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Abstract. Clustering real-world data is a challenging task, since many
real-data collections are characterized by an inherent sparseness and vari-
able distribution. An appealing domain that generates such data collec-
tions is the medical care scenario where collected data include a large
cardinality of patient records and a variety of medical treatments usually
adopted for a given disease pathology.
This paper proposes a two-phase data mining methodology to iteratively
analyze different dataset portions and locally identify groups of objects
with common properties. Discovered cohesive clusters are then analyzed
using sequential patterns to characterize temporal relationships among
data features. To support an automatic classification of a new data ob-
jects within one of the discovered groups, a classification model is created
starting from the computed cluster set. A mobile application has been
also designed and developed to visualize and update data under analysis
as well as categorizing new unlabeled records.
A comparative study has been conducted on real datasets in the medical
care scenario using diverse clustering algorithms. Results were compared
in terms of cluster quality, execution time, classification performance
and discovered sequential patterns. The experimental evaluation showed
the effectiveness of MLC to discover interesting knowledge items and to
easily exploit them through a mobile application. Results have been also
discussed from a medical perspective.

keywords: Cluster analysis, data with a variable distribution, diabetic pa-
tient treatments, multiple-level method, comparison.

1 Introduction

Cluster analysis is an exploratory technique which aims at grouping a data ob-
ject collection into subsets (clusters) based on object properties, without the
support of additional a priori knowledge [22]. Nevertheless clustering is a widely
studied data mining problem, clustering real-world data collections may impose
new challenges. Real datasets are usually characterized by an inherent sparseness



and variable distribution, since they are generated by a large variety of events,
and high data dimensionality because features used to model real objects and
human actions may have very large domains. The variability in data distribution
grows with data volume, thus increasing the complexity of mining such data. For
example, health care data collections can have large volume due to the large car-
dinality of patient records. Because of the variety of medical treatments usually
adopted for the different degrees of severity of a given pathology, patient data
collections are also usually characterized by high dimensionality, variable data
distribution and inherent sparseness. However, at present, most clustering algo-
rithms perform better with uniform data distribution, while their performance
as well as the quality of the extracted knowledge tend to decrease in non-uniform
collections.

Aimed at addressing the above issues, this paper presents a M ultiple-Level
C lustering (MLC) framework which comprises two data mining phases. First
MLC exploits clustering algorithms in a multiple-level fashion to iteratively fo-
cus on different dataset portions and locally identify groups of correlated objects.
Cohesive and well-separated clusters with diverse data distributions are discov-
ered. Then, the cluster content is concisely described in terms of data features
most frequently appearing in the cluster and sequential patterns capturing tem-
poral correlations among data features. Moreover, for supporting the automatic
categorization of a new data object into one of the discovered cluster, a classifica-
tion model is created starting from the cluster set. To allow ubiquitous real-time
classification of new data, a two-tier architecture based on a mobile (Android)
application has been designed and developed.

Before to apply the clustering analysis, in the MLC framework data are
represented in the Vector Space Model (VSM) [29] using the TF-IDF method
[22] with the aim of highlighting the relevance of specific data characteristics.
In this study, five different multiple-level clustering algorithms have been inte-
grated into MLC, based on K-means (i.e., bisecting and refined K-means [32]),
K-medoids (i.e., bisecting and refined K-medoids [18]), and DBSCAN methods
(i.e., multiple-level DBSCAN [2]). Clustering results have been then analyzed
and compared using some well-established quality indices, as SSE, Silhouette
and overall similarity, and Rand Index [22]. Maximal sequential patterns [34]
have been selected to concisely describe temporal correlations among data fea-
tures appearing in each cluster. Decision trees [22] have been used to build the
classification model, since they have been shown to provide accurate models in
various application domains.

The MLC framework has been validated on three real datasets in the med-
ical care scenario, i.e., underwent examinations by patients, drug prescriptions
to patients, Twitter messages on healthcare job information. We considered as
a reference case study the former dataset including the examination log data
of (anonymized) patients with overt diabetes. Diabetic patients may suffer by
various disease complications as eye problems, neuropathy, kidney and cardio-
vascular diseases. Patients affected by disease complications (or at risk of them)
should be tested with more specific examinations in addition to routine tests to



monitor its status (or reveal the pathology). The considered data collection is
characterized by an inherently sparse distribution due to the variety of possible
examinations, covering both routine tests and more specific examinations for
different degrees of severity in diabetes.

The experimental evaluation showed that the multiple-level clustering strat-
egy can effectively partition the initial data collection into cohesive groups, that
can be then locally analyzed. Specifically, in the considered use case, interesting
clusters containing patients with a similar examination history (with standard or
more specific examinations) can be discovered. It also pointed out that, neverthe-
less both the multiple-level DBSCAN and the refined k-means algorithms gen-
erate cluster sets with good quality and agreement, from a medical perspective
the multiple-level DBSCAN algorithm appears as the more suitable approach
for patient analysis in the considered case study. Maximal sequential patterns
characterizing cluster content highlight how examinations are interleaved and
distributed over time. The classification performance showed the goodness of the
constructed model and its efficiency in classifying new unlabeled data through
a mobile application.

This paper is organized as follows. Section 2 describes previous work using
clustering techniques in the medical care scenario. Section 3 presents the MLC
framework and how the selected algorithms have been tailored to MLC. Sec-
tion 4 reports the experimental study on real datasets, while Section 5 compares
algorithm performance and analyses the results from a medical perspective. Sec-
tion 6 draws the future developments of the proposed approach.

2 Related work

Clustering algorithms find application in a wide range of different domains, in-
cluding sensor network data [1], biological data [4], and network traffic data [8].
Clustering algorithms have been also widely used to analyse medical data [9].
Many studies addressed the identification of correlated groups of patients af-
fected by different diseases. For example, [31] reviewed the cluster methods used
to diagnose heart valve diseases. In [35], clustering techniques were used to di-
agnose breast cancer based on tutor features, by recognising hidden patterns of
benign and malignant tumors. Authors in [20] exploited the K-means algorithm
to cluster a collection of patient records aimed at identifying relevant features
of patients subjected to heart attack.

Some research efforts have been devoted to exploiting clustering techniques
on data related to diabetic patients [9]. Different issues have been addressed as
food analysis [23], gait patterns [30], discovering relationships among diabetes
and risk factors [7], analyses of various imputation techniques [25], and discov-
ering similar medical treatments [2]. [25] focuses on diabetes datasets using the
K-means algorithm aimed at analysing various imputation techniques. Different
from [25], in this work we aim at identifying groups of patients with similar
examination histories to provide a preliminar patient categorization into a set



of predefined classes. Thus, we detailed each cluster with sequential patterns to
discover how examinations are interlived and distributed over time.

The idea of exploiting a clustering algorithm in a multiple-level fashion was
first introduced in [2] and used in [5] to analyze twitter messages. A first study
towards a combined distance measure for clustering medical records has been
presented in [6]. A parallel effort devoted to clustering documents proved that
bisecting K-means was preferable to other clustering methods as standard K-
means and hierarchical approaches [32].

The MLC data analysis framework presented in this study enhances the
methodology proposed in [2] by providing a more general approach which (i) in-
tegrates different clustering algorithms, (ii) uses more indices to evaluate cluster
quality, (iii) characterizes temporal aspects of interlived examinations through
sequential patterns, (iv) exploits cluster set enriched with domain semantics to
train a classification model, and (v) allows ubiquitous classification on new unla-
beled examination histories through a mobile application. MLC does not exploit
the distance measure proposed in [6] because information on patient profiles (i.e.,
patient age and gender) are not available on the real data collection discussed as
a reference case study. Among the different categories of clustering algorithms,
i.e., prototype (e.g., K-means [16], K-medoids [19]), density (e.g., DBSCAN [10]),
model (e.g., EM [14]), and hierarchical based methods [22], in this study we fo-
cused on the two popular categories of prototype and density based methods for
the development of the MLC framework. Furthermore, we integrated in MLC
the maximal sequential pattern miner [12] to characterize cluster content and
identify how patient examinations are interlived and distributed over time. To
ease the exploitation of cluster results, the decision tree (an in [6]), has been inte-
grated in MLC to train a classification model. The latter is then exploited in an
Android application to allow ubiquitous patient classification to new unlabeled
examination histories.

The wide diffusion of mobile technologies and the increasing capabilities of
mobile computing devices caused an increased interest in designing, implement-
ing and testing innovative applications running on mobile devices to provide a
wide range of useful services. Im the medical care scenario, some efforts[17, 21, 24]
have been devoted on this appealing research. In [17], a distributed end-to-end
pervasive healthcare system utilizing neural network computations for diagnos-
ing diabetes was developed in small mobile devices. [21] developed a new mobile-
based approach to automatically detect seizures, using k-means as unsupervised
classification technique. [24] have presented Generalized Discriminant Analy-
sis and Least Square Support Vector Machine models to diagnose the diabetes
disease. Also in this study, we integrated in MLC a two-tier architecture to
allows ubiquitous patient classification through a mobile application. The pro-
posed solution allows to efficiently and effectively exploiting knowledge items
discovered through MLC cluster analysis to different user profiles (e.g., medical
staff, patients). Thus, the proposed mobile application allows ubiquitous patient
classification on new unlabeled examination histories.



3 Proposed method

The main components of the MLC framework are depicted in Figure 1. The con-
sidered data collection is first prepared for the subsequent analysis phase. The
multiple-level clustering strategy is then exploited to discover cohesive groups
into data collections with variable data distribution. Clusters are then locally
analyzed through sequential patterns to characterize the temporal aspects of
data (data distribution over time). The cluster set evaluated with the support
of a domain expert is exploited to build a classification model for subsequent
classifications of new data objects into one of the discovered groups. To allow
ubiquitous classification on new data, real-time analysis is executed on mobile de-
vices through an ad-hoc Android application exploiting the classification model.
In this study, we considered as a case study the medical care scenario.

Fig. 1. The MLC framework

3.1 Data representation

In the considered collection of patient records, each record corresponds to a
medical examination done by a patient in a given date. For instance, Table 1
shows a toy example dataset listing the medical examinations undergone by two
patients p1 and p2 in year 2014. A more formal definition of a collection of patient
records is given in Definition 31.

Definition 31 Collection of patient records. A collection of patient records
D is a set of records, such that Σ = {e1, . . . , ek} is the set of examinations in D
and Θ = {p1, . . . , pn} is the set of patients in D. Each record rk in D models an
examination ej ∈ Σ done by a patient pi ∈ Θ in a given date.



Table 1. Example of a collection of patient records

PatientID Examination Date PatientID Examination Date

p1 Glucose level 2014-02-10 p2 Urine test 2014-12-01
p2 Fundus oculi 2014-01-06 p2 Triglycerides 2014-11-30
p2 Urine test 2014-02-28 p2 Urine test 2013-04-16
p1 Fundus oculi 2014-03-10 p1 Urine test 2014-09-06
p2 Urine test 2014-04-11 p2 Triglycerides 2014-08-01
p1 Glucose level 2014-04-15 p2 Urine test 2014-07-25
p2 Electrocardiogram 2014-06-16 p1 Fundus oculi 2014-07-10
p1 Glucose level 2014-06-21 p1 Urine test 2014-11-23

Table 2. VSM representation for dataset in Table 1

PatientID Glucose level Fundus oculi Electrocardiogram Urine test Triglycerides

p1 3 2 0 2 0
p2 0 1 1 5 2

Table 3. VSM representation using the TF-IDF weighting score for dataset in Table 1

PatientID Glucose level Fundus oculi Electrocardiogram Urine test Triglycerides

p1 0.347 0 0 0 0
p2 0 0 0.077 0 0.154

To enable the mining process and discover valuable knowledge, in the MLC
framework the collection of patient records is tailored to the Vector Space Model
(VSM) representation [29] and the Term Frequency (TF) - Inverse Document
Frequency (IDF) scheme [22] has been adopted to weight the examination fre-
quency. In this study, we neglect the information on when an examination has
been done because we focus on the frequency of performed examinations. The
VSM representation has been applied in previous works [29] to represent text
documents, while the TF-IDF scheme has been used to weight the relevance of
words appearing in the document.

In the VSM representation, each patient pi is a vector in the examination
space. This vector represents the patient examination history. The vector cell
(pi, ej) corresponds to examination ej done by patient pi. Cell (pi, ej) is a weight
describing the relevance of examination ej for patient pi. A more formal defini-
tion of the patient examination history follows.

Definition 32 Patient examination history. Let D be a collection of patient
records, Σ = {e1, . . . , ek} the set of examinations in D and Θ = {p1, . . . , pn} the
set of patients in D. Each patient pi in D is represented by a weighted exam-
ination frequency vector vpi of |Σ| cells. Each cell vpi [j] of vector vpi reports
the weighted frequency wpi,ej of examination ej, ej ∈ Σ, for patient pi, pi ∈ Θ.
Thus, vpi = [wpi,e1 , . . . , wpi,e|Σ| ].

Table 2 reports a base VSM representation for the example dataset in Ta-
ble 1. Table 2 has one row for each patient in Table 1, and a number of columns



equal to the number of different examinations in Table 1. Each cell (pi, ej) in
Table 2 reports the weight of examination ej for patient pi. In this base VSM
representation the weight is simply given by the number of times examination
ej was repeated by patient pi. However, a patient data representation as in Ta-
ble 2 may not properly characterize the patient condition. In fact, it may give
more relevance to standard routine tests, which usually appear with higher fre-
quency, than to more specific tests, which often appear with lower frequency.
The adoption of the TF-IDF scheme allows highlighting the relevance of spe-
cific examinations for a given patient condition. The TF-IDF value increases
proportionally to the number of times an examination has been done by the
patient, but it is offset by the frequency of the examination in the examination
dataset, which helps to control the fact that some examinations are generally
more common than others. The definitions of TF and IDF are given below.

Definition 33 Term Frequency (TF) and Inverse Document Frequency
(IDF). Let D be a collection of patient records, Σ = {e1, . . . , ek} the set of
examinations in D, and Θ = {p1, . . . , pn} the set of patients in D.

1. For each pair (pi,ej) in D, the Term Frequency TFpi,ej is the relative fre-
quency of examination ej for patient pi. It is computed as fpi,ej/

∑
1≤k≤|Σ| fpi,ek ,

where fpi,ej is the number of times patient pi underwent examination ej and∑
1≤k≤|Σ| fpi,ek is the total number of examinations done by pi.

2. The Inverse Document Frequency IDFej for examination ej is the frequency
of ej in D. It is computed as Log[|Θ|/|pk ∈ Θ : fpk,ej 6= 0|] where |Θ| is the
number of patients in D and |pk ∈ Θ : fpk,ej 6= 0| is the number of patients
in D who underwent (at least once) examination ej.

Mathematically, the base of the log function for IDF computation in Defini-
tion 33 does not matter and constitutes a constant multiplicative factor towards
the overall result.

The TF-IDF weight wpi,ej for the pair (pi, ej) is high when examination ej
appears with high frequency in patient pi and low frequency in patients in the
collection D. When examination ej appears in more patients, the ratio inside the
IDF’s log function approaches 1, and the IDFej value and TF-IDF weight wpi,ej
become close to 0. Hence, the approach tends to filter out common examinations.
A more formal definition of TF-IDF weight follows.

Definition 34 TF-IDF weight. For each pair (pi,ej) in D, the TF-IDF weight
wpi,ej is computed as wpi,ej = TFpi,ej ∗ IDFej , where TFpi,ej is the Term Fre-
quency and IDFej is the Inverse Document Frequency.

Table 3 reports the VSM representation using the TF-IDF scheme for the
example dataset in Table 1. The TF-IDF weights for examinations Fondus oculi
and Urine Test are equal to 0 since they are performed by both patients. Instead,
TF-IDF weights are different than zero for the other examinations, which are
performed by only one of the two patients.



3.2 Data clustering using a multiple-level strategy

The MLC framework applies clustering algorithms in a multiple-level fashion to
progressively focus on different dataset portions and locally compute clusters.
The pseudocode of the multiple-level clustering strategy is in Algorithm 1. It
performs multiple runs over the considered data collection. Initially, the whole
dataset is analysed. Then, at each subsequent iteration, the clustering algorithm
is applied on a selected portion of the dataset, and clusters are locally identified
on it. Clustering algorithm parameters can be properly set at each iteration ac-
cording to the local data distribution of the considered dataset portion. Clusters
computed at each iteration contribute to the final cluster set. The approach is
iterated until the target objective is achieved, as the minimum threshold value
of a given quality index or the maximum allowed number of clusters in the final
cluster set.

Data: Initialize D with the whole initial data object collection
repeat

if first iteration then
select D as target dataset;

else
select a portion of D as target dataset;

end
apply basic clustering algorithm on the target dataset;
update the final cluster set;
evaluate the quality of the final cluster set;

until target objective is verified ;
Algorithm 1: Multiple-level clustering strategy

Clustering algorithms currently integrated in MLC are described in Sec-
tion 3.2. Data objects in the analysed data collection corresponds to patients
in our application scenario. For patient clustering, patient examination histories
are compared using the cosine distance measure (see Section 3.2).

Multiple-level clustering algorithms Clustering algorithms integrated in
the MLC framework are described in the following. Their main characteristics
are summarized in Table 4, by highlighting the improvement with respect to the
corresponding (not multiple-level) standard algorithms. Based on this evalua-
tion, they appear as good candidates for the analysis considered in this study.
Objects in the analyzed data collection correspond to patients in our application
scenario.

Bisecting K-means [32] applies the standard K-means algorithm in a multiple-
level fashion. K-means [16] discovers K clusters modeled by their representatives,
named centroids, given by the mean value of the objects in the clusters. Initially,
K objects of the dataset are randomly chosen as centroids. Then, each object



is assigned to the cluster whose centroid is the nearest to that object. Finally,
centroids are relocated by computing the mean of the objects within each cluster.
The process iterates until centroids do not change or some objective functions
are achieved.

Nevertheless K-means is a widely used clustering method, it is biased to
spherical clusters and it is sensitive to the initial choice of centroids. Aimed
at overcoming this second limitation, the bisecting K-means algorithm adopts
a multiple-level clustering approach based on a bisecting strategy. Instead of
looking for all representative centroids (and corresponding clusters) at the same
time, it iteratively focuses on a dataset portion and locally identifies centroids
(and their clusters). More in detail, two clusters are initially generated using the
standard K-means algorithm. Then, at each subsequent iteration level, a cluster
is selected among those generated up to the current step. The selected cluster
is split into two subclusters using K-means. K-1 level iterations are needed for
discovering the desired K clusters. Different criteria can be exploited to choose
the cluster to split: (i) The cluster size (i.e., the number of objects in the cluster),
(ii) the cluster SSE (Sum of Squared Errors), which measures the squared total
distances among cluster objects and cluster centroid, and (iii) a criterion based
on both cluster size and SSE. In this study, the cluster with the largest SSE
value is split.

Bisecting K-medoids [18] relies on the standard K-medoid algorithm (PAM) [19]
for implementing a multiple-level clustering technique similar to bisecting K-
means. K-medoid works similarly to K-means, but clusters are in this case
represented by an object (medoid) instead of a mean point (centroid). As for
bisecting K-means, bisecting K-medoids is less susceptible to the initialization
problems than standard K-medoids. K-medoids methods were also investigated
in this study, since they can be less sensitive to outliers than K-means methods.

Refined K-means and refined K-medoids[32]. Both bisecting strategies de-
scribed above use the standard (K-means and K-medoids) clustering algorithms
to bisect individual clusters. It follows that the final cluster set does not repre-
sent a local minimum with respect to the total SSE value over the whole cluster
set. To deal with this problem, the cluster set generated by bisecting K-means
and bisecting K-medoids can be refined as follows. The centroids (resp. medoids)
in the computed cluster set are used as the initial centroids (resp. medoids) for
the standard K-means (resp. K-medoids) algorithm.

Multiple-Level DBSCAN [2] progressively applies the standard DBSCAN [10]
algorithm on different (disjoint) dataset portions. DBSCAN separates dense re-
gions (with a similar density) from a sparse one in the dataset, driven by the
user-specified parameters Eps and MinPts. A dense region in the data space is
a n-dimensional sphere with radius Eps and containing at least MinPts objects.
Objects are classified as being (i) in the interior of a dense region (a core point),
(ii) on the edge of a dense region (a border point), or (iii) in a sparsely occupied



region (an outlier point). A cluster contains any two core points close within a
distance Eps, and any border point close within a distance Eps to at least one
core point in the cluster. Outlier points are filtered out and they are unclustered.

Standard DBSCAN can discover clusters with different sizes and shapes, but
it is weak in recognizing clusters with variant density. The multiple-level DB-
SCAN algorithm allows overcoming this limitation, by decomposing the clus-
tering process into subsequent steps. The whole original dataset is clustered at
the first level. Then, at each subsequent level, objects labeled as outliers in the
previous level are re-clustered using the standard DBSCAN. With the multiple-
level approach, parameters Eps and MinPts can be set at each level by adapting
the definition of dense region to the local data density. Furthermore, the num-
ber of unclustered outlier points progressively reduces at each iteration level.
Consequently, the multiple-level DBSCAN algorithm can finally provide a more
homogenous but also richer cluster set, because it includes a larger portion of
the original dataset. The number of iteration levels can be tuned based on the
final number of unclustered objects and the number of computed clusters.

Table 4. Comparison of multiple-level clustering algorithms

Bisecting and Refined Bisecting and Refined Multiple-level
K-means K-medoids DBSCAN

Initialization problem Reduced Reduced No

Sensitivity to outliers Reduced Reduced No

Unclustered data objects No No Reduced

Need of convex shape Yes Yes No

Parameter specification K K Eps, MinPts
Num. of iterations

Num. of iterations K-1 K-1 To be specified

Dealing with variable Improved Improved Improved
data distribution

Comparing patient examination histories For all clustering algorithms de-
scribed above, the weighted examination frequency vectors representing the pa-
tient examination histories are compared using the cosine distance measure [22].
In our reference case study, let pi and pj be two arbitrary patients in the collec-
tion D. Let vpi and vpj be the corresponding weighted examination frequency
vectors. The cosine distance between patients pi and pj is computed as

dist(pi, pj) = arccos (cos(vpi , vpj )) (1)

where the cosine similarity between patients pi and pj is computed as

cos(vpi , vpj ) =
vpi • vpj
‖vpi‖

∥∥vpj∥∥ =

∑
1≤k≤|Σ| vpi [k]vpj [k]√∑

1≤k≤|Σ| vpi [k]2
√∑

1≤k≤|Σ| vpj [k]2
. (2)



The cosine distance in Equation 1 verifies the triangle inequality. The cosine
similarity is in the range [0,1]. cos(vpi , vpj ) equal to 1 describes the exact simi-
larity of examination histories for patients pi and pj , while cos(vpi , vpj ) equal to
0 points out that patients have complementary histories (i.e., the sets of their
examinations are disjoint).

3.3 Cluster evaluation

For the (internal) validation of clustering results, MLC adopts the quality indices
typically used for the considered algorithms. The Total SSE index [22] is used
for K-means and K-medoids methods, while the Silhouette coefficient [28] for the
multiple-level DBSCAN approach. Similar to [32], the overall similarity measure
is used to compare cluster sets computed by different algorithms. Finally, the
Rand Index [26] has been used to evaluate the agreement between different
clustering results.

The Sum of Squared Error (SSE) is used to evaluate the cluster cohesion
for center-based clusters, as clusters generated using K-means and K-medoids
methods [22]. For an arbitrary patient, its error is computed as the squared
distance between the patient and the centroid (resp. medoid) in the cluster
including the patient. The SSE for a cluster Ci is computed as

SSE(Ci) =
∑
pj∈Ci

dist(ci, pj)
2 (3)

where dist(ci, pj) is the distance between the centroid (resp. medoid) ci of cluster
Ci and a patient pj in Ci. The cosine distance metric in Equation 1 has been
used for distance evaluation. The smaller the SSE, the better the quality of the
cluster. The Total SSE on a set of K clusters is computed by summing up the
SSE values of the K clusters.

The Silhouette index measures both intra-cluster cohesion and inter-cluster
separation to evaluate the appropriateness of the assignment of a data object to
a cluster rather than to another one [28]. The silhouette value for a given patient
pi in a cluster C is computed as

s(pi) =
b(pi)− a(pi)

max{a(pi), b(pi)}
, s(pi) ∈ [−1, 1], (4)

where a(pi) is the average distance of patient pi from all other patients in cluster
C, and b(pi) is the smallest of average distances from its neighbour clusters. The
silhouette value for cluster C is the average silhouette value on all patients in C.
Silhouette values in the range [0.51,0.70] and [0.71,1] show that a reasonable and
a strong cluster structure has been found [19]. Lower silhouette values progres-
sively indicate clusters with a weak structure until a no substantial structure.
The cosine distance metric in Equation 1 has been used for silhouette evaluation.



The Overall Similarity index evaluates the cluster quality. In this study, it has
been adopted for comparing the cluster sets from the algorithms integrated into
the MLC framework. Specifically, it is used to measure the cluster cohesiveness
based on the pairwise cosine similarity of patients in a cluster. For each cluster
C, the overall similarity is computed as

Overall Similarity(C) =
1

|C|2
∑
vpi

∈C
vpj

∈C

cos(vpi , vpj ) (5)

where |C| is the cluster size, cos(vpi , vpj ) is the cosine similarity between two
patients pi and pj in C represented by their weighted examination frequency
vectors vpi and vpj . The overall similarity on a set of K clusters is computed as
the weighted similarity of the clusters

Overall Similarity =

K∑
i=1

|Ci|
N

Overall Similarity(Ci) (6)

where N is the total number of patients in the cluster set.

The Rand Index computes the number of pairwise agreements between two
partitions of a set [26]. It is exploited to measure the similarity between the
cluster sets obtained by two different clustering techniques. In our case study,
let O be a set of N patients, and X and Y two different partitions of set O to
be compared. The Rand Index R is computed as

R =
a+ b(
N
2

) (7)

where a denotes the number of pairs of patients in O which are in the same
cluster both in X and Y , and b denotes the number of pairs of patients in O
which do not belong to the same cluster neither in X nor in Y . Therefore, the
term a+ b is the number of pair wise agreements of X and Y , while

(
N
2

)
is the

number of different pairs of elements which can be extracted from O. The Rand
Index ranges from 0 to 1, where 0 indicates that the two partitions do not agree
for any patient pair, and 1 that the two partitions are equivalent.

3.4 Cluster content characterization

In the MLC framework, the content of each computed cluster is concisely de-
scribed as follows. (i) The most representative examinations occurring in their
patient histories. (ii) The temporal relationship among examinations underwent
by patients, i.e., which examinations frequently precede or follow other exam-
inations. This information provides a more detailed characterizion of patient
histories because the distribution of patient examinations over time is analysed.
The two analyses can support a first categorization of the cluster content into
a category of patients (possibly) affected by a given diabetes pathology. In fact,



the different pathologies usually require monitoring the patient through some
specific examinations.

To support temporal data analysis, the patient data collection contained in
each cluster is represented as a sequence database [22]. Then, within each cluster,
the sequential patterns of medical examination sets underwent by patients in
subsequent days are analyzed.

Definition 35 Sequence database. Let D be a collection of patient records.
Let C ⊆ D be a cluster on D containing a subset of patient records. The sequence
database DS defined on C is a collection of sequences pi:S, where pi is the patient
identifier and S=< s1 . . . sn > is the temporal list of sets st of examinations ej
done by pi.

When examinations are done within a short time frame, their temporal order
may not be relevant being due to scheduling reasons rather than prescription
constraint. For example, in the considered case study of diabetic patients, routine
checks through blood tests are usually performed on the same day. Thus, in our
data representation, each element st in a sequence pi:S represents the set of
examinations done patient pi on the same day.

The number of elements st in a sequence S is the sequence length. It corre-
sponds to the number of different days in which the patient has performed at
least one examination. The sequence length provides the information on how
frequently the patient conditions have been monitored. For example, sequence
pi : S =<(e1)(e2,e3)(e4)(e1)> has length equal to 4 because patient pi per-
formed examinations on 4 different days. The sequence element (e2 e3) includes
examinations e2 and e3 done on the same day.

A sequence S is said to contain a sequence S′ if S′ is a subsequence of S, i.e.,
S′ contains a subset of the elements in S and preserves their order. S is called
supersequence of S′. For example, sequence S′ =<(e3)(e1)> is a subsequence of
sequence S =<(e1)(e2,e3)(e4)(e1)>. The support (or frequency) on the sequence
database DS of a sequence S′ is the percentage of sequences in DS that contain
S′. A sequence S′ is a sequential pattern if its support is above a user-specified
minimum support threshold.

Mining the complete set of sequential patterns in all discovered clusters may
often provide a too large solution set, making difficult for end-users the compre-
hension of the results. To overcome this limitation, compact representations of
the sequential pattern set have been proposed (as closed sequential patterns and
maximal sequential patterns). Among them, maximal sequential patterns [34]
have been adopted in this study. The set of maximal sequential patterns is rep-
resentative since it can be used to recover all sequential patterns, and the exact
frequency of these latter can also be computed with a single database pass. Be-
sides, the set of maximal sequential patterns is generally a small subset of the
set of (closed) sequential patterns. A sequential pattern S′ is said to be a maxi-
mal sequential pattern if there is no other sequential pattern S′′ so that S′′ is a
superpattern of S′ [34]



3.5 Cluster content exploitation

Clusters computed as described in Section 3.2 and characterized as reported in
Section 3.4 can be analyzed with the support of a domain expert to describe
their content from a medical perspective and assign a representative class label
to each of them. Then, to automatically categorize a new patient into one clus-
ter based on his/her examination history, a classification model can be created
starting from the discovered cluster set. The possibility of automatically catego-
rize patient histories using the classification model has been made accessible to
end-users through a mobile application (app).

Patient classification model Classification is the task of learning a classifica-
tion model that maps each data object to one of the predefined class labels [22].
A classification model is typically used to assign the class label for a new unla-
beled data object. Among various classification methods, decision tree classifiers
have been used in this study to characterize the results of the clustering process.
Decision trees are powerful classification methods that have been widely used in
many different application domains. Besides, they provide a readable classifica-
tion model that can also serve to explain what features characterize objects in
each class.

The decision tree is grown in a recursive fashion by iteratively partitioning
the training records into successively purer subsets. In the tree structure, each
node specifies a test on an attribute, and each branch descending from that
node corresponds to one of the possible values for that attribute. Each leaf node
represents class labels associated with the instances having, as attribute values,
the values appearing in the path reaching the leaf node. Once the decision tree
has been created, a new data object is classified by navigating the tree from the
root to a leaf node, according to the outcome of the tests along the path.

For the patient representation considered in this work, each node represents
one examination undergone by the patient, while each branch descending on a
node represents a possible value, or a range of values, for the TF-IDF weight
associated with each examination. Decision trees have been previously applied
in text mining to classify documents weighted through the TF-IDF scheme [13].
In the analysis, the Gini index impurity-based criterion has been considered
to split the record set for growing the tree. The Gini index [22] measures how
often a randomly chosen instance from the set would be incorrectly labeled if
it were randomly labeled according to the distribution of labels in the subset.
To evaluate the quality of constructed classification model, we have adopted the
three usually metrics, i.e., accuracy, precision and recall [22] (see Section 5.4).

Mobile application This section describes the main functionalities of the pro-
posed mobile applications, while some example screenshots are reported in Fig-
ure 2.

New patients can register to the application by inserting reference informa-
tion as their fiscal code and birthdate (Figure 2(a)). The application allows



both visualizing and updating the list of examinations underwent by the patient
(Figures 2(b) and 2(c)). Any new underwent examination can be inserted by
specifying the examination name and code together with the date and time the
patient underwent the examination. To enhance usability, the autocomplete fea-
ture is used for entering the examination name and code. Moreover, only one
of the two fields must be specified, while the other is automatically filled by
the application. For the diabetes dataset considered in this study, examination
codes have been defined based on the ICD 9-CM (International Classification of
Diseases, 9th revision, Clinical Modification) [15].

Through the application, the patient can be classified into one of a set of
predefined categories based on his/her examination history and a precomputed
classification model (Figure 2(d)). Moreover, the application allows collecting
feedbacks and suggestions from the domain expert on the proposed categoriza-
tion. Specifically, he/she can either confirm this categorization or suggest an
alternative one, by also specifying his/her degree of expertise in the provided
feedbacks (Figure 2(d)).

In the medical domain, possible end-users of the application are mainly med-
ical staff and patients to some extent. The application can support the medical
staff in the patient evaluation by automatically proposing the patient classifica-
tion into one out of a set of predefined categories. This automatic categorization
can be a valuable support since usually the classification model is computed con-
sidering large data collections, and tuned to guarantee an accurate classification.
Medical staff still preserves the possibility of proposing an alternative classifi-
cation based on his/her degree of expertise. The application can also support
patients in a self-evaluation of their condition.

The proposed architecture includes mobile devices (e.g., tablet, smartphone)
running the application and a server storing the collection of patient examina-
tion histories used for creating the classification model. A web server provides
functionalities to query this repository and read/insert new data from the ap-
plication.

To minimize data exchange between the server and the mobile devices at any
new classification request, once generated on the server the classification model
is downloaded on the mobile devices running the application. Consequently, any
new classification request is locally processed by accessing the copy of the clas-
sification model stored on the mobile device. On the other hand, this local copy
can be periodically updated by downloading the new version of the model gen-
erated on the server. More in detail, the classification model based on decision
trees is stored on a text file as a list of if-then-else rules.

To allow enriching the central data repository available on the server, new
data collected on the mobile device can be transmitted to the central server using
the application. New data includes newly registered patients, updated examina-
tion histories and feedbacks provided by the domain expert. This enriched data
collection can be later used for recomputing the classification model, aimed at
increasing the classification accuracy.



(a) (b) (c) (d)

Fig. 2. Mobile app: (a) patient registration, (b) insertion of a new examination done
by the patient, (c) visualize patient examination history, (d) patient classification

4 Experimental results

This section presents the results of the experiments with the MLC framework
regarding (i) quality evaluation for the computed cluster sets, (ii) execution time
for cluster set computation, and (iii) impact of data dimensionality, given by
the number of different examinations used to describe patient histories, on the
quality of the cluster sets. The MLC methodology has been validated on a real
collection of examination log data for diabetic patients.

4.1 Dataset

As a reference case study we considered a real dataset of (anonymized) diabetic
patients collected by an Italian Hospital. It contains the examination log data of
a set of 6,380 patients with overt diabetes, covering the time period of one year.
Both male and female patients in a wide age range are included. The domain
of the examinations includes 159 different examination types. Table 5 lists the
most frequent examinations including routine examinations as well as more spe-
cific diagnostic tests for diabetes complications with varying degrees of severity.
Complications due to diabetes can affect for example the cardiovascular system,
eyes, and liver. The diagnostic and therapeutic procedures are defined using
the ICD 9-CM (International Classification of Diseases, 9th revision, Clinical
Modification) [15].

4.2 Evaluation setup and parameter configuration

The MLC framework has been implemented as follows. To perform the multiple-
level cluster analysis, the DBSCAN, K-means and K-medoids algorithms avail-



Table 5. Most frequent examinations for each category in the diabetes dataset

Category Examination Freq.(%) Category Examination Freq.(%)

Routine Glucose level 85 Liver Alanine aminotransferase enzyme (ALT) 30
Venous blood 79 Aspartate aminotransferase enzyme (AST) 30
Capillary blood 75 Gamma GT 15
Urine test 75 Bilirubin 2
Glycated hemoglobin 46 Upper abdominal ultrasound 2
Complete blood count 18 Kidney Culture urine 25

CardiovascularCholesterol 36 Uric acid 23
Triglycerides 36 Microscopic urine analysis 23
HDL Cholesterol 35 Microalbuminuria 21
Electrocardiogram 23 Creatinine 20

Eye Fundus oculi 27 Creatinine clearance 16
Retinal photocoagulation 2 Carotid ECO doppler carotid 3
Eye examination 2 Limb ECO doppler limb 3
Angioscopy 2 Vibration sense thresholds 1

able in the RapidMiner toolkit have been used, and they have been applied
in a multiple-level fashion. RapidMiner is an open-source platform including
a number of data mining algorithms [27]. For a more accurate evaluation of
the multiple-level strategy, also the standard (not multiple-level) K-means, K-
medoids, and DBSCAN algorithms have been considered for performance com-
parison.

We developed in Java programming language the procedures for transforming
the patient examination log data into the corresponding VSM representation
using the TF-IDF weighting score, and for cluster evaluation through the SSE,
silhouette, and overall similarity measures. Procedures for cluster evaluation
have been implemented as a RapidMiner plugin. The procedure for Rand Index
computation has been developed in Python programming language.

For K-means and K-medoids methods, experiments have been run by varying
the K parameter, corresponding to the number of clusters in the final cluster set.
For bisecting algorithms, this set is computed with K-1 iteration levels of the bi-
secting approach. For refined algorithms, the refinement process has been run for
each final cluster set provided by bisecting algorithms. The usual approach has
been adopted to address the problem of centroids and medoids initialization for
bisecting algorithms, and for standard K-means and K-medoids when considered
for performance comparison. Multiple runs, each with set of randomly chosen
initial centroids (resp. medoids) have been performed, and then the cluster set
with the minimum SSE has been selected. Specifically, RapidMiner parameters
maximum number of random initialisations and maximum number of iterations
for each initialisation have been set to 50 and 300, respectively, for K-means
methods. The same parameters have been set to 10 and 100 (default values in
RapidMiner) for K-medoids methods because of their relevant execution time
on the considered use case (see Section 4.4).

For the multiple-level DBSCAN, in setting the number of iterations, and the
Eps and MinPts values at each iteration level, we aimed at avoiding clusters
with few patients, to discover representative examination sets, and at limiting
the number of outlier patients, to take into account the contribution of various



examination histories. Clusters should show good cohesion and separation (i.e.,
silhouette values greater than 0.5). Different Eps and MinPts values have been
selected at each iteration level due to the different data distribution of the dataset
portion locally analyzed. This portion tends to be progressively sparser because
it includes subsets of patients with more and more specific examinations (see
Section 5). Consequently, at each subsequent iteration level, smaller MinPts
values are progressively selected to define a dense area region. The Eps value
has been then locally tuned by trading-off the quality of the cluster set and the
number of outlier patients.

Maximal sequential patterns have been extracted using the VMSP algorithm
[12] available at [11]. This algorithm has been adopted because it uses a data
vertical representation for a depth-first exploration of the search space, that has
been shown to be effective in various domains.

To create the classification model, the decision trees algorithm available in the
RapidMiner toolkit have been used. The mobile application has been developed
on the Android environment version 4.4.

Experiments were performed on a 2.66-GHz Intel(R) Core(TM)2 Quad PC
with 8 GBytes of main memory, running linux (kernel 3.2.0).

4.3 Cluster quality evaluation

The quality for the computed cluster sets has been evaluated based on the SSE
(for K-means and K-medoids methods), Silhouette (for DBSCAN methods), and
overall similarity (for all methods) measures.

Evaluation of K-means methods For all K-means methods, the total SSE
measure progressively decreases, and the overall similarity measure progressively
increases, when growing the value of K and thus the number of clusters (see Fig-
ure 3). The bisecting K-means algorithm always provides the worst results for
both measures, i.e., the cluster sets with the highest total SSE and the low-
est overall similarity values. Nevertheless, the refined K-means algorithm always
provides better results than bisecting K-means, showing that the use in a subse-
quent clustering phase of the “centroids” computed with the bisecting K-means
algorithm can improve the quality of the final cluster set.

Compared to standard K-means, the refined K-means algorithm provides
better results when increasing K (about K> 30, i.e., more than 30 clusters). It is
worse than standard K-means when a lower value of K is considered (5≤K≤15,
i.e., between 5 and 15 clusters). It follows that the final cluster set can benefit
from a multiple-level clustering strategy when the number of iteration levels, and
thus the final number of clusters, increases. The K parameter can be selected
based on the desired number of clusters and the expected quality of the cluster
set.

As a reference example, Table 6 reports the main characteristics of the so-
lution with 32 clusters, in terms of number of patients, different examinations,
SSE and overall similarity for each cluster.



Fig. 3. K-means methods: quality of the cluster set when varying the number of clusters

Table 6. Detailed clustering results for refined K-means

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Number of patients 96 172 169 97 124 239 233 206 13 88 38 376

Number of examinations 42 39 25 18 52 51 44 40 31 34 38 60

SSE 67.6 112 39.9 8.72 43.3 105 88.7 65.5 5.17 22.4 14.7 134

Overall similarity 0.51 0.50 0.80 0.92 0.70 0.63 0.67 0.72 0.70 0.79 0.67 0.69

C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

Number of patients 18 78 402 231 351 50 47 26 201 182 226 146

Number of examinations 33 30 56 44 67 28 34 51 37 41 46 54

SSE 7.43 38.3 137 100 149 24.2 17.6 15.7 98.7 48.9 76.3 113

Overall similarity 0.66 0.61 0.70 0.63 0.64 0.60 0.69 0.54 0.59 0.77 0.71 0.45

C25 C26 C27 C28 C29 C30 C31 C32

Number of patients 74 1,126 509 61 169 170 257 205
Number of examinations 39 35 35 40 20 24 28 30
SSE 58.7 55.3 57 34.2 22.5 65.5 43.9 55.8
Overall similarity 0.43 0.96 0.90 0.57 0.88 0.76 0.85 0.76

Whole cluster set
Total SSE 1,926.01
Overall similarity 0.75

Evaluation of K-medoids methods The experimental results reported in
Figure 4 show that K-medoids methods exhibit a similar behavior to K-means
ones. The bisecting K-medoids algorithm always provides the worst results in
terms of overall similarity and total SSE values. The refined K-medoids algo-
rithm always improves bisecting K-medoids and provides comparable results to
standard K-medoids.

K-medoids methods showed a very high computational cost which limited
their applicability in the MLC framework (see Section 4.4). Due to this cost,
solution sets with a larger number of clusters have not been generated.

Evaluation of DBSCAN methods As reported in Table 7, when iterating the
multiple-level DBSCAN approach for four levels, 32 clusters are computed in to-
tal showing good overall similarity and silhouette values (greater than 0.5). These



Fig. 4. K-medoids methods: quality of the cluster set when varying the number of
clusters

clusters globally includes 3,510 patients (about 55% of the diabetes dataset).
Most patients belong to clusters computed at the first level, while a comparable
number of patients is included in clusters computed at the next levels. After four
iterations, 2,870 patients are labeled as outliers and remain unclustered. Note
that these patients can be additionally clustered by iterating the approach for
more levels.

Clustering about 55% of the patients using the standard DBSCAN algorithm
generates a lower quality cluster set than when using the multiple-level DBSCAN
approach. To deepen into the analysis of this point, Figure 5 plots the silhouette
and overall similarity values, and number of outlier patients, when the whole
patient collection is analyzed using the standard DBSCAN. With parameters
Eps=0.36 and MinPts=30, a cluster set is generated including almost the same
number of patients than the cluster set from the multiple-level DBSCAN ap-
proach, but with a significantly lower quality. The overall similarity value is 0.73
and the silhouette is 0.4 (i.e., lower than 0.5), while these values are 0.85 and
0.55, respectively, for the multiple-level DBSCAN when iterated for four levels
(see Table 7). It follows that, also for the DBSCAN method, the final cluster set
can benefit of the multiple-level strategy.

Clusters computed with four level iterations are described in Table 8 in terms
of their number of patients, different examinations and overall similarity value,
while silhouette plot is reported in Figure 6. Clusters mainly show a rather
prominent silhouette. Few patients have negative silhouette values in clusters
computed at the first level, i.e., 198 patients out of 1,764 in cluster C11 , 2 patients
out of 223 in C21 and 7 patients out of 294 in C41 . At the fourth level, cluster
C34 shows a less prominent silhouette, but the average silhouette value is almost
0.5.



Table 7. Clustering results for multiple-level DBSCAN

1st level 2nd level 3rd level 4th level
(MinPts, Eps) (30, 0.3) (30, 0.5) (20, 0.5) (10, 0.35)
Number of clusters 11 5 4 12
Number of patients 2,872 260 104 274
Silhouette 0.54 0.61 0.66 0.6
Overall similarity 0.85 0.86 0.89 0.94

Whole cluster set
Number of clusters 32
Number of clustered patients 3,510
Number of outliers 2,870
Silhouette 0.55
Overall similarity 0.86

Fig. 5. DBSCAN algorithm: quality of the cluster set and number of outlier patients
when varying the Eps value (MinPts=30)

4.4 Execution time

For the multiple-level DBSCAN algorithm, the total run time for computing
a solution with 32 clusters is 13min 40s. The first, second, third and fourth
iteration level require 3min 34s, 3min 8s, 3min, and 2min 58s, respectively. The
time tends to progressively reduce at each level because a smaller dataset portion
is progressively analysed.

The run time for bisecting and refined K-means algorithms for computing a
solution with 32 clusters is (slightly) lower than for the multiple-level DBSCAN
approach. Bisecting k-means requires 10 min, while refined K-means requires 7s
in addition for the refinement of centroids (i.e., to run K-means after having
initialized centroids). The time for K-means is about 2 minutes.

The run time is significantly higher for bisecting K-medoids, making the
approach not suitable for datasets with many examinations as the one considered
in this study. The time is approximately 38 hours for generating a set of 20
clusters, while refined K-medoids requires 34 min in addition for the refinement
of medoids. The time for K-medoids is about 5 hours and a half.



Table 8. Detailed clustering results for multiple-level DBSCAN

First-level
C11 C21 C31 C41 C51 C61 C71 C81 C91 C101 C111

Number of patients 1,764 223 140 294 144 110 42 43 35 36 41
Number of examinations 10 6 8 7 6 2 7 8 9 19 2
Overall similarity 0.82 0.87 0.94 0.88 0.92 1.00 0.96 0.94 0.97 0.94 1.00

Second-level Third-level
C12 C22 C32 C42 C52 C13 C23 C33 C43

Number of patients 75 73 49 30 33 32 29 21 22
Number of examinations 35 27 15 16 8 22 19 14 15
Overall similarity 0.84 0.85 0.91 0.89 0.86 0.9 0.83 0.92 0.91

Fourth-level
C14 C24 C34 C44 C54 C64 C74 C84 C94 C104 C114 C124

Number of patients 19 19 100 12 14 14 24 30 10 10 12 10

Number of examinations 7 3 20 9 8 19 12 12 9 16 4 19

Overall similarity 0.93 1 0.91 0.98 0.95 0.94 0.94 0.92 0.94 0.94 0.99 0.95

Whole cluster set
Overall similarity 0.86

Fig. 6. Silhouette plot for multiple-level DBSCAN

4.5 Impact of data dimensionality on cluster sets

In the patient data representation considered in this study, the data dimen-
sionality is given by the set of examinations describing the patient examination
history. When the cardinality of this set increases, a larger set of facets character-
izes patient care plans. Besides routine tests, also more specific examinations are
considered, which are progressively undergone by a reduced number of patients.
Consequently, the patient distribution tends to become increasingly sparser, and
the computation of cohesive clusters becomes more complex.

To evaluate how data dimensionality impacts on the quality of the cluster
set, in addition to the whole diabetes dataset (with 159 examinations), two
other configurations of this dataset have been considered, including about 60%



and 40% of the most frequent examinations (i.e., 60 and 30 examinations, re-
spectively). The three datasets contain the same number of patients, showing
that patient histories include various examinations, possibly repeated a different
number of times by each patient. The multiple-level DBSCAN and the refined
K-means algorithms have been considered as reference example methods for this
analysis.

For refined K-means, given a number of clusters, the overall similarity value
decreases, and the total SSE increases, as the number of examinations (and thus
the dataset sparsity) increases (see Figure 7). Consequently, when the number
of examinations increases, a larger number of clusters should be generated to
discover cohesive groups of patients. For example, the overall similarity value
gradually tends to 0.8 when considering 20 clusters for dataset with 30 exami-
nations and 40 clusters for datasets with 60 and 159 examinations.

The multiple-level DBSCAN has been iterated for four levels for all three
datasets, aimed at generating cluster sets with comparable good quality in terms
of overall similarity and silhouette values. As the number of examinations in-
creases (and thus the dataset sparsity), the final number of patients labeled as
outliers, and thus unclustered, decreases. After four iterations, the final number
of outliers is 2,573, 2,678 and 2,870 for datasets with 30, 60, and 159 examina-
tions, respectively (see Tables 7 and 9). It follows that when the dataset sparsity
increases, more iterations are needed to cluster a larger subset of patients but
preserving the quality of the cluster set.

Fig. 7. Refined K-means on the three datasets: quality of the cluster set when varying
the number of clusters

4.6 Evaluation on additional datasets

The multiple-level clustering strategy has been further evaluated using two ad-
ditional real datasets in the medical area. DBSCAN and K-means methods have



Table 9. Clustering results for multiple-level DBSCAN on datasets with 30 and 60
examinations

30 examinations 60 examinations
1st level 2nd level 3rd level 4th level 1st level 2nd level 3rd level 4th level

(MinPts, Eps) (50, 0.3) (20, 0.45) (10, 0.4) (15, 0.25) (30, 0.3) (30, 0.55) (15, 0.25) (10, 0.6)

Number of clusters 6 12 7 10 11 6 10 14

Number of patients 2,837 617 147 206 2,891 358 186 267

Silhouette 0.56 0.60 0.72 0.64 0.54 0.54 0.70 0.6

Overall similarity 0.84 0.89 0.90 0.98 0.85 0.83 0.99 0.65

Whole cluster set

Number of clusters 35 41

Number of clustered patients 3,807 3,702

Number of outliers 2,573 2,678

Silhouette 0.57 0.55

Overall similarity 0.86 0.84

been considered as reference algorithms for this analysis. The former dataset
contains the list of drugs prescribed to 3,500 (anonymized) diabetic patients,
with 103 distinct drugs encoded at the fourth level of the standard pharmaceu-
tical coding system adopted by the Anatomical Therapeutic Chemical (ATC)
Classification System [3]. The latter dataset contains 6484 tweets on healthcare
job information posted in the New York area from July 1st to July 22nd in
2014. Tweets have been retrieved from twitter.com via Twitter’s Streamming
Application Programming Interfaces (APIs) using a java crawler. Tweets were
written in english and they have been preprocessed by removing stop words and
other elements as numbers and usernames. Both datasets have been tailored to
the VSM representation using the TF-IDF scheme to weight the relevance of
drugs/words.

The experimental evaluation on the two additional datasets show similar
performance to the reference case study on patient examinations. K-means and
refined K-means algorithms provide (almost) comparable performance (in terms
of SSE and overall similarity), and they both outperform bisecting K-means.
Multiple-level DBSCAN tends to produce the most cohesive clusters. In the
following the performance of refined K-means and multiple-level DBSCAN are
compared considering the solution with the same number of clusters.

On the drug dataset, after four level iterations, the multiple-level DBSCAN
generates 34 clusters globally including about 48.83% of the original dataset
(1709 patients) and with average silhouette 0.62. The overall similarity is 0.86
and on the average clusters contain 31 different drugs. When 34 clusters are
computed with refined K-means, the overall similarity is 0.62 and on average a
larger number of different drugs (55) are included in clusters.

The tweet dataset is characterized by a higher sparsity due to the large
number of words and the limited length of tweet messages (140 characters).
The multiple-level DBSCAN iterated for four levels generates a 53 cluster set
containing 34.46% of the collection (2300 tweets). The average silhouette is 0.59.
The overall similarity and the average number of different words in clusters are



0.8 and 16 for multiple-level DBSCAN and 0.44 and 40 for refined K-means,
respectively (considering 53 clusters for both approaches).

The execution time is about 66 min and 136 min for multiple-level DBSCAN
on drugs and tweets dataset respectively, and 133 sec and 16 min 37 sec for
refined K-means.

5 Discussion

Here we discuss the clustering results discovered through the MLC framework.
The discussion addresses the performance comparison for clustering methods,
the comparison from a medical perspective for discovered cluster sets, and the
cluster characterization in terms of association rules.

5.1 Performance comparison

Concerning K-means methods, refined K-means in particular benefits of the
multiple-level strategy. The quality of the final cluster set is at least compa-
rable to the cluster quality of standard and bisecting K-means algorithms, but
it outperforms them when the approach is iterated for more levels. Also the
multiple-level DBSCAN algorithm pointed out the improvement in adopting a
multiple-level strategy with respect to the standard DBSCAN in the considered
case study. On the contrary, K-medoids methods do not seem suitable to be used
in a multiple-level fashion in our case study, because they provide cluster sets
with lower quality. For example, for the solution with 21 clusters, the overall
similarity is 0.67 and total SSE is 3,200 for K-medoids methods (see Figure 4),
while these measures are 0.71 and 2,275 for K-means methods (see Figure 3).
In addition, the high computational time of K-medoids methods limits the pos-
sibility of iterating them for more levels, thus progressively improving cluster
quality.

Based on the discussion above, we focused our attention on comparing the re-
fined K-means and the multiple-level DBSCAN algorithms. Let us consider, as a
reference example, the solutions with 32 clusters generated by the two algorithms
on the whole dataset with 159 examinations. The following considerations hold.
(i) Both cluster sets exhibit good quality in terms of overall similarity, even if this
value is higher for multiple-level DBSCAN (0.86, see Table 7) than for refined
K-means (0.75, see Figure 3). (ii) In both cases, the clustering process requires
a comparable and acceptable execution time, slightly lower for refined K-means
(about 10min) than for multiple-level DBSCAN (about 13min). Thus, (iii) in
both cases the multiple-level strategy can be potentially iterated for more levels
by further increasing the quality of the final cluster set. Specifically, the unclus-
tered outlier patients can be progressively reduced for multiple-level DBSCAN,
while clusters can be split into more cohesive subclusters for refined K-means.

To deepen into the comparison of the two algorithms, the agreement between
the two cluster sets is evaluated using the Rand Index. While refined K-means
clusters the whole dataset, the multiple-level DBSCAN clusters a subset, since



outlier patients are grouped into a separate cluster. The following two options
are considered to guarantee the same number of patients in the compared cluster
sets. The separate cluster of outlier patients is (a) excluded from, or (b) it is
included in, the final cluster set generated by the multiple-level DBSCAN algo-
rithm. In case (a), the outlier patients are also removed from clusters computed
by the refined K-means algorithm. The Rand Index value shows a good agree-
ment between the two clustering results, higher in option (a) (Rand Index =
0.83) than in option (b) (Rand Index = 0.73). It follows that the two cluster
sets mainly differ on the patients labeled as outliers. While they are isolated
by multiple-level DBSCAN, they are clustered together with other patients by
refined K-means.

5.2 Comparison from a medical perspective

Discovered cluster sets are also analysed from a medical perspective. Following
the discussion on performance comparison in Section 5.1, we focused on the
multiple-level DBSCAN and the refined k-means algorithms, and we analysed
and compared the solutions with 32 clusters computed on the whole dataset with
159 examinations.

Nevertheless the two algorithms generate cluster sets with good quality and
agreement, from a medical perspective the multiple-level DBSCAN appears as
the more suitable approach for patient analysis. The refined K-means algorithm
is less effective in partitioning the initial data collection into subsets with dif-
ferent data distributions, i.e., including patients with (significantly) different ex-
amination histories. Instead, the multiple-level BSCAN algorithm isolates these
outlier patients, and separately analyzes them in a subsequent clustering phase.
Since refined K-means computes a cluster set including all the patients in the
original dataset, these outlier patients are always assigned to some clusters, thus
increasing the variety of examinations in each cluster.

More in detail, unlike refined K-means, the multiple-level DBSCAN approach
computed clusters including, on average, a limited number of different examina-
tions. These clusters contain from 2 to 35 different examinations and about 12
on average (see Table 8), while clusters from refined K-means include from 18
to 67 different examinations and about 38 on average (see Table 6). In addition,
clusters from refined K-means mostly contain patients with diversified exam-
ination histories, including both routine and more specialized examinations to
test different diabetes complications. Instead, in clusters from multiple-level DB-
SCAN, the number of examinations tend to increase with the iteration levels,
thus progressively including more specialized examinations.

For both methods, the content of some example clusters, in terms of the most
frequent examinations in the cluster, is reported in Table 10. For the multiple-
level DBSCAN, first-level clusters contain patients who mostly performed stan-
dard routine tests to monitor diabetes conditions (cluster C21). Second-level
clusters contain patients tested with an increasing number of specific examina-
tions, showing that patients can be affected by a particular disease complication
or by more disease complications (e.g., on cardiovascular and eye system in



cluster C52). Examinations become progressively more numerous and specific
in third- and fourth-level clusters, indicating patients that can have diabetes
complications of increasing severity (clusters C13 and C124). Instead, in clusters
from refined K-means, examinations cover most categories. Thus, patients with
different disease complications can be included in the same cluster (clusters C2,
C5, C11 and C21).

Table 10. Multiple-level DBSCAN and refined K-means: most frequent examinations
in some example clusters (examination frequencies are in %)

Multiple-level DBSCAN Refined K-means

Category Examination
1st level 2nd level 3rd level 4th level

C2 C5 C11 C21C21 C52 C13 C124

Routine Glucose level 78 100 75 100 68 94 63 90
Capillary blood 72 97 72 100 58 69 61 57
Urine test 72 100 72 100 60 68 61 55
Venous blood 96 91 69 70 56 98 68 96
Glycated Hemoglobin 100 76 16 10 24 90 40 79
Complete Blood Count - - - - 5 73 16 100

Cardiovascular Cholesterol - - 13 10 10 85 37 70
Triglycerides - - 13 1 11 84 37 69
HDL Cholesterol - - 13 10 10 84 37 67
Electrocardiogram - 79 25 - 20 25 26 15

Eye Fundus oculi - 100 - 20 26 34 45 20
Retinal photocoagulation - - - - - 1 3 -
Eye examination - - - - 1 7 8 1
Angioscopy - - 100 - - 2 8 -

Liver ALT - - - 10 9 95 26 50
AST - - - 10 10 97 29 49
Gamma GT - - - 10 5 83 18 10
Bilirubin - - - - - 95 - -
Upper abdominal ultrasound - - - - 1 6 3 2

Kidney Culture urine - - - - 7 52 37 20
Uric acid - - - 10 6 65 21 33
Microscopic urine analysis - - - 10 4 69 13 50
Microalbuminuria - - - - 6 44 26 11
Creatinine - - - - 4 61 13 29
Creatinine clearance - - - 10 6 29 18 11

Carotid ECO doppler carotid - - - - 67 4 11 2

Limb ECO doppler limb - - - 10 53 2 16 2
Vibration sense thresholds - - - 100 - 2 - 2

Being clusters computed using the multiple-level DBSCAN algorithm rather
homogeneous in their patient examination histories, clinical domain experts can
inspect the cluster content from a medical perspective to support various analysis
as for example those reported below. (a) Discover, for each cluster, the examina-
tions actually prescribed to diabetic patients included in the cluster. (b) Check
the coherence between the underwent examinations in each cluster and the exist-
ing medical guidelines for diabetes disease [15]. (c) Provide feedbacks to health
care organizations to improve the application of the existing medical guidelines,
but also to enrich these guidelines or assess new ones.



5.3 Cluster characterization based on sequence pattern analysis

To analyse the temporal order of examinations when testing patients, the clus-
ter content has been described using sequence patterns. The average length of
sequences describing patient histories increases from each subsequent level of
clustering. The sequence length represents the number of different days in which
patients had at least one examination. It corresponds to the frequency used to
monitor patients within the time period of one year covered in the considered
dataset. The average sequence length is lower for patients in clusters at the first
level (about 2.4), including patients mainly monitored through periodic routine
tests. Instead, it increases in the next levels being patients tested with more spe-
cific examinations to check diabetes complications in addition to routine tests
(about 4.3 in the second level and 3.6 in the third and fourth level).

As an example of the type of information that can be mined, some maximal
sequential patterns are reported in Table 11 for the multiple-level DBSCAN
clusters in Table 10. Sequences S1 and S2 in the first-level cluster C21 mainly
show the periodic repetitions of the routine examinations used to monitor patient
conditions. Routine blood examinations are usually performed on the same day,
possibly together with urine test. In next level clusters, sequences include routine
examinations interleaved with more specific examinations to test diabetes at
different degrees of severity. Sequences tend to be progressively characterized by
lower support values, being patient histories more diversified.

In the second level cluster C52 , sequence S3 show that the eye examination
fundus oculi is followed by repetition of routine tests. In third level cluster C13 ,
the angioscopy examination preceded and/or follows routine tests (sequence S5)
and/or more specific examinations to monitor possible cardiovascular complica-
tions and cholesterol concentration (sequence S6). The angioscopy examination
is an eye examination allowing a deeper analysis of patient eye condition (than
other examination as fundus oculi) and it is typically underwent by patients with
possible retinopathy.

5.4 Patient classification results

The clustering results were also evaluated by a domain expert to describe the
cluster content from a medical perspective and assign a class label to each clus-
ter. For example, considering clusters in Table 10, patients in cluster C52 may
be affected by retinopathy, while patients in cluster C21 are (probably) not af-
fected by diabetes complications. Then, a classification model based on decision
trees was built starting from the cluster set computed with the multiple-level
DBSCAN approach when iterated for four levels summarized in Table 7 and
detailed in Table 8. To preserve the characteristics of the discovered clusters,
where patients with similar examination histories have been grouped together,
each cluster has been labeled with a different class label.

The 7-fold cross validation method has been adopted for evaluating the clas-
sification model based on accuracy, precision and recall measures. The accuracy,



Table 11. Example of maximal sequential patterns for some clusters from
multiple-level DBSCAN

Cluster Maximal sequential patterns Sup.(%)

C21

S1: < (Venous blood,Glycated Hemoglobin)(Glucose level,Capillary blood,

Urine test,Venous blood)(Glucose level,Capillary blood,Urine test,Venous blood) > 14.8

S2: < (Venous blood,Glycated Hemoglobin)(Glucose level,Venous blood,

Glycated Hemoglobin)(Glucose level,Venous blood) > 5.38

C52

S3: < (Fundus oculi)(Glucose level,Capillary blood,Urine test,Venous blood,

Glycated Hemoglobin)(Glucose level,Capillary blood,Urine test,Venous blood)> 18.18

C13

S4: <(Angioscopy)(Triglycerides,Cholesterol,Glycated Hemoglobin,HDL Cholesterol)

(Glucose level,Capillary blood,Urine test,Venous blood) > 6.25

S5: <(Glucose level,Capillary blood,Urine test,Venous blood)(Electrocardiogram)

(Angioscopy) > 9.38

C124

S6: <(Capillary blood,Urine test,Glucose level)

(Capillary blood,Vibration sense thresholds,Glucose level,Urine test)

(Capillary blood,Urine test,Glucose level)(Glucose level,Urine test,Capillary blood)

(Venous blood,Glucose level,Capillary blood,Urine test)> 30

measuring the overall quality of the classifier, is the ratio of the number of cor-
rectly classified patients over the total number of given patients. Precision and
recall analyse the performance of the classifier with respect to a given class c.
Precision is the number of patients correctly classified in c divided by the num-
ber of patients classified in c. Recall is the number of patients correctly classified
in c divided by the number of patients labeled with c in the collection. The ex-
perimental result showed the goodness of the constructed model. The accuracy
value is about 97.3%. The average recall value is around 88%, except for clus-
ters C64 (78.6%), C13 (71.9%) and C24 (47.4%), and the precision value has an
average of 91%, apart from clusters C24 (69.2%) and C104 (72.7%). The values
are all very high, which guarantees the quality of the classification model.

The final decision tree contains 146 nodes, 74 paths with average length 9.53,
and leaf nodes with quite good degree of purity. The creation time was about 30
sec on a 2.66-GHz Intel(R) Core(TM)2 Quad PC with 8 GBytes of main memory,
running linux (kernel 3.2.0). For locally accessing the classification model on the
mobile device, the decision tree was transformed into the corresponding textual
representation as an ordered list of if-the-else rules. This text file has size 16
Kbytes. The classification time of a new patient is about 140 milliseconds using
as mobile device a Samsung Galaxy A5 smartphone running Android 4.4.4 based
on 1.2 GHz Quad Core Qualcomm Snapdragon 410 Cortex-A53 processor with
2 GB RAM.

6 Conclusion

This paper presented a two-phase data mining methodology to effectively analyze
real data collection with variable data distribution. Discovering useful knowledge
from such collections is a complex task due to the inherent data sparseness. The
proposed multiple-level clustering strategy can perform a valuable preprocessing



step for partitioning the data collection into cohesive groups, that are then locally
analyzed. The mobile application allows a real-time classification of new data
objects into one of a the above groups, also collecting domain-expert feedbacks
on the proposed classifications.

In our reference case study, we focus on one facet of the patient treatment
given by the underwent examinations. Groups of patients with similar examina-
tion histories, and thus possibly similar degree of disease severity, are discovered.
Cluster content analyses, as frequent examinations and their temporal distribu-
tion, can provide useful information about how patient conditions are actually
monitored. It can be used to check coherence with medical guidelines or revels
when patients tend to be over/under monitored, and it can be also later enriched
with other facets of the patient treatment. The mobile application providing the
automatic patient classification into one category, represents a valuable support
for medical staff that can also propose an alternative classification.

Some limitations of the MLC framework as proposed in this study can repre-
sent interesting future research directions to enhance MLC. In the multiple-level
clustering strategy, the number of iteration levels should be currently experimen-
tally tuned by trading-off the computed and the expected quality of the cluster
set. Preliminary studies on the data distribution to identify the diverse degree of
data sparseness can support in selecting this parameter. Nevertheless the MLC
ability in discovering cohesive clusters, high data sparseness can enforce, at some
iteration levels, clusters with a limited size. To cope with this issue, data tax-
onomies can be locally exploited for reducing data sparseness by climbing the
abstraction level used for data representation. Moreover, alternative patterns as
for example weighted sequential patterns [33] can be adopted to characterize the
cluster content.

Additional research directions concern devising proper strategies to exploit
classifications suggested by domain-expert through the mobile application. They
can be used to modify label assignment in the initial data collection aimed at
increasing the quality of the knowledge base used to build the classification model.
From the technological perspective, to deal with huge data collections, a future
activity can address the deployment of the proposed framework in a cloud-based
platform, as Apache Mahout or Spark.
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