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Abstract

In the present work, the coupled stress and energy criterion of Finite Fracture Me-

chanics (FFM) is applied to investigate negative T -stress effects related to mixed-

mode brittle fracture of cracked elements. Only two material parameters are in-

volved in the analysis, the tensile strength and the fracture toughness, which are

independent of the mode-mixity. Below a critical T -value, the shear contribution

to the strain energy release rate (ERR) starts to prevail in the mode II-dominated

zone. This affects FFM results in terms of: (i) the fracture loci, with the critical

mode II-stress intensity factor (SIF) never exceeding the fracture toughness; (ii)

the critical kinking angle and the actual crack advance (which results to be a struc-

tural parameter), both decreasing to infinitesimal quantities as mode II- loading

conditions are approached. These predictions can be revised by considering a

large amount of energy dissipated under mode II loading conditions and by

assuming a mode-mixity dependent ERR. A discussion on experimental data

for brittle and quasi-brittle materials available in the literature is included.
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1. Introduction

Effects of T -stress on mixed-mode brittle fracture of cracked elements have

been extensively investigated by means of models combining a linear-elastic anal-

ysis with an internal material length. The simple point stress criterion was con-

sidered in Kosai et al. (1993); Seweryn (1998) and later developed and applied to

different experimental data in Smith et al. (2001, 2006), where it was renamed as

Maximum Tangential Stress (MTS) criterion. Nonlocal (average) stress and en-

ergy approaches were formalized by Seweryn (1998), although the internal criti-

cal distance related to the latter was apparently underestimated (Pugno and Ruoff,

2004). Stress and energy criteria, despite their simplicity and general accuracy,

remain distinct and the fulfilment of one of them usually implies the violation of

the other one: this could lead to some drawbacks, as pointed out in Carpinteri et al.

(2008). For a detailed overview on T -stress effects in fracture mechanics, see

Gupta et al. (2015) and therein references.

More recently, also FFM approaches coupling the energy balance with a stress

requirement, either punctual (Leguillon, 2002) or averaged (Cornetti et al., 2006),

were proposed in this framework. One of the most important feature related to

FFM is that the crack advance becomes a structural parameter, depending also

on the geometrical characteristics (Carpinteri et al., 2011; Sapora et al., 2013).

In order to take T -stress effects into account, the coupled criterion proposed by

Leguillon was developed numerically (Leguillon and Murer, 2008), by a two-scale

asymptotic matching procedure (Leguillon, 1993). On the other hand, a semi-

analytical approach was adopted by Cornetti et al. (2014), by implementing the
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angular functions tabulated in Tada et al. (1985); Melin (1994), the approximating

expressions of which can be found in Amestoy and Leblond (1992). Eventually,

FFM was applied to investigate T -stress effects on crack bifurcation phenomena

in ceramic laminates by Ševeček et al. (2014).

From a qualitative point of view, theoretical models all predict the same gen-

eral behavior for a positive T -stress: it decreases both the failure load and the

critical kinking angle. In case of pure mode I loading conditions, if T ≥ T ∗ > 0

the crack ceases to propagate collinearly and the critical value of mode I-SIF KI f

deviates smoothly from the material fracture toughness KIc (Smith et al., 2001;

Leguillon and Murer, 2008; Cornetti et al., 2014), see also the stability analysis

carried out in Cotterell and Rice (1980). Estimations for the threshold T ∗ differ

slightly between each other according to the implemented failure criterion.

An opposite trend is observed for negative T -stresses. Indeed, according to

stress-based criteria, the critical value of mode II-SIF KII f can exceed KIc for

sufficiently large negative T -values (Smith et al., 2001). This result was later ex-

ploited to attempt to justify the behavior of some rock and glass material samples

tested under mixed-mode loading conditions (Awaji and Sato, 1978; Khan and

Al-Shayea, 2000; Chang et al., 2002; Aliha et al., 2006; Ayatollahi and Aliha,

2009a).

By means of a FFM approach based on the coupling of a tensile stress condi-

tion with an incremental energy requirement, in the present work it is shown that

below a critical negative threshold for T = T ∗∗ < 0, the shear contribution to the

ERR starts to prevail as mode II-loading conditions are approached. Theoretical

predictions show a jump to infinitesimal quantities as concerns the critical kinking

angle and the crack advance, and a unit limit value for the ratio between KII f and
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KIc. As T further decreases, the shear energy dominated zone enlarges, giving rise

to a smooth limit-behavior over the whole range of mode-mixities.

FFM predictions could be modified by assuming a fracture energy dependent

on the mode-mixity, as commonly done in interface fracture mechanics (Hutchin-

son and Suo, 1992; Liechti and Chai, 1992; Banks-Sills and Ashkenazi, 2000;

Mantič et al., 2006). In this case, KII f can theoretically exceed KIc as observed

in different experimental tests concerning polymeric materials (Smith et al.,

2006), rocks (Awaji and Sato, 1978; Khan and Al-Shayea, 2000; Chang et al.,

2002; Aliha et al., 2006), alumina and glass ceramics (Panasyuk et al., 1965;

Shetty et al., 1986, 1987), and wood (Anaraki and Fakoor, 2010). Indeed,

FFM results (and, more in general, results by any criterion involving a crit-

ical distance) reveal to be satisfactory only in case of a very brittle behavior,

as long as the asymptotic expressions for the stress field and the SIFS related

to a kinked crack are implemented.

The analysis presented below is limited to a piecewise straight crack propaga-

tion, i.e. no curved crack-kinking (Amestoy and Leblond, 1992), in the framework

of two-dimensional linear elasticity, i.e. no three-dimensional effects (Berto et al.,

2011; Kotousov et al., 2013), where only the T -stress component parallel to the

main crack plays a significant role, i.e. negligible constant (compressive) stresses

perpendicular to the main crack (Isaksson and Ståhle, 2002; Li et al., 2009).

2. FFM criterion

The present FFM criterion (Carpinteri et al., 2009, 2010) is based on the as-

sumption of a finite crack extension ∆ and on the contemporaneous fulfilment of

two conditions. The former is a stress requirement: the average circumferential
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stress σθθ (r,θ) on ∆, prior to the crack extension, must be greater than the mate-

rial tensile strength σu. The latter is the energy balance: the integral of the strain

ERR (or crack-driving force) G on ∆ (i.e. the energy available for a crack incre-

ment ∆) must be higher than the fracture energy Gc times the crack increment. By

referring to a cracked element with a polar reference system placed at the main

crack tip (Fig. 1), FFM conditions write:


∫

∆

0 σθθ (r,θ)dr ≥ σu∆,∫
∆

0 {[Kk
I (c,θ)]

2 +[Kk
II(c,θ)]

2}dc≥ K2
Ic∆.

(1)

Note that the energy balance in (1) is expressed in terms of the SIFs related to the

kinked crack, Kk
I and Kk

II for mode I and mode II, respectively, by means of the

well-known Irwin’s relationships (assuming Kk
I ≥ 0 and plain strain conditions):

G = GI +GII =
(Kk

I )
2 +(Kk

II)
2

E ′
, Gc =

K2
Ic

E ′
, (2)

where E ′ = E/(1− ν2), E being Young’s modulus and ν Poisson’s ratio of the

material.

Once θ is fixed, for monotonically decreasing σθθ (r,θ) and monotonically

increasing G(c,θ) functions (as supposed in the present analysis), the lowest load

satisfying the inequalities in (1) is achieved when the equal sign holds.

2.1. Stress field and SIFs for kinked cracks

In order to implement FFM, the the expressions for the stress and the SIFs

related to a kinked crack to be inserted into system (1) are invoked. By taking

T -stress effects into account, the circumferential stress field σθθ (r,θ) at the main

crack tip can be approximated as (see Fig.1 with c = 0):
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σθθ (r,θ) =
KI√
2πr

f I
θθ (θ)+

KII√
2πr

f II
θθ (θ)+T sin2

θ , (3)

where KI and KII are the SIFs related to the main crack, whereas f I
θθ

and f II
θθ

are

the corresponding angular functions, cf. Seweryn (1998).

On the other hand, by dimensional analysis concepts and the principle of su-

perposition, the SIFs related to a kinked crack of length c can be expressed as (He

et al., 1991; Amestoy and Leblond, 1992):

Kk
I (c,θ) = β11(θ)KI +β12(θ)KII +β1(θ)T

√
c, (4)

Kk
II(c,θ) = β21(θ)KI +β22(θ)KII +β2(θ)T

√
c. (5)

Approximating analytical expressions for the angular functions β are reported in

Amestoy and Leblond (1992), and tabulated values can be found in Tada et al.

(1985); Melin (1994); Fett et al. (2004). Note that β2,β12 and β21 are odd func-

tions, whereas β1,β11 and β22 result to be even. For a null T -stress the last term in

(4) and (5) vanishes, and the two expressions result thus independent of the crack

length c.

Let us now introduce the fracture mode-mixity of the main crack ψ = arctan(KII/KI),

the dimensionless kinked crack advance δ = ∆/lch (with lch = (KIc/σu)
2) and the

dimensionless T -stress, τ = T
√

lch/
√

K2
I +K2

II . In Fig. 2 the contributions of

GI and GII evaluated by inserting (4) and (5) into (2) are presented for ψ = 90◦

(mode II loading conditions) and δ = 1/4π . It can be observed that GI decreases
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as τ decreases, while the maximum of GII keeps constant and it corresponds to

θ = 0◦ (collinear crack propagation).

2.2. FFM implementation

As already stated, at incipient failure (KI = KI f ), the coupled condition (1) be-

comes a system of two equations in two unknowns: the critical crack advancement

δc and the failure load, implicitly embedded in the KI f function.

The substitution of (3), (4) and (5) into (1) provides after some simple alge-

braic manipulations, cf. Cornetti et al. (2014):



KI f

KIc
=

√
δ

f I
θθ + tanψ f II

θθ + τ̄
√

δ sin2
θ

,

δ =
( f I

θθ + tanψ f II
θθ + τ̄

√
δ sin2

θ)2

(β 11 +β 12tanψ +β 22tan2ψ)+
4τ̄
√

δ

3
(β 1 +β 2tanψ)+

τ̄2δ

2
(β 2

1 +β 2
2 )

,

(6)

where f i
θθ =

√
2/π f i

θθ
(i = I, II), τ̄ = τ

√
(1+ tan2ψ) and the following combi-

nations of the SIF angular functions are defined:

β 1 = β1β11 +β2β21, β 2 = β1β12 +β2β22, (7)

β 11 = β
2
11 +β

2
21, β 22 = β

2
12 +β

2
22, β 12 = 2(β11β12 +β21β22). (8)

Observe that, for given loading and structural properties, ψ and τ are fixed.

In order to implement FFM, the latter equation in (6) should be firstly solved: a

different crack advance δ corresponds to a different kinking angle θ . Each couple

(δ ,θ ) must be substituted into the former equation: the actual crack advance δc
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and critical kinking angle θc are those which minimize the KI f function. The

relationship KII f = tanψKI f then provides the corresponding value for KII f .

3. Discussion on FFM results

The results obtained by the above FFM procedure are depicted in Figs. 3,

4 and 5. As can be extracted from Figs. 3 and 4, FFM predicts higher failure

loads and critical kinking angles for decreasing negative T -stresses over the range

−0.3≤ τ ≤ 0. The crack advance results to be a smooth monotonically decreasing

function of ψ (Fig. 5).

On the other hand, when τ = τ∗∗'−0.325, it is observed that KII f does not in-

crease any more for ψ = 90◦ (mode II-loading conditions), and the corresponding

values for θc and δc jump from −68.75◦ and 0.5233, respectively, to infinitesimal

quantities. The limit θc = 0◦ can never be reached from a theoretical point of

view (taking the imposed tensile stress condition into account), since the angular

function f II
θθ

would vanish, leading to a null circumferential stress. If one keeps

on decreasing τ , results start to converge to the above mentioned values in prox-

imity of mode II, till a smooth transition is observed over the full range of mode

mixities ψ . Observe that the ratio KII f /KIc never exceeds the unit value (Fig. 3).

The following explanation to this behavior can be provided: the contribution of

GI in the energy balance of system (1) decreases as T decreases, but still remains

dominant (as it happens for positive T -stress) over the range −0.325 < τ ≤ 0.

Indeed, starting from τ∗∗ '−0.325 and ψ = 90◦, the maximum energy available

for a crack advance is provided by GII for an infinitesimal angle (Fig. 2). In order

for the stress requirement in (1) to match this condition, the crack advance must

become infinitesimal too, so that tensile stresses result to be high enough.
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The present behavior can not be detected by stress-based approaches, such

as MTS criterion (Smith et al., 2001), which is based on the simple condition

σθθ (r = rc) ≥ σc, with rc = lch/2π . In Smith et al. (2001) it was found that,

even for large negative τ , the failure load keeps on increasing continuously and

the kinking angle decreases uniformly in modulus. The explanation of this trend

is quite straightforward: for a fixed critical distance, circumferential stresses de-

crease as T decreases, as it immediately follows from (3).

A comparison with ad−hoc experimental results would reveal as fundamen-

tal to understand which is the real behavior observed from a testing procedure.

Indeed, almost all experiments on brittle polymeric materials involve either

a positive or a moderate negative T -stress so that τ > −0.3 (Erdogan and

Sih, 1963; Williams and Ewing, 1972; Carpinteri et al., 1979; Ueda et al.,

1983; Maccagno and Knott, 1989; Ayatollahi and Aliha, 2009b; Saghafi et al.,

2013). Under these assumptions, FFM has already been proven to furnish ac-

curate result (Cornetti et al., 2014). To the best of the authors’ knowledge,

the only significant data set refers to PMMA samples tested in Smith et al.

(2006) under specific mode II loading conditions: in this case it was found

that KII f /KIc ' 1.21 and θc '−55.2◦, for τ '−0.41. It should be noted how-

ever that some scattering on experimental results was found during tests and

that the curvature of the crack path was considerable, as observed by the

authors themselves.

Furthermore, disk specimens subjected to diametral compression often

show a ratio KII f /KIc > 1 in the mode II-dominated zone (even for τ lower in

modulus than -0.3) for some materials such as rocks (Awaji and Sato, 1978;

Khan and Al-Shayea, 2000; Chang et al., 2002; Aliha et al., 2006), and alu-
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mina and glass ceramics (Panasyuk et al., 1965; Shetty et al., 1986, 1987;

Awaji and Kato, 1999). As already outlined in Cornetti et al. (2014), since

rock materials are less brittle than polymeric materials (i.e. they present a

higher lch), the related critical distance results larger and T -stress effects be-

come more significant. On the other hand, if the critical length (described

quantitatively by lch) is not sufficiently small with respect to the notch depth

a, (lch/a ' 1.7 and 1.3, for instance, for the limestone and marble samples

tested in Khan and Al-Shayea (2000) and Aliha et al. (2006), respectively),

which in turn has to be sufficiently small with respect to the characteristic

dimension of the specimen, the theory of critical distances can not be imple-

mented accurately by simple asymptotic expansions (3), (4) and (5). More-

over, in these cases a complete analysis would require the inclusion of friction,

of the influence of the root radius (McClintock (1963); Cotterell (1972)), and

the implementation of a different mode of fracture (sliding and not open-

ing), as suggested in Rao et al. (2003). Further studies are in progress. Sim-

ilar arguments hold for polycrystalline ceramics: past studies showed that

crack-surface resistances arising from grain interlocking and abrasion were

the main sources of the increased fracture resistance in mode II, Singh and

Shetty (1989); Rosenfield and Madjumar (1992).

The fact that KII f /KIc can exceed the unit value seems however to emerge

clearly from some experiments. In order to justify this trend by FFM, let us ob-

serve that estimates of the toughening of elements under shear should consider

possible local plastic and viscoelastic dissipation, crack face asperity shielding

and frictional effects. In other words, the assumption of Gc to be constant is rea-

sonable only if the GI-contribution prevails in (2), whereas a larger amount of dis-
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sipated energy should be associated to crack kinking dominated by GII , typically

occurring for θ ' 0◦. This point has been largely investigated in the framework

of interface fracture mechanics, where the interface fracture toughness was found

to be even more than ten times greater as mode II is approached (Hutchinson

and Suo, 1992; Liechti and Chai, 1992; Banks-Sills and Ashkenazi, 2000; Mantič

et al., 2006). In order to overcome this drawback, one of the most implemented

fracture criterion writes (Hutchinson and Suo, 1992):

GI

GIc
+

GII

GIIc
= 1, (9)

where GIIc = GIc/γ has the interpretation of pure mode II toughness and γ is a

parameter weighting the mode II-contribution. It vanishes for γ→ 0, whereas γ =

1 corresponds to an ideally brittle material. Note that the condition γ→ 0 provides

the basis for the well-known Kk
II = 0 criterion proposed on the basis of simple

symmetry arguments (Goldstein and Salganik, 1974; Amestoy and Leblond, 1992;

Becker et al., 2001), and that an equivalent relationship to (9) was adopted in

Seweryn (1998) and suggested in Leguillon and Murer (2008).

In order to improve FFM predictions, from an equivalent point of view, one

could consider the following modified ERR instead of G in (2):

G = GI + γGII. (10)

By summarizing, Fig. 6 shows FFM results for pure mode I and mode II load-

ing conditions, over the range−1≤ τ ≤ 1. Predictions (represented by continuous

lines) are obtained by setting γ = 1 in (10), i.e. by considering the classical ERR

(2). On the other hand, if the limit case γ = 0 is implemented in (10), both the

failure load and the critical kinking angle keep on increasing continuously for
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decreasing T (dashed lines).

Results have been applied to PMMA samples tested in (Smith et al., 2006),

showing an acceptable agreement as concerns the load (the mean percentage

error being nearly −12%) and a significant deviation as regards the angle

(+13◦). On the other hand, FFM predictions on data related to a positive

T -stress, also reported in Fig. 6 for the sake of completeness, reveal to be

satisfactory.

4. Conclusions

Effects of negative T -stress on brittle fracture of cracked elements were in-

vestigated by means of FFM. A competition between mode I and mode II contri-

butions to the strain ERR was observed: for sufficiently large negative T -values,

the latter prevails affecting the failure load and the critical kinking angle in the

mode II-dominated zone. Predictions are in contrast with those provided by cri-

teria based on simple stress considerations and showing monotonically increasing

functions of the failure load and the kinking angle as T decreases. The idea of

modifying FFM results by considering a mode-mixity dependent fracture tough-

ness was furnished: this assumption takes the larger dissipated energy due to shear

fracture mechanisms into account. Due to the difficulties in performing tests

under prevalent mode II loading conditions and a sufficiently negative T -

stress, only few experimental results are present in the literature. Therefore,

to carry out ad-hoc mode II tests on very brittle materials, starting from the

procedure proposed in Smith et al. (2006), emerges as an important task to

further corroborate the present analysis. Eventually, it appears that the rela-

tively brittle response of rocks and the behavior of alumina and glass ceram-
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ics cannot be described accurately by means of simple asymptotic theories

involving a critical distance. In other words, the large ratios KII f /KIc > 1

detected experimentally cannot be imputable only to the negative T -stress

contribution. In order to improve FFM predictions, the following steps are

suggested: i) higher order terms should be included in the series expansions

for the stress field and the SIFs related to a kinked crack; ii) the effects of

rubbing of these materials during the failure mechanism has to be properly

taken into account.
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Isaksson, P., Ståhle, P., 2002. Mode II crack paths under compression in brittle

solids a theory and experimental comparison. International Journal of Solids

and Structures 39, 2281–2297.

16

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Khan, K., Al-Shayea, N., 2000. Effect of specimen geometry and testing method

on mixed iii fracture toughness of a limestone rock from Saudi Arabia. Rock

Mech Rock Engng 33, 179–206.

Kosai, M., Kobayashi, A. S., Ramulu, M., 1993. Tear straps in airplane fuselage.

In: Durability of Metal Aircraft Structures. Atlanta Technology Publications.

Kotousov, A., Lazzarin, P., Berto, F., Pook, L., 2013. Three-dimensional stress

states at crack tip induced by shear and anti-plane loading. Engineering Fracture

Mechanics 108, 65–74.

Leguillon, D., 1993. Asymptotic and numerical analysis of a crack branching in

non-isotropic materials. European Journal of Mechanics A/Solids 12, 33–51.

Leguillon, D., 2002. Strength or toughness? A criterion for crack onset at a notch.

European Journal of Mechanics A/Solids 21, 61–72.

Leguillon, D., Murer, S., 2008. Crack deflection in a biaxial stress state. Interna-

tional Journal of Fracture 150, 75–90.

Li, X., Liu, G., Lee, K., 2009. Effects of T-stresses on fracture initiation for a

closed crack in compression with frictional crack faces. International Journal

of Fracture 160, 19–30.

Liechti, K., Chai, Y., 1992. Asymmetric shielding in interfacial fracture under

in-plane shear. Jounrnal of Applied Mechanics 59, 295–304.

Maccagno, T., Knott, J., 1989. The fracture behaviour of PMMA in mixed modes

I and II. Engineering Fracture Mechanics 34, 65–86.

17

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
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Figure 1: Cracked element with a kinked crack of length c.
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Figure 2: ERR contributions related to mode I and mode II as functions of θ and τ . Results refer
to ψ = 90◦ (mode II loading conditions) and δ = 1/4π .
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with a step equal to -0.1.
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Figure 4: FFM critical kinking angle: effects of negative dimensionless T -stresses τ , ranging from
0 to -1 with a step equal to -0.1.

25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mode mixity ψ (deg)

D
im

e
n
s
io

n
le

s
s
 c

ra
c
k
 a

d
v
a
n
c
e
  
 δ

c

τ= −1

τ=0

− τ

Figure 5: FFM critical crack advance: effects of negative dimensionless T -stresses τ , ranging from
0 to -1 with a step equal to -0.1.
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Figure 6: FFM predictions for pure mode I and mode II loading conditions: T -stress effects on
(a) the critical SIFs and (b) the critical kinking angle. The dashed line refers to the predictions
obtained by assuming γ = 0 in the modified ERR (10). The critical thresholds for mode I and
mode II loading conditions are denoted by τ∗ and τ∗∗. Circles refer to the experimental data
obtained by Smith et al. (2006)
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