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Abstract. In superconducting tokamaks, cryoplants provide the helium needed to cool the 

superconducting magnet systems. The evaluation of the heat load from the magnets to the 

cryoplant is fundamental for the design of the latter and the assessment of suitable strategies to 

smooth the heat load pulses induced by the pulsed plasma scenarios is crucial for the operation. 

Here, a simplified thermal-hydraulic model of an ITER Toroidal Field (TF) magnet, based on 

Artificial Neural Networks (ANNs), is developed and inserted into a detailed model of the 

ITER TF winding and casing cooling circuits based on the state-of-the-art 4C code, which also 

includes active controls. The low computational effort requested by such a model allows 

performing a fast parametric study, to identify the best smoothing strategy during standard 

plasma operation. The ANNs are trained using 4C simulations, and the predictive capabilities 

of the simplified model are assessed against 4C simulations, both with and without active 

smoothing, in terms of accuracy and computational time. 

1.  Introduction 

In the ITER tokamak, the low-Tc superconducting (SC) magnets will be cooled by supercritical helium 

(SHe); in particular, each magnet subsystem, among which the Toroidal Field (TF) coils, will have a 

dedicated cryogenic loop, that will eventually transfer the heat to the cryoplant [1]. One of the main 

issues, from the point of view of the cryoplant design, is the pulsed nature of the (inductive) tokamak 

operation, which makes the design load of the cryoplant much higher than what is actually needed during 

most of the operation, leading to lower efficiency and higher costs. In order to smooth the heat load 

variation during the pulse, a saturated liquid helium (LHe) bath is used as a thermal buffer (see Figure 

1), but, as this is still not enough, several active strategies to achieve this smoothing are being 

investigated [2, 3, 4]. 

Detailed thermal-hydraulic (TH) tools are already available for the transient analysis of the magnets 

operations, such as the 4C code [5], which has been tested against several transients from different 

magnets [6, 7], and validated against experimental data from the HELIOS loop [8, 9, 10] and from 

full-size magnet systems as well [11, 12, 13]. Unfortunately, the level of detail of such tools is paid in 

terms of computational effort, and they cannot be applied, for instance, for the real-time assessment and 

control of the cryoplant operation, which however does not require such a level of detail about the 

magnets themselves.  

Soft computing techniques, like Artificial Neural Networks (ANNs), were applied for the first time 

by our group to the problem of the cooling of the ITER SC magnets in the absence of controls, aiming 
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at the prediction of the evolution of the heat load to the cryoplant during standard plasma operation. In 

particular, the new technique was successfully applied to the operation of the HELIOS loop [14], as 

well as of the ITER Central Solenoid (CS) [15] and the ITER TF acting in nominal operating 

conditions [16], showing that ANNs are able, when suitably trained, to reproduce the experimental 

(HELIOS) and simulated (CS, TF coils) dynamics of the system and to lead to a fast and accurate 

evaluation of the heat load to the LHe baths.  

Recently, the emphasis of this approach has been shifted to the demonstration of the capability of 

ANN-based models to reproduce the dynamics of cryogenics circuits where an active control of the 

cooling (regulation of the mass flow rate) is needed. This approach has been proved to work and 

validated against experimental and computed results in HELIOS [17] and it has been successfully 

applied to the controlled operation of the ITER CS [18]. However, as a main difference with respect to 

the ITER CS, in the case for the ITER TF coils a significant role in the system dynamics is played by 

radial plates in the winding pack and casing [19, 20]. The winding and the casing, subject to different 

heat loads acting during different phases of the plasma pulse, are thermally coupled through the 

ground insulation. For these reasons, the ITER TF requires a more sophisticated ANN model than that 

developed for the ITER CS [18]. 

Here we show how the ANN-based model of the ITER TF magnet winding pack and casing 

cooling, suitably embedded in the 4C TF circuit model where control/regulation of the cooling circuits 

can be achieved by, for instance, the opening of the bypass valve in the casing cooling loop (Figure 2), 

can be used to investigate and test control strategies for mitigation of the heat load from the coils to 

the cryoplant, as soon as the ANNs are suitably trained. 

 

 

Figure 1. Schematic view of the cooling 

strategy of the ITER TF magnets. A 

heat exchanger (HX) releases the pulsed 

heat loads coming from the magnets 

during tokamak operation to a thermal 

buffer, which smooths the thermal load 

transferred to the cryoplant. 

2.  ANN model of the TF cooling loops 

The ANN model used in the present work is shown in the inset in Figure 2, together with the 4C 

model of the two TF coil cooling circuits [19, 20]. The model has the same structure of that reported in 

[16]: in fact all the components are the same, with the exception of the ANNs, that must be trained in 

order to follow also a transient in which there is active control on the mass flow rate inside the coil. 
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All the ANNs are feed-forward networks: in fact, there is no need for a closed feedback loop, as the 

required information is provided to the network directly by the circuit [21].  

 

 
 

 

 

Figure 2. 4C model of the ITER TF cooling loops, with the detail on the 

ANN model of WP and casing in the inset. The variables transferred from 

the circuit to the ANNs and viceversa are reported in italic with dashed 

arrows, while the power inputs to the ANNs are shown with solid thin 

arrows (details can be found in [16]). 

 

The heat loads to the winding and casing are first given in input to two separate ANNs (one for the 

winding, Wa, and the other one for the casing, Ca), which have been trained from simulations in which 

winding and casing were adiabatic (i.e., connected through a perfectly insulating material). These 

networks receive also in input the inlet and outlet pressure from the 4C circuit model, as shown in the 

inset of Figure 3. As outputs, these networks compute the inlet and outlet mass flow rates, which are 

provided directly to the 4C circuit model, and the “adiabatic” He temperature at the coil outlet. In a 

second stage, two coupling ANNs (Wc and Cc) post-process the “adiabatic” outlet temperatures 

computed by Wa and Ca, providing the 4C circuit model with the outlet temperatures of the coil WP 

and casing, and properly accounting for the thermal coupling between the two. 
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2.1.  Training 

To train all the networks needed to build the model, the results of several 4C simulations have been 

used. All the heat loads (nuclear radiation and AC losses in the winding, nuclear radiation, eddy 

currents and vertical stabilization in the casing) were considered, and applied with a sigmoid 

waveform with varying amplitude [14], in order to cover the whole range foreseen for plasma 

operation; the spatial distribution of the heat deposition was the same of the standard operating 

scenario of ITER [19, 20]. In addition, simulations have been done keeping the heat load at constant 

level, but varying the mass flow rate through the casing cooling channels, again with a sigmoid 

waveform, acting on the bypass valve or on the mass flow forced by the circulator. The training range 

is represented by the grey area in Figure 3, which includes the whole trajectory of the system. 

 

 

Figure 3. Trajectory in the phase space of the best smoothing scenario: (a) input variables; (b) 

output variables. 

3.  Results 

3.1.  Standard plasma operation (no active control and regulation) 

In order to check its validity, the model has been initially tested against the standard operating 

scenario at 15 MA, with a total nuclear heat load of 14 kW (the waveform of the heat load during the 

1800 s of the pulse is reported in [16]), without any action of the control system.  

In order to reach periodicity, the pulse is repeated 5 times; the results are shown in Figure 4, 

compared with the full 4C results in the same conditions [19, 20], in terms of power to the LHe baths 

of the winding and casing. The accuracy of the ANN model is very good, with a relative error at peak 

power ~3% for the winding and ~4.2% for the casing (once periodicity has been reached).  

Note that the very small loss in accuracy compared to the 4C code corresponds to a huge gain in 

speed: the ANN model is ~10
3
 times faster than the full 4C model, and it can be much faster than real-

time basically independently on the hardware used for the simulation. 

3.2.  Standard plasma operation (active control and regulation) 

3.2.1.  Test of heat load smoothing strategies through the ANN model. Since the ANN model has been 

proven to be very accurate, it can be used in place of the detailed model to evaluate different strategies 

to smooth the heat load to the cryoplant, allowing e.g. parametric studies to be performed in a very 

short time.  

We concentrate here on the smoothing of the heat load by opening the bypass valve (BVC, see 

Figure 2) in the casing circuit, which is 100% closed in nominal conditions. The opening of the BVC - 

the maximum value for the valve opening is set to 20%, leading to a reduction of the mass flow rate 
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through the coil of ~30% - is controlled with a PI controller, which acts on the basis of the value of the 

heat exchanged at the LHe bath (evaluated as total enthalpy drop through the heat exchanger). The 

parameters driving the PI controller action are: 

 Set-point (SP): is the value of power that the controller tries to reach and keep constant; 

 Proportional gain (Kp): controls how much the controlled variable changes, for a given 

change in the input; the higher its value, the faster the controller response; 

 Integrator time constant (ti): controls the dependency of the controlled variable on the 

integral of the error; the contribution of the integral term results in a faster evolution of the 

process variable towards the set-point, but may cause overshoot. The higher the value of ti, 

the smoother the response. 

 

 

Figure 4. Computed evolution of the power from the winding (right axis, thin lines) and 

casing (left axis, thick lines) cooling circuits to the respective LHe baths, during a 

repetitive 15 MA – 14 kW plasma scenario. ANN (dashed lines) and 4C (solid lines) 

results. 

 

Here a parametric study is performed on each of these control parameters, as summarized in Table 

1, to find the most effective smoothing strategy. The results of this study are shown in Figure 5, where 

only the third pulse is shown, while the chosen values of the parameters are reported in the third 

column of Table 1. 

 

Parameter Tested range Best value 

Set-point (SP) 700 W - 940 W 820 W 

Proportional gain Kp 5×10
-4

 - 5×10
-2

 5×10
-3

 

Integrator time constant ti 100 s 
1
 100 s 

 

                                                      
1
 The parameter ti has not been tested, as its effect is similar to that of Kp. 

Table 1. Reference and best values for the parameters of the PI controller. 
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In Figure 5a, b the integrator time constant ti and the proportional gain Kp have been kept equal to 

100 s and 5×10
-3

, and only the SP was changed. It is shown that, the lower SP value (700 W) is too 

low and cannot be followed with the chosen value for the maximum opening, and so the peak power 

increases up to ~820 W, much higher than the set point. This value is then chosen as SP for a second 

attempt: also in this case the controller reaches saturation (Figure 5b), but for a time period much 

shorter, so that the power remains at the set-point level. A final attempt is done considering a high 

value for the SP (940 W): the controller does not saturate, and the variation of the BPV opening is too 

small to reach a significant reduction of the heat load peak reduction. 

In Figure 5c, d ti is kept constant (100 s) as well as SP (820 W), while Kp is progressively increased 

from 5×10
-4

 to 5×10
-2

: as expected, this has the effect of making the response of the regulated variable 

progressively faster. In the first case (Kp = 5×10
-4

), the smaller gain has the effect of an averaging filter 

on the valve opening, allowing a large power increase before the control becomes effective and 

leaving the valve open when it is not necessary anymore. In the latter case (Kp = 5×10
-2

), the valve 

responds quickly to small variations in the power, leading to big oscillations during transients. The 

effect of ti is not shown here, as it is similar (but reversed with respect) to that of Kp: the higher ti, the 

slower the response. 

The best smoothing scenario among those considered here corresponds to SP = 820 W, 

Kp = 5×10
-4

. The trajectory of this best scenario is plotted in the phase space of the training, to gain 

confidence in the computed solution by checking a posteriori that is does not go beyond the limits seen 

during the training phase, see Figure 3. 

 

 

Figure 5. Results of the parametric analysis on the effect of the variation of the set-point (a, b) and 

effect of the variation of the proportional gain (c,d ) in the controller: (a, c) evolution of the power 

transferred to the LHe bath and (b, d) of the BVC opening. The lines with ‘x’ markers represent the 

strategy identified as the best one. 
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3.2.2.  Comparison of ANN and 4C models for the best smoothing scenario. When the best smoothing 

strategy has been chosen, the computed results are compared with those obtained by the 4C code, in 

terms of accuracy and computational time. The outcome of the comparison is presented in Figure 6. 

As already shown in Figure 3, the heat load to the LHe baths computed using the ANN model is again 

very accurate, with an error on the peak power of ~1.2% in a periodic pulse, but at a computational 

cost which is reduced  ~1200 times with respect to the 4C code. 

The very high level of accuracy in the computed heat load, together with the gain in speed, allows 

concluding that the ANN model can be further used to develop and test alternative smoothing 

scenarios in a reliable way, provided the transient stays inside the training range for the ANN input 

and output variables.  

 

 

Figure 6. Comparison of the ANN model (dashed lines) and the 4C model (solid lines) for the best 

smoothed scenario: (a) evolution of power to the LHe bath of the casing cooling circuit (right axis, 

thin lines) and of the winding (left axis, thick lines); (b) BVC opening. 

4.  Conclusions and perspective  

A simplified model of an ITER TF coil cooling circuits has been developed based on ANNs trained 

using the results of several 4C code simulations. The ANNs have then been embedded into the 4C 

model for the cryogenic loops and used as black boxes instead of the 4C detailed model of winding 

and casing. 

This simplified model has been shown to be able to reproduce the results of the full 4C model with 

a very good accuracy, both when no control is acting on the cryogenic loop and when the bypass valve 

in the casing cooling loop is regulated by means of a PI controller. The model has been 

demonstratively used here to optimize the combination of parameters characterizing the PI controller, 

aimed at achieving the best smoothing among the different tested options, in terms of capability to 

keep the heat load at the set-point level. 
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The ANN-based model turns out to be ~10
3
 times faster than that based on the full 4C code, and, as 

such, fully compatible with real-time operation. It is therefore a viable tool for the design and 

optimization of control strategies, provided the system trajectory remains inside the parameter range of 

the training. 
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