N M N M M

N N M N N
M M M N M
N M N M M

7/15

Error 10.9645 % 15.6582 % 24.9191 %
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Table 11: LD4 reduced models for a simply-supported symmetric plate for different accuracies
and constant number of terms (ME = 18/39).

1T 2T 3T
a/h = 50

� N M M � M M M � N N M �
� M M M � M M M � M M M �
� N M M � N M M � N M M �

� N N M � M M M � N M M �
� N M M � M M M � M M M �
� M M M � N M M � N M M �

� N N M � M M M � M M M �
� N M M � M M M � M M M �
� N M M � N M M � N M M �

Error 4.5882× 10−3 % 3.4133× 10−2 % 3.8609× 10−2 %
a/h = 5

� N N M � M M M � N N M �
� M M M � M N M � M M M �
� M M M � N M M � M M M �

� N M M � M M M � N N N �
� M M M � M M M � M M M �
� M M M � N M M � M N M �

� M N M � M M M � N N N �
� M N M � M N M � M M M �
� M M M � M M M � M M M �

Error 0.1130 % 0.5008 % 2.5944 %
a/h = 2.5

� N N N � M M M � N N N �
� M M M � M M M � M M M �
� M M M � M M M � M M M �

� N M M � M M M � N N N �
� N M M � M M M � M M M �
� M M M � N M M � M M M �

� M N N � N M M � N N M �
� M M M � M M M � M M M �
� M M M � M N M � M M M �

Error 0.45682 % 1.6425 % 4.8606 %
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Table 12: LD4 reduced models for a simply-supported asymmetric plate for different accuracies
and constant number of terms (ME = 15/27).

1T 2T 3T
a/h = 50

� M M M � N N M �
� N N M � M M M �
� N M M � N M M �

� M M M � M N M �
� M N M � M N M �
� N M N � N M M �

� N M M � M N N �
� M M M � M M M �
� N M M � N M N �

Error 1.6834× 10−3 % 1.1191× 10−2 % 1.7970× 10−2 %
a/h = 5

� N M M � N N M �
� N N M � N M M �
� M M M � M M M �

� N M M � M N N �
� N N M � M M M �
� M M M � M N M �

� N N M � N M M �
� N N M � N M M �
� M M M � M M M �

Error 0.1100 % 1.335 % 3.022 %
a/h = 2.5

� N M M � N N N �
� N N M � M M M �
� M M M � M M M �

� M N M � N N N �
� M M M � M M N �
� M M M � N M M �

� N M M � N M M �
� M N M � N N M �
� N M M � M M M �

Error 0.90182 % 4.1034 % 11.8300 %
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Table 13: LD4 reduced models for a simply-supported symmetric plate for given accuracies and
different number of terms.

1E 2E 3E
a/h = 50, Error = 6.3155× 10−2 %

ME : 13/39 ME : 14/39 ME : 15/39
� M M M � M M M � M M M �
� M M M � M M M � M M M �
� M M M � N M M � M M M �

� M M M � N M M � M M M �
� M M M � M M M � M M M �
� M M M � N M M � M M M �

� M M M � N M M � M M M �
� M M M � M M M � M M M �
� M M M � N M M � M N M �

a/h = 5, Error = 2.2956 %
ME : 13/39 ME : 14/39 ME : 15/39

� N M M � M M M � M M M �
� M M M � M M M � M M M �
� M M M � M M M � M M M �

� N M M � M M M � M M M �
� M M M � M M M � M M N �
� M M M � M M M � M M M �

� N M M � M M M � M M M �
� M M M � M M M � M M N �
� M M N � M M M � M M M �

a/h = 2.5, Error = 2.2869 %
ME : 14/39 ME : 15/39 ME : 16/39

� N M M � M M M � N M M �
� M M M � M M M � M M M �
� M M M � M M M � M M M �

� N M M � M M M � N M M �
� M M M � M M M � M M N �
� M M M � M M M � M M M �

� N M M � M M M � N M M �
� M M M � M M M � M M N �
� M M M � M M N � M M M �
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Table 14: LD4 reduced models for a simply-supported asymmetric plate for given accuracies
and different number of terms.

1E 2E 3E
a/h = 50, Error = 3.1659× 10−2 %

ME : 11/27 ME : 12/27 ME : 13/27
� M M M � M M M �
� M M M � M M M �
� N M M � N M M �

� M M M � M M M �
� M M M � M M M �
� N M M � N M N �

� M M N � M M M �
� M M M � M M M �
� N M M � N M N �

a/h = 5, Error = 0.9071 %
ME : 11/27 ME : 12/27 ME : 13/27

� M M M � N N M �
� M M M � M M M �
� M M M � M M M �

� M M M � N N M �
� M M M � M M M �
� M M N � M M M �

� M M M � N N M �
� M M N � M M M �
� M M N � M M M �

a/h = 2.5, Error = 4.4066 %
ME : 11/27 ME : 12/27 ME : 13/27

� M M M � N N M �
� M M M � M M M �
� M M M � M M M �

� M M M � N N M �
� M M M � M M M �
� M M N � M M M �

� M M N � N N M �
� M M M � M M M �
� M M N � M M M �
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