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Abstract

A linear static thermal stress analysis of composite shell structures is carried out by

means of a shell finite element with variable through-the-thickness kinematic. The re-

fined models used are both Equivalent Single Layer (ESL) and Layer Wise (LW) and

they are grouped in the Unified Formulation by Carrera (CUF). These models permit the

distribution of displacements, stresses and temperature along the thickness of the multi-

layered shell to be accurately described. The Principle of Virtual Displacement (PVD)

is employed to derive the governing equations. The Mixed Interpolation of Tensorial

Components (MITC) method is used to contrast the membrane and shear locking phe-

nomenon for a nine-node shell element. Cross-ply plate, cylindrical and spherical shells

with simply-supported edges and subjected to bi-sinusoidal thermal load are analyzed and

various thickness ratios are considered. The results, obtained with different theories con-

tained in the CUF, are compared with both the elasticity solutions given in the literature

and the analytical solutions obtained using higher-order models and the Navier’s method.

From the analysis, one can conclude that the shell element based on the CUF is very ef-

ficient, and its use leads to reach higher accuracy than classical models in the study of

layered structures.

Introduction

An increasing amount of modern aerospace vehicles is made up of composite structures

such as multilayered carbon-fiber reinforced and/or sandwich plates and shells. Many

of these structures are simultaneously loaded by high thermal and mechanical loads.

Consequently the thermal deformations and stresses which are induced by non-uniform

temperature in composite structures become important parameters in structural design.

Use of higher-order theories will make it possible to determine these parameters precisely
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in composite structures. Studies involving the thermo-elastic behaviour using classical

or first-order theories are described by Kant and Khare [1] and Khdeir and Reddy [2].

The first ever literature available based on higher-order theory is by Pao [3] who de-

veloped higher-order equations applying Flügge’s [4] shell theory to orthotropic and

laminated materials for the analysis of composite shells under thermal loading. Kant

[5, 6] presented a general theory for small deformations of a thick shell made up of a

layered system of different orthotropic materials having planes of symmetry coincident

with the orthogonal reference frame and subjected to mechanical and arbitrary temper-

ature distribution. Kant and Patil [7, 8] presented the governing equations describing

the behaviour of a general shell form, subjected to both mechanical and thermal loads,

specifically for two thick shell theories in addition to a so-called thin shell theory. They

considered the numerical examples drawn from literature for the analysis of pressure

vessels.

In the last few years, several higher-order two-dimensional models have been devel-

oped for such problems, which consider only an assumed temperature profile through

the thickness. Among these, of particular interest is the higher-order model by Whu

and Chen [9], which describes the displacements and stresses in laminated in thermal

bending by assuming a linear profile of temperature through the thickness z. The same

temperature profile is used by Khare et alii [10] to obtain a closed-form solution for the

thermomechanical analysis of laminated and sandwich shells. Khdeir [11] and Khdeir et

alii [12] assume a linear or constant temperature profile through the thickness, in the

first the thermoelastic governing equations for laminated shells are exactly solved, in the

second a Higher Shear Deformation Theory is given. An interesting method to analyze

the thermal stresses in shells is the use of Cosserat surfaces, as done by Birsan [13]

for two given temperature fields and Iesan [14] for an assumed polynomial temperature

variation in the axial coordinate. Barut et alii [15] analyze the non-linear thermoelastic

behavior of shells by means of the Finite Element Method, but the assigned temperature
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profile is linear. In the framework of the arbitrary distribution of temperature through

the thickness, Miller et alii [16] and Dumir et alii [17] are noteworthy, in the first a

classical shell theory for composite shells is given, the second remarks the importance

of the zig-zag form of displacements in the thermal analysis of composite shells. In the

case of shells, further investigations were made by Hsu et alii [18] for both closed form

and Finite Element method, and by Ding [19] for a weak formulation for the case of

state equations including the boundary conditions. The importance of mechanical and

thermal anisotropy in such investigations was remarked by Padovan in [20]. Some inter-

esting experimental results can be found in [21]; Kapuria et alii [22] suggest the use of

piezoelectric layers to contrast such thermal deformations.

In the last few years many contributions have been proposed, which are based on Car-

rera Unified Formulation, to investigate the thermal effects in composite structures. In

[23] a study on the influence of the through-the-thickness temperature profile on the

thermomechanical response of multilayered anisotropic thick and thin plates has been

addressed. The partially coupled stress problem was considered by solving the Fourier’s

conductivity equation. The importance of mixed theories for a correct prediction of

transverse shear/normal stresses due to thermal loadings have been remarked in [24, 25],

this is extended also for thermopiezoelastic problems in [26]. A fully coupled thermo-

mechanical analysis applied to plate structure is employed in [27]. Different type of

loads as problems related to uniform, triangular, bitriangular (tentlike), and localized

in-plane distribution of temperature were considered in [28]. The Ritz method, based

on the choice of trigonometric trial functions, was used in [29]. Extension to Function-

ally Graded Materials (FGMs) has been done in [30]. A thermal stability analysis of

functionally graded material, isotropic and sandwich plates is studied in [31], the Ritz

method is employed and uniform, linear, and non-linear temperature profile is taken

into account for different cases. An extension of the thermoelastic formulation to shells

has been done in [32]. The thermo-mechanical analysis of functionally graded shell is
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considered in [33]. Analytical closed form solutions are available in very few cases. The

solution of the most of the practical problems demand applications of approximated

computational methods.

An improved doubly-curved shell finite element for the analysis of composite structures

under thermal loads is here presented, it is a natural extension of the plate finite element

presented in [34]. The shell finite element is based on the Carrera’s Unified Formula-

tion (CUF), which was developed by Carrera for multi-layered structures [35, 36]. Both

Equivalent Single Layer (ESL) and Layer Wise (LW) theories contained in the CUF

have been implemented in the shell finite element. The Mixed Interpolation of Tenso-

rial Components (MITC) method [37, 38, 39, 40] is used to contrast the membrane and

shear locking. The governing equations for the linear static analysis of composite struc-

tures are derived from the Principle of Virtual Displacement (PVD), in order to apply

the finite element method. The temperature profile is considered always linear through

the thickness for each two-dimensional model, to point out the importance of refined

kinematics in the case of multilayered composite shells [41]. Cross-ply plate, cylindrical

and spherical shells with simply-supported edges and subjected to bi-sinusoidal thermal

loads are analyzed. The results obtained with the different models contained in the

CUF, are compared with the exact solution given in the literature and the analytical

Navier’s solution type. A future companion paper would investigate the effects of the

calculated temperature profile for thick and thin multilayered composite shells.

Preliminaries

Shells are bi-dimensional structures in which one dimension (in general the thickness in

z direction) is negligible with respect to the other two in-plane dimensions. Geometry

and the reference system are indicated in Fig. 1. By considering multilayered structures,

the square of an infinitesimal linear segment in the layer, the associated infinitesimal
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area and volume are given by:

ds2
k = Hk

α
2
dα2

k + Hk
β

2
dβ2

k +Hk
z

2
dz2
k

dΩk = Hk
αH

k
β dαk dβk

dV = Hk
α H

k
β H

k
z dαk dβk dzk

(1)

where the metric coefficients are:

Hk
α = Ak(1 + zk/R

k
α), Hk

β = Bk(1 + zk/R
k
β), Hk

z = 1 (2)

k denotes the k-layer of the multilayered shell; Rkα and Rkβ are the principal radii of the

midsurface of the layer k. Ak and Bk are the coefficients of the first fundamental form

of Ωk (Γk is the Ωk boundary). In this paper, the attention has been restricted to shells

with constant radii of curvature (cylindrical, spherical, toroidal geometries) for which

Ak = Bk = 1. Details for shells are reported in [42].

Geometrical relations permit the in-plane εkp and out-plane εkn strains to be expressed

in terms of the displacement u. The following relations hold:

εkp = [εkαα, ε
k
ββ , ε

k
αβ]T = (Dk

p +Ak
p) u

k , εkn = [εkαz, ε
k
βz, ε

k
zz]

T = (Dk
nΩ +Dk

nz −Ak
n) uk

(3)

The explicit form of the introduced arrays is:

Dk
p =


∂α
Hk
α

0 0

0
∂β
Hk
β

0

∂β
Hk
β

∂α
Hk
α

0

 , Dk
nΩ =


0 0 ∂α

Hk
α

0 0
∂β
Hk
β

0 0 0

 , Dk
nz =


∂z 0 0

0 ∂z 0

0 0 ∂z

 (4)
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Ak
p =


0 0 1

Hk
αR

k
α

0 0 1
Hk
βR

k
β

0 0 0

 , Ak
n =


1

Hk
αR

k
α

0 0

0 1
Hk
βR

k
β

0

0 0 0

 (5)

The definition of the 3D constitutive equations permits to express the stresses by

means of the strains. The generalized Hooke’s law is considered, by employing a linear

constitutive model for infinitesimal deformations. In a composite material, these equa-

tions are obtained in material coordinates (1, 2, 3) for each orthotropic layer k and then

rotated in the general curvilinear reference system (α, β, z). Therefore, the stress-strain

relations after the rotation are:

σkp = σkpd − σkpT = Ck
pp ε

k
p +Ck

pn ε
k
n − λkp θk

σkn = σknd − σknT = Ck
np ε

k
p +Ck

nn ε
k
n − λkn θk

(6)

where

Ck
pp =


Ck11 Ck12 Ck16

Ck12 Ck22 Ck26

Ck16 Ck26 Ck66

 Ck
pn =


0 0 Ck13

0 0 Ck23

0 0 Ck36



Ck
np =


0 0 0

0 0 0

Ck13 Ck23 Ck36

 Ck
nn =


Ck55 Ck45 0

Ck45 Ck44 0

0 0 Ck33


(7)

λkp = Ck
pp α

k
p +Ck

pn α
k
n

λkn = Ck
np α

k
p +Ck

nn α
k
n

(8)
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αkp =


αk1

αk2

0

 αkn =


0

0

αk3

 (9)

λkp =


λk1

λk2

λk6

 λkn =


0

0

λk3

 (10)

The subscripts d and T mean mechanical and thermal contributions. The material

coefficients Cij depend on the Young’s moduli E1, E2, E3, the shear moduli G12, G13,

G23 and Poisson moduli ν12, ν13, ν23, ν21, ν31, ν32 that characterize the layer material.

αij are the thermal expansion coefficients, λij are the coupling thermal coefficients and

θk is the temperature.

Hierarchical Shell Theories

The variation of the displacement variables along the thickness direction is a-priori pos-

tulated. Several displacement-based theories can be formulated on the basis of the

following generic kinematic field. The main feature of the Unified Formulation by Car-

rera [36, 43, 44] (CUF) is the unified manner in which the displacement variables are

handled.

uk(α, β, z) = Fs(z)u
k
s(α, β) δuk(α, β, z) = Fτ (z)δukτ (α, β) τ, s = 0, 1, ..., N

(11)

where (α, β, z) is a curvilinear reference system, in which α and β are orthogonal and

the curvature radii Rα and Rβ are constant in each point of the domain Ω (see Fig. 1).

The displacement vector u = {u, v, w} has its components expressed in this system. δu
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indicates the virtual displacement associated to the virtual work and k identifies the

layer. Fτ and Fs are the so-called thickness functions depending only on z. us are the

unknown variables depending on the coordinates α and β. τ and s are sum indexes and

N is the order of expansion in the thickness direction assumed for the displacements.

Classical Theories

The simplest plate/shell theory is based on the Kirchoff/Love’s hypothesis, and it is

usually referred to as Classical Lamination Theory (CLT)[45],[46]. Both transverse shear

strains and transverse normal strains are discarded, in usual applications being negligible

with respect to the in-plane ones,



u(x, y, z) = u0(x, y)− z ∂w0

∂x

v(x, y, z) = v0(x, y)− z ∂w0

∂y

w(x, y, z) = w0(x, y)

(12)

The inclusion of transverse shear strains, in the theory mentioned here, leads to

Reissner-Mindlin Theory, also known as First-order Shear Deformation Theory (FSDT)

[47], 

u(x, y, z) = u0(x, y) + z u1(x, y)

v(x, y, z) = v0(x, y) + z v1(x, y)

w(x, y, z) = w0(x, y)

(13)

However, these theories, due to their inconsistency in discarding the transverse nor-

mal stress in the material constitutive equations, are no longer valid when 3D local

effects appear. To remove the inconsistency completely, higher-order expansion of the

unknowns with respect to the z coordinate are needed.
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Refined Theories

Many attempts have been made to improve classical plate/shell models. The CUF

has the capability to expand each displacement variable in the displacement field at

any desired order independently from the others and with respect to the accuracy and

the computational cost has been introduced. Such an artifice permits each variable

to be handled independently from the others. This becomes extremely useful when

multifield problems are investigated such as thermoelastic and piezoelectric applications

[24, 32, 48].

In the case of Equivalent Single Layer (ESL) models, a Taylor expansion is employed as

thickness functions:

u = F0 u0 + F1 u1 + . . . + FN uN = Fs us, s = 0, 1, . . . , N (14)

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN . (15)

Following this approach the displacement field can be written as:



u(x, y, z) = u0(x, y) + z u1(x, y) + ...+ zN uN (x, y)

v(x, y, z) = v0(x, y) + z v1(x, y) + ...+ zN vN (x, y)

w(x, y, z) = w0(x, y) + z w1(x, y) + ...+ zN wN (x, y)

(16)

In general:



u(x, y, z) = F0(x, y) + F1 u1(x, y) + ...+ FN uN (x, y)

v(x, y, z) = F0(x, y) + F1 v1(x, y) + ...+ FN vN (x, y)

w(x, y, z) = F0(x, y) + F1w1(x, y) + ...+ FN wN (x, y)

(17)
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Classical models, such as those based on the First-order Shear Deformation Theory

(FSDT), can be obtained from an ESL theory with N = 1, by imposing a constant trans-

verse displacement through the thickness via penalty techniques. Also a model based on

the hypotheses of Classical Lamination Theory (CLT) can be expressed by means of the

CUF by applying a penalty technique to the constitutive equations (see section ). This

permits to impose that the transverse shear strains are null in the shell.

Advanced Theories

Due to the intrinsic anisotropy of multilayered structures, the first derivative of the

displacement variables in the z-direction is discontinuous. The Layer-Wise (LW) models,

in respect to the ESLs, allow the zig-zag form of the displacement distribution in layered

structures to be modelled. It is possible to reproduce the zig-zag effects also in the

framework of the ESL description by employing the Murakami theory. According to

references [49], a zig-zag term can be introduced into equation(14) as follows:

uk = F0 u
k
0 + . . . + FN u

k
N + (−1)kζku

k
Z (18)

Subscript Z refers to the introduced term. Such theories are called zig-zag (Z) theories.

Following this approach the displacement field can be written as:



u(x, y, z) = F0(x, y) + F1 u1(x, y) + ...+ FN−1 uN−1(x, y) + (−1)kζku
k
ZN

v(x, y, z) = F0(x, y) + F1 v1(x, y) + ...+ FN−1 vN−1(x, y) + (−1)kζkv
k
ZN

w(x, y, z) = F0(x, y) + F1w1(x, y) + ...+ FN−1wN−1(x, y) + (−1)kζkw
k
ZN

(19)
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In the case of Layer-Wise (LW) models, the displacement is defined at k-layer level:

uk = Ft u
k
t + Fb u

k
b + Fr u

k
r = Fs u

k
s , s = t, b, r , r = 2, ..., N (20)

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fr = Pr − Pr−2 (21)

in which Pj = Pj(ζk) is the Legendre polynomial of j-order defined in the ζk-domain:

−1 ≤ ζk ≤ 1. P0 = 1, P1 = ζk, P2 = (3ζ2
k − 1)/2, P3 = (5ζ3

k − 3ζk)/2, P4 = (35ζ4
k −

30ζ2
k+3)/8 . The top (t) and bottom (b) values of the displacements are used as unknown

variables and one can impose the following compatibility conditions:

ukt = uk+1
b , k = 1, Nl − 1 (22)

Finite Element approximation

In this section, the derivation of a shell finite element for the analysis of multilayered

structures is presented. The element is based on both the ESL and LW theories contained

in the Unified Formulation. After an overview in scientific literature about the methods

that permit to withstand the membrane and shear locking, the MITC technique has

been adopted for this element. Considering a 9-nodes finite element with doubly-curved

geometry, the displacement components are interpolated on the nodes of the element by

means of the Lagrangian shape functions Ni:

us = Njusj δuτ = Niδuτi with i, j = 1, ..., 9 (23)

where usj and δuτi are the nodal displacements and their virtual variations. Substituting

in the geometrical relations (3) one has:
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εp =Fτ (Dp +Ap)(NiI)uτi

εn =Fτ (DnΩ −An)(NiI)uτi + Fτ,z(NiI)uτi

(24)

where I is the identity matrix.

Considering the local coordinate system (ξ, η), the MITC shell elements ([50]-[51])

are formulated by using, instead of the strain components directly computed from the

displacements, an interpolation of these within each element using a specific interpolation

strategy for each component. The corresponding interpolation points, called tying points,

are shown in Fig. 4 for a nine-nodes element. Note that the transverse normal strain εzz

is excluded from this procedure and it is directly calculated from the displacements.

The interpolating functions are Lagrangian functions and are arranged in the following

arrays:

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]

Nm3 = [NP , NQ, NR, NS ]

(25)

From this point on, the subscripts m1, m2 and m3 indicate quantities calculated in the

points

(A1, B1, C1, D1, E1, F1), (A2, B2, C2, D2, E2, F2) and (P,Q,R, S), respectively. There-

fore, the strain components are interpolated as follows:
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εp =


εαα

εββ

εαβ

 =


Nm1 0 0

0 Nm2 0

0 0 Nm3



εααm1

εββm2

εαβm3



εn =


εαz

εβz

εzz

 =


Nm1 0 0

0 Nm2 0

0 0 1



εαzm1

εβzm2

εzz


(26)

where the strains εααm1 , εββm2 , εαβm3 , εαzm1 , εβzm2 are expressed by means of eq.s

(24) in which the shape functions Ni and their derivatives are evaluated in the tying

points. For example, one can considers the strain component εαα that is calculated as

follows:

εαα = NA1εααA1 +NB1εααB1 +NC1εααC1 +ND1εααD1 +NE1εααE1 +NF1εααF1 (27)

with:

εααA1 = N
(A1)
i,α

Fτuτi +
1

HαRα
N

(A1)
i Fτwτi (28)

The superscript (A1) indicates that the shape function and its derivative are evalu-

ated in the point of coordinates (− 1√
3
,−
√

3
5). Similar expressions can be written for

εααB1 ,εααC1 ,εααD1 ,εααE1 ,εααF1 .
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Governing FEM equations

The PVD for a multilayered doubly-curved shell reads:

∫
Ωk

∫
Ak

{
δεkp

T
σkp + δεkn

T
σkn

}
Hk
αH

k
β dΩkdz = δLe (29)

where Ωk and Ak are the integration domains in the plane and in the thickness

direction, respectively. The left hand side of the equation represents the variation of the

internal work, while the right hand side is the external work. σkp and σkn contain the

mechanical (d) and thermal (T) contributions, so:

∫
Ωk

∫
Ak

{
δεkp

T
(
σkpd − σkpT

)
+ δεkn

T
(
σknd − σknT

)}
Hk
αH

k
β dΩkdz = δLe (30)

In this work no mechanical loads are applied to the shell structure, so the external work is

null, except for the thermal stress contribution of the temperature distribution applied,

so:

∫
Ωk

∫
Ak

{
δεkp

T
σkpd + δεkn

T
σknd

}
Hk
αH

k
β dΩkdz =

∫
Ωk

∫
Ak

{
δεkp

T
σkpT + δεkn

T
σknT

}
Hk
αH

k
β dΩkdz

(31)

Substituting the constitutive equations (6), the geometrical relations written via the

MITC method (26) and applying the Unified Formulation (11) and the FEM approxi-

mation (23), one obtains the following governing equations:

δqkτiu : Kkτsij
uu qksju = Kkτi

uθ q
kτi
uθ (32)

where Kkτsij
uu is a 3×3 matrix, called fundamental nucleus of the mechanical stiffness

matrix, and its explicit expression is given in [52]. This is the basic element from which

the stiffness matrix of the whole structure is computed. The fundamental nucleus is
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expanded on the indexes τ and s in order to obtain the stiffness matrix of each layer.

Then, the matrices of each layer are assembled at multi-layer level depending on the

approach considered, ESL or LW. Kkτi
uθ is a 3× 1 matrix, called fundamental nucleus of

the thermal load, and its explicit expression is:

Kkτi
uθα = λk6 J

kτ
α W k

i,β + λk1 J
kτ
β W k

i,α (33)

Kkτi
uθβ

= λk2 J
kτ
α W k

i,β + λk6 J
kτ
β W k

i,α (34)

Kkτi
uθz = λk3 J

kτ,z
αβ W k

i +
λk2
Rkβ

Jkτα W k
i +

λk1
Rkα

Jkτβ W k
i (35)

Where the following integrals in the domain Ωk are defined:

(
W k
i ; W k

i,α ; W k
i,β

)
=

∫
Ωk

(
Ni ;

∂Ni

∂α
;
∂Ni

∂β

)
dαkdβk (36)

Moreover, the integrals on the domain Ak, in the thickness direction, are written as:

(
Jkτα ; Jkτβ ; Jkτ,zαβ

)
=

∫
Ak

(
FτH

k
α ; FτH

k
β ;

∂Fτ
∂z

Hk
αH

k
β

)
dz (37)

qksju , δqkτiu and qkτiuθ are the nodal displacements, nodal variation displacements and

nodal temperatures respectively.
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Acronyms

Several refined and advanced two-dimensional models are contained in the Unified For-

mulation. Depending on the variables description (LW, ESL) and the order of expansion

N of the displacements in z, a large variety of kinematics shell theories can be obtained.

A system of acronyms is given in order to denote these models. The first letters indicate

the multi-layer approach which can be Equivalent Single Layer (ESL) or Layer Wise

(LW). The number N indicates the order of expansion used in the thickness direction

(from 1 to 4). In the case of LW approach, the same order of expansion is used for

each layer. In the case of ESL approach, a letter Z can be added if the zig-zag effects

of displacements is considered by means of Murakami’s zig-zag function. Summarizing,

ESL1-ESL4 are ESL models. If Murakami zig-zag function is used, these equivalent

single layer models are indicated as ESLZ1-ESLZ3. In the case of layer wise approaches,

the letters LW is considered in place of ESL, so the acronyms are LW1-LW4. Sometimes

the Navier analytical method is employed instead of the FEM method and a subscript

(a) is used. Classical theories such as Classical Lamination Theory (CLT) and First

order Shear Deformation Theory (FSDT), can be obtained as particular cases of ESL1

theory simply imposing constant value of w through the thickness direction.

Numerical results

To assess the robustness of this shell element three reference problems are considered:

the first is a cross-ply square multilayered plate with lamination (0◦/90◦/0◦) and simply-

supported boundary conditions, compared with the ones obtained with the 3D elasticity

approach by Bhaskar et al. [53]. The second is a cylindrical panel, analytically analyzed,

with three different layout configurations: 1 isotropic layer of Aluminium, 2 isotropic

layers of Titanium and Aluminium, 2 composite layers with lamination (0◦/90◦). The

third is a square, spherical panel, analytically analyzed, made of 2 composite layers with
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lamination (0◦/90◦). The boundary condition is simply-supported. Both of them are

evaluated applying a temperature distribution with a bi-sinusoidal in-plane behavior:

θ (α, β, z) = θ̂ (z) sin
(mπα

a

)
sin

(
nπβ

b

)
(38)

where m = n = 1 and an assumed linear behavior through the thickness:

θ̂ (z) = θbottom +
θtop − θbottom

h
∗
(
z +

h

2

)
z ∈

[
−h
2

;
h

2

]
(39)

The three problems are briefly described in the following sections.

Multilayered plate

The structure analyzed by Bhaskar et al. [53] (see Figure 3) is a composite multilayered

square plate with lamination (0◦/90◦/0◦). The physical properties of the material of the

plate, composite, are given in Table 1. The geometrical dimensions are: a = b = 1.0.

The temperature boundary conditions are: θtop = +1.0, θbottom = −1.0. The results

are presented for different thickness ratios a/h = 2, 10, 50, 100. A mesh grid of 10 × 10

elements is taken to ensure the convergence of the solution. For brevity reasons, the

convergence study is here omitted because the robustness of the element was already

demonstrated in previous works [54, 55, 52] regarding the mechanical analysis of layered

structures. In this case, the thermal load is equivalent to the mechanical load because

an uncoupled thermal problem is considered.

The values of the transversal displacement w, the principal in-plane stress σαα and the

transverse shear stress σαz are listed in Table 2 for the assumed linear temperature

profile. Other results in terms of transverse shear stress and transverse normal stress are

shown in Figures 5-8. All the FEs lead to accurate results with respect to the 3D [53] and

analytical solutions for all the thickness ratios except for FSDT . In fact, plate elements

that present a constant transverse normal strain such as FSDT lead to inaccurate results
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for both thick and thin plates. It is confirmed what found in [23]: at least a parabolic

expansion for the displacements (u, v, w) is required to capture the linear thermal strains

that are related to a linear through-the-thickness temperature distribution. In general,

LW theories work better than ESLZ theories, and these last perform better than ESL

ones and often also with a lower-order expansion of the unknowns. Equivalent single

layer analyses are quite satisfactory only for the transverse displacement or in-plane

stresses if applied to thin plates a/h = 100, but not for the solution of the transverse

normal and shear stresses, as shown in Figures 5-8. On the other hand, higher-order

theories lead to better results but computationally more expensive.

The same structure is analyzed with a thermal load with the same bi-sinusoidal in-plane

behavior and a constant temperature profile θ̂ (z) = +1.0. The results are presented

for different thickness ratios a/h = 10, 100. The values of the transversal displacement

w, the principal in-plane stress σαα, the transverse shear stress σαz and the transverse

normal stress σzz are listed in Table 3 for the constant temperature profile case.

Multilayered cylindrical panel

In this section, a cylindrical panel is analysed (see Figure 2). Three different layout

configuration are considered:

• 1 layered isotropic cylindrical panel made of Aluminium.

• 2 layered isotropic cylindrical panel made of Titanium and Aluminium.

• 2 layered composite cylindrical panel with lamination (0◦/90◦).

The temperature boundary conditions are: θtop = +0.5, θbottom = −0.5 for all the cases.

The results are compared with the correspondent closed form solution. A mesh grid of

10× 10 elements is taken to ensure the convergence of the solution.

For the 1 and 2 layered isotropic cylindrical panel the geometrical dimensions are: a = 1.0

and b =
π

3
Rβ = 10.47197551, curvature radii Rα = ∞ and Rβ = 10. The results are
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presented for different radius to thickness ratios Rβ/htot = (4 ; 10 ; 100 ; 1000) with

the corresponding thicknesses htot = (2.5 ; 1.0 ; 0.1 ; 0.01). For the 2 layered isotropic

case the bottom layer is made of Aluminium and the top layer is made of Titanium.

The physical properties of the Aluminium and Titanium are given in Table 1. The

values of the transversal displacement w are listed in Table 4 for the assumed linear

temperature profile. All the FEs lead to accurate results with respect to the analytical

solutions for all the thickness ratios except for LW1, ESL1, FSDT elements. For the

2 layered composite cylindrical panel the geometrical dimensions are: a = 1.0 and

b = 1.0, global thickness htot = 0.1, curvature radius Rα = ∞. The physical properties

of the Carbon are given in Table 1. The results are presented for different radius to

thickness ratios Rβ/htot = (10 ; 50 ; 100 ; 500) with the corresponding curvature radius

Rβ = (1.0 ; 5.0 ; 10.0 ; 50.0). The lamination angle is 0◦ for the bottom layer and 90◦ for

the top layer. The values of the transversal displacement w, the principal in-plane stress

σαα, the transverse shear stress σαz and the transverse normal stress σzz are listed in

Table 5 for the assumed linear temperature profile. Other results in terms of transverse

shear stress and transverse normal stress are shown in Figures 9-12. All the FEs lead

to accurate results with respect to the analytical solutions for all the thickness ratios

except for FSDT elements. In general, LW theories work better than ESLZ theories,

and these last perform better than ESL ones, also when lower orders of expansion are

considered. Equivalent single layer analyses are quite satisfactory only for the transverse

displacement also for lower radii to thickness ratios R/h = 10, but not for the solutions

of the stresses, as shown in Figures 9-12.

The same composite cylindrical panel is analyzed with a thermal load with the same bi-

sinusoidal in-plane behavior and a constant temperature profile θ̂ (z) = 0.5. The results

are presented for different thickness ratios R/h = 10, 100. The values of the transversal

displacement w, the principal in-plane stress σαα, the transverse shear stress σαz and the

transverse normal stress σzz are listed in Table 3 for the constant temperature profile
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case.

Multilayered spherical panel

In this section, a square, spherical panel is analysed (see Figure 1). The temperature

boundary conditions are: θtop = +0.5, θbottom = −0.5 for all the cases. The results are

compared with an analytical solution. A mesh grid of 10×10 elements is taken to ensure

the convergence of the solution. The geometrical dimensions are: a = 1.0 and b = 1.0,

global thickness htot = 0.1, curvature radii Rα = Rβ = R. The physical properties

of the Carbon are given in Table 1. The results are presented for different radius to

thickness ratios R/htot = (10 ; 50 ; 100 ; 500) with the corresponding curvature radius

R = (1.0 ; 5.0 ; 10.0 ; 50.0). The lamination angle is 0◦ for the bottom layer and 90◦ for

the top layer. The values of the transversal displacement w, the principal in-plane stress

σαα, the transverse shear stress σαz and the transverse normal stress σzz are listed in

Table 6 for the assumed linear temperature profile. Other results in terms of transverse

shear stress and transverse normal stress are shown in Figures 13-16. All the FEs lead to

accurate results with respect to the analytical solutions for all the thickness ratios except

for FSDT elements. In general, LW theories work better than ESLZ theories, and these

last perform better than ESL ones and often also with a lower-order expansion of the

unknowns. Equivalent single layer analyses are quite satisfactory only for the transverse

displacement also for lower radii to thickness ratios R/h = 10, but not for the solutions

of the stresses, as shown in Figures 13-16.

The same composite spherical panel is analyzed with a thermal load with the same bi-

sinusoidal in-plane behavior and a constant temperature profile θ̂ (z) = 0.5. The results

are presented for different thickness ratios R/h = 10, 100. The values of the transversal

displacement w, the principal in-plane stress σαα, the transverse shear stress σαz and the

transverse normal stress σzz are listed in Table 3 for the constant temperature profile

case.
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Conclusions

This paper has dealt with the static analysis of composite shells by means of a finite

element based on the Unified Formulation by Carrera. The element has been assessed

by analyzing cross-ply plates, cylindrical and spherical shells under bi-sinusoidal thermal

load with assumed linear temperature profile e few cases with a constant temperature

profile, and simply-supported boundary conditions. The results have been presented in

terms of both transversal displacement, in-plane stresses and transverse shear stresses,

for various thickness ratios and curvature ratios. The performances of the shell element

have been tested, and the different theories (classical and refined) contained in the CUF

have been compared. The conclusions that can be drawn are the following:

1. The shell element is locking free, for all the LW and ESL considered cases. The

results converge to the reference solution by increasing the order of expansion of

the displacements in the thickness direction.

2. LW models work better than ESLZ theories, and these last perform better than

ESL models in thick shell geometry cases.

3. The classical models, such as FSDT could lead to any inaccurate results.

4. The use of LW models leads to a better accuracy for both thick and thin shells.

Their use becomes mandatory if the distribution of transverse stresses in the thick-

ness and the fullfillment of interlaminar continuity conditions are requested.
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Tables

Material Composite Aluminium Titanium Carbon

E11 25.0 70.3E9 110.0E9 25.0
E22 1.0 70.3E9 110.0E9 1.0
E33 1.0 70.3E9 110.0E9 1.0
ν12 0.25 0.33 0.32 0.25
ν13 0.25 0.33 0.32 0.25
ν23 0.25 0.33 0.32 0.25
G12 0.5 26.429E9 41.667E9 0.5
G13 0.5 26.429E9 41.667E9 0.5
G23 0.2 26.429E9 41.667E9 0.2
α1 1.0 24.0E − 6 8.6E − 6 1.0
α2 1125.0 24.0E − 6 8.6E − 6 3.0
α3 1125.0 24.0E − 6 8.6E − 6 3.0

Table 1: Physical data for multilayered plate, cylindrical and spherical shell.
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Table 2: Plate with lamination (0◦/90◦/0◦). Transverse displacement w = w(a/2, b/2) ∗
htot and principal in-plane stress σαα = σαα(a/2, b/2), evaluated at z = ±h/2. Trans-
verse shear stress σαz = σαz(a, 0), evaluated at z = h/6.

a/h 2 10 50 100

w 3D[53] 96.79 17.39 10.50 10.26

σαα 3D[53] 1390 1026 967.5 965.4

σαz 3D[53] 63.92 60.54 14.07 7.073

w

LW4a 96.78 17.39 10.50 10.26
LW4 96.77 17.39 10.50 10.26
LW1 89.23 17.62 11.14 10.91
ESLZ3 94.85 17.37 10.50 10.26
ESL4a 98.21 16.90 10.47 10.25
ESL4 98.20 16.90 10.47 10.25
ESL2 83.45 14.96 10.38 10.23
FSDT 41.27 18.33 15.17 15.06

σαα

LW4 1392 1029 970.1 968.0
LW1 641.5 906.7 896.2 895.7
ESLZ3 1281 1028 970.1 968.0
ESL4 1338 1022 969.7 967.9
ESL2 189.1 870.3 963.0 966.2
FSDT 161.8 1065 1190 1194

σαz

LW4a 63.82 60.54 14.07 7.073
LW4 63.93 60.66 14.10 7.088
LW1 42.54 58.78 13.69 6.883
ESLZ3 27.42 52.61 12.45 6.263
ESL4a 37.25 36.33 8.251 4.143
ESL4 37.30 36.41 8.268 4.152
ESL2 11.58 16.21 3.624 1.819
FSDT 44.48 28.00 6.127 3.073
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Table 3: Constant thermal profile. Plate with lamination (0◦/90◦/0◦) and cylindrical
and spherical panel with lamination (0◦/90◦), transverse displacement w = w(a/2, b/2),
in-plane stress σαα = σαα(a/2, b/2), transverse shear stress σαz = σαz(a, 0), transverse
normal stress σzz = σzz(a/2, b/2). Only for the cylindrical and spherical panel the
transverse displacement w = w 10, transverse shear stress σαz = σαz 102, transverse
normal stress σzz = σzz 102.

Plate Cylindrical Spherical

a/h 10 100 R/h 10 100 10 100

z = h/2 z = h/2 z = h/2

w

LW4a 68.754 6.8879 4.9843 1.4408 4.6505 1.9888
LW4 68.753 6.8876 4.9846 1.4409 4.6505 1.9890
LW1 68.783 6.8877 4.8907 1.4232 4.5876 1.9551
ESLZ3 68.839 6.8877 4.9628 1.4366 4.6369 1.9805
ESL4a 68.777 6.8879 4.9593 1.4366 4.6312 1.9804
ESL4 68.777 6.8877 4.9596 1.4367 4.6313 1.9806
ESL2 68.839 6.8877 4.9015 1.4273 4.5873 1.9618
FSDT 0.0000 0.0000 4.9736 0.6770 4.4581 1.3244

z = h/2 z = 0− z = 0−

σαα

LW4 612.81 454.01 2.5036 0.2558 3.4327 0.6358
LW1 567.69 453.56 2.3516 0.1301 3.2901 0.5051
ESLZ3 593.28 453.82 2.7386 0.4523 3.7287 0.8255
ESL4 609.56 454.48 2.5096 0.2868 3.4389 0.6595
ESL2 595.93 453.54 2.5005 0.2623 3.4476 0.6400
FSDT 553.43 553.43 3.6316 0.9261 3.6614 1.2794

z = h/3 z = 0+ z = 0+

σαz

LW4a 30.066 2.6696 6.1495 6.5682 7.5142 5.9752
LW4 30.128 2.6752 6.1582 6.5773 7.5241 5.9833
LW1 29.251 2.6743 5.0680 5.8966 5.6191 5.5013
ESLZ3 26.748 2.4338 4.2012 5.4270 5.0108 4.7507
ESL4a 44.361 4.2101 1.6141 3.2464 1.8457 2.6573
ESL4 44.452 4.2188 1.6161 3.2508 1.8478 2.6607
ESL2 26.728 2.4298 0.4314 2.0210 0.3309 1.5369
FSDT 0.0000 0.0000 0.5730 2.7948 1.7815 2.3323

z = 0 z = 0+ z = −h/4

σzz

LW4 3.2666 0.0558 -4.2134 -0.2811 -4.9017 -0.1503
LW1 1.2709 0.0361 -11.732 -2.0980 -3.8270 -0.3264
ESLZ3 2.4211 0.0481 -5.1615 0.1098 -3.2337 0.1982
ESL4 3.0754 1.1539 -5.4135 -0.3486 -3.9658 -0.1466
ESL2 -0.9299 2.4817 -4.3722 -0.7267 -3.3934 -0.167032



Table 4: Cylindrical panel with 1 layer made of isotropic materials Aluminum, Nl = 1.
Transverse displacement w = w(a/2, b/2) ∗ 10htot /αAl a

2∆T , evaluated along the thick-
ness in z = 0. Cylindrical panel with 2 layers made of isotropic materials Aluminum-
Titanium, Nl = 2. Transverse displacement w = w(a/2, b/2) ∗ 10htot /αAl a

2∆T , evalu-
ated along the thickness in z = h/4.

Nl Rβ/h 4 10 100 1000

1

ESL4a -1.0091 0.9468 1.2007 0.1151
ESL4 -1.0091 0.9468 1.2008 0.1151
ESL3 -0.9787 0.9603 1.2008 0.1151
ESL2 -1.0679 1.9784 1.1995 0.1151
ESL1 1.9502 1.9784 1.8359 0.2189
FSDT 1.9838 1.9818 1.7943 0.1715

2

LW4a 0.4002 0.7472 0.7468 0.0325
LW4 0.4001 0.7472 0.7468 0.0326
LW3 0.4242 0.7487 0.7468 0.0326
LW2 0.3998 0.7355 0.7468 0.0326
LW1 0.3512 0.7318 0.8630 0.0487
ESL4a 0.4053 0.7386 0.7469 0.0325
ESL4 0.4054 0.7386 0.7469 0.0326
ESL3 0.4142 0.7405 0.7471 0.0326
ESL2 -0.2781 0.5087 0.7466 0.0327
ESL1 1.1306 1.1949 1.1524 0.0957
FSDT 1.2350 1.2673 1.1056 0.0463
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Table 5: Cylindrical panel with lamination (0◦/90◦). Transverse displacement w =
w(a/2, b/2), in-plane stress σαα = σαα(a/2, b/2) ∗ 10, transverse shear stress σαz =
σαz(a, 0) ∗ 102, transverse normal stress σzz = σzz(a/2, b/2) ∗ 103. The variables are
evaluated at z = 0.

Rβ/h 10 50 100 500

w

LW4a 0.7450 1.1192 1.1359 1.1412
LW4 0.7450 1.1192 1.1359 1.1412
LW1 0.7712 1.1538 1.1706 1.1759
ESLZ3 0.7454 1.1177 1.1342 1.1396
ESL4a 0.7461 1.1194 1.1360 1.1413
ESL4 0.7461 1.1194 1.1360 1.1413
ESL2 0.7455 1.1152 1.1316 1.1369
FSDT 0.8745 1.2781 1.2941 1.2979

σαα

LW4a 0.1802 0.4204 0.3855 0.3446
LW4 0.1805 0.4213 0.3864 0.3454
LW1 2.6963 2.7995 2.7627 2.7235
ESLZ3 0.3280 0.4736 0.4290 0.3807
ESL4a 0.2305 0.4192 0.3823 0.3404
ESL4 0.2309 0.4200 0.3831 0.3411
ESL2 0.2010 0.4247 0.3911 0.3519
FSDT 0.4683 0.7037 0.6587 0.6086

σαz

LW4a −10.901 −3.7541 −2.8789 −2.2428
LW4 −10.923 −3.7615 −2.8845 −2.2471
LW1 −8.3115 −4.0011 −3.5188 −3.1781
ESLZ3 −10.522 −3.5686 −2.7832 −2.2277
ESL4a −6.8978 −1.7276 −1.2097 −0.8599
ESL4 −6.9120 −1.7309 −1.2120 −0.8614
ESL2 −5.6195 −1.7814 −1.4294 −1.2006
FSDT −4.8037 −0.6032 −0.2571 −0.0436

σzz

LW4a 16.981 3.5138 1.9186 0.4215
LW4 17.007 3.5359 1.9369 0.4370
LW1 991.25 913.40 910.39 909.18
ESLZ3 28.853 2.5312 1.3325 0.2854
ESL4a 26.667 0.1818 −1.3515 −2.5631
ESL4 26.682 0.1809 −1.3563 −2.5703
ESL2 17.342 −1.3994 −2.2390 −2.8356
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Table 6: Spherical panel with lamination (0◦/90◦). Transverse displacement w =
w(a/2, b/2), in-plane stress σαα = σαα(a/2, b/2) ∗ 10 and transverse normal stress
σzz = σzz(a/2, b/2)∗103 evaluated at z = 0, transverse shear stress σαz = σαz(a, 0)∗102

evaluated at z = −h/4.

R/h 10 50 100 500

w

LW4a 0.3299 1.0507 1.1174 1.1404
LW4 0.3299 1.0507 1.1174 1.1405
LW1 0.3386 1.0836 1.1516 1.1751
ESLZ3 0.3306 1.0496 1.1159 1.1388
ESL4a 0.3309 1.0511 1.1176 1.1406
ESL4 0.3309 1.0511 1.1176 1.1406
ESL2 0.3315 1.0477 1.1134 1.1361
FSDT 0.3927 1.1967 1.2709 1.2965

σαα

LW4a −25.208− 10.291− 11.875− 11.363−

LW4 −25.244− 10.305− 11.892− 11.379−

LW1 −29.322− 9.5416− 11.413− 11.072−

ESLZ3 −21.884− 12.316− 13.447− 12.579−

ESL4a −24.080− 10.619− 12.076− 11.486−

ESL4 −24.114− 10.634− 12.093− 11.502−

ESL2 −25.115− 10.823− 12.399− 11.876−

FSDT −17.466− 19.697− 21.054− 20.123−

σαz

LW4a 24.096 1.1199 -1.3854 -2.5674
LW4 24.131 1.1212 -1.3877 -2.5714
LW1 19.500 1.5598 -0.5309 -1.5931
ESLZ3 21.061 2.4154 0.1275 -1.0771
ESL4a 21.281 0.8662 -1.3842 -2.4603
ESL4 21.312 0.8673 -1.3865 -2.4641
ESL2 20.284 3.0723 0.9925 -0.0983
FSDT 21.845 3.9515 1.5581 0.2307

σzz

LW4a 76.657 9.2085 4.3230 0.8525
LW4 76.652 9.2360 4.3451 0.8698
LW1 1100.7 928.03 915.09 909.73
ESLZ3 98.145 8.8651 3.9948 0.7759
ESL4a 111.83 6.3462 0.8566 −2.2210
ESL4 111.83 6.3530 0.8569 −2.2255
ESL2 76.502 2.4683 −0.9816 −2.6625
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Figures

Figure 1: Reference system of the dou-
ble curvature shell.

Figure 2: Reference system of the cylin-
drical shell.
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Figure 3: Reference system of
the plate.
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Figure 4: Tying points for the MITC9 shell finite
element.
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plate.
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Figure 6: Transverse shear stress
σαz along the thickness, with thick-
ness ratio a/h = 100. Composite
plate.
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Figure 7: Transverse stress σzz

along the thickness, with thickness
ratio a/h = 2. Composite plate.
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along the thickness, with thickness
ratio a/h = 100. Composite plate.

37



-18

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

1
0

2
 σ-

α
z

z

LW4

ESLZ3

ESL4

FSDT

Figure 9: Transverse shear stress
σαz along the thickness, with thick-
ness ratio R/h = 10. Cylindrical
composite shell.
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Figure 10: Transverse shear stress
σαz along the thickness, with thick-
ness ratio R/h = 500. Cylindrical
composite shell.
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Figure 11: Transverse stress σzz

along the thickness, with thickness
ratio R/h = 10. Cylindrical com-
posite shell.
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Figure 12: Transverse stress σzz

along the thickness, with thickness
ratio R/h = 500. Cylindrical com-
posite shell.
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Figure 13: Transverse shear stress
σαz along the thickness, with thick-
ness ratio R/h = 10. Spherical
composite shell.
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Figure 14: Transverse shear stress
σαz along the thickness, with thick-
ness ratio R/h = 500. Spherical
composite shell.
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Figure 15: Transverse stress σzz

along the thickness, with thickness
ratio R/h = 10. Spherical compos-
ite shell.
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Figure 16: Transverse stress σzz

along the thickness, with thickness
ratio R/h = 500. Spherical com-
posite shell.
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