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Abstract— In this work, we present an approach for the explo-
ration of low-dimensional effective potential landscapes. Making
use of extrapolation in a low dimensional space of automatically
learned variables (i.e. Diffusion Maps - DMAPs - variables) and
machine learning schemes (e.g. Geometric Harmonics - GH) for
lifting the new points into the ambient space, the described
method enables to escape from local potential wells towards
new minima. A simple three-dimensional stochastic differential
equation system with a non-linear two-dimensional attractive
manifold is considered for illustration purposes.

I. INTRODUCTION

The dynamics of complex systems may be driven by
the gradient of an energy function, so that major events in
the behavior of the system can be as follows: i) trapping
into deep energy wells; ii) transition between two minima
passing through a saddle point owing to thermal agitation. A
prototypical example of this kind of behavior is provided by
proteins, whose configuration is often trapped into one of the
local free-energy minima. Hence, when studying proteins, it
is very important to identify all the relevant features of the
free-energy landscape including the main energy wells, saddle
points and minimum energy paths (MEPs) between nearby
minima passing through the saddles. In general, molecular
dynamics and Monte Carlo simulations are very inefficient
tools for the exploration of the potential energy landscape
owing to the fact that most of the computational time is spent
in jiggling at the bottom of local minima. As a matter of facts,
the energy barriers between minima mainly cause a trapping
of the system configuration with transitions being pretty rare
events. A plethora of methods have been suggested in the
published literature for overcoming this issue [1], [2]. Here,
following the equation free approach [3], we propose a new
method capable to perform macroscopic tasks by properly
initializing and using microscopic simulators.

II. THE EXPLORATION APPROACH

Starting form an arbitrary initial condition, a system of
stochastic differential equations (SDEs) is let run for a suf-
ficiently long time such that the solution trajectory gets into
one of the potential wells. Upon removal of the early part,
the remaining trajectory is composed by an initial point cloud
sampling the potential well bottom.

Diffusion maps (DMAPs) can be used to extract a suitable
low-dimensional parameterization of the latter point cloud
(two-dimensional in the example of Fig. 1). An automatic

Fig. 1. (Color online) Two-dimensional attractive manifold. The color map
refers to the value of a potential U and it clearly indicates that two wells
are presents. An arbitrary solution trajectory will end in one of the two wells
after a sufficiently long simulation time.

algorithm is needed for detecting the edge of the avail-
able point cloud. To this end, a few approaches have been
suggested in the literature (see, e.g., the ball pivoting in
[4]). For our purposes, we have formulated a simple enough
procedure based on the notion of maximum open angle [5].
In general, the aforementioned procedure can be applied
to both the physical (or ambient) and DMAPs space. For
simplicity, in the following, we employ the algorithm to
identify the cloud edge points directly in the DMAPs space
(two-dimensional). Results (in DMAPs space) are shown on
the right column of Fig. 2 by red circles. Upon detection of
the entire edge (and provided that DMAPs do not provide
an ill-posed parameterization [6]), boundary points can be
safely extrapolated outwards in the DMAPs space. The green
crosses on the right-hand side of Fig. 2 denote the extended
boundary points at a fixed step of the suggested procedure.
For obtaining a sufficiently uniform sampling of the extended
boundary, the latter points (i.e. green crosses) are ordered and
finely redistributed along the perimeter of the corresponding
convex hull (using the readily available routine in Matlab:
convhull). The reported one is just a possible implementation
of the redistribution step, and more sophisticated algorithms
may be also safely adopted.

The above operations provide us with a set of points in the
two-dimensional DMAPs space and the final result is shown
in the right-hand side of Fig. 2 by blue dots. However, the goal
here is to re-initialize the detailed stochastic simulator in the



Fig. 2. An intermediate step of the suggested procedure for a three-
dimensional stochastic system with a two-dimensional attracting manifold.
On the left-hand side, the point cloud in physical (or ambient) space
is reported whereas, on the right-hand side, the corresponding DMAPs
parameterization of the explored region is shown (conveniently re-normalized
so that the DMAPs variables: 0 < ξ1 < 1 and 0 < ξ2 < 1). Boundary
points of the sample cloud (circles on the right-hand side) are automatically
detected and outwardly extrapolated (crosses on the right-hand side) in the
DMAPs space. A regular redistribution of the new extrapolated points is
also performed by uniformly discretizing the perimeter of the convex hull
containing the extrapolated points (see dots on the right-hand side). The
redistributed points are finally lifted into the physical space, thus obtaining
the new initial conditions to restart the process (see dots on left-hand side).

three-dimensional physical space, thus letting the available
point cloud to invade larger portions of the phase-space
towards possible unknown potential wells. Hence, relying
upon the DMAPs parameterization, the redistributed extended
boundary points can be lifted into the original full space by
adopting a proper machine learning algorithm. Specifically,
in our simulations, we utilized a local form of the geometric
harmonics (GH) algorithm as discussed in [7], [8].

Thus, using the GH algorithm, the extended boundary is
lifted in the three-dimensional space. Once the latter points
are available, the process can restart by running the detailed
simulator from the initial conditions indicated in the left-hand
side of Fig. 2. Typically, after adding the new samples (i.e.
trajectories starting from the lifted extended boundary initial
conditions) to the previous point cloud, a pruning step is
also performed, where only points sufficiently distant from
their nearest neighbors are retained. This step ensures that
the region of interest in the phase-space is sampled using a
minimal number of points with fairly uniform point density.

III. CONCLUSIONS

Within the general framework of the equation free ap-
proach, we propose a new approach for the exploration of low-
dimensional effective potential landscapes, as those occurring
in stochastic simulators (e.g. molecular dynamics). By prop-
erly extrapolating along automatically learned coordinates
(diffusion coordinates), it is possible to reach unexplored re-
gions of the phase-space thus possibly discovering new energy
minima (or minimum energy paths) of physical relevance.
In general, the above procedure can be combined with a
procedure for saddle point detection so that, when the latter
event occurs, the system can be easily led into the new local
minima and the process re-initialized from there.
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