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Abstract

In this work droplet breakage in turbulent liquid-liquid dispersions is
simulated by using computational fluid dynamics and population balance
modelling. Model predictions are validated against experimental data for
eight test cases, namely stirred tanks with different geometries and different
continuous and disperse phases. The two first test cases correspond to two
geometrically similar stirred tanks (one being the scale up of the other) work-
ing under the same power input per unit mass with water as continuous phase
and a mixture of chlorobenzene and toluene as disperse phase. The last six
test cases correspond to a slightly different geometry, working with water as
continuous phase and different silicon oils as disperse phase, characterized by
different viscosity values, stirred at different stirring rates. Simulations are
performed with our implementation of the quadrature method of moments
for the solution of the population balance model into the open-source com-
putational fluid dynamics code OpenFOAM. Two different breakage kernels
are considered in this work, based respectively on the classical homogeneous

∗Corresponding author: Daniele Marchisio; e-mail: daniele.marchisio@polito.it; tel.:
+390110904622; fax: +390110904699

Preprint submitted to Chemical Engineering Science November 18, 2015



and multifractal turbulence theories. Analysis of the kernels and comparison
with experiments reveal that the second kernel results is better agreement
with experiments, a more accurate description of the underlying physics and
presents the additional advantage of having no fitting constants.

Keywords:
Stirred tanks, Liquid-liquid dispersions, Computational fluid dynamics,
Population balance model, quadrature method of moments, breakage

1. Introduction

Liquid-liquid turbulent dispersions are omnipresent in the chemical in-
dustry for conducting several operations (i.e. extraction, polymerization,
emulsification, etc.) with important implications in the food, cosmetic, min-
eral and petro-chemical fields. Numerous properties of the dispersion are
of interest, but one of the most important is the droplet size distribution
(DSD), which determines its stability, rheological features and its capability
of exchanging mass (and energy and momentum) with the continuous phase.
Knowledge of the DSD and its relationship with the fluid dynamics of the
above mentioned apparatuses is also very important, as shown by Maaß et al.
(2011); Lane et al. (2005); Drumm et al. (2009).

This knowledge can be achieved nowadays with computational fluid dy-
namics (CFD) coupled with a Population Balance Model (PBM). Among the
different methods available, the one most interesting for the investigation
of industrial scale liquid-liquid multiphase systems, is the two-fluid model
(TFM) (Drew, 1982; Drew and Passman, 2006), implicitly assuming that one
of the two phases is continuous, whereas the other one is disperse. The TFM
is coupled with PBM to predict the evolution of the DSD (Ramkrishna, 2000),
as shown in numerous applications (Hu et al., 2015; Attarakih et al., 2015;
Favero et al., 2015). Many methods have been developed to solve the PBM,
such as the classes method (CM) (Kumar and Ramkrishna, 1996), the Monte
Carlo method (MCM)(Lin et al., 2002; Buffo et al., 2013b; Zhang and You,
2015; Hussain et al., 2015) and the method of moments (MOM) (Hulburt
and Katz, 1964). To overcome the so-called closure problem in the MOM,
a strategy based on the use of a quadrature approximation was introduced,
resulting in the quadrature method of moment (QMOM) (McGraw, 1997),
the Direct Quadrature Method of Moments (DQMOM) (Marchisio and Fox,
2005), the Conditional Quadrature Method of Moments (CQMOM) (Cheng
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et al., 2010; Yuan and Fox, 2011) and the Sectional Quadrature Method of
Moments (SQMOM) (Attarakih et al., 2009). An overview of these methods
can be found in the literature (Marchisio and Fox, 2013).

One major problem in the development of a fully-predictive model is
the availability of reliable sub-models for describing the different phenomena
involved, notably the kernels for coalescence and breakage. These kernels
should be derived from theory and contain universal constants, that need
not to be tuned or fitted to match experimentally observed trends. One
of the first investigations in this field was carried out by Coulaloglou and
Tavlarides (1977), that together with Ramkrishna (1974) showed how to use
the statistical theory of turbulence to derive kernels. The same methodology
was then applied by Luo and Svendsen (1996) to simulate gas-liquid systems.
In more recent years other studies have appeared and new kernels proposed
(Mart́ınez-Bazán et al., 1999; Alopaeus et al., 2002). Although some of these
kernels resulted in decent agreement with experiments, the constants appear-
ing in them seem not to be universal. Moreover, these kernels often fail when
challenged to simulate the scale-up or scale-down of an apparatus or when
the physical properties of the continuous or disperse phases are changed.
Experiments conducted at different scales showed that some important phe-
nomena (due to turbulence intermittency) are generally neglected in most of
the kernels available in the literature (Podgórska, 2005). Also experiments
conducted at high viscosity ratios (between disperse and continuous phases)
showed non-trivial effects that are often not captured by the currently avail-
able kernels (Cho and Kamal, 2002; Becker et al., 2014).

This work focuses on one particular mechanism of droplet breakage and
aims at comparing the predictions obtained with our recent implementation
of QMOM in OpenFOAM (Buffo et al., 2013a) by testing two different break-
age kernels. The kernels tested are the one by Coulaloglou and Tavlarides
(1977) (CT), based on the Kolmogorov turbulence theory, and the “multifrac-
tal” (MF) kernel, based on the multifractal theory of turbulence, developed
by Baldyga and Podgórska (1998). The adoption of this latter kernel, to-
gether with the use of OpenFOAM are the main novelties of this work. Sim-
ulation predictions are compared with experiments corresponding to eight
different test cases, allowing to draw some general conclusions. The two first
test cases correspond to two geometrically similar stirred tanks (one being
the scale-up of the other) working under the same power input per unit mass,
with water as continuous phase and a mixture of chlorobenzene and toluene
as disperse phase (Podgórska, 2006a). The last six test cases correspond to a
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same geometry, working under different stirring rates, with water as continu-
ous phase and three different silicon oils, characterized by different viscosity
values, as disperse phases (Podgórska, 2006b).

2. Governing equations

The main equations employed in the TFM and in the PBM will be dis-
cussed here, together with the description of the constitutive equations for
the MF and for the CT breakage kernels.

2.1. Two-fluid model

As already mentioned, in the TFM both phases are described in terms
of their volume fractions and average velocities and treated as continuum
inter-penetrating phases. The continuity equation for the volume fraction of
the disperse phase reads as follows:

∂ (αdρd)

∂t
+∇ · (αdρdUd) = 0, (1)

where αd is the volume fraction of the disperse phase, ρd is its density and
Ud is its average velocity. The volume fraction of the continuous phase
(αc) is generally calculated by knowing that volume fractions sum to unity
(αd + αc = 1).

The average velocities of the disperse phase (Ud) and of the continuous
phase (Uc) are calculated by solving the corresponding momentum balance
equations:

∂ (αdρdUd)

∂t
+∇ · (αdρd (Ud ⊗Ud)) +

∇ · (αdτ d) +∇ · (αdRd) = −αd∇p+ αdρdg + Md, (2)

∂ (αcρcUc)

∂t
+∇ · (αcρc (Uc ⊗Uc)) +

∇ · (αcτ c) +∇ · (αcRc) = −αc∇p+ αcρcg −Md, (3)

where p is the pressure shared by the two phases (Drew, 1982; Drew and
Passman, 2006), τ d and τ c are the viscous-stress tensors, Rd and Rc are the
Reynolds-stress tensors, g is the gravitational acceleration vector and Md is
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the interfacial force term. The viscous-stress and Reynolds-stress tensors for
the disperse phase (and similarly for the continuous phase) can be modeled
by using the well-known Boussinesq approximation.

The Reynolds-averaged Navier-Stokes equation (RANS) approach was
found to be a good trade-off between accuracy and computational costs for
fluid-fluid systems (Petitti et al., 2009, 2013). In particular the extension to
multi-phase systems of the single-phase standard k−ε model is the most pop-
ular method to simulate dilute turbulent multi-phase flows (Gosman et al.,
1992; Behzadi et al., 2004) and is also adopted in this work.

The right-hand sides of Eq. (2) and of Eq. (3) contains some important
terms that deserve a thorough discussion. Md describes the momentum
exchange between the two phases and requires a certain degree of modelling.
This term is usually composed by three phase-weighted forces: drag, virtual
mass and lift (Gosman et al., 1992). In the present work, only the drag force
is taken into account, whereas the others are neglected; this simplification
hypothesis is indeed valid for liquid-liquid dispersions in stirred tanks, as the
velocity field is dominated by the turbine rotation. The drag force can be
calculated with the following equation (Rusche, 2003):

Md = αdαc

(
3

4
CD

ρd
d
|Ur|

)
Ur, (4)

where Ur = Uc−Ud is the relative slip velocity and CD is the drag coefficient,
which is usually determined empirically and depends on the properties of the
droplets. In this work, the correlation of Schiller and Naumann (1935) is
used:

CD=

{
24
Re

(
1 + 0.15Re0.687

)
Re ≤ 1000

0.44 Re > 1000
, (5)

where the droplet Reynolds number is based on the local droplet diameter:
Re = ρc|Ur|d

µc
. This correlation was found to be adequate for dilute systems,

characterized in other words by low volume fractions of the disperse phase
(i.e. smaller than 1 %). Moreover, it is worth mentioning that this correlation
does not consider the role of the turbulence on the drag force (Karimi et al.,
2012).

It is worth mentioning here that the droplet diameter appears in Eq. (5),
implying that the drag force acting on each droplet is different for polydis-
perse systems. A common approximation is to calculate the average drag
force acting on a population of droplets by using the mean Sauter diameter,
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i.e. d ≈ d32 (Buffo and Marchisio, 2014). This approximation was found to be
valid for most liquid-liquid dispersion, where the DSD is often quite narrow,
the densities of the disperse and continuous phases are close to each other
and when the DSD is limited in the micrometer range. As well known the
mean Sauter diameter is the ratio between the moments of order three and
two of the DSD, therefore the problem is now how to calculate the moments
of the DSD.

2.2. Population Balance Model

The droplet size distribution (DSD) changes due to breakage and coa-
lescence and its evolution is dictated by the PBM. Due to the low volume
fraction of the disperse phase, coalescence is neglected in this work, and only
breakage is considered, as done in other similar works (Gäbler et al., 2006;
Maaß et al., 2012). The main equation constituting the PBM that governs
the evolution of the DSD reads as follows (omitting space and time depen-
dencies):

∂n(d)

∂t
+∇ · (n(d)Ud) =

∞∫
d

β (d, d′)g (d′)n (d′) dd′ − g (d)n (d) , (6)

where n(d) is the DSD and d is the droplet size, g is the breakage kernel
(or frequency of breakage) and β(d, d′) is the daughter distribution function
stating the size distribution of daughter droplets originating from a mother
droplet of size d′. More details about Eq. (6) can be found in the book of
Ramkrishna (2000); McGrady and Ziff (1987) proposed the adopted formu-
lation for breakage. A detailed derivation of Eq. (6) when written by using
length as internal coordinate can be found in the literature (see for example
Marchisio et al. (2003)).

As mentioned QMOM is used to solve the PBM. The method is based
on the idea of solving transport equations for the moments of the DSD. As
already mentioned the lower-order moments are very important since they
are related to specific physical properties of the DSD, most importantly the
mean Sauter diameter is defined as follows: d32 = m3

m2
. The resulting closure

problem emerging on the right-hand side of Eq. (6) is overcome by using a
quadrature approximation of order N , resulting in the following “represen-
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tation” of the moment of order k:

mk(t,x) =

+∞∫
0

n (t,x, d) dk dd ≈
N∑
α=1

wαd
k
α, (7)

where dα are the N abscissas and wα are the N weights, in turn calculated
from the first 2N lower-order moments with the product-difference or the
Wheeler algorithms, as illustrated in the book by Marchisio and Fox (2013).

By applying QMOM the transport equation for the moment of order k
becomes:

∂mk

∂t
+∇ · (Udmk) =

N∑
α=1

wαg(dα)

 +∞∫
0

β (d, dα) dk dd− dkα

 , (8)

where the integral appearing on the right-hand side is generally solved ana-
lytically (once the functional form of β is defined).

Another underlying simplification hypothesis is that all the droplets are
moving with the same velocity: Ud. This simplification is possible, for liquid-
liquid dispersions, since the DSD is generally narrow enough not to have
significant “size-segregation” effects. In fact, due to the close density of
disperse and continuous phases and to the fact that the DSD is limited in
the micrometer range, droplets of different sizes confined in a small region of
the domain are characterized by velocities very close to the average droplet
velocity. This simplification is not inconsistent with the use of a PBM as in
different regions of the vessel, droplets might be characterized by different
mean Sauter diameters, and therefore different average velocities.

2.3. Breakage kernels

Different kernels have been proposed to describe droplet breakage and one
of the most popular is the CT breakage kernel (Coulaloglou and Tavlarides,
1977; Maaß and Kraume, 2012; Maaß et al., 2012):

g(d) = C1
ε1/3

d2/3
exp

(
−C2

σ

ρcε2/3d5/3

)
, (9)

where C1 and C2 are dimensionless constants (in this work C1 = 0.00481 and
C2 = 0.08 as explained by Liao and Lucas (2009)), ε is the turbulent energy
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dissipation rate, ρc is the density of the continuous phase and σ is the inter-
facial tension. The kernel has been derived from the statistical turbulence
theory and theoretically C1 and C2 are universal constants that should be
valid for any fluid-fluid system. However, in its derivation some simplification
hypotheses were made, impacting the accuracy of the model, and introducing
some uncertainty (in turn reflected on the constants C1 and C2 that are no
longer universal). Although clearly stated by the authors in their derivation,
these simplifications are often overlooked, and it is therefore useful to list
them here. It was assumed that the breakage rate depends on the turbulent
energy dissipation rate only, with no other turbulence properties involved,
and that the effect of viscous stresses, opposing to droplet deformation, are
negligible.

In order to overcome these limitations other kernels have been proposed,
such as the one adopted also in this work, namely the multifractal (MF)
kernel (Baldyga and Podgórska, 1998; Podgórska, 2006b). This kernel was
preferred over others since it accounts efficiently for both effects neglected by
the CT kernel. As a matter of fact, the MF kernel takes into account the in-
fluence of internal intermittency on breakage and is based on the multifractal
description of turbulence. Internal intermittency (i.e. large fluctuations on
the turbulent dissipation rate) is responsible for scale effects and is therefore
expected to play a major role in scaling up and down processes involving
liquid-liquid dispersions. Last but not least, the MF kernel is consistent with
the drift of the exponent on the Weber number, observed experimentally and
appearing in the expression for the maximum stable droplet size.

Finally it is important to remind that the breakage mechanism considered
by both the CT and MF kernel is pressure fluctuations. However, one must
be aware of the possibility of simultaneous mechanisms, including droplet
breakage under shear flow on the impeller blade and in the two-dimensional
elongational flow field in front of the impeller blade (Kumar et al., 1998).
The importance of these additional mechanisms is relevant at high values of
the disperse phase volume fraction, which is not the case of this study, that
considers dilute dispersions. Droplet elongation and breakup on the impeller
blades is important at the very beginning of the process, when the disperse
phase is introduced into the tank. This part of the process is however not
modeled in this work.

In the MF kernel the fine scale structure of turbulence is taken into ac-
count. This structure is connected with vortex tube stretching, which leads to
the formation of regions of space of high vorticity, surrounded by nearly irro-
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tational fluid. Such intermittent structure of turbulence is modeled by using
the multifractal turbulent theory (Frisch and Parisi, 1985; Frisch, 1995). The
overall breakage rate, g(d), is calculated from g (d, α), that in turn depends
on the characteristic frequency of eddies (of scale d, equal to the droplet
size) and on their activity (characterized by the singularity strength, α, also
known as the scaling or multifractal exponent). Knowledge of the probabil-
ity of eddy appearance, P (α) dα, suffices for the calculation of the overall
breakage rate:

g(d) =

αx∫
αmin

g (d, α)P (α) dα. (10)

The probability density, P (α), can be expressed for a one dimensional cut
of the dissipation field (for fully developed turbulence) by the following ex-
pression (Chhabra et al., 1989; Baldyga and Podgórska, 1998):

P (α) ≈

√
ln

(
L

d

)(
d

L

)1−f(α)

, (11)

where L is integral scale of turbulence and f(α) can be interpreted as the
fractal dimension. The entire dissipation field, with energy dissipation rate
over a box of size r scaling as: εr ∼ εL (r/L)α−1, is a superposition of values
between αmin and α. The relationship between f(α) and α (i.e. the multi-
fractal spectrum) can be measured and is well approximated by the following
expression (Podgórska and Ba ldyga, 2003):

f (α) = a+ bα + cα2 + dα3 + eα4 + fα5 + gα6 + hα7 + iα8, (12)

with a = −3.51, b = 18.721, c = −55.918, d = 120.9, e = −162.54, f =
131.51, g = −62.572, h = 16.1, i = −1.7264 for α ≥ 0.12. The polynomial
coefficients were obtained by fitting to experimental data of Meneveau and
Sreenivasan (1991).

The application of this multifractal interpretation of the fine-scale struc-
ture of turbulence results in a functional form for g(d) that depends not
only on the turbulence energy dissipation rate, ε, but also on the integral
length-scale of turbulence L (Baldyga and Podgórska, 1998):

g(d) = Cg

√
ln

(
L

d

)
ε1/3

d2/3

αx∫
αmin

(
d

L

)α+2−3f(α)
3

dα, (13)
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where Cg = 0.0035. The integral length-scale of turbulence, calculated from
the following equation:

L =
(2k/3)3/2

ε
, (14)

allows to introduce the influence of the system scale on droplet breakage.
The multifractal exponent α, which characterizes the different activity of
eddies acting on droplets of diameter d, enables us to determine also the
whole spectrum of stresses:

p (d, α) ∝ ρc (εd)2/3 (d/L)2(α−1)/3 . (15)

The most vigorous turbulent events are labeled by αmin that corresponds
to the most active eddies and the highest stresses; this value is known
(αmin = 0.12) from the literature (Meneveau and Sreenivasan, 1991). The
upper bound of the integral in Eq. (10) and Eq. (13), αx, represents instead
the weakest eddies that are still capable of breaking droplets of diameter d.
This formulation of the model explains very slow breakage of small droplets
resulting from decreasing αx with decreasing d. The integration in Eq. (13) is
performed in order to account for all possible contributions from eddies char-
acterized by an exponent between αmin and αx. When αx approaches αmin

then the integral in Eq. (13) approaches zero, indicating that an asymptot-
ically stable droplet size is attained. It is important to notice that α = 1
labels quasi-stable droplet size.

When the viscosity of the disperse phase is low, the droplet is broken if
the turbulent disruptive stress due to pressure fluctuations exceeds the shape
restoring stress due to the interfacial tension. In this case the weakest eddies
that can disrupt the droplet are characterized by a multifractal exponent
given by the following expression:

αx =
2.5 ln

(
Lε0.4ρ0.6c

Cxσ0.6

)
ln (L/d)

− 1.5. (16)

This equation can be applied for disperse phases with low viscosity and indeed
accounts for interfacial tension effects, as the lower the interfacial tension is
the smaller the stabilizing stresses are. That results in a faster breakage.

When the disperse phase viscosity is high, additional stabilizing stresses
must be taken into account. Eddies are now considered vigorous enough to
break the droplet if they can elongate it to such an extent that it is broken,
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even if it is released from the stress. The upper limit of the integral results
now from the balance between pressure fluctuations, viscous stress inside the
droplet and interfacial stress and, therefore, is a function of both the disperse
phase viscosity, µd, and the interfacial tension, σ:

αx = 3

ln

2

(
βµC

5/3
x µd

ρcε1/3L1/3d
+

√(
βµC

5/3
x µd

ρcε1/3L1/3d

)2
+ 4C

5/3
x σ

ρcL2/3dε2/3

)−1
ln (L/d)

, (17)

where βµ = ln(2)C
−5/3
x

β∗Cp
and where Cx = 0.23, Cp = 1.4 and β∗ = 3. This model

was used to predict the droplet size evolution in stirred tanks for different
liquid-liquid dispersions of low as well as high disperse phase viscosity, with
or without surface active additives and with changes in the interfacial tension
(Baldyga and Podgórska, 1998; Podgórska, 2005, 2006b; Bak and Podgórska,
2013; Jasińska et al., 2014).

2.4. Daughter distribution function

As it can be seen from Eq. (8) the calculation of the DSD requires knowl-
edge of the size of the droplets that are formed during the breakage process,
contained in the so-called daughter distribution function: β (d, d′). Depend-
ing on the operating conditions, on the properties of the continuous and
disperse phases and on other factors (i.e. presence of additives) different
behaviors were detected, corresponding to different daughter distribution
functions: Bell-shape, U-shape and M-shape. A detailed discussion on the
different daughter distribution functions can be found in the work of Liao
and Lucas (2009). In this work the distribution proposed by Laakkonen et al.
(2006):

β (d, d′) = 180

(
d2

d′3

)(
d3

d′3

)2(
1− d3

d′3

)2

, (18)

is employed. Equation (18) assumes that two droplets are formed in the
breakage process and that symmetric breakage is the most likely event. It
is useful to remind here that the daughter distribution function has a large
impact on the final DSD but limited impact on the mean Sauter diameter,
therefore is of secondary importance when using QMOM. Finally it is also
important to remind that this choice is consistent with what proposed by
Coulaloglou and Tavlarides (1977) and that when Eq. (18) is substituted
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into Eq. (8) an analytical solution exists for the term in between squared
brackets (for k ≥ 0):

+∞∫
0

β (d, dα) dk dd− dkα =
3240dα

k

(k + 9) (k + 12) (k + 15)
− dkα. (19)

Moreover, the chosen daughter distribution function results in narrow DSD
and is consistent with the simplifying assumption about the uniform droplet
velocity. Both breakage kernels: CT and MF, reported in Eq. (9) and
Eq. (13), together with the daughter distribution function, reported in Eq. (19),
were implemented with QMOM (i.e., Eq. (8)) into OpenFOAM.

3. Implementation in OpenFOAM

In this study the solver compressibleTwoPhaseEulerFoam of the open-
source CFD code OpenFOAM-2.2.x was adopted to simulate the liquid-liquid
dispersion. The solver was integrated with the PBM solved with QMOM with
six moments (and therefore three nodes and three weights of quadrature).
Details on the implementation of QMOM in OpenFOAM can be found in
our previous work (Buffo et al., 2013a, 2014). As mentioned, in order to
investigate the effect of the breakage kernel on the final predictions both the
CT and MF kernels were implemented.

The Gauss-Legendre numerical integration (Golub and Welsch, 1969)
method was adopted to calculate the integral appearing in the MF kernel
reported in Eq. (13). Due to the integrand’s complexity, adequate Gauss-
Legendre nodes should be selected in order to have an acceptable trade-off
between computational time and accuracy. In this work five Gauss-Legendre
nodes were employed.

The governing equations were solved by the PIMPLE (merged PISO-
SIMPLE) algorithm implemented in OpenFOAM. As well known, it is ef-
ficient for simulating transient incompressible or compressible flows with
large time-steps. The main difference between the PIMPLE algorithm, when
compared with the SIMPLE and PISO algorithm is that it allows under-
relaxation during each time step, improving numerical robustness, and al-
lowing the use of large Courant numbers (and therefore large time steps
which is suitable for this work). More details about the PIMPLE algorithm
can be found in Passalacqua and Fox (2011).
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CFD and PBM can be linked together by using different strategies, de-
pending on the phase coupling. In some multi-phase systems, characterized
by tight phase-coupling CFD and PBM need to be updated at each time
step, following this procedure (mainly adopted in all our previous works):

1. First the equation for the volume fraction of the disperse phase is solved
together with the turbulence model equations.

2. Abscissas and weights of quadrature are calculated from the initial
values of the six moments of the DSD; subsequently the right-hand
side of Eq. (8) is also calculated and the equation for the moment of
order k can now be solved.

3. From the updated values of the moments of the DSD the mean Sauter
diameter is calculated, allowing for the evaluation of the interfacial force
and the subsequent solution of the momentum balance and Poisson
pressure equations.

4. The iterative procedure is repeated from point 1.

However, being the disperse phase quite dilute, the system is characterized
by a weak coupling between CFD and PBM. This can be easily quantified by
computing a characteristic mixing time, as for example the ratio between the
turbulent kinetic energy and the turbulent dissipation rate in the vessel, and a
characteristic breakage time, as the inverse of the breakage kernel (Marchisio
et al., 2006). By using proper characteristic values for the variables involved
the mixing time-scale is evaluated to be smaller than 0.1-0.01 s, whereas the
breakage time time-scale larger than 1-10 s, confirming that for these specific
test cases mixing is faster than breakage. These time-scale can also be used
to define the following strategy to operate the “weak coupling” between TFM
and PBM.

At first only the governing equations of the TFM were solved, to obtain
the steady-state flow field information (with a fixed mean Sauter diameter
chosen a-priori). Then the TFM governing equations are disabled, the flow
and turbulent fields “frozen” and the PBM is solved for a number of time
steps. Every fixed number of time steps the flow field is updated, based on
the new mean Sauter diameter value, but once a pseudo-steady-state for the
flow field is reached, the TFM equations are frozen again. Based on the time-
scale analysis it was decided that for every second of actual simulated time
with the PBM, only 0.1 seconds of PBM with TFM were also simulated. This
optimal is valid for the geometries and operating conditions investigated in
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this work; however, different systems might have different optimal solution
strategies.

4. Test cases and numerical details

In order to investigate the capability of the CT and MF kernels to sim-
ulate droplet breakage the three different stirred tanks described in Table 1
and Fig. 1 were simulated, under the operating conditions and with the con-
tinuous and disperse phases reported in Table 2.

H T D W
T1 0.300 0.242 0.075 0.0242
T2 0.175 0.151 0.047 0.0151
T3 0.150 0.150 0.075 0.0150

Table 1: Geometry characteristics of the three stirred tanks investigated in this work. H
is height of tank (m), T is the diameter of the tank (m), D is the diameter of the impeller
(m), W is the width of the baffles (m).

Geometry µc µd ρc ρd σ φd N
Case 1 T1 1.00 0.72 998 1022 0.0250 0.0020 300
Case 2 T2 1.00 0.72 998 1022 0.0250 0.0020 392
Case 3 T3 0.89 10.00 997 946 0.0458 0.0038 240
Case 4 T3 0.89 10.00 997 946 0.0458 0.0038 350
Case 5 T3 0.89 100.0 997 985 0.0464 0.0038 300
Case 6 T3 0.89 100.0 997 985 0.0464 0.0038 350
Case 7 T3 0.89 500.0 997 973 0.0505 0.0038 300
Case 8 T3 0.89 500.0 997 973 0.0505 0.0038 350

Table 2: Fluid properties and operating conditions investigated in this work: µc is the
viscosity of the continuity phase (mPas), µd is the viscosity of the dispersed phase (mPas),
ρc is the density of continuity phase (kg m−3), ρd is the density of dispersed phase (kg
m−3), σ is the surface tension between the two phases (Nm), φd is the global disperse
phase volume fraction (-) and N is the impeller rotational speed (rpm).

In total eight cases were investigated in this work. Case 1 is exactly the
geometrical scale up of the Case 2, the scaling factor calculated from the
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Figure 1: Geometry of the stirred tanks investigated in this work: T1 (top), T2 (bottom
left) and T3 (bottom right). The unit is mm.
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length of the tank is 1.71. The stirring speed was adjusted so that the power
input per unit mass was exactly the same, resulting in the same (for Cases
1 and 2) experimentally measured Power number. Cases 3 to 8 were carried
out in a different geometry (T3) characterized by a larger impeller diameter
to tank diameter ratio and under different stirring rates and viscosities of the
disperse phase. In particular, in Cases 3 and 4, 5 and 6, 7 and 8, three silicone
oils differing in viscosity were considered. They, however, differ slightly in
interfacial tension (see Table. 2). Measured interfacial tension values for
silicone oils of viscosity 10 mPas and 100 mPas are very similar (the difference
is only 1.3%) and the difference between the smallest and largest σ for silicone
oils is also not very large.

Experiments were performed in completely filled tanks enclosed by stain-
less steel cover. In Cases 1 and 2 dispersion samples were withdrawn from
the tank, placed on microscope slide and stabilized with sodium dodecyl sul-
fate (SDS). A high resolution digital camera was used to capture droplet
images from a microscope. Very good quality of obtained images allowed au-
tomatic droplet size analysis using Visilog software. In Cases from 3 to 8 the
dispersion was monitored on-line. The stirred tank was placed in a square
jacked to avoid optical distortion. High resolution digital camera RETIGA
EX mounted on a stereo microscope objective was used in experiments. Ex-
posure time was set to 15 µm, StreamPix 2.1.1 was applied to capture droplet
images and Image Pro Plus 4.5 was used to determine the DSD. Measure-
ments were performed by placing three points on the droplet perimeter. The
number of drops used per each droplet size distribution was about 800-1000.
The original experimental data for the first two cases can be found in the
work of Podgórska (2006a), corresponding to an experimentally measured
Power number of 6.0, whereas the last six cases can be found in the work
of Podgórska (2006b), corresponding to an experimentally measured Power
number of 5.5.

The different computational meshes, discretizing only half of the geometry
by means of periodic boundary conditions, were generated with Ansys ICEM
and then exported into the OpenFOAM environment. The motion of the
stirrer was modelled by using the Multiple Reference Frame (MRF) approach
(Luo et al., 1994).

The final number of cells for the computational grids of T1 and T2 was ex-
actly the same, corresponding to 170,413 hexahedral cells. The final number
of cells for the computational grid of T3 was 168,910 again with hexahedral
cells. All the impellers and baffles in each computational grid were repre-
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Figure 2: Final computational mesh used for T1.

sented as zero-thickness objects; this simplification was considered acceptable
as rendering the thickness of these objects increased significantly the compu-
tational costs but did not affect appreciably the final predictions. Sketch of
the final mesh for T1 are reported in Fig. 2. For all these test cases the final
meshes were found to be sufficiently fine to characterize the flow and turbu-
lent fields, as resulted from the grid independence analysis conduced in this
work and reported in Table 3. The table reports, only for Case 2, the com-
parison between the experimentally measured Power number and the Power
number predicted by the CFD code, calculated from the torque:

Po =
2π(N/60)Tq
ρc(N/60)3D5

, (20)

and from the volume-average turbulent dissipation rate:

Po =
εV

(N/60)3D5
. (21)

In the above equations Tq is the torque applied to the stirrer and ε is the
volume-average dissipation rate in the tank. The corresponding numbers for
the other test cases are omitted as they are very similar. Closer observation
of Table 3 reveals that by increasing the number of cells in the mesh, the
Power number calculated from the torque becomes closer and closer to the
experimental value, and that a number of cells equal to 170k results in rea-
sonable agreement. It is also worth mentioning that the mismatch between
the Power number calculated from the torque applied to the stirrer and from
the torque applied to the walls of the vessel becomes negligible only at this
level of grid refinement.
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N. of Po Po Po
cells (torque) (ε) (experimental)
25k 2.65 1.7

6
110k 4.82 3.0
170k 4.84 3.1
390k 4.90 3.2

Table 3: Grid independence investigation for Case 2. For all the different cell numbers
Po (torque) is calculated from Eq. (20), Po(ε) is calculated from Eq. (21) whereas Po
(experimental) is the corresponding experimental measurement.

It is also worth pointing out that the Po calculated from Eq. (21) is al-
ways underestimated and grid refinements seem not to help much. As well
known this problem comes from the shortcomings of the turbulence model
adopted in this work, which underpredicts the turbulence dissipation rate in
the discharge region of disk turbine impeller. Similar underestimations when
using the RANS approach can be found in the literature (Montante et al.,
2001; Paul et al., 2004), whereas only when using large eddy simulation
(LES) predictions seem in accordance with experimental data (Aubin et al.,
2004). This underestimation poses a serious problem to our simulations, as
the breakage kernel depends also on the turbulent dissipation rate. Underes-
timating the turbulence dissipation rate means underestimating the breakage
rate, hindering the capability of the approach to simulate the evolution of the
DSD. In order to overcome this problem, and because the underestimation of
the turbulent dissipation rate is a well known problem, a correction for the
turbulent dissipation rate, εcorr, consistently applied to all the investigated
kernels, is introduced in this work. εcorr is calculated from Eq. (22):

εcorr =
Poexp

PoCFD

, (22)

where Poexp is experimentally measured Power number, PoCFD is Power num-
ber calculated from CFD. The correction scales the turbulent dissipation rate
field of a factor, in order to match the experimentally measured Power num-
ber. The specific εcorr values used in this study are reported in Tab. 4 and
range between 1.4 and 1.9. Although this empirical and simple approach
seems to affect the predictive power of the adopted methodology, it is a nec-
essary measure until more sophisticated turbulence models are developed. In
addition this correction is applied only when the turbulence dissipation rate
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is employed inside the PBM, namely in the CT kernel of Eq. (9) and in the
MF kernel of Eq. (13).

Poexp PoCFD εcorr
Case 1 6.0 4.2 1.43
Case 2 6.0 3.1 1.94
Case 3 5.5 3.9 1.41
Case 4 5.5 3.8 1.45
Case 5 5.5 3.8 1.45
Case 6 5.5 3.8 1.45
Case 7 5.5 3.8 1.45
Case 8 5.5 3.8 1.45

Table 4: Correction for the turbulent dissipation rate (εcorr, -) used in Cases 1 to 8.

An overview of the numerical schemes and of boundary conditions used
in this work can be found in Table 5.

Variable Scheme Boundary conditions
at walls

Droplet vol. frac. Second-order TVD scheme Zero grad.
with vanLeer flux limiter

Droplet velocity Second-order TVD scheme No-slip
with vanLeer flux limiter

Cont. liquid velocity Limited second-order No-slip
central scheme

Pressure Limited second-order Zero grad.
central scheme

k Limited second-order Std. wall func.
central scheme

ε Limited second-order Std. wall func.
central scheme

Moments First-order upwind Zero grad.

Table 5: Numerical schemes used in the test cases.
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5. Results and discussion

Let us start by analyzing the comparison between the frequency of breakup
predicted by the CT kernel and the MF kernel, plotted in Fig. 3 as a func-
tion of droplet size, for different values of the turbulent dissipation rate,
ε, turbulent kinetic energy, k and viscosity of the disperse phase, µd. The
other fluid properties are taken from Table 2 and correspond to Case 4. It
is worth pointing out that the predictions for the CT kernel are identical for
different values of the viscosity of the disperse phase, since there is no ex-
plicit dependency in the kernel formulation. For this reason the predictions
for µd = 10 mPas and for µd = 500 mPas result in one single line (dashed
blue line). On the contrary for the MF kernel, the two viscosity values re-
sult in very different trends for the breakage frequency, as depicted by the
continuous and dashed red lines in Fig. 3. In fact, MF kernel contains the
dependency on the viscosity of the dispersed phase as shown in Eq. (17).

It should be remarked, moreover, that the CT kernel depends only on the
turbulent dissipation rate and not on other turbulent quantities. This means
that if the PBM is solved via a lumped zero-dimensional model for different
systems, characterized by the same ε but for example by different k, the
results in terms of breakage rate predictions will be exactly the same. Again
only using the MF kernel other turbulence effects such as intermittency that
affects the breakage rate will be taken into account even in lumped zero-
dimensional models.

The experiments of liquid-liquid systems in stirred tanks are usually car-
ried out by starting with the disperse phases not fully dispersed yet. The
detailed methods about how the disperse phase is introduced into the con-
tinuous phase can be found in the work of Podgórska (2006a,b). The spirit
of the methodology adopted in the experiments is that the disperse phase is
introduced by using a long needle just above the impeller. In such a way the
freshly added disperse phase is prevented from sticking to the upper tank
plate. The disperse phase is then fed until the desired global disperse phase
volume fraction is reached, but no information regarding the initial DSD is
available from the experiments. Therefore, simulations with different initial
DSDs were performed, in order to estimate the effect of this input parameter
on the final time evolution of the mean Sauter diameter. Results, correspond-
ing to Cases 1 and 2, are reported in Fig. 4 for initial mean Sauter diameters
of 520 µm and 110 µm and for the CT kernel. As it is seen both simulations
converge, after 2000 seconds, to the same mean Sauter diameter, showing
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Figure 3: Breakage frequency/kernel versus droplet diameter for CT kernel with
µd = 10 mPas and 500 mPas and ε = 0.1 m2s−3 (dashed blue line), for MF kernel
with µd = 10 mPas, ε = 0.1 m2s−3 and k = 0.1 m2s−2 (solid red line) and for MF kernel
with µd = 500 mPas, ε = 0.1 m2s−3 and k = 0.1 m2s−2 (dashed red line).

therefore that the effect of the initial mean Sauter diameter is marginal, if a
sufficiently long time interval is simulated.
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Figure 4: Time evolution of the mean Sauter diameter predicted with the CT kernel for
Case 1 (left) and Case 2 (right) starting from an initial mean Sauter diameter of 110 µm
(dashed line) and 520 µm (solid line).

Next, the time evolutions for the mean Sauter diameter predicted with
the CT and MF kernels for Cases 1 and 2 are compared with experimental
data in Fig. 5. In the experiment the agitation lasted for 5 hours, but the
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Sauter Mean diameter tended to converge after 1 hour. Hence, simulations
are reported in the figure only for 2000 seconds, although in some case longer
times were also simulated (i.e. 7200 seconds). The initial diameter was 520
µm for both cases and both kernels result in acceptable agreement with
experiments. As it can be seen, the predictions of the final mean Sauter
diameter with the CT and MF kernels are very similar for the large tank
and small tank, whereas a slightly larger difference is detected for the MF
kernel. This is because in the MF kernel the effect of local intermittency is
considerd. It is also seen that droplet sizes predicted by MF model are still
decreasing very slowly because very rare but very strong stresses are capable
to break small droplets.

0 500 1000 1500 2000 7200
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

M
e
a
n
 S

a
u
te

r 
d
ia

m
e
te

r
(m

)

Time (s)

Figure 5: Comparison of the time evolution of the mean Sauter diameter predicted by the
CT kernel (dashed line) and the MF kernel (continuous line) for Case 1 (red line) and Case
2 (blue line) with experimental values for Case 1 (red circle) and Case 2 (blue square).
The simulation’s plot is cut after 2000 seconds

It is important to stress here that Cases 1 and 2 correspond to two ge-
ometrically similar tanks, operating at different stirring rates, so that the
global power input per unit mass is exactly the same. This is confirmed by

22



our simulations, that show for the two cases the very same volume-averaged
turbulent dissipation rate, ε. If this value was used in two lumped zero-
dimensional simulations for Cases 1 and 2 the very same results would have
been obtained with the CT kernel, whereas only using the MF kernel different
results would have been obtained. The fact that the CFD-PBM predictions
are different for Cases 1 and 2 also with the CT kernel is due to the fact
that the two tanks are characterized by the same volume-averaged turbulent
dissipation rate, ε, but by different turbulent dissipation rate distributions
in the T1 and T2 geometries. This is evidenced in Fig. 6, where among other
variables, contour plots of the turbulent dissipation rate are reported. As
it is seen, although Cases 1 and 2 correspond to the same ε, locally some
differences in ε are observed, resulting in different predictions for the mean
Sauter diameter. These differences in the local ε values, come with different
predictions also for the turbulent kinetic energy, k, and for the velocity mag-
nitude, Ud and Uc, resulting therefore in even larger differences when the
MF kernel is used.

It is now interesting to consider the contour plots for the disperse phase
volume fraction, αd, and the mean Sauter diameter, d32, reported in Fig. 7.
As it is seen for both CT and MF kernels the contour plots shape are quite
similar. Besides this, for both Cases 1 and 2 the disperse phase is quite
homogeneously distributed and the mean Sauter diameter is also quite uni-
form in the vessels. This is an interesting result that shows that under
these operating conditions mixing in the vessel is quite fast and capable of
distributing the droplets around. This implies that, under these operating
conditions, mixing is capable of quickly homogenizing the gradients created
by the breakup process. In other words breakup is still very strong around
the impeller and almost null far away from it, but mixing is making the
dispersion homogeneous. This however does not mean that these two cases
could be well simulated by a zero-dimensional model, that considers only
one value of the turbulent dissipation rate (e.g. ε), as the interplay between
mixing and breakup would be totally neglected, and more importantly the
fact that different regions of the vessels operate under different breakup rates
would be completely overlooked.

Let us now consider Cases 3 to 8, where different viscosities of the dis-
perse phase are considered at different stirring rates. For these simulations
the initial mean Sauter diameters were equal to the experimental data after
five minutes of stirring. The initial mean Sauter diameters of these cases
are respectively: 0.232, 0.122, 0.243, 0.204, 0.557 and 0.404 mm. First we
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Figure 6: Contour plots from top to bottom of turbulent energy dissipation rate (ε, m2

s−3), turbulent kinetic energy (k, m2 s−2) and continuous phase velocity magnitude (Uc,
m s−1) for Case 1 (left) and Case 2 (right) at 2000 seconds.
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Figure 7: Contour plots from top to bottom of the disperse phase volume fraction (αd, -)
by CT kernel (first row) and MF kernel (second row), and mean Sauter diameter (d32, m)
by CT kernel (third row) and MF kernel (fourth row) for Case 1 (left) and Case 2 (right)
at 2000 seconds.
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consider Cases 3 and 4 where another value for the viscosity (µd = 10 mPas)
of disperse phase is investigated at two stirring rates. The comparison with
experiments of the predictions of the CT and MF kernels is reported in Fig. 8.
As expected, for the higher stirring rate the predicted (experimentally mea-
sured and simulated) mean Sauter diameters are smaller. Both kernels can
predict good agreement with experiments, with the predictions obtained with
the CT kernel reaching slightly smaller values.

0 500 1000 1500 2000
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

M
e
a
n
 S

a
u
te

r 
d
ia

m
e
te

r 
(m

)

Time (s)

Figure 8: Comparison of the time evolution of the mean Sauter diameter predicted by the
CT kernel (dashed line) and the MF kernel (continuous line) for Case 3 (green line) and
Case 4 (black line) with experimental values for Case 3 (green square) and Case 4 (black
circle).

In Cases 5 and 6 a higher viscosity for the disperse phase (µd = 100 mPas)
is investigated, whereas in Cases 7 and 8 an even higher value (µd = 500
mPas) is considered. The predictions of the CT and MF kernels of Cases 5
and 6, 7 and 8 at different stirring rates are compared in Fig. 9 and Fig. 10
with experimental data. As it can be seen for these four cases only the MF
kernel results in decent agreement with experiments, whereas predictions ob-
tained with the CT kernel severely underestimate the mean Sauter diameter.
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As mentioned this is due to the fact that the CT kernel does not account for
the viscosity effects of the disperse phase. As a matter of fact, the final mean
Sauter diameter value predicted by CT kernel for Case 8 tends to be the
same of those predicted in Cases 4 and 6, since Cases 4, 6 and 8 are operated
under the same stirring rate, which results in similar turbulent dissipation
rate values, ε. Additional contour plots for Cases 7 and 8 are reported in
Fig. 11. As it is seen for both Cases 7 and 8 the disperse phase is not quite
homogeneous (compared to Cases 3 and 4) as it accumulates at the top of the
tank surrounding the impeller shaft. This implies that for a high viscosity
of the disperse phase, droplets are not easy to break; these large droplets
tend to accumulate at the top as a consequence of the buoyancy force and
as confirmed by visual observation conducted during experiments.
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Figure 9: Comparison of the time evolution of the mean Sauter diameter predicted by the
CT kernel (dashed line) and the MF kernel (continuous line) for Case 5 (red line) and Case
6 (blue line) with experimental values for Case 5 (red square) and Case 6 (blue circle).
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Figure 10: Comparison of the time evolution of the mean Sauter diameter predicted by
the CT kernel (dashed line) and the MF kernel (continuous line) for Case 7 (light blue
line) and Case 8 (purple line) with experimental values for Case 7 (light blue square) and
Case 8 (purple circle).
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Figure 11: Contour plots from top to bottom of the disperse phase volume fraction (αd,
-) and mean Sauter diameter (d32, m) with MF kernel for Case 7 (left) and Case 8 (right)
at 2000 seconds.
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6. Conclusions

In this work, the TFM is coupled with the PBM, solved with QMOM,
to simulate turbulent liquid-liquid dispersion undergoing breakage. Two dif-
ferent breakage kernels (the CT and the MF kernels) were adopted in our
simulations, performed with the open-source CFD code OpenFOAM. Eight
different test cases were simulated in three geometrically different tanks work-
ing under different operating conditions and with different continuous and
disperse phases, in order to investigate scale-up and disperse phase viscos-
ity effects. Eventually the mean Sauter diameters calculated from the CT
kernel and MF kernel were compared with experimental data, providing our
simulations with the necessary validation.

Our CFD results show that, for dilute systems, the disperse phase is dis-
tributed rather homogeneously and that the mean Sauter diameter is uniform
in the vessel. As the turbulent intermittency phenomenon is considered in
the MF kernel, it can predict larger mean Sauter diameter differences, com-
pared with the CT kernel, when dealing with scale-up operations. Both the
CT and MF kernels are capable of adequately describing the mean Sauter di-
ameter predictions for operations with low viscosity disperse phase, however
the CT kernel underpredicts the mean Sauter diameter when dealing with
high viscosity disperse phases, whereas the MF kernels results in satisfactory
predictions. Last but not least, the MF kernel contains universal constants
that were derived from theory and need not to be changed when simulating
other systems.

In our future work we will consider test cases characterized by higher vol-
ume fractions, where the effect of coalescence is no more negligible. Moreover
the problem of adequately describing, with lumped zero-dimensional models,
droplet breakage in large stirred tanks will also be investigated.
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