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Abstract

NFV and SDN are nowadays seen as a solid opportunity by telecom operators to reduce costs while at the same time providing new
and better services. Recently, the Unify project proposed a multi-layered architecture that, leveraging different levels of abstraction,
can orchestrate and deploy generic network services on the physical infrastructure of the telecom operator. In this paper, we exploit
such an architecture to deliver end-to-end generic services in presence of multiple concurring players (e.g. network operator,
end-users), leveraging a new simple data model. Particularly, we propose a description-based approach allowing to deploy agile,
implementation-independent and high-level network services over a distributed set of resources. The resulting data model can
abstract generic services, including both middlebox-based (e.g., firewalls, NATSs, etc.) and traditional LAN-based ones (e.g., a
bittorrent client). Finally, two distinct prototypes, originated by different design principles, are implemented in order to validate our

proposal with the aim of demonstrating the adaptability of our approach to different contexts.
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1. Introduction

The way network services are delivered has dramatically
changed in the last few years thanks to the Network Functions
Virtualization (NFV) paradigm, which allows network services
to experiment the same degree of flexibility and agility already
available in the cloud computing world. In fact, NFV proposes
to transform the network functions that today run on dedicated
appliances (e.g., firewall, WAN accelerator) into a set of soft-
ware images that can be consolidated into high-volume stan-
dard servers, hence replacing dedicated middleboxes with vir-
tual machines implementing those Virtual Network Functions
(VNFs). Thanks to their software-based nature, VNFs could
be potentially deployed on any node with computing capabili-
ties located everywhere in the network, ranging from the home
gateway installed in the customer premises till to the data center
servers [1, 2].

NFV is mainly seen as a technology targeting network oper-
ators, which can exploit the power of the IT virtualization (e.g.,
cloud and datacenters) to deliver network services with un-
precedented agility and efficiency and at the same time achieve
a reduction of OPEX and CAPEX. However, also end users
(e.g., xDSL customers) can benefit from NFV, as this would
enable them to customize the set of services that are active on
their Internet connection. But, while NFV currently focuses
mostly on middlebox-based applications (e.g., NAT, firewall),
end users are probably more oriented to services based on tra-
ditional network facilities (e.g., L2 broadcast domains), which
receive less consideration in the NFV world.

*Corresponding author. Email address: fulvio.risso@polito.it.
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Motivated by the growing interest, e.g., of telecom operators,
in extending the functionalities of Customer Premise Equip-
ments (CPEs) in order to deliver new and improved services
to the users [3] [4] [5] [6], this paper presents a solution that
is oriented to deliver generic network services that can be se-
lected by multiple players. Particularly, our proposal enables
also the dynamic instantiation of per-user network services on
the large infrastructure of the telecom operators, possibly start-
ing from the home gateway till the data center, as depicted in
Figure 1. Our solution enables several players (e.g., telecom
operator, end users, etc.) to cooperatively define the network
services; moreover, it is general enough to support both tra-
ditional middlebox functions as well as traditional host-based
network services. For example, a customer can define its own
network service by asking for a transparent firewall and a Bit-
torrent client, while the network operator complements those
applications by instantiating a DHCP and a NAT service'.

In our solution, the entire network infrastructure is controlled
by a service logic that performs the identification of the user
that is connecting to the network itself, following the approach
proposed in [7]. Upon a successful identification, the proper set
of network functions chosen by the user is instantiated in one
of the nodes (possibly, even the home gateway) available on
the telecom operator network, and the physical infrastructure is
configured to deliver the user traffic to the above set of VNFs.

The paper describes the service-oriented layered architecture
to achieve those objectives, modeled after the one proposed by

'In this paper we assume that end users are only enabled to select VNFs
trusted by the operator. The case in which they can deploy untrusted VNFs
(e.g., implemented by the end users themselves) would in fact open security
issues that are beyond the scope of this work.
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the Unify project [8, 9], and a possible set of data models that
are used to describe and instantiate the requested network ser-
vices starting from an high-level and user-friendly view of the
service. The high-level description is then converted into a set
of primitives (e.g., virtual machines, virtual links) that are ac-
tually used to instantiate the service on the physical infrastruc-
ture. Moreover, it presents two possible implementations of the
nodes of the infrastructure layer on which the service is actu-
ally deployed. Particularly, we explored two solutions that are
based on different technologies, with different requirements in
terms of hardware resources. The first is based on the Open-
Stack open-source framework and it is more appropriate to be
integrated in (existing) cloud environments; the second exploits
mostly dedicated software and it is more oriented to the domes-
tic/embedded segment (e.g., resource-constrained CPEs).

The remainder of this paper is structured as follows. Sec-
tion 2 provides an overview of the related works, while Sec-
tion 3 introduces an architecture to deploy general network ser-
vices across the whole network under the control of the telecom
operator (as shown in Figure 1). Section 4 details some for-
malisms expressing the service to be deployed, which are then
exploited to solve the challenges arising from our use case,
as discussed in Section 5. Section 6 details the preliminary
implementation of the architecture, which is then validated in
Section 7, both in terms of functionalities and performance. Fi-
nally, Section 8 concludes the paper and provides some plans
for the future.

2. Related work

Three FP7 EU-funded projects focusing on the integration
of the NFV and SDN concepts (UNIFY [10], T-NOVA [11]
and SECURED [12]) started recently. Particularly, the first one
aims at delivering an end-to-end service that can be deployed
everywhere in the telecom operator network, starting from the
points of presence at the edge of the network, till to the data-
center, by exploiting SDN and NFV technologies. Similarly, T-
NOVA proposes an equivalent approach that puts more empha-
sis on the target of providing a uniform platform for third-party
VNF developers, while SECURED aims at offloading personal
security applications into a programmable device at the edge
of the network. An SDN-based service-oriented architecture
has been proposed also in [13, 14], which enables to deliver

middlebox-based services to user devices, leveraging Service
Function Chaining and SDN concepts.

From the industry side, the IETF Service Function Chain-
ing (SFC) [15] working group aims at defining a model to de-
scribe and instantiate network services, which includes an ab-
stract set of VNFs, their connections and ordering relations,
provided with a set of QoS constraints. Similarly, the Eu-
ropean Telecommunications Standards Institute (ETSI) started
the Industry Specification Group for NFV [16], which aims
at developing the required standards and sharing their experi-
ences of NFV development and early implementation. Based
on the ETSI proposal, the Open Platform for NFV (OPNFV)
project [17] aims at accelerating the evolution of NFV by defin-
ing an open source reference platform for Virtual Network
Functions.

The problem of CPE virtualization, which represents one of
the possible use cases of our architecture, is investigated in sev-
eral papers (e.g., [3, 4, 5, 6]); however they have a more limited
scope as do not foresee the possibility to instantiate the service
across an highly distributed infrastructure and focus on more
technological-oriented aspects.

Finally, the OpenStack [18] community is aware of the pos-
sibility to use that framework to deliver NFV services as well,
as shown by the new requirements targeting of traffic steering
and SFC primitives [19, 20]; in fact, we rely on some prelim-
inary implementation of those functions [21] in order to build
our prototype.

3. General architecture

Our reference architecture to deliver network services across
the telecom operator network, which follows closely the one
proposed by the ETSI NFV working group [16], was defined in
the FP7 UNIFY project [8, 9] and it is shown in Figure 2. As
evident from the picture, it allows the deployment of network
services through three main portions, namely the service layer,
the orchestration layer and the infrastructure layer.

3.1. Service layer

The service layer represents the upper level component of
our system and enables different players to define their own net-
work services. Although our service layer includes some use-
case specific functions such as user identification (detailed in
Section 6.1), we introduce here the general concept of a generic
service description expressed in an high level formalism called
service graph (Section 4.1), which enables the definition of
generic services (expressed independently by each player) and
their potential interactions.

The service graph could be provided accompanied with sev-
eral non-functional parameters. Particularly, we envision a set
of Key Quality Indicators (KQIs) that specify requirements such
as the maximum latency allowed between two VNFs, or the
maximum latency that can be introduced by the entire service.
We also foresee the definition of a list of high-level policies to
be taken into account during the deployment of the service. An
example of such policies could be the requirement of deploying
the service in a specific country because of legal reasons.
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Figure 2: Overall view of the system, including the two implementations of the
infrastructure layer.

Given the above inputs, possibly facilitated by some graphi-
cal tools that allow different players to select and build the de-
sired service, the service layer should be able to translate the
service graph specification into an orchestration-oriented for-
malism, namely the forwarding graph (Section 4.2). This new
representation provides a more precise view of the service to be
deployed, both in terms of computing and network resources,
namely VNFs and interconnections among them, always con-
serving KQIs and policies imposed by the player that defined
the service.

As depicted in Figure 2, the service layer includes a compo-
nent that implements the service logic, identified with the ser-
vice layer application (SLApp) block in the picture. The service
layer could also export an API that enables other components
to notify the occurrence of some specific events in the lower
layers of the architecture. The SLApp module could react to
these events in order to implement the service logic required by
the specific use case. An example of such events may be a new
user device (e.g., a smartphone) that connects to the network,
which could trigger the deployment of a new service graph or
an update of an existing one.

Finally, the service northbound interface enables also cloud-
like services, as well as it offers to 3rd-party providers (e.g.,
content-providers) the possibility to deploy services in the op-
erator infrastructure, orchestrating resources on demand and be-
ing billed for their utilization in a pay-per-use fashion.

3.2. Orchestration layer

The orchestration layer sits below the service layer and it
is responsible of two important phases in the deployment of a
service.

First, it manipulates the forwarding graph in order to allow
its deployment on the infrastructure, adapting the service def-

inition to the infrastructure-level capabilities, which may re-
quire the deployment of new VNFs for specific purposes, as
well as the consolidation of several VNFs into a single one
(Section 4.2). Second, the orchestration layer implements the
scheduler that is in charge of deciding where to instantiate the
requested service. The scheduling could be based on different
classes of parameters: (i) information describing the VNF, such
as the CPU and the memory required; (ii) high-level policies
and KQIs provided with the forwarding graph; (iii) resources
available on the physical infrastructure, such as the presence of
a specific hardware accelerator on a certain node, as well as the
current load of the nodes themselves.

According to Figure 2, the orchestration layer is composed
of three different logical sub-layers. First, the orchestra-
tion sub-layer implements the forwarding graph transformation
and scheduling in a technology-independent approach, with-
out dealing with details related to the particular infrastructure,
which is under the responsibility of the infrastructure layer. The
next component, called controller adaptation sub-layer, im-
plements the technology-dependent logic that is in charge of
translating the forwarding graph into the proper set of calls for
the northbound API of the different infrastructure controllers,
which correspond to the bottom part of the orchestration layer.
Infrastructure controllers are in charge of applying the above
commands to the nodes operating on the physical network; the
set of commands needed to actually deploy a service is called
infrastructure graph (Section 4.3) and, being infrastructure-
specific, changes according to the physical node/domain that
will host the service that is going to be instantiated. The infras-
tructure controller should also be able to identify the occurrence
of some events in that layer (e.g., unknown traffic arrives at a
given node), and to notify it to the upper layers of the archi-
tecture. As shown in Figure 2, different nodes/domains require
different infrastructure controllers (in fact, each resource has its
own controller), which in turn require many control adapters in
the controller adaptation sub-layer.

Having in mind the heterogeneity (e.g., core and edge tech-
nologies) and size of the telecom operator network, it is ev-
ident how the global orchestrator, which sits on top of many
resources, is critical in terms of performance and scalability of
the entire system. For this reason, according to the picture, the
global orchestrator has syntactically identical northbound and
southbound interfaces (in fact, it receives a forwarding graph
from the service layer, and it is able to provide a forwarding
graph to the next component), which paves the way for a hier-
archy of orchestrators in our architecture. This would enable
the deployment of a forwarding graph across multiple admin-
istrative domains in which the lower level orchestrators expose
only some information to the upper level counterparts, which
allows the architecture to potentially support a huge number of
physical resources in the infrastructure layer. Although such
a hierarchical orchestration layer is an important aspect of our
architecture, it is out of the scope of this paper and it is not
considered in the implementation detailed in Section 6.2.



3.3. Infrastructure layer

The infrastructure layer sits below the orchestration layer
and contains all the physical resources that will actually host
the deployed service. It includes different nodes (or domains),
each one having its own infrastructure controller; the global
orchestrator can potentially schedule the forwarding graph on
each one of these nodes. Given the heterogeneity of modern
networks, we envision the possibility of having multiple nodes
implemented with different technologies; in particular, we con-
sider two classes of infrastructure resources.

The first class consists in cloud-computing domains such
as the OpenStack-based domain in Figure 1, referencing one
of most popular cloud management toolkits, each one consist-
ing of a cluster of physical machines managed by a single in-
frastructure controller. The second class of resources is in-
stead completely detached by traditional cloud-computing en-
vironments, representing nodes such as the future generation of
home-gateways hosted in the end users’ homes. One of such a
node, called integrated node, is shown in the bottom-left part
of Figure 1 and consists of a single physical machine that is
provided mostly with software written from scratch. Moreover,
the infrastructure controller is integrated in the same machine
hosting the required service.

The infrastructure layer does not implement any logic (e.g.,
packet forwarding, packet processing) by itself; in fact, it is
completely configurable, and each operation must be defined
with the deployment of the proper forwarding graph. This
makes our architecture extremely flexible, since it is able to im-
plement whatever service and use case defined in the service
layer.

4. Data models

This section details the data abstractions that are used to
model and then deploy the network services on the physical
infrastructure. Our data models are inspired by the NFV ETSI
standard [16], which proposes a service model composed of
“functional blocks” connected together to flexibly realize the
desired service. In order to meet the objectives described in the
introduction, we instantiated the ETSI abstract model in multi-
ple flavors according to the details needed in the different lay-
ers. All those flavors are inspired by the objective of integrating
the functional component description of network services and
their topology, together with the possibility to model also exist-
ing services provided by cloud computing.

4.1. Service graph

The service graph (SG) is a high level representation of the
service that includes both aspects related to the infrastructure
(e.g., which network functions implement the service, how they
are interconnected among each other) and to the configuration
of these network functions (e.g., network layer information,
policies, etc.). Our SG is defined with the set of basic elements
shown in Figure 3 and described in the following of this section.
These building blocks were selected among the most common
elements that we expect are needed to define network services.

Service graph elements
Network function l:l Endpoint O
LAN PO Active Port .
Link - Transparent Port o
Traffic splitter/merger O

E3
filt
web traffic
Stealth Network
: ; { -firewall i _. «— monitor Router; () 'é@

R non-web all

traffic traffic

Bittorrent
client

DHCP
server

Figure 3: Service graph: basic elements and example.
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The network function (NF) is a functional block that may be
later translated into one (or more) VINF images or to a dedicated
hardware component. Each network function is associated with
a template (Section 4.4) describing the function itself in terms
of memory and processing requirements, required processor ar-
chitecture (e.g., x86-64), number and type of ports, etc.

The active port defines the attaching point of a NF that needs
to be configured with a network-level address (e.g., IPv4), ei-
ther dynamic or static. Packets directed to that port are for-
warded by the infrastructure based on the link-layer address of
the port itself.

The transparent port defines the attaching point of a NF
whose associated (virtual) NIC does not require any network-
level address. If traffic has to be delivered to that port, the net-
work infrastructure has to “guide” packets to it through traffic
steering elements, since the natural forwarding of the data based
on link-layer addresses does not consider those ports.

The local area network (LAN) represents the (logical)
broadcast communication medium. The availability of this
primitive facilitates the creation of complex services that in-
clude not only transparent VNFs, but also traditional host-based
services that are usually designed in terms of LANs and hosts.

The point-to-point link defines the logical wiring among
different components and can be used to connect two VNFs to-
gether, to connect a port to a LAN, and more.

The traffic splitter/merger is a functional block that allows
to split the traffic based on a given set of rules, or to merge
the traffic coming from different links. For instance, it is used
in Figure 3 to redirect only the outgoing web traffic toward an
URL filter, while the rest does not cross that NF.

Finally, the endpoint represents the external attaching point
of the SG. It can be either a logical entity or a specific port (e.g.,
a physical/virtual NIC, a network tunnel endpoint), active on a
given node of the physical infrastructure. An endpoint can be
used to attach the SG to the Internet, to an end user device, but
also to the endpoint of another service graph, if several of them
have to be cascaded in order to create a more complex service.
Each endpoint is associated with an identifier and an optional
ingress matching rule, which are required for the SGs attaching
rules to operate (detailed in Section 4.1.1).



Figure 3 provides a SG example with three NFs connected to
a LAN, featuring both active (e.g., the DHCP server and the bit-
torrent machine, which need to be configured with IP addresses)
and transparent ports (the stealth firewall). The outgoing traffic
exiting from the stealth firewall is received by a splitter/merge
block, which redirects the web traffic to an URL filter and from
here to a network monitor, while the non-web traffic travels di-
rectly from the stealth firewall to the network monitor. Finally,
the entire traffic is sent to a router before exiting from the ser-
vice graph. In the opposite direction, the traffic splitter/merger
on the right will send all the traffic coming from Internet to the
stealth firewall, without sending anything to the URL filter as
this block needs to operate only on the outbound traffic.

As cited above, the SG also includes aspects related to the
configuration of the NFs, which represent important service-
layer parameters to be defined together with the service topol-
ogy, and that can be used by the control/management plane of
the network infrastructure to properly configure the service. In
particular, this information includes network aspects such as the
IP addresses assigned to the active ports of the VNFs, as well
as VNF-specific configurations, such as the filtering rules for a
firewall.

The SG can potentially be inspected to assess formal prop-
erties on the above configuration parameters; for example, the
service may be analyzed to check if the IP addresses assigned
to the VNFs active ports are coherent among each others. To fa-
cilitate this work, the SG defines the network segment, which
is the set of LANS, links and ports that are either directly con-
nected or that can be reached through a NF by traversing only its
transparent ports. Hence, it corresponds to an extension of the
broadcast domain, as in our case data-link frames can traverse
also NFs (through their transparent ports), and it can be used
to check that all the addresses (assigned to the active ports) of
the same network segment belong to the same IP subnetwork.
As shown in the picture, a network segment can be extended
outside of the SG; for instance, if no L3 device there exists be-
tween an end user terminal and the graph endpoint, the network
segment also includes the user device.

4.1.1. Cascading service graphs

As introduced above, the SG endpoints are associated with
some parameters that are used to connect SGs together (cascad-
ing graphs). Particularly, the identifier is the foundation of the
SG attaching rules, as only the endpoints with the same iden-
tifier (shown with the same color in Figure 4) can be attached
together. Instead, the optional ingress matching rule defines
which traffic is allowed to enter into the graph through that par-
ticular endpoint, e.g., only the packets with a specific source
MAC address.

The rules that define how to connect several graphs together
change according to both the number of graphs to be connected
and the presence of an ingress matching rule on their end-
points. While the case for two endpoints directly connected
looks straightforward, the problem with three or more end-
points is more complex. Figure 4 shows two examples in which
three endpoints must be connected together. In the first case,
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Figure 4: Cascading SGs.

two egress endpoints are associated with an ingress match-
ing rule that specifies which traffic must enter into the graph
through that endpoint. This ingress matching rule must be used,
in case of traffic going from the right to the left, to deliver the
desired packets to the correct graph, notably HTTP traffic to the
“HTTP-SG” and FTP traffic to the “FTP-SG”. This is achieved
by transforming the ingress endpoint of the “TCP-SG” into the
set of components enclosed in the green shape of Example 1(b),
namely a traffic splitter/merger module attached with many new
endpoints, each one connected to a different graph. This way,
the common “TCP-SG” will be able to dispatch the packet an-
swers to the proper graph.

The second example in Figure 4 shows the case in which the
egress endpoints are not associated with any ingress matching
rule, which makes it impossible to determine the right destina-
tion for the packets on the return path, as a traffic splitter/merger
module cannot be used in the “telecom operator-SG” to prop-
erly dispatch the traffic among them. In this case, the ingress
endpoint of the common “telecom operator-SG” is transformed
into a LAN connected to several new endpoints, each one ded-
icated to the connection with a single other graph. This way,
thanks to the MAC-based forwarding guaranteed by the LAN,
the “telecom operator-SG” can dispatch the return packets to
the proper graph, based on the MAC destination address of the
packet itself.

4.2. Forwarding graph and lowering process

The SG provides an high level formalism to define network
services, but it is not adequate to be deployed on the physi-
cal infrastructure of the network because it does not include all
the details that are needed by the service to operate. Hence, it
must be translated into a more resource-oriented representation,
namely the forwarding graph (FG), through a lowering pro-
cess that resembles to the intermediate steps implemented in
software compilers. The FG can be seen as a generalization of
the OpenFlow data model that specifies also the functions that
have to process the traffic into the node, in addition to define
the (virtual) ports the traffic has to be sent to.
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Figure 5: From the SG to the FG: the lowering process.

The different steps of the lowering process are shown in Fig-
ure 5 and discussed in the following.

The control and management network expansion enriches
the service with the “control and management network”, which
may be used to properly configure the VNFs of the graph. In
fact, most NFs require a specific vNIC dedicated to control/-
management operations; although this may be an unnecessary
detail for the player requiring the service, those network con-
nections have to be present in order to allow the service to op-
erate. In this step, the control network is created as a LAN
and all the VNFs that actually have vNICs identified as con-
trol interfaces in their template (Section 4.4) are attached to it
automatically. An example of this step is evident by a compar-
ison between Figure 5(a) and Figure 5(b), in which a control/-
management network consisting of a L2 switch VNF has been
added to the graph, although more complex forms for the con-
trol network (e.g., including also other VNFs such as a firewall)
can be defined as well.

The LAN expansion translates the abstract LAN element de-
fined in the SG into a proper (set of) VNFs that emulate the
broadcast communication medium, e.g., a software bridge or
an openflow switch with an associated controller implementing
the L2 learning mechanism. This step is shown in Figure 5(b)
where the LAN is replaced with a software bridge.

"forwarding-graph" : {
"id" : "abed123",
"flow-rules" : [
{
"flow-space" : {
"port" : "endpoint:1",
},
"action" : {
"type" : "forward",
"function" : "stateless_firewall:1"
}
},
{
"flow-space" : {
"port" : "stateless_firewall:2",
"tcp_src" : "80"
},
"action" : {
"type" : "forward",
"function" : "URLfilter:1"

Figure 6: Excerpt of a forwarding graph.

The service enrichment requires that the graph is analyzed
and enriched with those functions that have not been inserted
in the SG, but that are required for the correct implementation
of the service. An example is shown in Figure 5(c), where the
graph analysis determines that the network segment connected
to the user does not include any DHCP server, nor routing and
NAT functionalities; in this case the proper set of VNFs are
added automatically.

The VNF's expansion can replace a VNF with other equiv-
alent VNFs, properly connected in a way to implement the re-
quired service. As an example, the firewall in Figure 5(b) is
replaced in Figure 5(c) by a subgraph composed of a URL fil-
ter only operating on the web traffic, while the non-web traffic
is delivered to a stateless firewall. As evident, the ports of the
“original” VNF are now the endpoints of the new subgraph,
which also has a control network dedicated to the new VNFs.
Moreover, these new VNFs are in turn associated with a tem-
plate, and can be recursively expanded in further subgraphs;
this is equivalent to the “recursive functional blocks™ concept
provided in the ETSI standard [16], which may trigger further
optimization passes.

The VNFs consolidation analyzes the FG looking for redun-
dant functions, possibly optimizing the graph. For instance,
Figure 5(d) shows an example in which two software bridges
connected together are replaced with a single software bridge
instance with the proper set of ports, hence limiting the re-
sources required to implement the LANs on the physical in-
frastructure.

The endpoints translation converts the graph endpoints in
either physical ports of the node on which the graph will be de-
ployed, virtual ports (e.g., GRE tunnels) that connect to another
graph running in a different physical server, or endpoints of an-
other FG, if many graphs running on the same server must be



connected together.

Finally, the flow-rules definition concludes the lowering
process. In particular, (i) the connections among the VNFs,
(i) the traffic steering rules defined by the SG traffic split-
ter/merger, and (iii) the ingress matching rules associated
with the endpoints, are translated into a sequence of “flow-
space/action” pairs (Figure 6). The flow space includes all the
fields defined by Openflow 1.3 [22] (although new fields can be
defined), while the action can be a forwarding rule either to a
physical or a virtual port.

As a final remark, the FG does not specify all low level de-
tails such as the physical node on which the service will be
deployed, as well as the reference to the precise physical/vir-
tual NICs needed by the VNF to operate, which are replaced by
generic VNF entry/exit points, as shown in Figure 6. The final
translation from abstract to actual VNF ports will be carried out
in the next step.

4.3. Infrastructure graph and reconciliation process

The infrastructure graph (IG) is the final representation of
the service to be deployed, which is semantically, but not syn-
tactically, equivalent to the FG. The IG is obtained through the
reconciliation process, which maps the FG on the resources
available in the infrastructure layer, and it consists of the se-
quence of commands to be executed on the physical infrastruc-
ture in order to properly deploy and connect together all the
required VNFs.

This process takes into account that some of the VNFs in the
FG can be implemented through some modules (both software
and hardware) already available on the node on which the graph
is going to be deployed, instead of being implemented with the
image specified in the template. For example, if the node is
equipped with a virtual switch (vSwitch) that supports also the
backward learning algorithm such as OpenvSwitch, all the L2
switch VNFs in the FG are removed and those functions are car-
ried out through the vSwitch itself, as shown in the right portion
of Figure 7. Instead, as depicted in the left of Figure 7, if the
node features a pure Openflow vSwitch (such as xDPd), all the
VNFs specified in the FG will be implemented by instantiat-
ing the proper images, either VMs implementing the L2 bridg-
ing process or through a set of coordinated VMs implement-
ing an OpenFlow switch controlled by an OpenFlow controller
with the proper virtual LAN emulation software. Obviously,
other mappings between the VNFs and the resources available
on the node are possible, according to the specific capabilities
of the infrastructure layer; for instance we can obtain a differ-
ent IG (hence a different number of deployed VNFs) starting
from the same FG. The mapping of a VNF on a specific re-
source is possible thanks to the definition of a set of standard
VNF names that uniquely identify a precise network function,
such as the name “L2 switch” that identifies a LAN emulation
component; this allows the reconciliation module to recognize
the function needed and, possibly replace it with a more appro-
priate implementation.

After the reconciliation process, the final IG is converted into
the commands (e.g., shell script, protocol messages) required
to actually instantiate the graph, such as retrieve the VM image
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Figure 7: Example of the output of the reconciliation process when mapping a
L2 switch functionality in case of two different types of infrastructure nodes.

and start it up, create OpenFlow rules, and more. Particularly,
the flow rules defining the links of the FG, i.e., the connections
among the VNFs, are properly translated according to the tech-
nology used by the physical node to implement the graph. For
example, if the physical node interconnects the VNFs through
an Openflow vSwitch, each flow rule is converted in a num-
ber of Openflow f1lowmod messages, hence combining together
SDN and NFV concepts. However, other flavors of the in-
frastructure layer could implement these connections through
other technologies, such as GRE tunnels or VLAN tags. A sim-
ilar process is applied to VNFs, as VM images are retrieved
and started using commands that depend on the technology im-
plementing the VNFs (e.g., virtual machine, Docker container,
etc.).

4.4. Network function template

Each VNF is associated with a template that describes the
VNF itself in terms of both physical characteristics (e.g., CPU
and memory requirements) and possible infrastructure-level
configurations (e.g., how many vNICs can be configured); an
example of such a template is provided in Figure 8.

The template contains some information related to the hard-
ware required to execute the VNF, such as the amount of mem-
ory and CPU as well as the CPU instruction set. Moreover,
the boolean element expandable indicates if the VNF consists
of a single image, or if it is actually a subgraph composed of
several VNFs connected together. In the former case, the uri
element refers to the image of the VNF, while in the latter it
refers to a graph description that must replace the original VNF
in the FG. In the case of non-expandable VNF, the template also
specifies the image type such as KVM-compatible VM, Docker
container, and more; for instance, the firewall described in Fig-
ure 8 is implemented as a single KVM-based virtual machine.

Moreover, the template provides a description of the ports of
the VNF, each one associated with several parameters. In par-
ticular, the label specifies the purpose of that port, and it is
useful in the definition of the SG, since it helps to properly con-
nect the VNF with the other components of the service (e.g., the
external port of the firewall should be connected towards the In-
ternet, while the internal ones should be connected towards the



"network-function" : {
"name" : "firewall",
"expandable": false,
"uri": "http://myvnfs.com/images/7701f",
"vnf-type" : "kvm-virtual-machine",
"memory-requirements": 4096,
"cpu-requirements": {
"platform-type": "x86-64",
"cores-number": 1

1,
"ports": [
{
"label": "control",
"cardinality" : "1",
"ipv4-config": "DHCP"
}
{
"label": "external",
"cardinality": "1",
"ipv4-config": "none"
1},
{
"label": "internal",
"cardinality": "1-N",
"ipv4-config": "none"
}

Figure 8: Example of a VNF template.

users). The label could assume any value, which is meaningful
only in the context of the VNF. The parameter ipv4-config,
instead, indicates if the port cannot be associated with an IPv4
address (none), or if it can be statically (static) or dynam-
ically (DHCP) configured. Finally, cardinality specifies the
number of ports of a certain type; for instance, the VNF of the
example has one control port, one external port, and at least one
internal port (in fact, it has a variable number of internal ports,
which can be selected during the definition of the SG).

5. The validation use case: user-defined network services

Section 3 and Section 4 respectively provide a general
overview of the architecture and a description of the associ-
ated data-models; those concepts could be used in different use
cases involving multiple players in defining completely virtual-
ized services.

In order to provide a concrete use case to validate our data
models, we selected a challenging scenario in which end users,
such as xDSL customers, can define their own service graphs
to be deployed on the telecom operator infrastructure. Particu-
larly, an end user’s SG can only operate on the traffic of that par-
ticular end user, i.e., on the packets he sends/receives through
his terminal device. Vice versa, the telecom operator can define
a SG that includes some VNFs that should operate on all the
packets flowing through the network; hence, this SG must be
shared among all the end users connected to the telecom opera-
tor infrastructure.

Our use case presents some interesting challenges that can be
solved through the multi-layer architecture and the data-models

presented so far. These challenges, together with their solu-
tions, are summarized in Table 1.

First, the service layer must be able to recognize when a new
end user attaches to the network, and then to authenticate the
user himself. The API exported by the service layer to the or-
chestration layer (Section 3.1) could be exploited in our use
case just for this purpose.

Note that, since the infrastructure layer does not implement
any (processing and forwarding) logic by itself, the authentica-
tion mechanism requires the deployment of a specific graph that
only receives traffic belonging to unauthenticated users, and
which includes some VNFs implementing the user authentica-
tion. This could be implemented by means of the SG formalism
detailed in Section 4.1, together with the VNF template (Sec-
tion 4.4).

Second, after the user is authenticated, the service layer must
retrieve his SG and then connect it to the telecom operator graph
in a way so that the user traffic, in addition of being processed
by the service defined by the user himself, is also processed by
the VNFs selected by the telecom operator. Notably, the tele-
com operator graph should be shared among different users, in
order to reduce the amount of resources required by the service.
The interconnection of two graphs in cascade can be realized
by exploiting the graph endpoints elements provided by the SG
formalism, as detailed in Section 4.1.1.

Third, the user SG must be completed with some rules to
inject, in the graph itself, all the traffic coming from/going to-
wards the end user terminal, so that the service defined by an
end user (only) operates on the packet belonging to the user
himself. Also this challenge has been solved thanks to the graph
endpoints (Section 4.1), which can be associated with rules
identifying the traffic that should enter into the graph through
a particular endpoint.

Finally, the service layer must require (at the lower layers of
the architecture) to deploy the user graph; this operation may
require the creation of some tunnels on the network infrastruc-
ture so that the user traffic is brought from the network entry
point to the graph entry point, which could have been deployed
everywhere on the physical infrastructure. The multi-layer ar-
chitecture proposed in Section 3 ensures the deployment of all
the SGs defined at the service layer, regardless of the particular
services described by the graphs themselves. In fact, both the
lowering process that transforms the SG in FG (Section 4.2), as
well as the instructions provided to the infrastructure compo-
nents through the IG (Section 4.3), are generic enough and can
model all the possible services defined at the service layer.

6. Prototype implementation

This section presents the preliminary implementation of the
architecture introduced in Section 3, detailing its components
and the engineering choices that have been made in order to
create the prototype.

6.1. The service layer

Our service layer logic is strictly related to our use case, in
which the end users can define generic services to be applied



Table 1: Challenges of the considered use case and related solutions.

Challenge

Solution

#1 The SLApp recognizes when a new user is connected

API exported by the service layer to be notified of the occurrence of
some events

#2 New user’s authentication (the infrastructure layer does not
implement any processing and forwarding logic by itself)

The SG formalism and the VNF template used to define a graph
that includes VNFs implementing the user authentication

#3 Interconnection of several user SGs to a common telecom operator graph

Graph endpoints defined in the SG formalism

#4 A user SG only operates on the traffic belonging
to that particular user

Graph endpoint associated with ingress matching rules identifying the
traffic allowed to flow through the endpoint itself

#5 Each service is implemented on the physical infrastructure

The lowering process and the formalisms (SG, FG, IG) are generic
enough to support all the possible services required by the users

to their own traffic, while the operator can define a service op-
erating on all the packets flowing through the network. Our
implementation of the SLApp delegates specific tasks to dif-
ferent OpenStack modules, some of which have been properly
extended. In particular, Horizon, the OpenStack dashboard, is
now able to provide to the end users a graphical interface al-
lowing them to express (out of band) the service they expect
from the network, using the building blocks depicted in Fig-
ure 3. Keystone, the token-based authentication mechanism
for users and permissions management, is now able to store the
user profile, which contains user’s specific information such as
the description of his own SG. Finally, Swift, the OpenStack
object storage, has been used to store the VNF templates. No-
tably, those modules are present also in case of the integrated
node implementation (Section 6.3), as the service layer is inde-
pendent from the actual infrastructure layer.

At boot time, the SLApp asks the orchestration layer to in-
stantiate two graphs, the telecom operator graph and the au-
thentication graphs (Section 6.1.1), which are deployed on one
of the available infrastructure nodes. In addition, it configures
the network nodes with the proper rules to detect when a new
flow is created on the network (e.g., a new user terminal at-
taches to an edge node), which in turns triggers a call of the
proper event handler in the SLAapp that forces an update of the
authentication graph, so that it can properly handle the traffic
generated from the new connected device. In fact, the SLApp
has been notified about the source MAC address of the new
packets, which can be used to uniquely identify all the traffic
belonging to the new device. This enables the SLApp to up-
date the authentication graph with a new endpoint representing
the entry point of the user traffic in the network, and which is
associated with an ingress matching rule expressed on the spe-
cific MAC address; this way, the new packets can be provided
to the authentication graph, wherever the graph itself has been
deployed. Finally, the updated graph is passed to the orches-
tration layer, which takes care of applying the modifications on
the physical infrastructure.

A successful user authentication through the authentication
graph triggers the instantiation of the SG associated with the
user himself. This is achieved by the SLApp, which retrieves
the proper SG description from the user profile repository, con-
nects it to the telecom operator-defined SG such as in the exam-
ple shown in the right part of Figure 4, and starts the lowering
process aimed at creating the FG. In particular, the SLApp ex-

ecutes the “control and management network expansion” and
the “LAN expansion” as shown in Figure 5(b), and the “ser-
vice enrichment” step. In our case, the latter consists in adding
a DHCP server and a VNF implementing the NAT and router
functionalities, in case these VNFs have not been included by
the end user during the definition of his own service.

Before being provided to the orchestration layer, the user-
side endpoint of the user SG is associated with (i) an ingress
matching rule expressed on the MAC address of the user device,
so that only the packets belonging to that user are delivered to
his graph, and (ii) the entry point (i.e., the actual port on the
physical edge node where the user connects to) of such a traffic
in the telecom operator network. This way, the orchestration
layer will be able to configure the network in order to bring the
user traffic from its entry point into the network to the node on
which the graph is deployed.

Finally, the SLApp also keeps track of user sessions in order
to allow a user to connect multiple concurrent devices to his
own SG. In particular, when a user already logged in attaches
to the network with a new device, the SLApp: (i) retrieves the
FG already created from the orchestration layer; (ii) extends it
by adding a new endpoint associated with an ingress matching
rule operating on all the traffic coming from the new device,
and representing the entry point of such packets in the network;
(iii) sends the new FG to the orchestration layer.

6.1.1. Authentication graph

The authentication graph is used to authenticate an end user
when he connects to the telecom operator network with a new
device, and it is automatically deployed by the service layer
when the infrastructure starts, hence turning a service-agnostic
infrastructure into a network that implements our use case.

The authentication SG (shown at the top of Figure 9) consists
of a LAN connected to a VNF that takes care of authenticat-
ing the users, a DNS server and a DHCP server. However, the
VNF implementing the users authentication is in fact another
SG made up of three VNFs: an Openflow switch, an Openflow
controller and a web captive portal. The resulting FG, com-
pleted with the control and management network, is shown at
the bottom of Figure 9; as evident, only the control network is
connected to the Internet while all the user traffic is kept local.

When an unauthenticated user connects to the network, his
traffic is brought to the authentication graph. In particular, the
DHCP server returns an initial IP address to the user, which is
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Figure 9: Authentication SG and FG.

able to generate traffic. All DNS queries are resolved by the
DNS server into the proper IP addresses, but all the web re-
quests are redirected to the captive portal; in fact, the HTTP
traffic entering into the Openflow switch is sent to the Open-
flow controller, which modifies the original MAC and IP desti-
nation addresses with those of the web captive portal and then
sends back the packet to the Openflow switch, which will de-
liver it to the captive portal. This VNF provides a HTTP 302
temporary redirect message to the user in order to notify
the client of the redirection and avoiding wrong caching, then a
login page is shown. After the (successful) user authentication,
the web captive portal contacts the SLApp through the control
network and triggers the deployment of the SG associated with
that user on the infrastructure.

6.2. Global orchestrator

The global orchestrator implements the first two levels of
the orchestration layer depicted in Figure 2 and consists of a
technology-dependent and a technology-independent part.

The technology-independent part receives the FG from the
service layer (through its northbound interface) and it executes
the following operations as defined in the lowering process
(Section 4.2). First, for each VNF specified in the graph, it
retrieves the corresponding VNF template from the OpenStack
Swift service. In case the template is actually a subgraph com-
posed by other VNFs (Section 4.4), it executes the “VNFs ex-
pansion” step (Figure 5(c)) and retrieves the description of the
new VNFs that, in turn, could be recursively expanded in fur-
ther subgraphs. The “VNFs consolidation” step follows, possi-
bly consolidating multiple function instances as shown in Fig-
ure 5(d). Finally, the “flow-rules definition” step creates a se-
quence of “flow-space/action” pairs describing how to steer the
traffic within the graph.

At this point, the global orchestrator schedules the FG on
the proper node(s) of the physical infrastructure. Although the
general model presented in Section 3.2 supports a scheduling
based on parameters such as CPU and memory requirements
of the VNFs, KQIs (e.g., maximum latency, expected through-
put) and high level policies, the current implementation simply
instantiates the entire FG on the same node used as a network
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entry point for the traffic to be injected into the graph itself. The
resulting FG is then provided to the proper control adapter, cho-
sen based on the type of infrastructure node (i.e., OpenStack-
based node or integrated node) that has been selected by the
scheduler and that has to execute the FG. These adapters take
care of translating the FG into the formalism accepted by the
proper infrastructure controller, which is in charge of sending
the commands to the infrastructure layer. Moreover, they con-
vert the abstract endpoints of the graph (i.e., the ones that have
not yet been translated into physical ports e.g., by the service
layer) into physical ports of the node; finally, if needed, they
instruct the infrastructure controller to create the required GRE
tunnels. Tunnels can be used to connect together graphs that
have been instantiated on two different nodes (graph cascad-
ing), or to connect two portions of the same graph that have
been deployed on different nodes (graph splitting). In our use
case, a tunnel is required to bring the user’s traffic from the edge
node he is connected to towards the node where the graph has
been instantiated, as well as to bring the traffic generated by
unknown user terminals to the authentication graph.

As a final remark, the global orchestrator supports the up-
date of existing graphs. In fact, when it receives a FG from
the service layer, it checks if this graph has already been de-
ployed; in this case, both FGs (the one deployed and the new
one) are provided to the proper control adapter, which sends
to the infrastructure controller either the difference between the
two graphs in case of integrated node, or both FGs in case of
OpenStack-based node, as that implementation will be able to
automatically identify the differences thanks to the OpenStack
Heat module.

6.3. The integrated node

The integrated node [23] [24] is the first flavor of our in-
frastructure layer and it consists of a single physical machine
running mostly ad hoc software, whose overall architecture is
shown in Figure 10. In this implementation, the infrastructure
controller is integrated on the same server running the VNFs.
Multiple integrated nodes are possible on the infrastructure and
must be coordinated by the global orchestrator.

The integrated node receives the FG through the northbound
(REST) interface of the node resource manager, which is the
component that takes care of instantiating the graph on the node
itself; this requires to execute the reconciliation process in or-
der to obtain the IG, to start the proper VNF images (down-
loaded from a VNFs repository) and to configure the proper
traffic steering among the VNFs. Particularly, the last two op-
erations are executed through two specific modules of the node
resource manager, namely the compute controller and the net-
work controller.

Traffic steering is implemented with a (pure) Openflow
DPDK-enabled datapath, based on the extensible Data-Path
deamon (xDPd) [25]. xDPd supports the dynamic creation
of several Openflow switches, called Logical Switch Instances
(LSIs); each LSI can be connected to physical interfaces of
the node, to VNFs, and to other LSIs. A different LSI (called
tenant-LSI) is dedicated to steer the traffic among the VNFs
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Figure 10: Logical architecture of the integrated node.

of a specific graph, while the LSI-0 is in charge of classify-
ing the traffic coming from the network (or from other graphs)
and of delivering it to the proper tenant-LSI. The LSI-O is
the only one allowed to access the physical interfaces, and the
traffic flowing from one tenant-LSI to another has to tran-
sit through the LSI-0 as well. Since LSIs are pure Openflow
switches, the reconciliation process described in Section 4.3
cannot remove the L2Switch VNFs, which are then imple-
mented using the proper software images because of the un-
availability of the backward learning algorithm in xDPd.

When a FG description (either a new one or an update of
an existing FG) is received by the node resource manager, this
module: (i) retrieves a software image for each VNF required
and installs it; (ii) instantiates a tenant-LSI on xDPd and con-
nects it to the LSI-0 and to the proper VNFs; (iii) creates a
new OpenFlow controller associated to the tenant-LSI that is
in charge of inserting the required forwarding rules (i.e., traffic
steering), which sets up the proper connections among VNFs
as required by the FG. In particular, the FG rules that define
the paths among VNFs (and physical ports) originate two se-
quences of Openflow flowmod messages: one to be sent to the
LSI-0, so that it knows how to steer traffic among the graphs
deployed on the node and the physical ports; the other used to
drive the tenant-LSI, so that it can properly steer the packets
among the VNFs of a specific graph.

When a packet enters into the LSI-0 and cannot be for-
warded to any tenant-LSI, it is delivered to the LSI-0 con-
troller using the Openflow packet in message; at this point
the Openflow controller notifies the service layer of the pres-
ence of a new user terminal, which will react by creating the
proper network setup (e.g., tunnels) to redirect that traffic to the
authentication graph.

The integrated node supports three flavors of VNFs: DPDK
processes [26], Docker containers [27], and VMs. While the
former type provides better performance (in fact, an LSI ex-
changes packets with DPDK VNFs with a zero-copy mecha-
nism), Docker containers and VMs guarantee better isolation
among VNFs, as well as they allow to limit CPU and mem-
ory usage. Data exchange between LSIs and Docker contain-
ers/VMs takes place through the KNI virtual interface available
with the DPDK framework.

Finally, the architecture of the integrated node can support
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a network-aware scheduling algorithm, which has the potential
to optimize the location of each VNF based on the I/O con-
nections of the VNF itself. This allows for example to start
two cascaded VNFs on two cores of the same physical CPU
in order to keep the traffic within the same NUMA node, or to
allocate a VNF on the CPU that is connected to the NIC used
to send the packet out to the network. This is possible because
the node resource manager, which takes care of both deploy-
ing the VNFs and configuring the vSwitch to properly steer the
traffic among them, receives the entire FG from the upper layer,
which describes both the VNFs to be executed and the connec-
tions among them.

6.4. The OpenStack-based node

The OpenStack-based node is the second flavor of our in-
frastructure layer and it consists of a cluster of servers within
the same OpenStack domain. As shown in Figure 11, all the
physical machines of the cluster are managed by a single infras-
tructure controller, which is composed of a number of Open-
Stack modules and a SDN controller. Multiple OpenStack-
based nodes are possible on the infrastructure and must be co-
ordinated by the global orchestrator.

OpenStack [18] is a widespread cloud toolkit used for man-
aging cloud resources (network, storage, compute) in data-
centers; hence, its support in our architecture represents an in-
teresting choice because of the possibility to deploy our ser-
vices in an existing (and widely deployed) environment. How-
ever, since OpenStack was designed to support the deployment
of cloud services, several modifications have been made to sup-
port FGs (hence network services) as well.

As depicted in Figure 11, our OpenStack-based node exploits
the following components: (i) Nova, the compute service; (ii)
Neutron, the network service; (iii) Heat, the orchestration layer



and (iv) Glance, the VM images repository. Openstack is able
to start VMs by interacting with a wide range of different hyper-
visors (e.g. KVM, Xen, VMware); moreover, in order to prop-
erly steer the traffic between the several servers under its control
our prototype integrates also the OpenDaylight (ODL) [28]
SDN controller. As evident from the picture, Heat, Nova sched-
uler, Nova API, Neutron and ODL compose the infrastructure
controller, while each physical machine executing the VNFs is
a Nova compute node, which runs a Nova compute agent, the
OpenvSwitch (OVS) [29] softswitch and the KVM hypervi-
sor.

When the global orchestrator decides to deploy a FG in an
OpenStack-based node, the proper control adapter translates the
FG description into the format supported by Heat. To be used in
our prototype, Heat has been extended in order to support the
flow-rule primitive, which describes how to steer the traf-
fic between the ports of the VNFs composing a graph. This
primitive provides an interface similar to the OpenFlow 1.3
flowmod; however, it allows the traffic steering between vir-
tual ports without knowing in advance the physical server on
which the respective VNFs will be scheduled. As soon as Heat
receives the FG, it performs a reconciliation step that removes,
from the graph itself, all the VNFs implementing the L2 switch,
since this functionality will be mapped on the OVS instances
running on the physical servers. In fact, OVS is able both to
forward traffic based on traffic steering rules, as well as to exe-
cute the MAC learning algorithm. After this translation, the FG
is decomposed into a set of calls to Nova and Neutron.

For the compute part, Nova receives a sequence of com-
mands for each VNF of the graph in order to deploy and start
the VNF itself; at this point, the Nova scheduler (i) selects the
physical server on which the VNF must be deployed using the
standard OpenStack “filter & weight” algorithm?, (ii) sends the
proper command to the Nova compute instance on the selected
node, which in turn (iii) retrieves the VNF image from Glance
and finally (iv) starts the VM3, It is worth noting that Nova
scheduler has two limitations: (i) it schedules a VNF as soon
as it receives the command from Heat; (ii) it does not have any
information on the paths among the VNFs in the graph. As a
consequence, the FG could be split on the available compute
nodes without taking into account the paths among the VNFs,
clearly resulting in suboptimal performance.

For the networking part, when Heat detects that all the VNFs
(i.e., VMs) are started, Heat sends a flow-rule at a time to
Neutron, which takes care of creating the proper connections
among these VNFs. Similarly to Heat, also Neutron has been
extended to support the flow-rule primitive*. When Neutron

2This algorithm acts as follows: first, all the Nova compute nodes that are
not able to run a VM are filtered (e.g., because the VM requires an hypervisor
that is not available on the node). Then, a weight is associated with each one
of the remaining servers, and the one with higher weight is selected to run the
VM. The weights are calculated by considering the resources available on the
machine.

3Note that no modification has been required by Nova compute in order to
support the deployment of the FGs.

4The f1ow-rule is functional equivalent to the Neutron official traffic steer-
ing extension [19]. However, it has not been used in our prototype because: (i)
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receives a flow-rule, it retrieves the network topology from
ODL and then creates the proper Openflow f1lowmod messages
required to steer the traffic on the physical infrastructure. At
this point, the flowmods are provided to ODL, which sends
them to the proper switches; note that these switches could be
either inside a Nova compute node, or physical switches used
to interconnect several servers, in case the VNFs have been in-
stantiated by the Nova scheduler on many compute nodes.

In addition to the components described so far, each Open-
Stack deployment also includes the network node, which is a
particular server running some services such as a NAT, a DHCP
server, a load balancer and a router; moreover, by default it is
crossed by all the traffic entering/leaving the cluster of servers.

Similarly to the integrated node, also the OpenStack-based
node notifies the service layer when a new user terminal con-
nects to the node itself in order to allow the system to redirect
that traffic to the authentication graph.

6.5. Discussion: Openstack-based node vs. integrated node

Table 2 summarizes the main differences between the inte-
grated node and the OpenStack-based node. As shown, the
main advantage of the latter is its capability to deploy SGs
in an existing cloud environment (albeit with some modifica-
tions), which facilitates the introduction of those services in
telecom operator networks; in fact, operators often already have
OpenStack instances active in their data centers. However,
this very important advantage is balanced by severe limitations
compared to the integrated node.

First, OpenStack does not allow the service layer to have
the complete control of the service chain, as each OpenStack
domain is connected to the Internet through the network node
(Section 6.4) and all the packets towards/from the Internet are
forced to traverse the network services running in this compo-
nent (e.g., NAT and router), even if the SG does not include
those functions.

Second, the OpenStack-based node cannot optimize the
placement of the VNFs based on their layout in the FG, e.g.,
possibly instantiating two consecutive VNF within the same
graph on the same physical server. This is due to the fact that
the OpenStack scheduler, implemented in Nova, is unaware of
the overall layout of the FG: this information is only received
by Heat and it is not passed down to the Nova scheduler. To
make things worse, the Nova scheduler is invoked individually
per each VNF that has to be scheduled and therefore it is unable
to implement even a simple optimization such as scheduling all
the VNFs of the same FG on the same server. This problem is
not present in the integrated node as it receives the entire FG,
hence it has all the information related to the required VNFs
and the paths among them, hence potentially scheduling the
VNFs on the available CPUs by considering their position in
the graph, with the obvious advantages in terms of overall per-
formance.

it was not available when this prototype was created (July 2014); (ii) it does not
support ports that do not belong to a VM.



Table 2: Integrated node vs OpenStack-based node.

H Integrated node

OpenStack-based node

Compatible with existing No Yes
cloud environments
Complete control of the FG Yes No (due to the network node)
Support to smart scheduling of the FG Possible Requires many changes to the OpenStack internals
Type of VNFs Docker containers, DPDK processes, VMs | VMs, Docker containers (not completely supported)

Third, the integrated node shows better memory consump-
tion compared to the OpenStack-based node, whose compo-
nents have not been created for resource-constrained environ-
ments as this is unlikely to occur in (almost resource-unlimited)
data centers.

Finally, the OpenStack-based node supports only VM-based
VNFs, as the initial support for Docker containers appears
still rather primitive. Vice versa, the integrated node supports
VNFs implemented as Docker containers, VMs and DPDK pro-
cesses, which seems to suggest the possibility to write more
lightweight and efficient VNFs, particularly with respect with
the potentially better I/O capabilities, which represent a fun-
damental difference from VNF and traditional VM-based ser-
vices.

7. Prototype validation

To validate the architecture described in the paper, we carried
out several tests aimed at both testing the functionalities imple-
mented, and to measure the performance of the infrastructure
layer in terms of throughput, latency introduced and resource
required. The tests were repeated both with an infrastructure
layer consisting of a single integrated node, as well as in case
of an OpenStack cluster composed by two compute nodes. Note
that, in the latter case the graphs are split so that the VNFs are
distributed between the two physical servers.

7.1. Service overview

The FGs deployed in the tests are shown in Figure 12; ac-
cording to our use case, these graphs include the authentica-
tion graph used to authenticate new end users connected to the
network, and the telecom operator graph, which provides con-
nectivity to the Internet and that is crossed by the traffic gener-
ated from/going towards all the end users. The control network
of this telecom operator graph also includes a firewall, so that
only the authorized entities (e.g., the telecom operator itself)
can control and configure the deployed VNFs.

The end user graph provides an example of traffic steering,
since it requires that the web traffic is delivered to a traffic mon-
itor and then to a firewall that blocks the HTTP GET towards
specific URLs, while the other packets simply traverse a second
traffic monitor VNF. Thanks to the control interface of the traf-
fic monitors we are able to observe the packets flowing through
the specific VNF, and hence to validate the correct behavior of
the traffic steering mechanism.
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Figure 12: Use case scenario.

During the tests carried out on the OpenStack-based node,
the VNFs are implemented as VMs running on the KVM hy-
pervisor. In contrast, in the tests with the integrated node, the
firewall is implemented as a DPDK processs, while all the oth-
ers VNFs are implemented as Docker containers. In particular,
both the VMs and the Docker containers run an Ubuntu oper-
ating system, and the VNFs are implemented through standard
Linux tools (e.g., iptables).

As a final remark, according to our use case and the current
implementation of the architecture, the end users are directly
connected to the node on which their graphs are deployed.

7.2. Performance evaluation

This section shows the tests executed in order to measure the
performance of the preliminary implementation of our architec-
ture.

During the tests, a machine is dedicated to the execution of
the service layer (i.e., SLApp, Keystone and Horizon) and the
global orchestrator; it is equipped with 16 GB RAM, 500GB
HD, Intel i7-2620M @ 2.7 GHz (one core plus hyperthreading)
and OSX 10.9.5, Darwin Kernel Version 13.4.0, 64 bit, which
is the same for both the infrastructure nodes.

The infrastructure layer is implemented on a set of servers
with 32 GB RAM, 500GB HD, Intel i7-3770 @ 3.40 GHz CPU
(four cores plus hyperthreading) and Ubuntu 12.04 server OS,
kernel 3.11.0-26-generic, 64 bits. In case of the integrated node,
one of those machines executes all the software. In case of
OpenStack-based node, a first machine hosts the infrastructure
controller (Heat, Nova scheduler, Nova API, Neutron and ODL)

3Note that this firewall is a quite simple single thread process based on the
libpcre regular expression engine, which drops all the packets matching spe-
cific regular expressions.
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and the network node, while two other machines are dedicated
to the implementation of two Nova compute nodes (which are
connected through a Gigabit Ethernet link).

The memory required by the different components of the sys-
tem is reported in Figure 13, in which the consumption related
to the Nova compute node and to the integrated node has been
measured without any VNF deployed. As shown, the infras-
tructure controller for the OpenStack-based node is the heavi-
est component, while the requirements of the integrated node,
which is almost based on ad hoc modules, is quite reduced.

According to Figure 14, we repeated the tests in the following
conditions: (i) user device and server directly connected using
a gigabit Ethernet link; (ii) user devices connected, through a
gigabit Ethernet network, to the node on which the graphs are
deployed, which is in turn connected to the server through a
second gigabit Ethernet link. Moreover, as node running the
VNFs, we used: the integrated node, an OpenStack-based node
with a single server, and an OpenStack-based node consisting
of two servers connected with a gigabit Ethernet link.

The first test carried out aims at measuring the latency intro-
duced by the deployed services (Figure 12); in particular, the
user device(s) sends 100 ping towards the server, and the re-
sults were averaged and reported in Figure 14(a). Figure 14(b)
shows instead the results of the second test executed, aimed
at measuring the throughput obtained during the download of a
file of 512 MB from the server; the download has been done us-
ing the Linux tool wget, which uses the HTTP protocol. Hence,
according to the user graph, while the ping is not handled by the
firewall, this VNF is instead involved during the file transfer.

As expected, the deployment of a SG on the network does
not come for free, since the numbers obtained are reduced with
respect to the case in which no service is instantiated between
the user device and the server. However, as evident from the
figure, this penalty is limited when the graph is deployed on
an OpenStack-based node consisting of a single server, both
in case a single user graph is instantiated (in addition to the
authentication and the telecom operator graphs) and in case of
two (identical) user graphs. In this last condition, the test has
been executed with both the users pinging/transferring the file
at the same time, and the results have been averaged in the table.

Instead, when the graphs are scheduled in an OpenStack clus-
ter of two nodes, performance are worse in both the types of
test; for this reason, the measurements have not been repeated
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with two users connected to the node. The low performance are
a consequence of the fact that the standard scheduling algorithm
implemented in OpenStack scheduled the user VNFs in a way
so that each packet crosses four times the link between the two
compute nodes. This confirms the necessity of the introduction,
in the Nova scheduler, of an algorithm that schedules the VNFs
on the physical servers according to their interconnections in
the graph®.

Surprisingly, results obtained with the integrated node are
extremely low, unless the entire graph is deployed on a single
server. We are currently investigating the reason for this poor
performance, although we suspect they are related to the packet
exchange mechanism between the vSwitch and the Docker con-
tainers (currently based on the DPDK KNI ports), which should
be carefully optimized.

8. Conclusion and future works

This paper presents a network orchestration architecture that,
starting from the service required by multiple players (e.g., end
users, telecom operator), takes care of instantiating it on the
physical infrastructure of the network, by exploiting the oppor-
tunities offered by the Network Functions Virtualization (NFV)
and Software Defined Networking (SDN) paradigms.

The contribution of this paper is twofold. First, we pro-
posed a new formalism, called service graph (SG), to flexibly
model end-to-end network services. The SG data-model de-
scribes how to deliver flexible network services, leveraging ex-
isting elements and the traffic steering primitives introduced by
NFV/SEC. It is worth noting that this SG definition is com-
pletely compliant with NFV principles of abstract description
of a service, but enriches its traditional expressiveness to model
legacy networks and services.

The second contribution is made by the introduction of the
forwarding graph (FG) and the “lowering process” that leads
to the deployment of an optimized service. This translation
process is capable to adapt the service delivering to available
resources of the underlying infrastructure; moreover, it is also
able to detect specific capabilities of selected nodes adapting
the infrastructure graph obtained as output.

In order to validate our model, we implemented two proto-
types of nodes for the physical infrastructure: the integrated
node and the OpenStack-based node. While the former consists
of a single server mainly based on ad hoc components, the lat-
ter is implemented as a cluster of server orchestrated by the an
extended version of the OpenStack framework. Experimental
results showed that, while the integrated node has low require-
ments in terms of memory, its performance are overcome by the
OpenStack-based node in almost all the tests carried out.

It is worth pointing out that the modifications proposed to the
“vanilla” OpenStack were designed by avoiding to change ex-
isting API or disrupt former primitive behavior provided by the

®Note that the same algorithm should also be implemented in the global or-
chestrator, which schedules the VNFs on the proper nodes of the infrastructure
layer.
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Figure 14: Performance of the infrastructure layer: (a) ping; (b) file transfer.

platform. Therefore, those add-ons can be silently integrated
in a previous installation, transparently enriching the network
capabilities of an OpenStack domain.

As a plan for the future, we foresee two different challenges
to be pursued in order to let this architecture to properly scale
to the telecom operator network size. First, the proposal of an
algorithm to implement a network-aware scheduling, capable of
deploying VNFs on the physical infrastructure by considering
the paths expressed into the graph.

Second, the definition of a hierarchical orchestration layer
through the whole telecom operator network. This would al-
low the deployment of a FG across multiple administrative do-
mains, in which the lower level orchestrators expose only some
information to the upper level counterparts. This scenario is
perfectly compatible with our architecture and will be the ob-
ject of further analysis; in fact, the global orchestrator presented
in the paper has syntactically identical northbound and south-
bound interfaces, and hence a hierarchy of orchestrators is pos-
sible.

As a final remark, the configuration parameters for the net-
work functions, as well as the possibility of assessing formal
properties on them, are out of the scope of this paper and will
be investigated in our future work.
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