
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Inertial sensors for smartphones navigation / Dabove, Paolo; Ghinamo, Giorgio; Lingua, Andrea Maria. - In:
SPRINGERPLUS. - ISSN 2193-1801. - STAMPA. - 4:(2015), pp. 1-18. [10.1186/s40064-015-1572-8]

Original

Inertial sensors for smartphones navigation

Publisher:

Published
DOI:10.1186/s40064-015-1572-8

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2636569 since: 2016-03-02T12:01:57Z

SPRINGER INTERNATIONAL PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND



Inertial sensors for smartphones 
navigation
P. Dabove1* , G. Ghinamo2 and A. M. Lingua1

Background
Image recognition based (IRB) positioning is a good technology for navigation in Global 
Navigation Satellite System (GNSS) denied environments such as indoors (Krishnamur-
thy 2015), or urban canyon conditions where GNSS accuracy is poor (tens of meters 
accuracy; Dabove and Manzino 2014; Lee et al. 2014). To be able to exploit IRB position-
ing not only the battery optimization is crucial (Faragher and Harle 2015; Fister et  al. 
2013), which involves the minimization of the frame rate, but also the size of the data-
base with the environment images. In fact due to the large memory size, this database 
cannot be easily stored on mobile devices. To counteract the database issue, a cloud 
architecture can be exploited where the device acquires the image used for the locali-
zation procedure and the cloud performs all the necessary operations to estimate the 
parameters of the camera (Woodman and Harle 2008; Yuan et al. 2014). In this archi-
tecture it is thus necessary to compensate for the latencies of calculation by the cloud 
(De Agostino et al. 2010). Latencies, however, can be also present in terminal based SW 
implementations and should also be compensated for.

To overcome the reduction of the frame rate and latencies compensation, inertial 
(INS) platforms built with MEMS (Micro Electro-Mechanical Systems) technology can 
be used and considered (Afzal et al. 2011; Aicardi et al. 2014; Niu et al. 2015).

Abstract 

The advent of smartphones and tablets, means that we can constantly get informa-
tion on our current geographical location. These devices include not only GPS/GNSS 
chipsets but also mass-market inertial platforms that can be used to plan activities, 
share locations on social networks, and also to perform positioning in indoor and 
outdoor scenarios. This paper shows the performance of smartphones and their inertial 
sensors in terms of gaining information about the user’s current geographical loca-
tion considering an indoor navigation scenario. Tests were carried out to determine 
the accuracy and precision obtainable with internal and external sensors. In terms of 
the attitude and drift estimation with an updating interval equal to 1 s, 2D accuracies 
of about 15 cm were obtained with the images. Residual benefits were also obtained, 
however, for large intervals, e.g. 2 and 5 s, where the accuracies decreased to 50 cm 
and 2.2 m, respectively.
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Two different approaches are possible for the inertial navigation with MEMS technol-
ogy (Tian et  al. 2015; Kunze et  al. 2009): the pedestrian dead reckoning (PDR; Yunye 
et al. 2011) or the INS integration approach which integrates equations regarding inertial 
measurements for the positions and attitude estimation (Frank et al. 2014; Hatami and 
Pahlavan 2005; Michel et al. 2015). In this integration approach, inner variables, such as 
accelerometer biases, gyro drift and 3D inertial velocity, are estimated by combining INS 
information with an absolute external source that provides absolute reference informa-
tion (Kalliola 2011; Schatzberg et al. 2014). Usually the absolute external source is repre-
sented by GNSS instruments that provide periodic absolute position information. In this 
work we investigated how GNSS instruments can be replaced by IRB positioning. IRB 
provides absolute attitude information together with the position directly as the input of 
the equation system. Consequently it cannot be considered as an inner state of the equa-
tion system as in the usual Kalman filter approach (Deng et al. 2015; Li et al. 2011; Kraus 
1997).

The PDR technique simply considers the estimation of a step length (or walking 
speed) (Lee et al. 2015) and a course over ground (or direction of walking) (Cliff Ran-
dell and Muller 2003; Ladetto et al. 2001). Hybridizing the PDR with the IRB technique, 
the step length model and the actual length of the trajectory can be obtained (Yang and 
Huang 2015). This, thus, makes the PDR system more precise and increases the intervals 
between two subsequent localization images, which have about 30  cm of uncertainty 
(Lingua et al. 2014; Piras et al. 2014).

User experience of step detection algorithms shows that occasionally the initial step 
is not detected. If we suppose that the mean foot length is 25  cm, the step length is 
about 0.7 m and the accuracy of correction using PDR is 3 % of the walked distance, it is 
not possible to detect errors less than one step, which is equal to 1 m. It should also be 
underlined that displacements due to hand movements or other events different from 
regular steps can not be detected. PDR can only be used for hand-held sensors and not 
for wheeled vehicles with mounted cameras (Tung and Shin 2015).

In this study we investigated the positioning using only inertial MEMS instruments. 
Thus, the goal of this work is to analyze the precisions and accuracies obtainable with 
these instruments for positioning and indoor navigation purposes when MEMS tech-
nology is used together with IRB positioning. This is achieved by fusing IRB position 
and attitude measurement with INS measurements in terms of three axial acceleration 
and three axial angular velocity (Fig.  1). The Microstrain platform is considered as a 
representative instrument of this category. Accelerations and angular velocity measure-
ments are integrated to provide real-time relative position and relative attitude informa-
tion, while inner INS variables (velocity at the starting point, accelerometer biases and 
gyro drift) are estimated using absolute IRB positioning inputs (position and attitude). 
The IRB positioning periodically provides absolute reference values regarding positions 
and attitudes, with a latency that needs to be adjusted. We calculate this time interval in 
order to evaluate how often a picture needs to be taken in order to stay within a defined 
error bound. For pedestrian navigation, this error bound is usually assumed to be equal 
to 2 m. More stringent requirements of accuracy are shown for particular applications 
such as augmented reality, in particular in indoor environments  (Masiero et  al. 2014) 
with limited dimensions, such as applications in commercial sales support (smart retail).
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We analyse the characteristics (in terms of accuracy, noise, and reliability) of the sen-
sors installed inside the smartphones considered and the benefits of wavelet filtering 
techniques, such as data obtained by the inertial internal phones. The tests results are 
also described in terms of accuracy achieved for different time intervals (1, 2 and 5 s) 
between two different IRB positioning procedures.

Analysis of inertial sensors installed on some high‑level smartphones
The IRB navigation procedure can also be adopted for mass-market devices; the most 
popular sensors available today are smartphones that now include many useful sensors 
for geomatics applications.

The performance of the most well-known devices available was tested in Piras et al. 
2014. Various internal sensors have been embedded, such as digital cameras and GNSS 
receivers (Jones et  al. 2015), inertial platforms based on gyroscopes, accelerometers 
(Hekler et al. 2015) and magnetometers and RFID systems for smartphone devices (Jain 
and Kanhangad 2015).

In this paper, only the Samsung Galaxy S5 and iPhone 4 were considered and their 
technical information is shown in Table 1. This choice is made considering the devices 
available today in our geomatics lab.

These devices include sensors whose characteristics are needed to obtain a good and 
feasible positioning. In particular, to achieve a positioning with a photogrammetric 
approach, it is fundamental to characterize the noise level of the inertial sensors and to 
calibrate the camera, thus, removing the lens distortion.

Data acquired through smartphones and wavelet filtering

The main aspect that needs to be considered when a new sensor is analysed is the sta-
bility of the internal inertial sensors, whose performance is not usually declared by the 
manufacturers. We, thus, performed a 6-h static test to acquire the raw data (angular 
velocity and accelerations) of each smartphone to analyse the stability.

Figures 2, 3 and 4 show the result of the Samsung S5 inertial platform analysis.

Fig. 1 Differences of accelerations and angular velocities between Microstrain and Samsung S5
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The stability and the performance of the iPhone 4 are described in Figs. 5, 6 and 7.
Table 2 highlights that in general the iPhone 4 accelerometers are slightly better than 

the Samsung S5, while it is the opposite for the gyro components. Note, however, that 
our goal was not to determine which smartphone is the “best” but which is more useful 
for IRB purposes.

The inertial measurements acquired by these types of sensors are very noisy, due to the 
MEMS technology of the sensors themselves (Werner et al. 2014; Shin et al. 2014). Thus, 
for a “good” positioning, this noise needs to be removed before using the raw data. For 

Table 1 Devices and their principal characteristics

Name Samsung Galaxy S5 iPhone 4

Cost (€) 500 400

OS Android 4.4.2 TouchWiz UI KitKat iOS 7.0.6

CPU Adreno 330 Apple4—800 MHz

Digital camera Resolution (Mpx) 16 5

Type of lens CMOS CMOS

A-GPS Yes Yes

GNSS receiver Broadcom Broadcom—BCM4750

Inertial platform Yes Yes

Fig. 2 Acceleration residuals for Samsung Galaxy S5



Page 5 of 18Dabove et al. SpringerPlus  (2015) 4:834 

the inertial sensors, the noise of the data can be corrected through filtering (Rousseeuw 
and Leroy 1987). Filtering entails using the wavelets, which are signal representations of 
the oscillations of a waveform. There are different kinds of these representations, but in 
our case, the Daubechies wavelets were chosen to correct the data and, in particular, we 
used a Daubechies 4 at a level 7, as previously described in Piras et al. (2014).

Figure 8 shows the wavelet denoising approach (Rousseeuw and Leroy 1987) consider-
ing the Matlab toolbox (but a similar procedure is implemented by us and the results 
obtained are the same). Figure 9 shows an example of the signal after the wavelet filter-
ing: original signal is marked in red while the denoised signal is shown in black).

The reference sensor
A smartphone is useful for many activities (in addition to mere communication). 
Although accurate positioning with this device has been extensively investigated; some 
key information on the navigational purposes with INS instruments is not known, such 
as the reference systems of the internal sensors.

Various experiments were, thus, performed to determine the reference systems of the 
internal inertial platforms of smartphones, by performing calibration tests using the 
external reference inertial measurement unit (IMU).

On a non-magnetic plate, the two smartphones shown in Table 1 and the external iner-
tial sensor, whose internal reference system is known and imprinted on the top part of 
the same, as shown in Fig. 10, were installed. This sensor is the Microstrain 3DM-GX3-
35TM, whose technical characteristics and performance in terms of stability and accura-
cies are shown in Fig. 10.

Fig. 3 Gyroscope residuals for Samsung Galaxy S5
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By performing rotations of known angles and displacements, the determination of the 
internal reference systems of each smartphone was possible, which is essential for the 
surveying and data processing phases (Fig. 11).

The second step of the work was based on writing software that performs real-time 
positioning through images based localization and inertial sensors installed within the 
smartphone (Fig. 12).

To analyze the quality of the positioning achieved with the internal sensors, a software 
was written in Matlab, considering a system with six states (three position components 
of position and three attitude angles); three different time windows were considered 
for the dynamic estimation of the inner-state system, due to biases, drift and speed 
of motion, which are useful parameters for predicting the position and attitude at the 
generic epoch n with INS instrumentation, together with the positions and attitudes 
obtained at epoch n − 1.

The methodology for relative position and attitude estimation based on INS 
measurements
In the scenario of hybrid IRB and INS positioning, the states are periodically estimated 
with IRB positioning which provides absolute values for both attitude and position 
(Woodman 2007). INS measurements, which provide relative variations in position 
and attitude, are used in the period between two images, in order to have a continuous 
positioning for navigation purposes. When a new image is taken, new values of absolute 

Fig. 4 Roll, Pitch and Yaw stability for Samsung S5
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position and attitude can be obtained directly from IRB, so it is possible to estimate drift 
and biases of the INS instrument, which can be used for the following epochs.

In this context considering IRB + INS techniques, real-time position and attitude are 
estimated by evaluating the following equations:

where xk, vector of coordinates; vk, the vector of velocities; Rh, rotation matrix from 
body to navigation frame; ak, the acceleration vector; dt, time interval; bias, bias vector; 
drift, drift vector; ϕk, attitude expressed as three orientation angles; ωk, angular veloc-
ity vector; k, index for the sequence of positions based on sensor measurement rate; n, 
sequence of INS epochs between two IRB epochs (n is a periodic subset of k values).

It is therefore necessary to estimate the bias used in (1) and the drift used in (2) at each 
step.

If the position is evaluated in three consecutive epochs n, n + 1 and n + 2 with IRB fix 
(i.e. epochs with positions and attitudes estimated by the IRB technique) and the bias is 

(1)

xk = xn +

t
∑

k=1

((

vn +

k
∑

h=1

(Rh × (ah − biasn)× dt)

)

× dt

)

+
1

2

t
∑

k=1

(

Rk × (ak − biasn)× dt2
)

,

(2)ϕk = ϕn +

t
∑

k=1

(

Rk ×
(

ωk − driftn
)

× dt
)

,

Fig. 5 Acceleration residuals for iPhone 4
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assumed to be constant over the two time intervals, the three components of velocity at 
time n (vn) and the bias of the three accelerometers (one for each axis) can be estimated 
by solving the following linear system of six linear equations:

where X represents the position vector.
For the drift estimation, attitude measurements coming from two consecutive epochs 

n and n + 1 are needed: a linear system in three unknowns (one for each gyro sensor 
mounted on a three axial device) needs to be solved:

where ϕ represents the attitude expressed as three orientation angles.
After an initial alignment phase of about 3 s, during which the initial attitude of the 

smartphone is estimated, some IMU data (accelerations and angular velocities) are 
acquired, ensuring that they are all turned in the navigational reference system.

IMU data are also acquired from the Microstrain sensor integrating a GPS receiver, in 
terms of absolute position and orientation, together with IMU three axis acceleration 
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Fig. 6 Gyroscope residuals for iPhone 4
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and three axis angular velocities. An initialization phase of 3 s is required by the IMU 
and GPS data fusion algorithm for absolute attitude estimation.

On the basis of Woodman (2007) and Beauregard and Haas (2006), a strapdown sys-
tem was implemented so that the orientation and the speed of the device are calculated 
and combined to compute the direction of motion.

Note that in this phase of the prototyping algorithm, measures from image positioning 
are replaced with ones from the output data available with the Microstrain sensor (posi-
tion and attitude).

If there are measures arising from the total station (or later from images), the software 
can use this information source to estimate acceleration and attitude biases along the 
three components and determine the new rotation matrix that can be used at the next 
epoch. When the total station position information is exploited, attitude information is 
not available and Microstrain information is used. Figure 13 shows a flowchart of the 
procedure.

Fig. 7 Roll, Pitch and Yaw stability for iPhone 4

Table 2 RMS of the inertial sensors

RMS X Y Z

Samsung S5

 Acceleration (g) 0.0046 0.0061 0.0002

 Gyro. (rad/s) 0.0017 0.0028 0.0009

iPhone 4

 Acceleration (g) 0.0028 0.0024 0.0042

 Gyro. (rad/s) 0.0048 0.0032 0.0043
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A non-optimal simplified approach with respect to the Kalman filter process was fol-
lowed. This is because the characterization parameters of the inertial platform, the sta-
bility of the biases and drift estimation are not required by our system.

The objective of the study, however, was to evaluate how INS technology can be 
applied to compensate for the latency due to image positioning using the cloud database, 
as described in (Lingua et al. 2014). Thus, the ground truth and the attitude (obtained 
automatically by the Kalman filter as output) for the inertial instrument was replaced 
by simulating external data of the image localization procedure (attitude and velocity 
obtained by the IRB), whose accuracy is described in Lingua et al. (2014).

Test setup
The tests were set up in a courtyard in our campus (Fig.  14). The track (red line in 
Fig. 14) was performed especially in an area with many windows and high repeatability 
of the modules.

Fig. 8 Wavelet denoising

Fig. 9 Original (red) and denoised (black) signals
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The test was performed by walking on the same path using the two different smart-
phones (a) mounted on a special support (Fig. 15), designed by our Geomatics Labora-
tory, which supports:

An inertial platform IMU-MEMS Microstrain 3DMGX35 (b) with external antenna 
(c);
A 360° retroflector (d).

During the tests each smartphone sensor recorded its own inertial sensor data using 
a dedicated app: for the smartphone with the android (Tarapata 2015) operating system 
(Samsung S5) the “AndroSensor” app was used, which provides graphical information 
and text (.csv) output, while for the iPhone, the “SensorLog” app was used.

Fig. 10 External IMU platform with a known internal reference system

Fig. 11 External IMU platform datasheet (source: http://files.microstrain.com/3DM-GX3-35_Data-
sheet_%288400-0034%29.pdf )

http://files.microstrain.com/3DM-GX3-35_Datasheet_%25288400-0034%2529.pdf
http://files.microstrain.com/3DM-GX3-35_Datasheet_%25288400-0034%2529.pdf
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The reference trajectory was defined by tracking the position of the smartphone con-
tinuously with a total station, through the retroflector. Thus, the position of the support 
was measured with millimetre accuracy.

Fig. 12 Rotation angles and attitude estimation

Fig. 13 The procedure flowchart
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In addition, the data from the external IMU (Microstrain) was stored using a com-
puter, to have reference values for the attitude.

For this application different types of data were acquired from the devices, in 
particular:

Samsung S5: images;
iPhone 4: images and videos.

No substantial differences in precision and accuracy can be obtained considering 
images or videos, thus in this paper only results obtained with images are shown.

After the tests, all the IMU data files concerning each sensor, the images of the tracks 
and the reference data for the comparison between the estimated and the real solution 
were processed.

Results
The primarily goal of these tests was to assess the accuracy of the estimated position by 
varying the rate in which the displacement was evaluated based on the data of the iner-
tial platform.

The Microstrain inertial platform was chosen as an inertial sensor because it is the 
type of inertial sensor that will be installed on board the next generation of smartphones, 
considering both the costs of production and size. The effect of denoising with wavelets 
was also evaluated: the use of wavelet filtering did not add any benefits because the raw 
measures were too noisy and a shape variation of the bias was not identified.

Regarding the navigation, the results can be considered as satisfactory: considering an 
interval of 1 s (Table 3) between images, the mean planimetric error was 21.3 cm at 67 % 
of reliability, while at 95 % this error was 37 cm (Fig. 16). 

When the positioning obtained with an interval of 2 s between the images is analyzed, 
the mean planimetric error increases to 61 cm at 67 % and 1.49 m at 95 %.

Fig. 14 Test site and track
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The tables show that in these tests the measurements of angular velocities were already 
adjusted for drift, according to the estimation made by the Microstrain itself, and it was 
not necessary to estimate the drift of the gyro at this stage, because the attitude meas-
urements are already correct.

The results obtained with an interval between two epochs (equal to 2 s) with total sta-
tion are shown in Fig. 17.

Fig. 15 The system used to acquire the data

Table 3 Results obtained without bias estimation but with wavelet denoising

1 s 2 s 5 s

Mean 67 % 95 % Mean 67 % 95 % Mean 67 % 95 %

E 0.144 0.163 0.359 0.390 0.480 0.960 1.655 2.262 4.252

N 0.131 0.140 0.400 0.369 0.389 1.148 1.533 1.711 3.864

Fig. 16 Planimetric errors considering intervals equal to 1 s (left) and 2 s (right) between two successively 
known positions estimated by total station
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While in the previous cases the results were obtained considering the attitude and the 
drift estimation provided by the Microstrain sensor, the accuracy results were obtained 
with different drift estimation modes. Table 4 shows the procedure described in “Test 
setup” which can be considered as an optimal hybridization strategy for IRB and INS. 
If 1 s is considered, there was a mean planimetric error of 14 cm and an error of about 
20 cm assuming a 67 % confidence level and 60 cm with a confidence level of up to 95 %. 
This is an acceptable result for pedestrian navigation. If the 2 s interval is considered, the 
mean planimetric error is 0.5 and 1.5 m with a confidence level of 67 and 95 %, respec-
tively. It is still acceptable although it does not match the requirements of augmented 
reality for indoor environments. For intervals of 5 s the error increases up to 4 m with 
a 67 % confidence level which is not acceptable either for navigation application or aug-
mented reality.

Tables 4 and 5 show no substantial differences from Table 6 in relation to intervals of 
1 s.

In Table 7 the drift estimated by the Microstrain is considered under a hypothesis of a 
position estimation available every second. The results at 1 s are comparable to the one 
with pure image simulated information. Improvements for larger intervals are due to a 
better gyro drift estimation executed by the Microstrain every 1 s.

These tables highlight that the results obtained with images are nearly the same as 
those obtained with the bias and drift estimation from the Microstrain sensor. In this 
context, 1 or 2 s is the best intervals for positioning estimation with smartphones.

This approach, based on the decoupling of the estimated accelerometer biases from 
the estimated drift of the gyros, using measures of attitude not available in the usual 

Table 4 Results obtained with drift estimation coming from images

1 s 2 s 5 s

Mean 67 % 95 % Mean 67 % 95 % Mean 67 % 95 %

N 0.14 0.16 0.38 0.42 0.47 1.27 2.60 2.70 5.80

E 0.14 0.16 0.44 0.42 0.50 1.78 2.60 2.90 6.50

Fig. 17 Positioning obtained with Microstrain sensor and an interval of 2 s between total station positions
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techniques when GPS and INS are coupled, provides comparable results with those 
obtained by the Kalman filter implemented on the Microstrain, under the condition that 
the update rate is the same (i.e. 1 s). This is highlighted by comparing Table 6 (bias, drift 
and velocity estimated by Kalman filter) and Table 5 (inner state estimation with decou-
pled approach).

However, to use a Kalman filter it is necessary to make assumptions about the dynam-
ics of motion and have knowledge of the noise of accelerometers and gyros, as well as 
the drift variation of the INS, none of which are required in the described approach.

Conclusions
Our tests demonstrated that INS measurements can be coupled with image based posi-
tioning to reduce latencies of a cloud architecture, if these latencies are less than 2  s. 
Under this hypothesis, the 1.5 m error boundary is always respected, although an error 
of this order may lead to various drawbacks for augmented reality. In fact many appli-
cations in indoor environments are characterized by limited spaces where the camera 
position should be more precise in order to provide more accurate information on the 
localization. For navigation applications, a latency interval of 2 s can be compensated by 
INS instruments with an error less than 1.5 m.

The PDR is a more efficient technique for a longer frame rate. On the other hand, INS 
with the approach described in this work may be more useful in a short time range, 
because after 1 s the obtained 2D accuracy is 14 cm while after 5 s it becomes 1.5 m, if 
the attitude estimated by the Microstrain is considered.

Considering the attitude and drift estimation obtained with images, the results 
obtained are very similar. The estimated drift is effective if the updating intervals are in 

Table 5 Results obtained with drift estimation obtained by GPS

1 s 2 s 5 s

Mean 67 % 95 % Mean 67 % 95 % Mean 67 % 95 %

N 0.13 0.14 0.38 0.30 0.28 1.03 1.5 1.84 4.33

E 0.11 0.12 0.37 0.31 0.33 1.08 1.7 1.36 4.39

Table 6 Results obtained without bias estimation and wavelet denoising

1 s 2 s 5 s

Mean 67 % 95 % Mean 67 % 95 % Mean 67 % 95 %

E 0.130 0.148 0.353 0.387 0.485 0.960 1.673 2.221 4.158

N 0.130 0.141 0.412 0.380 0.409 1.162 1.574 1.677 3.952

Table 7 Results obtained without drift estimation

1 s 2 s 5 s

Mean 67 % 95 % Mean 67 % 95 % Mean 67 % 95 %

N 0.23 0.23 0.56 0.8 1.02 1.99 6.11 5.53 13.86

E 0.23 0.23 0.56 0.86 0.99 2.19 5.4 6.1 13.87
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the order of 1 s. Residual benefits are obtained, however, also for larger intervals (e.g. 2, 
5 s). With this study we have demonstrated that the automatic techniques coupled with 
an INS instrument is useful for indoor navigation because errors are less than 1 m with 
intervals of about 2 s between two images, even if it could be not optimized for the worst 
cases (e.g. some indoor environments where there are few details that brings to have less 
descriptors). An alternative solution can be represented by the range camera coupled 
with INS instruments, that will be investigated in the future.
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