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Let F ⊆ P
7 be the image of the Segre embedding of P1 × P

1 × P
1. In the present 

paper we deal with the moduli spaces of locally free sheaves E of rank 2 with 
hi
(
F, E(t)

)
= 0 for i = 1, 2 and t ∈ Z, on F .

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let PN be the projective space of dimension N over an algebraically closed field k of characteristic 0. 
If F ⊆ P

N is an n-dimensional projective variety, i.e. an integral connected closed subscheme, we set 
OF (h) := OPN (1) ⊗ OF . We say that F is arithmetically Cohen–Macaulay (aCM for short) if the natural 
restriction maps H0(

P
N , OPN (t)

)
→ H0(F, OF (th)

)
are surjective and Hi

(
F, OF (th)

)
= 0, 1 ≤ i ≤ n − 1. 

From now on we will assume n ≥ 2. A vector bundle E over an aCM variety F of dimension n is called aCM 
if all the intermediate cohomology groups of E vanish, namely if Hi

(
F, E(th)

)
= 0 for 0 < i < n and t ∈ Z.

If F is just Pn, then a well-known theorem of Horrocks (see [30] and references therein) states that E is 
aCM if and only if E splits as direct sum of invertible sheaves.
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When F is a smooth quadric hypersurface, Knörrer’s theorem (see [24]) asserts that an indecomposable 
aCM bundle E on F is either OF or a spinor bundle, up to twist by multiples of OF (h) (see [31] for the 
definition of the spinor bundles on F and their properties).

The case of hypersurfaces of higher degree is very interesting. Indeed, an important theorem of [4] states 
that such an F supports infinitely many isomorphism classes of indecomposable aCM bundles of arbitrary 
rank. These families have been studied by many authors: see for instance [5].

Another interesting direction is to look at Fano varieties i.e. smooth varieties such that the anticanonical 
sheaf ω−1

F is ample (see [21] for a review about Fano varieties). The greatest positive integer r such that 
ωF

∼= L−r for some ample L ∈ Pic(F ) is called the index of F . It is known that 1 ≤ r ≤ n +1 and r = n +1
(resp. r = n) if and only if F = P

n (resp. F is a smooth quadric hypersurface). This case is settled by the 
theorem of Horrocks (resp. Knörrer).

Let us look at the next case r = n − 1. In this case F is called a del Pezzo variety. Let L be very ample 
on F and consider the corresponding embedding F ⊆ P

N . Then 3 ≤ deg(F ) ≤ 9 and we know that such an 
F is also of “almost minimal degree”. Indeed deg(F ) = N − n + 2.

According to Eisenbud–Herzog classification theorem (see [12]) n-dimensional non-degenerate subvarieties 
of PN supporting only finitely many indecomposable aCM bundles (up to twist and isomorphism) all have 
minimal degree N − n + 1 (although not all varieties of minimal degree have this property, see [15] for a 
detailed treatment). So again del Pezzo manifolds seem to be one of the most interesting benchmarks to 
study aCM bundles. Some results on vector bundles on del Pezzo surfaces are known (e.g. see [9,13]). We 
focus our attention on the case n = 3, i.e. the case of threefolds. The first non-trivial bundles appear in 
rank two and we will particularly study this case.

When the Picard number �(F ) is 1, a complete classification of indecomposable aCM bundles of rank 2 on 
F has been given by E. Arrondo and L. Costa (see [2]) using the so-called Hartshorne–Serre correspondence 
between vector bundles of rank 2 and subvarieties of codimension 2 satisfying an extra technical condition 
(see [34,18,1] for details on the correspondence). More precisely they showed that if one twists a bundle E
by OF (th) in such a way that h0(F, E) 	= 0 and h0(F, E(−h)

)
= 0 (we briefly say that E is initialized) and 

c1(E) = c1h, then 0 ≤ c1 ≤ 2 and it is possible to characterize E in terms of the zero-locus of a general 
section in H0(F, E).

It is also natural to analyze aCM bundles in terms of semistability and μ-semistability (see [20] as a 
reference for semistable bundles and their moduli spaces). It is possible to show the following facts for each 
del Pezzo threefold F with Pic(F ) generated by OF (h).

• If c1 = 0, then E is never semistable (though μ-semistable).
• If c1 = 1, then E is stable: M. Szurek and J. Wiśniewski proved in [33] that the corresponding moduli 

space is an irreducible projective variety of dimension 5 − deg(F ).
• If c1 = 2, then again E is stable: moreover the corresponding moduli space was proved to be irreducible 

of dimension 5 by S. Druel when deg(F ) = 3 in [10], by A. Kuznetsov and by D. Faenzi independently 
when deg(F ) = 4, 5 in [25] and [14] respectively.

When �(F ) > 1 the only known results are due to the authors of the present paper when �(F ) = 3
(see [7]). In this case F is exactly the image inside P7 of the Segre embedding of P1 × P

1 × P
1: in this case 

deg(F ) = 6. Denote by πi : F → P
1 the ith-projection and let OF (hi) := π∗

iOP1(1): then the intersection 
ring A(F ) of F is isomorphic to A(P1) ⊗A(P1) ⊗A(P1) (see [16], Example 8.3.7). In particular

A(F ) ∼= Z[h1, h2, h3]/(h2
1, h

2
2, h

2
3).
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Now let E be an indecomposable, initialized, aCM bundle of rank 2 on F and set c1(E) = α1h1+α2h2+α3h3. 
In the aforementioned paper it is proved that, up to permutations of hi’s, only the following cases are possible 
(and actually occur) for (α1, α2, α3):

(0, 0, 0), (0, 0, 1), (2, 2, 1), (1, 2, 3), (2, 2, 2).

Notice that there exist initialized, aCM bundles E of rank 2 on F with det(E) = OF (h), but they are always 
decomposable as OF (h1 + h2) ⊕ OF (h3), up to permutations of the hi’s, thus they are not μ-semistable 
(or, in a more suggestive form inspired by the lower degree cases, the locus of these bundles has dimension 
−1 = 5 − 6).

The aim of the present paper is to construct and describe the moduli spaces of such bundles in the above 
cases, when they are semistable. We are able to prove the following statement in Section 3.

Theorem A. Let E be an indecomposable, initialized, aCM bundle of rank 2 on F and let c1(E) = α1h1 +
α2h2 + α3h3. Then the following assertions hold.

(1) If (α1, α2, α3) = (0, 0, 0), then E is strictly μ-semistable.
(2) If (α1, α2, α3) is either (0, 0, 1) or (2, 2, 1), then E is μ-stable.
(3) If (α1, α2, α3) = (2, 2, 2), then E is μ-stable, unless it fits into an exact sequence of the form

0 −→ OF (2h1 + 2h2 + h3 − 2hi) −→ E −→ OF (2hi + h3) −→ 0,

where i = 1, 2, in which case it is strictly semistable.
(4) If (α1, α2, α3) = (1, 2, 3), then E is μ-stable, unless it fits into an exact sequence of the form

0 −→ OF (h1 + 2h3) −→ E −→ OF (2h2 + h3) −→ 0,

in which case it is strictly semistable.

In view of the above theorem, it is interesting to understand the structure of the moduli spaces corre-
sponding to semistable bundles. To this purpose we first need to prove they are non-empty. In [7] also the 
second Chern class of the bundle is computed. We obtain the following results.

• If (α1, α2, α3) = (0, 0, 1), then c2(E) is either h2h3, or h1h3.
• If (α1, α2, α3) = (2, 2, 1), then c2(E) is either h2h3 + 2h1h3 + 2h1h2, or 2h2h3 + h1h3 + 2h1h2.
• If (α1, α2, α3) = (1, 2, 3), then either c2(E) = 4h2h3 + h1h3 + 2h1h2 or c2(E) = 3h2h3 + 3h1h3 + h1h2.
• If (α1, α2, α3) = (2, 2, 2), then, up to permutations of the hi’s, either c2(E) = 2h2h3 + 3h1h3 + 3h1h2 or 

c2(E) = 2h2h3 + 2h1h3 + 4h1h2.

We first construct, in Section 4, the Hilbert schemes of curves inside F associated with such bundles 
via the aforementioned Hartshorne–Serre correspondence. Then we show how to define a universal family 
parameterizing these bundles in Section 5 by using a relative version of the Hartshorne–Serre correspon-
dence.

Finally, in Sections 6, 7 and 8, we use such a family to show the irreducibility and unirationality of 
the corresponding moduli spaces. We can roughly summarize what we are able to prove in the following 
statement.
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Theorem B. Let c1 := α1h1 + α2h2 + α3h3 and c2 := β1h2h3 + β2h1h3 + β3h1h2. If (α1, α2, α3) is one of 
the following

(0, 0, 1), (2, 2, 1), (1, 2, 3), (2, 2, 2),

then the moduli space M(c1, c2) of indecomposable, initialized, aCM semistable bundles E of rank 2 with 
c1(E) = c1 and c2(E) = c2 exists and it is irreducible. Moreover the following assertions hold.

(1) Let (α1, α2, α3) be either (0, 0, 1) or (2, 2, 1). Then M(c1, c2) ∼= P
1.

(2) Let (α1, α2, α3) = (1, 2, 3).
The moduli space M(c1, 4h2h3 + h1h3 + 2h1h2) is a single point, representing the equivalence class of 
all the strictly semistable bundles with such a c1.
The moduli space M(c1, 3h2h3 + 3h1h3 + h1h2) is smooth and unirational of dimension 3: its points 
correspond to stable bundles.

(3) Let (α1, α2, α3) = (2, 2, 2).
The moduli space M(c1, 2h2h3 + 2h1h3 + 4h1h2) is generically smooth and rational of dimension 5: 
its general point corresponds to a stable bundle and it also contains exactly one point representing the 
equivalence class of all the strictly semistable bundles with such a c1.
The moduli space M(c1, 2h2h3 + 3h1h3 + 3h1h2) is smooth and unirational of dimension 5: its points 
correspond to stable bundles.

We conclude this introduction by expressing our thanks to the referee for her/his comments that allowed 
us to considerably improve the exposition of the paper.

2. aCM and semistable bundles on F

If E is an aCM bundle on the aCM variety F of dimension at least 2, then the minimal number of 
generators of H0

∗
(
F, E

)
as a module over the graded coordinate ring of F is rk(E) deg(F ) at most (e.g. 

see [5]). For the above reason we introduce the following definition (for the notion of Ulrich bundle see [6], 
Definition 2.1 and Lemma 2.2: see also [5], Definition 3.3 which is slightly weaker).

Definition 2.1. Let E be a vector bundle on F . We say that E is initialized if

min{ t ∈ Z | h0(F, E(th)
)
	= 0 } = 0.

We say that E is Ulrich if it is initialized, aCM and h0(F, E) = rk(E) deg(F ).

It follows immediately from the above definition that Ulrich bundles are globally generated.
Let us now recall the various notions of stability of torsion free coherent sheaves. First we define the slope 

μ(E) and the reduced Hilbert polynomial pE(t) of a torsion free coherent sheaves E over F as:

μ(E) = c1(E)h2/rk(E), pE(t) = χ(E(th))/rk(E).

The sheaf E is called μ-semistable (with respect to h) if for all torsion-free quotient sheaves G with 0 <
rk(G) < rk(E)

μ(G) ≥ μ(E),

and μ-stable if the inequality is always strict. The sheaf E is called semistable (or, more precisely, Gieseker-
semistable with respect to h) if for all G as above
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pG(t) ≥ pE(t),

and (Gieseker) stable again if the inequality is always strict.
Let E be a torsion free coherent sheaves on F of rank r with Hilbert polynomial χ(t) := χ(E(th)). Recall 

that there exists the coarse moduli spaces Mss
F (χ) parameterizing S-equivalence classes of semistable rank 

r torsion free coherent sheaves on F with Hilbert polynomial χ(t) (see Section 1.5 of [20] for details about 
S-equivalence of semistable sheaves). We will denote by Ms

F (χ) the open locus inside Mss
F (χ) of stable 

sheaves.
The scheme Mss

F (χ) is the disjoint union of open and closed subsets Mss
F (r; c1, . . . , cr) whose points 

represent S-equivalence classes of semistable rank r torsion free coherent sheaves with fixed Chern classes 
ci ∈ Ai(F ) (Ai(F ) denotes the degree ith component of the intersection ring A(F ) of F ). Similarly Ms

F (χ)
is the disjoint union of open and closed subsets Ms

F (r; c1, . . . , cr).
By semicontinuity we can define open loci Mss,aCM

F (χ)(r; c1, . . . , cr) ⊆ Mss
F (χ)(r; c1, . . . , cr) and 

Ms,aCM
F (χ)(r; c1, . . . , cr) ⊆ Ms

F (χ)(r; c1, . . . , cr) parameterizing respectively S-equivalence classes of 
semistable and stable aCM bundles of rank r on F with Chern classes c1, . . . , cr.

The case of Ulrich bundles is particularly interesting. Indeed they are semistable (see [6], Theorem 2.9), 
hence μ-semistable. For the following proposition see [6].

Proposition 2.2. There exist coarse moduli spaces Mss,U
F (r; c1, . . . , cr) and Ms,U

F (r; c1, . . . , cr) for respectively 
semistable and stable Ulrich bundles of rank r on F with Chern classes c1, . . . , cr.

A helpful result about Ulrich bundles is the following.

Lemma 2.3. Let F ⊆ P
N be a del Pezzo threefold. If E is an Ulrich bundle of rank r on F , then

h2(F, E ⊗ E∨(th)
)

= 0, t ≥ 0,

h3(F, E ⊗ E∨(th)
)

= 0, t ≥ −1.

In particular, stable Ulrich bundles with Chern classes c1, . . . , cr, if any, correspond to smooth points of 
Ms,U

F (r; c1, . . . , cr).

Proof. If E is Ulrich, then there exists a presentation of the form

OPN (−1)⊕β1 −→ O⊕β0
PN → E −→ 0

(see [11]). Twisting the above sequence by OF we obtain an exact sequence of the form

OF (−h)⊕β1 −→ O⊕β0
F → E −→ 0.

If we denote by K the image of OF (−h)⊕β1 → O⊕β0
F , then we finally obtain the exact sequence

0 −→ K −→ O⊕β0
F → E −→ 0.

The sheaf K is locally free on F , because the same is true for both O⊕β0
F and E .

Twisting the above sequence by E∨(th) and taking its cohomology, we obtain

h3(F, E ⊗ E∨(th)
)
≤ β0h

3(F, E∨(th)
)

= β0h
0(F, E((−t− 2)h)

)
,

h2(F, E ⊗ E∨(th)
)
≤ h3(F,K ⊗ E∨(th)

)
= h0(F,K∨ ⊗ E((−t− 2)h)

)
,
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because E is aCM and F has dimension 3. If t ≥ −1, then h0(F, E((−t − 2)h)
)

= 0 because E is initialized. 
Thus h3(F, E ⊗ E∨(th)

)
= 0 in the same range.

The epimorphism OF (−1)⊕β1 � K induces by duality a monomorphism K∨ ⊗ E((−t − 2)h) �
E((−t − 1)h)⊕β1 . Thus

h0(F,K∨ ⊗ E((−t− 2)h)
)
≤ β1h

0(F, E((−t− 1)h)
)

= 0

if t ≥ 0, again because E is initialized. �
Now assume that E has rank 2. If s ∈ H0(F, E), then its zero-locus (s)0 ⊆ F is either empty or its 

codimension is at most 2. Assume that we are in the second case and that the codimension is actually 2. 
Thus we can consider its Koszul complex

0 −→ OF −→ E −→ IC|F (c1) −→ 0, (1)

where IC|F denotes the sheaf of ideals of C := (s)0 inside F . Moreover we also have the following exact 
sequence

0 −→ IC|F −→ OF −→ OC −→ 0. (2)

The above construction can be reversed, giving rise to Hartshorne–Serre correspondence (for further 
details about the statement in the general case see [34,18,1]). We will inspect a relative form of such a 
correspondence later on in Section 5.

3. Semistability of aCM bundles on F of rank 2

Now we restrict our attention to rank 2 indecomposable, initialized, aCM vector bundles on the del Pezzo 
threefold F := P

1 × P
1 × P

1 ⊆ P
7.

We proved in [7] that each general section of such bundles vanishes exactly along a curve, i.e. a subscheme 
of pure codimension 2. Moreover, making use of this fact, we also classified therein all these bundles, 
obtaining the following proposition listing all the possible cases.

Proposition 3.1. Let E be an indecomposable, initialized, aCM vector bundle of rank 2 on F := P
1 ×P

1 ×P
1

with c1 := c1(E) and c2(E) := c2. Let C be the zero-locus of a general section of E and denote by pC(t) its 
Hilbert polynomial. Then C is a curve and the following possibilities hold for E, up permutations of the hi’s.

(1) c1 is either 0 or h3: then we can assume c2 = h2h3. We have pC(t) = t + 1 and C is a line. Moreover, 
each line can be obtained in this way.

(2) c1 = 2h1 + 2h2 + h3: then we can assume c2 = h2h3 + 2h1h3 + 2h1h2. We have pC(t) = 5t + 1 and C is 
a possibly reducible quintic curve.

(3) c1 = h1 +2h2 +3h3: then either c2 = 4h2h3 +h1h3 +2h1h2 or c2 = 3h2h3 +3h1h3 +h1h2. In this case E
is Ulrich, hence globally generated and pC(t) = 7t + 1, thus C is a rational normal curve (in particular 
C ⊆ P

7 is non-degenerate). Moreover, each such a curve can be obtained in this way.
(4) c1 = 2h: then we can assume either c2 = 2h2h3 + 3h1h3 + 3h1h2 or c2 = 2h2h3 + 2h1h3 + 4h1h2. In 

this case E is Ulrich, hence globally generated and pC(t) = 8t, thus C is an elliptic normal curve (in 
particular C ⊆ P

7 is non-degenerate). Moreover, each such a curve can be obtained in this way.

We say that a pair (c1, c2) of Chern classes is representative if there exists an indecomposable, initialized, 
aCM bundle E of rank 2 with c1(E) = c1 and c2(E) = c2.
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We are interested in dealing with moduli spaces of rank 2 aCM semistable bundles on F . Thus the very 
first step in our study is to check whether such semistable bundles actually exist.

Assume c1 is either 2h or h1 + 2h2 + 3h3. In this case E is Ulrich. Theorem 2.9 (c) of [6] shows that E is 
stable if and only if it is μ-stable. It is interesting to find a simple condition which guarantees the stability 
or strict semistability of such bundles.

Proposition 3.2. The vector bundle E is a strictly semistable Ulrich bundle of rank 2 if and only if, up to 
permutations of the hi’s, it fits into an exact sequence of the form

0 −→ L −→ E −→ OF (2h2 + h3) −→ 0, (3)

where L is either OF (2h1 + h3) or OF (h1 + 2h3) according to whether c1 is either 2h or h1 + 2h2 + 3h3
respectively.

Proof. Assume that E is an Ulrich bundle.
Let c1 = 2h: hence c2 can be assumed to be either 2h2h3 + 2h1h3 + 4h1h2 or 2h2h3 + 3h1h3 + 3h1h2

(Proposition 3.1).
We already know that E is semistable, hence μ-semistable. Assume it is not μ-stable. Therefore there are 

sheaves L and M of rank 1 with μ(M) = μ(E) = 6, M torsion free, fitting into a sequence of the form

0 −→ L −→ E −→ M −→ 0.

By the additivity of the first Chern class we obtain that μ(L) = 6. Hence Theorem 2.8 of [6] implies that M
is Ulrich, hence aCM. The complete list of initialized aCM line bundles on F is given in Lemma 2.4 of [7]. 
Since μ(M) = 6, it follows that M ∼= OF (α1h1 + α2h2 + α3h3) where (α1, α2, α3) is, up to permutations, 
(0, 1, 2). Consequently L ∼= OF ((2 − α1)h1 + (2 − α2)h2 + (2 − α3)h3).

Computing c2 from the exact sequences we deduce that L and M are either OF (2h2 + h3) and 
OF (2h1 + h3), or OF (2h1 + h3) and OF (2h2 + h3). We have thus proved the existence of Sequence (3)
in the case c1 = 2h.

When c1 = h1 + 2h2 + 3h3, then c2 is either 4h2h3 + h1h3 + 2h1h2 or c2 = 3h2h3 + 3h1h3 + h1h2
(Proposition 3.1). The same argument used in the case c1 = 2h shows that the only possibility for E to be 
semistable is that it fits in an exact sequence of the form

0 −→ OF (h1 + 2h3) −→ E −→ OF (2h2 + h3) −→ 0.

Conversely assume that E fits in Sequence (3). On the one hand, it is immediate to check that

μ(OF (2h2 + h3)) = μ(OF (2h1 + h3)) = μ(OF (h1 + 2h3)) = 6 = μ(E),

thus E is never μ-stable in the above cases, hence it is not stable (see Theorem 2.9 of [6]). On the other 
hand, easy computations show that E is Ulrich, thus E is strictly semistable. �

Let us consider initialized, aCM vector bundles associated with lines on F : we can assume that c1 is 
either 0 or h3. We start with the case c1 = 0.

Proposition 3.3. Let E be an aCM vector bundle of rank 2 on F with c1 = 0. Then E is μ-semistable, but 
not semistable.

Proof. Let C be the zero-locus of a general section of E corresponding to the subbundle OF ⊆ E , hence to 
the torsion free quotient IC|F ∼= E/OF . Sequences (1) and (2) for C give
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pE(t) = χ(E(th))
2

= χ(IC|F (th)) + 1
2
χ(OC(th)) = pIC|F (t) + 1

2
(t + 1).

It follows that E is not semistable.
Now we prove that E is μ-semistable. If not there should exist a torsion-free quotient sheaf Q of E of 

rank 1 such that μ(Q) < μ(E) = 0. Being Q torsion-free, then the canonical morphism to the bidual of 
Q is injective. The bidual, being reflexive, is an invertible sheaf on F (see Lemma II.1.1.15 of [30]), say 
OF (q1h1 + q2h2 + q3h3) with q1h1 + q2h2 + q3h3 := c1(Q), so that (q1h1 + q2h2 + q3h3)h2 = μ(Q) < 0, thus 
Q = IS|F (q1h1 + q2h2 + q3h3) where S ⊆ F .

The kernel K of the quotient morphism E � IS|F (q1h1 + q2h2 + q3h3) is torsion-free, normal (see [30], 
Lemma II.1.1.16) and of rank 1, thus it is invertible (see Lemmas II.1.1.12 and II.1.1.15 of [30]). The 
additivity of the first Chern class thus implies K ∼= OF (−q1h1 − q2h2 − q3h3).

Again, let C be the zero locus of a general section of E . The corresponding inclusion OF ⊆ E induces 
by composition a morphism OF → Q ∼= IS|F (q1h1 + q2h2 + q3h3). If S 	= ∅, then this map must be zero, 
because there are no effective divisor of degree μ(Q) < 0 through S. If S = ∅, again the map is zero, because 
in this case IS|F (q1h1 + q2h2 + q3h3) ∼= OF (q1h1 + q2h2 + q3h3) and at least one of the qi’s is negative.

We deduce that the non-zero morphism OF → E factors through an inclusion OF ⊆ OF (−q1h1 −
q2h2 − q3h3). In particular we have a commutative diagram

0 −−−−→ OF −−−−→ E −−−−→ IC|F −−−−→ 0

f

⏐⏐� ∥∥∥ g

⏐⏐�
0 −−−−→ OF (−q1h1 − q2h2 − q3h3) −−−−→ E −−−−→ IS|F (q1) −−−−→ 0.

Snake’s Lemma yields coker(f) ∼= ker(g) ⊆ IC|F . In particular coker(f) is torsion-free. Since both OF

and OF (−q1) are invertible sheaves it follows that coker(f) = 0, hence OF (−q1) ∼= OF , contradicting the 
inequality q1h2 < 0 proved above.

The contradiction proves the statement. �
Now we focus our attention on the other kind of initialized, aCM vector bundles E associated with lines, 

checking that they are μ-stable.

Proposition 3.4. Let E be an aCM vector bundle of rank 2 on F with c1 either h3 or 2h1 + 2h2 + h3 up to 
permutations of the hi’s. Then E is μ-stable.

Proof. Let E be an initialized, aCM, vector bundle with c1 = 2h1 + 2h2 + h3. On the one hand, this occurs 
if and only if E∨(h) is an initialized aCM vector bundle with c1 = h3. On the other hand, we know that E
is μ-stable if and only if the same is true for E∨(h). We conclude that it suffice to prove the statement only 
in the case c1 = h3.

For dealing with the μ-stability, one can repeat the argument used in the previous proposition for proving 
the μ-semistability almost word by word. Indeed, we still take a torsion-free quotient Q = IS|F (q1) of E for 
some S ⊆ F , but, in this case, we must assume q1h2 = μ(Q) ≤ μ(E) = 1. We notice that the kernel K of 
the quotient morphism E � Q satisfies μ(K) = 2 − μ(Q) ≥ 1. Since

μ(K) = c1(K)h2 = 2c1(K)(h2h3 + h1h3 + h1h2),

is even we infer that μ(K) ≥ 2, hence again q1h2 = μ(Q) = 2 − μ(K) ≤ 0. Arguing as in the proof of 
the previous proposition we obtain that the morphism OF → E factors through an inclusion OF → K ∼=
OF (h3 − q1), hence h3 = q1. Thus q1h2 = h3h

2 = 2, a contradiction. �
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We conclude that the cases we are interested in are when c1 is either h3, or 2h1 + 2h2 + h3, or 2h, or 
h1 + 2h2 + 3h3. In order to deal with the corresponding moduli spaces we first describe the Hilbert schemes 
of the corresponding associated curves.

4. Hilbert schemes of curves on F

In this section we will list and prove some results about Hilbert schemes of curves on F corresponding 
to some representative Chern classes.

Given a curve C in F , the local structure of the Hilbert scheme around the point corresponding to C is 
controlled by the normal sheaf NC|F of C inside F , i.e. by the OC -dual of IC|F /I2

C|F .
We start with curves whose class in A2(F ) is h2h3. Such curves are lines. The following result is partially 

well-known (see [21], Proposition 3.5.6).

Proposition 4.1. The scheme Hilbt+1(F ) has exactly three disjoint components. Each of them is the locus of 
points representing one and the same class inside A2(F ) and it is isomorphic to P1 × P

1.

Proof. The Hilbert scheme Hilbt+1(F ) has exactly three components isomorphic to P1 × P
1 (see [21], 

Proposition 3.5.6).
Let H be one of them and consider the universal family C → H, i.e. the flat family whose fibre over a 

point is the corresponding line. Two lines in this family are algebraically equivalent, hence they are also 
homologically equivalent (see [16], Proposition 19.1.1). Thus any two fibres of C are actually rationally 
equivalent, because F is homogeneous (see Example 19.1.11 of [16]). Thus the Chern classes of the points 
of H inside A2(F ) are constant. �

Now we turn our attention to Hilb7t+1(F ). Let Hilbsm7t+1(F ) be the open locus corresponding to smooth 
and connected curves and let Hilbsm,nd

7t+1 (F ) be the subset corresponding to non-degenerate curves. The-
orem 2.1 of [8] implies that such a condition is equivalent to the fact that C is aCM, which is an 
open condition on flat families because it corresponds to the vanishing of some cohomology groups. Thus 
Hilbsm,nd

7t+1 (F ) ⊆ Hilb7t+1(F ) is open too.
As pointed out in Proposition 3.1, we can restrict our attention to curves C whose class in A2(F ) is 

either 4h2h3 + h1h3 + 2h1h2, or 3h2h3 + 3h1h3 + h1h2. Indeed, in Section 7 of [7], we showed that if 
C ∈ Hilbsm,nd

7t+1 (F ), then its class is either one of them, or 3h2h3 +2h1h3 +2h1h2, up to permutations of the 
hi’s and that all the above cases actually occur. Nevertheless, C is the zero locus of a section of an aCM 
bundle E only in the two former cases. In these cases E is Ulrich and c1(E) = h1 + 2h2 + 3h3.

Since the Chern classes are fixed up to permutations of the hi’s, we have exactly nine possible cases.

Proposition 4.2. The scheme Hilbsm,nd
7t+1 (F ) has exactly nine disjoint components. Each of them is the locus 

of points representing one and the same class inside A2(F ), is smooth, unirational and has dimension 14.

Proof. We want to prove that the locus Hc2 ⊆ Hilbsm,nd
7t+1 (F ) of points representing curves whose class in 

A2(F ) is c2 is actually irreducible. It suffices to prove the irreducibility of the locus Hc2 in Hilbsm7t+1(F ) of, 
not necessarily skew, curves whose class is c2: indeed Hc2 is open inside Hc2 because it trivially coincides 
with Hc2 ∩Hilbsm,nd

7t+1 (F ).
We will prove that Hc2 is dominated by an irreducible variety. To this purpose we first construct a scheme 

parameterizing maps from P1 to F such that the class of the image in A2(F ) is fixed.
Fix the attention on c2 := 3h2h3 + 3h1h3 + h1h2, the other cases being similar. To give a morphism 

α : P1 → F such that the class deg(α)im(α) in A2(F ) is c2 is the same as to give three pairs of linearly 
independent sections in H0(

P
1, OP1(3)

)
, H0(

P
1, OP1(3)

)
, H0(

P
1, OP1(1)

)
, thus a general element of



G. Casnati et al. / Journal of Pure and Applied Algebra 220 (2016) 1554–1575 1563
Y := H0(
P

1,OP1(3)
)⊕2 ×H0(

P
1,OP1(3)

)⊕2 ×H0(
P

1,OP1(1)
)⊕2

.

For a general choice of the general element the map α is an isomorphism onto its image. Let Y0 ⊆ Y be 
the open and non-empty locus of points satisfying such a condition. We have a natural family Y0 ⊆ Y0 × F

whose fibres are smooth rational curves on F of degree 7, hence the family is flat. The universal property of 
the Hilbert scheme yields the existence of a unique morphism Y0 → Hilbsm7t+1(F ) whose image is Hc2 , which 
is thus irreducible. Since Y0 is trivially a rational variety, it follows that Hc2 is also unirational.

Finally we have to prove that Hc2 is smooth of dimension 14. To this purpose we pick a point of Hc2

corresponding to a smooth, connected, rational curve C and we compute h0(F, NC|F
)

and h1(F, NC|F
)
. 

Taking into account that C is rational, we know that NC|F ∼= OP1(a) ⊕OP1(b) for suitable integers a and b, 
thanks to a theorem of Grothendieck.

By adjunction OP1(−2) ∼= ωC
∼= det(NC|F ) ⊗OF (−2h), thus det(NC|F ) ∼= OP1(12), hence a + b = 12.

Finally recall that there is a surjection Ω∨
F ⊗ OC � NC|F . Since ΩF

∼=
⊕3

i=1 OF (−2hi), it follows that 
NC|F is globally generated, thus a, b ≥ 0. We conclude that h0(F, NC|F

)
= 14 and h1(F, NC|F

)
= 0.

Since each component Hc2 is globally smooth, we also conclude that the components of Hilbsm,nd
7t+1 (F ) are 

necessarily disjoint. �
We conclude with a similar analysis for elliptic curves. We will again denote by Hilbsm,nd

8t (F ) the locus 
inside Hilb8t(F ) of points representing non-degenerate, smooth and connected curves. As pointed out in 
Proposition 3.1 (see also Section 6 of [7]), if C ∈ Hilbsm,nd

8t (F ), then its class is either 2h2h3+3h1h3+3h1h2, 
or 2h2h3 + 2h1h3 + 4h1h2, up to permutations of the hi’s and that all these cases actually occur. Moreover 
E is Ulrich (see [5] for the definition and properties of such bundles) and c1(E) = 2h.

Since the Chern classes are fixed up to permutations of the hi’s, we have exactly six possible cases.

Proposition 4.3. The scheme Hilbsm,nd
8t (F ) has exactly six disjoint components. Each of them is the locus of 

points representing one and the same class inside A2(F ), is smooth, unirational and has dimension 16.

Proof. The proof runs along the same lines of the proof of Proposition 4.2. Again we can define Hilbsm8t (F )
as the locus of smooth and connected elliptic curves of degree 8 inside F . We will prove that the locus 
Hc2 ⊆ Hilbsm,nd

8t (F ) of points representing curves whose class in A2(F ) is c2 is actually irreducible by 
constructing an irreducible scheme parameterizing maps from elliptic curves to F such that the class of the 
image in A2(F ) is fixed.

Fix the attention on c2 := 2h2h3 + 3h1h3 + 3h1h2, the other cases being similar. If C is an elliptic 
curve, then to give a morphism α : C → F such that the class of deg(α)im(α) in A2(F ) is c2 is the same 
as to give three points p1, p2, p3 ∈ C and three pairs of linearly independent sections in H0(C, OC(2p1)

)
, 

H0(C, OC(3p2)
)
, H0(C, OC(3p3)

)
.

We notice that the three points p1, p2, p3 are naturally ordered but not necessarily pairwise distinct, 
thus the 4-tuple (C, p1, p2, p3) does not represent a point in the moduli space of 3-pointed elliptic curves in 
general.

Fix projective coordinates x0, x1, x2 in P2. It is well known that each abstract elliptic curve C is isomorphic 
to a smooth cubic curve in P2. Let S ⊆ H0(

P
2, OP2(3)

)
the locus of polynomials corresponding to smooth 

curves. The scheme

Z := { (p1, p2, p3, e) | e(ph) = 0, h = 1, 2, 3 } ⊆ (P2)×3 × S

is naturally fibred over S and its fibre over e is the product of three copies of the corresponding curve 
E := { e = 0 } ⊆ P

2. It follows that Z → S is flat, thanks to [19], Theorem III.9.9, and it has irreducible 
fibres, thus Z is irreducible due to [19], Corollary III.9.6.
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Fix e ∈ S: for each p ∈ P
2 such that e(p) = 0 we denote by p the residual intersection of E with its 

tangent at p. For each polynomial f we denote by ∇f the gradient matrix. We set

Ue,p := { u ∈ H0(
P

2,OP2(1)
)
|u(p) = 0 },

Ve,p := { v ∈ H0(
P

2,OP2(2)
)
|v(p) = v(p) = 0, dim〈∇e(p),∇v(p)〉 ≤ 1 }.

The sections of Ue,p cut out on E the linear system H0(E, OE(2p)
)

residually to p. Similarly, the sections 
of Ve,p cut out H0(E, OE(3p)

)
residually to p + 2p.

Consider the variety

Y := { (p1, p2, p3, e, u
(1)
1 , u

(2)
1 , v

(1)
2 , v

(2)
2 , v

(1)
3 , v

(2)
3 ) ∈ Z × P(U⊕2

e,p1
) × P(V ⊕2

e,p2
) × P(V ⊕2

e,p3
) }.

Y is endowed with a natural projection map q : Y → Z whose fibres are products of projective spaces of 
constant dimensions. By construction, it follows that Y is locally trivial over Z. The map is flat because 
the base is irreducible and it factors via the Segre map through an embedding in

Z × P

(
H0(

P
2,OP2(1)

)⊕2 ⊗H0(
P

2,OP2(2)
)⊕2 ⊗H0(

P
2,OP2(2)

)⊕2
)

followed by the projection (use again Theorem 9.9 of [19]), hence Y is irreducible (again by [19], Corol-
lary III.9.6). The locus Y0 ⊆ Y of points such that the induced map α : E → F is an embedding is open 
and non-empty, hence irreducible.

We have a natural family Y0 ⊆ Y0 × F whose fibre over

(p1, p2, p3, e, u
(1)
1 , u

(2)
1 , v

(1)
2 , v

(2)
2 , v

(1)
3 , v

(2)
3 )

is the elliptic curve E embedded in F via the sections u(1)
1 , u(2)

1 , v(1)
2 , v(2)

2 , v(1)
3 , v(2)

3 . Since the fibres of the 
map Y0 → Y0 induced by the projection on the first factor are elliptic curves of degree 8, it follows that such 
a family is flat. The universal property of the Hilbert scheme yields the existence of a unique morphism 
Y0 → Hilbsm8t (F ) whose image Hc2 is thus irreducible. Trivially Hc2 ∩ Hilbsm,nd

8t (F ) = Hc2 which is thus 
irreducible too.

We have a natural projection z : Z → (P2)×3. Let Δ be the union of the diagonals of (P2)×3 and let 
Z̃ := z−1((P2)×3 \ Δ). Then Z̃ is an open set of a vector bundle over (P2)×3 \ Δ with fibres of constant 
dimension 7 = h0(

P
2, OP2(3)

)
− 3, thus it is rational. It follows that the same is true for Z, hence for the 

open subset Y0 ⊆ Y . In particular Hc2 is unirational, because it is dominated by the rational variety Y0.
Again we must prove that Hc2 is smooth of dimension 16. Pick a point of Hc2 corresponding to a smooth, 

connected, elliptic curve C. The cohomology of Sequence (1) twisted by E∨ ∼= E(−c1), Lemma 2.3 and the 
vanishing h3(F, E∨) = h0(F, E(−2h)

)
= 0 imply that h2(F, IC|F ⊗ E

)
= 0.

The cohomology of Sequence (2) twisted by E and the isomorphism NC|F ∼= E⊗OC yield h1(F, NC|F
)

= 0. 
Riemann–Roch theorem on C finally implies h0(F, NC|F

)
= 16.

Again each component of Hc2 is globally smooth, thus the components of Hilbsm,nd
7t+1 (F ) are disjoint. �

5. The relative Hartshorne–Serre correspondence

In the previous section we proved the irreducibility of some particular loci in the Hilbert schemes of 
curves on F with fixed class. We now construct flat families of vector bundles on such loci. This will allow 
us to define suitable maps from such loci on certain moduli space of aCM vector bundles, proving their 
irreducibility.
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Let X be a smooth variety of dimension n ≥ 2. Assume that assume that homologically equivalent 
2-cycles on X are also rationally equivalent. Let ci ∈ Ai(X) be such that there exists a rank 2 vector bundle 
E0 over X with ci = ci(E0) and hi

(
X, OX(−c1)

)
= 0 for i = 1, 2.

Assume that the general section s ∈ H0(X, E0
)

vanishes exactly along a subscheme C0 of pure codi-
mension 2 whose Hilbert polynomial is p(t). Thus the open locus Hilblcip(t)(X) ⊆ Hilbp(t)(X) of points [C]
corresponding to locally complete intersection curves C is non-empty.

Moreover, Sequence (1) implies that NC0|X
∼= E0 ⊗ OC0 , thus ωC0

∼= ωX ⊗ OC0(c1) by adjunction. 
Therefore the locus H ⊆ Hilblcip(t)(X) of points [C] representing schemes C with ωC

∼= ωX ⊗ OC(c1) is 
non-empty too.

Theorem 5.1. With the above notation and hypothesis, there exists a flat family e : E → H of bundles of 
rank 2 on X with Chern classes c1, c2 such that C is the zero locus of a section of e−1([C]).

Proof. Let C ⊆ X := X ×H be the universal scheme over H, i.e. the flat family whose fibre over [C] is C. 
The embedding C ⊆ X is fibrewise locally complete intersection of codimension 2, thus it is locally complete 
intersection of codimension 2. We now construct a flat family E of vector bundles over H with Chern classes 
c1 and c2. To this purpose we will relativize the standard Hartshorne–Serre construction described in [1].

First we consider the scheme X with the two projections ϕ and ψ onto X and H respectively. The 
morphism ψ is trivially flat, thus OX(c1) := ϕ∗OX(c1) is H-flat being invertible on X. It follows the flatness 
of the sheaf OC(c1) := OC ⊗OX(c1). The exact sequence

0 −→ IC|X −→ OX −→ OC −→ 0 (4)

yields that IC|X(c1) is flat on H too.
Now we consider the two left-exact functors ψ∗ and HomX

(
·, OX(−c1)

)
. The spectral sequence of the 

composition of these two functors satisfies

Ep,q
2 := Rpψ∗

(
Extq

X

(
IC|X,OX(−c1)

))
,

and it abuts to

En := Rn
(
ψ∗HomX

(
IC|X,OX(−c1)

))
.

Recall that the exact sequence of low degree terms is

0 −→ E1,0
2 −→ E1 −→ E0,1

2 −→ E2,0
2 . (5)

In what follows we will compute explicitly the terms of the above sequence.
By applying HomX

(
·, OX(−c1)

)
to Sequence (4) we obtain

0 −→HomX

(
OC,OX(−c1)

)
−→ HomX

(
OX,OX(−c1)

)
−→

−→ HomX

(
IC|X,OX(−c1)

)
−→ Ext1X

(
OC,OX(−c1)

)
−→

−→ Ext1X
(
OX,OX(−c1)

)
−→ Ext1X

(
IC|X,OX(−c1)

)
−→

−→ Ext2X
(
OC,OX(−c1)

)
−→ Ext2X

(
OX,OX(−c1)

)
−→ 0.

It is clear that ExtiX
(
OX, OX(−c1)

)
= 0, i ≥ 1. Since OC is a torsion OX-sheaf, it follows that 

HomX

(
OC, OX(−c1)

)
= 0. Finally Ext1X

(
OC, OX(−c1)

)
= 0 because the embedding C ⊆ X is locally com-

plete intersection of codimension 2.
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On the one hand,

HomX

(
IC|X,OX(−c1)

) ∼= HomX

(
OX,OX(−c1)

) ∼= OX(−c1).

Since OX(−c1) is flat over H and Hp
(
X, OX(−c1)

)
= 0, p = 1, 2, the semicontinuity theorem (see [19], 

Corollary III.12.9) yields

Ep,0
2 = Rpψ∗OX(−c1) ∼= 0, p = 1, 2.

On the other hand,

Ext1X
(
IC|X,OX(−c1)

) ∼= Ext2X
(
OC,OX(−c1)

) ∼= ωC|H ⊗ ω−1
X|H ⊗OX(−c1).

Since Pic(X) ∼= ϕ∗ Pic(X) ⊕ ψ∗ Pic(H), it follows that ωC|H ⊗ ω−1
X|H ⊗OX(−c1) ∼= ϕ∗M ⊗ ψ∗L for suitable 

M ∈ Pic(X) and L ∈ Pic(H). We know by adjunction formula that the restriction of ωC|H to each fibre is 
ωC

∼= ωX ⊗OC(c1). We conclude that

ωC|H ⊗ ω−1
X|H ⊗OX(−c1) ∼= ψ∗L,

hence E0,1
2

∼= ψ∗ψ
∗L ∼= L.

Substituting in Sequence (5) we finally obtain an isomorphism

L ∼= R1 (ψ∗HomX

(
IC|X,OX(−c1)

))
,

hence

O ∼= R1 (ψ∗HomX

(
IC|X,OX(−c1) ⊗ ψ∗L−1)) . (6)

Now take a sufficiently fine open cover of H with affine open subsets U := spec(A) ⊆ H. We have an 
identification

A = Ext1ψ−1(U)
(
IC∩ψ−1(U)|ψ−1(U),Oψ−1(U)(−c1)

)
.

Taking the image of 1 ∈ A we obtain locally on U an extension of IC|X(c1) ⊗ ψ∗L with OX. The global 
isomorphism (6) allows us to glue together such sequences. Hence we have a global exact sequence

0 −→ OX −→ E −→ IC|X(c1) ⊗ ψ∗L −→ 0. (7)

Since IC|X(c1) is OH-flat, it follows that the same is true for IC|X(c1) ⊗ ψ∗L. Moreover OX is also flat. We 
conclude that the family e : E → H is flat too.

Let [C] ∈ H. Recall that C is locally complete intersection in C. Restricting Sequence (7) to ψ−1(C), 
we obtain the exact sequence (1) with E := e−1([C]). Thus C is the zero-locus of a section of E . Trivially 
c1(E) = c1.

The second Chern class c2(E) is the class of the zero locus C of E in A2(X). Trivially C is algebraically 
equivalent to C0, thus they are also homologically equivalent (see [16], Proposition 19.1.1). Since homologi-
cally equivalent 2-cycles on X are rationally equivalent by hypothesis, it follows that the class of each fibre 
C of C inside A2(X) is constantly c2. �

In the next sections we will apply the above result for constructing suitable families of bundles on X = F

where H is one of the components of the schemes Hilbt+1(F ), Hilbsm,nd
7t+1 (F ), Hilbsm,nd

8t (F ) described in 
the previous section. Indeed F is actually a homogeneous variety, thus homologically equivalent cycles are 
rationally equivalent (see [16], Example 19.1.11).
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6. Moduli spaces of Ulrich bundles

We are interested in initialized rank 2 aCM bundles on F with c1 either 2h or h1 + 2h2 + 3h3: the 
representative c2’s are uniquely determined (see the Proposition 3.1).

Let E be a vector bundle. Then End(E) ∼= H0(F, E ⊗E∨) has dimension at least 1 and we call E simple if 
the minimum is attained. If E is stable, then it is also simple (see [20], Corollary 1.2.8). A similar property 
holds when E is an Ulrich bundle on F , even without the stability property.

Proposition 6.1. If E is an indecomposable Ulrich bundle of rank 2 on F , then it is simple.

Proof. Due to the discussion above we can restrict our attention to strictly μ-semistable Ulrich bundles E . 
We know that the bundle E fits into Sequence (3) where L ∼= OF (c1 − 2h2 − h3).

Taking the cohomology of Sequence (3) tensored by E∨ we obtain

1 ≤ h0(F, E ⊗ E∨) ≤ h0(F, E∨ ⊗ L
)

+ h0(F, E∨(2h2 + h3)
)
. (8)

By applying the functor HomF

(
OF (2h2 + h3), ·

)
to Sequence (3) and taking into account that E is inde-

composable, we deduce that

h0(F, E∨ ⊗ L
)

= h0(F, E(−2h2 − h3)
)

= h0(F,L(−2h2 − h3)
)

= 0.

Taking the cohomology of Sequence (3) twisted by L−1 ∼= OF (2h2 + h3 − c1) we obtain

h0(F, E∨(2h2 + h3)
)

= h0(F, E(−h1 − 2h3)
)

= h0(F,OF ) = 1.

Thus Inequalities (8) yields dimk (End(E)) = h0(F, E ⊗ E∨) = 1. �
We now deal with the irreducibility and the dimension of the moduli spaces constructed above. We start 

with the case c1 = h1 + 2h2 + 3h3: recall that in this case c2 is either 4h2h3 + h1h3 + 2h1h2 or 3h2h3 +
3h1h3 + h1h2. The first result is the following lemma reverting Proposition 3.2 in this particular case.

Lemma 6.2. Let E be an initialized rank 2 aCM bundle on F with c1 = h1 + 2h2 + 3h3 and c2 = 4h2h3 +
h1h3 + 2h1h2. Then E fits into an exact sequence of the form

0 −→ OF (h1 + 2h3) −→ E −→ OF (2h2 + h3) −→ 0.

In particular there exists a family with base P3 parameterizing such bundles.

Proof. Let E be as in the statement: Riemann–Roch theorem yields χ(E(−h1 − 2h3)) = 1. If C ⊆ F is the 
zero locus of a general section of E , then C is a rational normal curve of degree 7. Taking the cohomology 
of Sequences (1) and (2) respectively twisted by OF (−h1 − 2h3) and OF (2h2 + h3) we obtain

h2(F, E(−h1 − 2h3)
)

= h2(F, IC|F (2h2 + h3)
)

=

= h1(F,OC(2h2 + h3)
)

= h1(
P

1,OP1(4)
)

= 0.

Hence h0(F, E(−h1 − 2h3)
)

= h0(F, E∨(2h2 + h3)
)
	= 0.

Let σ ∈ H0(F, E∨(2h2 + h3)
)

and set (σ)0 = D ∪ E, where D ∈ |a1h1 + a2h2 + a3h3| is an effective 
divisor (i.e. ai ≥ 0, i = 1, 2, 3) and E is either empty or has pure dimension 1. Thus E = (s)0 where 
s ∈ H0(F, E∨(2h2 + h3 −D)

)
. Twisting by OF (D) the Koszul complex of s we obtain
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0 −→ OF (D) −→ E∨(2h2 + h3) −→ IE|F (−h1 + 2h2 − h3 −D) −→ 0. (9)

Twisting Sequence (9) by OF (h1 + 2h3) we obtain

0 −→ OF (D + h1 + 2h3) −→ E −→ IE|F (2h2 + h3 −D) −→ 0.

We know that h0(F, OF (D−h2+h3)
)
≤ h0(F, E(−h)

)
= 0, thus a2 = 0. We also know that E is also globally 

generated, thus the same is true for IE|F (2h2 + h3 − D). In particular 0 < h0(F, IE|F (2h2 + h3 − D)
)
≤

h0(F, OF (2h2 +h3−D)
)
, hence we infer a1 = 0 and a3 ≤ 1. Taking the cohomology of Sequence (9) twisted 

by OF (−2h2 − h3) we obtain

0 −→ OF (D − 2h2 − h3) −→ E∨ −→ IE|F (−h1 − 2h3 −D) −→ 0.

Since D ∈ |a3h3|, it follows that h0(F, IE|F (−h1 − 2h3 −D)
)
≤ h0(F, OF (−h1 − 2h3 −D)

)
= 0. Moreover 

E∨ is aCM. Taking the cohomology of the above sequence we thus obtain h1(F, OF (D − 2h2 − h3)
)

= 0, 
hence a3 = 0.

We conclude that D = 0 in Sequence (9). Since c2(E∨(2h2 +h3)) = 0 we deduce that E = ∅. In particular 
IE|F ∼= OF in Sequence (9). Twisting such a sequence by OF (h1 +2h3) we finally prove the existence of the 
extension we were asking for. Such extensions are parameterized by P3, because dim

(
Ext1F

(
OF (2h2 + h3),

OF (h1 + 2h3)
))

= 4. �
Lemma 6.2 yields that a Jordan–Hölder filtration of E is 0 ⊂ OF (h1 + 2h3) ⊂ E : indeed OF (h1 + 2h3)

and OF (2h2 + h3), being invertible, are stable with reduced Hilbert polynomial p(t) = 6
(
t+3
3
)
. It follows 

that

gr(E) = OF (h1 + 2h3) ⊕ E/OF (h1 + 2h3) ∼= OF (h1 + 2h3) ⊕OF (2h2 + h3).

Thus all such bundles are all S-equivalent, proving the following result.

Proposition 6.3. The moduli space

Mss,U
F (2;h1 + 2h2 + 3h3, 4h2h3 + h1h3 + 2h1h2)

reduces to a single point.

In all the other cases we claim that there always exist stable Ulrich bundles. Thanks to Proposition 3.2
this is obvious when c2 is either 2h2h3 +3h1h3 +3h1h2 or 3h2h3 +3h1h3 +h1h2. In particular we can prove 
the following results.

Proposition 6.4. The moduli spaces

Mss,U
F (2;h1 + 2h2 + 3h3, 3h2h3 + 3h1h3 + h1h2),

Mss,U
F (2; 2h, 2h2h3 + 3h1h3 + 3h1h2)

are irreducible, smooth of respective dimensions 3 and 5.
They coincide with the loci of stable bundles.

Proof. We deal only with the former space, because the latter can be handled similarly.
The non-emptiness of such moduli spaces has been already stated in Proposition 2.2. We want to 

prove their irreducibility. We know that the locus H ⊆ Hilbsm,nd
7t+1 (F ) corresponding to smooth, connected, 
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non-degenerate curves with class c2 = 3h2h3 + 3h1h3 + h1h2 is irreducible, smooth and unirational (see 
Proposition 4.2). Moreover hi

(
F, OF (−c1)

)
= 0, i = 1, 2, where c1 = h1 + 2h2 + 3h3.

Therefore there is a flat family E → H of vector bundles of rank 2 with Chern classes c1 and c2 (see 
Theorem 5.1). If E is a fibre of such a family, then it fits in Sequence (1) with c1 = h1 +2h2 +3h3 and C ⊆ F

a rational normal curve. Trivially E is initialized. Thanks to [7], Section 7, we know that E is also aCM.
Thus the universal property of Mss

F (2; h1 + 2h2 + 3h3, 3h2h3 + 3h1h3 + h1h2) yields the existence of a 
well-defined morphism

m : H → Mss,U
F (2;h1 + 2h2 + 3h3, 3h2h3 + 3h1h3 + h1h2).

The morphism m is surjective thanks to (4) of Proposition 3.1: indeed each initialized, aCM bundle E
with c1 = h1 + 2h2 + 3h3 and c2 = 3h2h3 + 3h1h3 + h1h2 has a rational normal curve as zero-locus 
of its general section, thus E appears as a fibre of the family defined in Theorem 5.1. We conclude that 
Mss,U

F (2; h1 + 2h2 + 3h3, 3h2h3 + 3h1h3 + h1h2) is irreducible.
Each point in Mss,U

F (2; h1 +2h2 +3h3, 3h2h3 +3h1h3 +h1h2) represents a stable bundle. Corollary 4.5.2 
of [20] yields that it is a smooth point, thanks to the vanishing h2(F, E∨ ⊗ E

)
= 0 proved in Lemma 2.3. 

Moreover we have

dim
(
Mss,U

F (2;h1 + 2h2 + 3h3, 3h2h3 + 3h1h3 + h1h2)
)

= h1(F, E∨ ⊗ E
)
.

Thanks to Proposition 6.1 and Lemma 2.3 we have h1(F, E∨ ⊗ E
)

= 1 − χ(E∨ ⊗ E). It is easy to check that 
c1(E∨ ⊗ E) = 0, c2(E∨ ⊗ E) = 4c2 − c21, c3(E∨ ⊗ E) = 0: thus Riemann–Roch theorem for E∨ ⊗ E yields 
χ(E∨ ⊗ E) = 4 − 4hc2 + hc21, hence h1(F, E∨ ⊗ E

)
= 3. �

What can be said in the case c2 = 2h2h3 + 2h1h3 + 4h1h2? Take a strictly semistable Ulrich bundle 
E with these Chern classes. It has a Jordan–Hölder filtration 0 ⊂ L ⊂ E where L is either OF (2h1 + h3)
or OF (2h2 + h3) (see the proof of Proposition 3.2), hence E/L is, respectively, either OF (2h2 + h3) or 
OF (2h1 + h3). In particular

gr(E) ∼= OF (2h1 + h3) ⊕OF (2h2 + h3).

Hence there is only one point in Mss,U
F (2; 2h, 2h2h3 + 2h1h3 + 4h1h2) representing the S-equivalence class 

of all the strictly semistable bundles.

Proposition 6.5. The moduli space

Mss,U
F (2; 2h, 2h2h3 + 2h1h3 + 4h1h2)

is irreducible of dimension 5.
The locus Ms,U

F (2; 2h, 2h2h3+2h1h3+4h1h2) is irreducible, smooth and its complement consists of exactly 
one point.

Proof. We still have a surjective morphism

m : H → Mss,U
F (2; 2h, 2h2h3 + 2h1h3 + 4h1h2)

where H is the component of the Hilbert scheme Hilbsm,nd
8t (F ) whose points correspond to curves in the 

class 2h2h3 + 2h1h3 + 4h1h2. Proposition 4.3 guarantees that H has dimension 16. Consider the fibre X
over the unique point corresponding to the S-equivalence class of all the strictly semistable bundles.
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Recall that strictly semistable bundles are parameterized by the variety B := P
(
Ext1F

(
OF (2h2 + h3),

OF (2h1 + h3)
)) ∼= P

2 (see Proposition 3.2). We have a map over B, whose fibre over a point corresponding 
to the extension

0 −→ OF (2h1 + h3) −→ E −→ OF (2h2 + h3) −→ 0

is dominated by P(H0(F, E)). Since E is Ulrich, it follows that h0(F, E) = 12, hence dim(X) ≤ 13. In 
particular there exist points in H which are mapped on points representing stable bundles.

Repeating almost verbatim the argument used in the proof of Proposition 6.4 we are able to complete 
the proof of the statement. �
7. Moduli spaces of non-Ulrich bundles

In this section we will examine the moduli spaces of non-Ulrich semistable bundles E . Thus we start to 
examine the case of initialized rank 2 aCM bundles on F with c1 = h3: Proposition 3.1 shows that the 
representative c2 can be assumed to be h2h3. Recall that these bundles are μ-stable, hence stable, thus their 
moduli space

Ms,aCM
F (2;h3, h2h3)

exists. Thanks to Proposition 4.1 we know that the locus H ⊆ Hilbt+1(F ) corresponding to lines with class 
c2 = h2h3 is isomorphic to P1 × P

1, hence rational and smooth. Moreover hi
(
F, OF (−c1)

)
= 0, i = 1, 2, 

where c1 = h3.
Thus there exists a flat family E → H of vector bundles of rank 2 with Chern classes c1 and c2 (see 

Theorem 5.1). If E is a bundle in the family E, then it fits into Sequence (1) with c1 = h3 and C ⊆ F is a 
line. Thanks to [7], Section 8.2, we know that E is also aCM.

Thus the universal property of Ms,aCM
F (2; h3, h2h3) yields the existence of a well-defined morphism 

m : P1×P
1 → Ms,aCM

F (2; h3, h2h3). The morphism m is surjective thanks to assertion (1) of Proposition 3.1: 
indeed each initialized, aCM bundle E with c1 = h3 and c2 = h2h3 has a line as zero-locus of its general 
section, thus E appears as a fibre of the family defined in Theorem 5.1. It follows that this moduli space is 
irreducible.

Let E be one of the bundles we wish to deal with. Being stable, E is simple (see [20], Corollary 1.2.8), 
hence h0(F, E ⊗E∨) = 1. Let C be the zero-locus of a general section of E : we already know that C is a line 
whose class in A2(F ) is h2h3. Tensoring Sequence (1) by OF (−h3) and taking its cohomology we obtain 
hi
(
F, E(−h3)

)
= hi

(
F, IC|F

)
. Since C is a line and the embedding F ⊆ P

7 is aCM, it is easy to check that 
hi
(
F, IC|F

)
= 0, i = 0, 1, 2, 3.

Again the cohomology of the same sequence tensored by E(−h3) yields hi
(
F, E ⊗ E∨) = hi

(
F, E ⊗ IC|F

)
, 

i = 0, 1, 2, 3. In order to compute these last dimensions we can take the cohomology of Sequence (2) tensored 
by E . We already know that h0(F, E ⊗ IC|F

)
= h0(F, E ⊗ E∨) = 1. Moreover, since E is aCM, we obtain

h1(F, E ⊗ E∨) = h1(F, E ⊗ IC|F
)

= h0(C, E ⊗ OC

)
− h0(F, E) + 1,

h2(F, E ⊗ E∨) = h2(F, E ⊗ IC|F
)

= h1(C, E ⊗ OC

)
.

We know that E⊗OC
∼= NC|F . The general theory of del Pezzo threefolds implies that NC|F is either O⊕2

P1 , 
or OP1(−1) ⊕OP1(1) (Lemma 3.3.4 of [21]). It follows that h2(F, E⊗E∨) = 0 and h1(F, E⊗E∨) = 3 −h0(F, E).

Again the cohomology of Sequence (1) gives h0(F, E) = h0(F, OF

)
+h0(F, IC|F (h3)

)
and h1(F, IC|F (h3)

)
= 0, because E is aCM. Thus the cohomology of Sequence (2) yields h0(F, IC|F (h3)

)
= h0(F, OF (h3)

)
−

h0(C, OC(h3)
)

= 1, because h3C = 0, hence OC(h3) ∼= OC . It follows that h1(F, E ⊗ E∨) = 1. We have 
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thus proved that Ms,aCM
F (2; h3, h2h3) is irreducible and smooth of dimensions 1. In particular it is rational, 

thanks to Lüroth theorem: we will actually check that it is isomorphic to P1.
Now consider a bundle E arising from an extension of the form

0 −→ OF (−h2 + h3) −→ E −→ OF (h2) −→ 0.

Clearly E is initialized, aCM, with c1(E) = h3 and c2(E) = h2h3. It is easy to check via a Chern classes 
computation that if E is decomposable then it is OF (−h2 + h3) ⊕OF (h2), hence the above sequence would 
split.

Thus, if we only consider the bundles arising from non-trivial extensions, they are indecomposable. Notice 
that h1(F, OF (−2h2+h3)

)
= 2, thus we have a family of non-isomorphic bundles with base P1. In particular 

P
1 ⊆ Ms,aCM

F (2; h3, h2h3), thus equality must hold.
The duality morphism defined by E �→ E∨(h) is an isomorphism. Thus the same conclusions hold for 

bundles with c1 = 2h1 + 2h2 + h3 whose representative c2 is 2h2h3 + h1h3 + 2h1h2, hence the moduli space

Ms,aCM
F (2; 2h1 + 2h2 + h3, 2h2h3 + h1h3 + 2h1h2)

is P1 too.
We can summarize the above computations in the following statement.

Proposition 7.1. The moduli spaces

Ms,aCM
F (2;h3, h2h3), Ms,aCM

F (2; 2h1 + 2h2 + h3, 2h2h3 + h1h3 + 2h1h2)

are isomorphic to P1.

Remark 7.2. We conclude this section giving a quick overview on the case of initialized, indecompos-
able, aCM bundles E of rank 2 with c1(E) = 0 and c2(E) = h2h3. These bundles are never semistable, 
though μ-semistable (see Proposition 3.3). It is well-known that it is possible to construct the moduli space 
Mμss

F (2; 0, h2h3) parameterizing S-equivalence classes of μ-semistable rank 2 vector bundles with fixed 
Chern classes c1 = 0 and c2 = h2h3 (see Section 5 of [17]): we will denote by Mμss,aCM

F (2; 0, h2h3) the locus 
of aCM ones.

Looking at the cohomology of Sequence (1), we know that h0(F, E) = 1 and each non-zero section of E
vanishes along the same line C. Thus there is a bijection between lines on F in the class h2h3 and aCM 
bundles E of rank 2 with c1(E) = 0 and c2(E) = h2h3.

Sequence (1) implies the existence of a filtration 0 ⊆ OF ⊆ E with E/OF
∼= IC|F . We claim that such 

a filtration is actually the Jordan–Hölder filtration of E with respect to the μ-semistability notion. On the 
one hand, we know that μ(E) = 0 and it is trivial that μ(OF ) = 0, hence μ(E/OF ) = 0. On the other hand, 
the μ-stability of OF and E/OF

∼= IC|F is well-known. In particular

gr(E) = OF ⊕ E/OF
∼= OF ⊕ IC|F .

Let E ′ be another bundle with the same properties and let C ′ be the zero-locus of any non-zero section 
of E ′. Assume the existence of an isomorphism ϕ : gr(E) → gr(E ′). The decomposition of gr(E) and gr(E ′)
allows us to identify ϕ with the matrix (

ϕ1,1 ϕ1,2
ϕ2,1 ϕ2,2

)
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where ϕ1,1 is an endomorphism of OF , ϕ1,2 : IC|F → OF , ϕ2,1 : OF → IC′|F and ϕ2,2 : IC|F → IC′|F . 
We have h0(F, IC′|F

)
= 0, thus ϕ2,1 = 0.

It follows that ϕ1,1 is actually an isomorphism, hence ϕ2,2 can be identified with the induced quotient 
isomorphism

IC|F ∼= gr(E)/OF → gr(E ′)/OF
∼= IC′|F .

By dualizing the exact sequence 0 → IC|F → OF → OC → 0 we deduce I∨
C|F

∼= OF , hence the nat-
ural morphism in the double dual is IC|F → OF which must coincide with the inclusion map because 
h0(F, I∨

C|F
)

= h0(F, OF

)
= 1. Similarly we can identify the morphism in the double dual of IC′|F with the 

inclusion IC′|F → OF . The double dual ψ of ϕ2,2 is thus an automorphism of OF , hence it should be a 
homothety mapping the ideal IC|F to the ideal IC′|F . We conclude that IC|F = IC′|F , hence C = C ′.

We conclude that gr(E) ∼= gr(E ′) implies E ∼= E ′. We deduce that the natural map sending each line on F
in the class h2h3 to the S-equivalence class of the corresponding aCM bundle E of rank 2 with c1(E) = 0 and 
c2(E) = h2h3 is a bijection. Since lines in the class h2h3 are parameterized by P1 ×P

1 (see Proposition 4.1), 
therefore there is a bijection P1 × P

1 → Mμss,aCM
F (2; 0, h2h3).

8. (Uni)rationality of the constructed moduli spaces

In this section we will finally discuss about the (uni)rationality of the moduli spaces constructed in the 
previous sections.

In Proposition 7.1 we proved that Ms,aCM
F (2; h3, h2h3) ∼= Ms,aCM

F (2; 2h1 + 2h2 + h3, 2h2h3 + h1h3 +
2h1h2) ∼= P

1. In particular they are rational.
Let us examine the moduli spaces Mss,U

F (2; h1 +2h2 +3h3, 3h2h3 +3h1h3 +h1h2), Mss,U
F (2; 2h, 2h2h3 +

3h1h3+3h1h2) and Mss,U
F (2; 2h, 2h2h3+2h1h3+4h1h2). Thanks to the construction described in the previous 

section, such spaces are dominated by unirational varieties (see Propositions 4.2 and 4.3). We conclude that 
these spaces are unirational.

It is thus natural to deal with their rationality. Though we will be able to prove in what follows that 
Mss,U

F (2; 2h, 2h2h3 + 2h1h3 + 4h1h2) is rational, the problem of the rationality of the other ones is wide 
open.

Let Q := P
1 × P

1. In [32] the author shows that the moduli space Mμs
Q (2; 0, n) of vector bundles F on 

Q with c2(F) = n is birational to Mμs
P2 (2; 0, n) for each n ≥ 2. In particular Mμs

Q (2; 0, n) is irreducible, of 
dimension 4n − 3 and rational. Notice that the reference [3] given in [32] contains a gap pointed out by 
M. Maruyama in [29] about the rationality statement: nevertheless such a gap has been filled in several 
papers (see e.g. [26] and [23]).

Consider now the moduli space Mss,U
F (2; 2h, 2h2h3 + 2h1h3 + 4h1h2) and the projection π : F → Q :=

P
1 × P

1 onto the two first factors. We denote by C a general plane section of Q embedded in P3 via the 
Segre map (or, in other words, a general divisor of bidegree (1, 1) on Q): notice that C is a smooth conic, 
thus C ∼= P

1. Each bundle F representing a point in Mμs
Q (2; 0, 2) is stable and normalized. It follows that 

h0(Q, F(tC)
)

= 0, t ≤ −1. For each such an F , we define e(F) := π∗F ⊗OF (h).

Lemma 8.1. If F ∈ Mμs
Q (2; 0, 2), then e(F) ∈ Mss,U

F (2; 2h, 2h2h3 + 2h1h3 + 4h1h2).

Proof. An easy Chern class computation shows that c1(e(F)) = 2h and c2(e(F)) = 2h2h3 +2h1h3 +4h1h2. 
Thus, if we show that e(F) is aCM we are done, because aCM bundles on F with those Chern classes 
are automatically Ulrich and semistable. We will compute the intermediate cohomology of e(F) by using 
Künneth formula and projection formula. We have
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hi
(
F, e(F)(th)

)
=

i∑
j=0

hj
(
Q,F(tC)

)
hi−j

(
P

1,OP1(t)
)
. (10)

Since c1(e(F)) = 2h, it follows from Serre’s duality that it suffices to consider only the case i = 1. If t = −1
then

h1(F, e(F)(−h)
)

= h0(Q,F(−C)
)
h1(

P
1,OP1(−1)

)
+

+ h1(Q,F(−C)
)
h0(

P
1,OP1(−1)

)
= 0.

Let now examine the case t 	= −1. Let FC := F ⊗ OC : the isomorphism C ∼= P
1 implies that FC

∼=
OP1(−a) ⊕ OP1(a) for some a ≥ 0. Assume a ≥ 1: thus the Harder–Narasimhan filtration of FC is 0 ⊆
OP1(a) ⊆ FC and FC/OP1(a) ∼= OP1(−a), thus 0 < 2a ≤ 2 thanks to Theorem 4.6 of [28]. We conclude that 
0 ≤ a ≤ 1. In both cases h1(C, FC(−C)

)
= h0(C, FC

)
= 2. For each t ∈ Z consider the restriction sequence

0 −→ F((t− 1)C) −→ F(tC) −→ FC(tC) −→ 0. (11)

The bundle F is stable on Q, hence Serre’s duality implies h2(Q, F(−C)
)

= h0(Q, F(−C)
)

= 0 and 
h2(Q, F(−2C)

)
= h0(Q, F

)
= 0.

From the former vanishing, Riemann–Roch theorem on Q and Serre’s duality, we deduce h1(Q, F(−C)
)

=
−χ(F(−C)) = 2.

The cohomology of Sequence (11) with t = −1 gives

0 −→ H1(Q,F(−2C)
)
−→ H1(Q,F(−C)

)
−→ H1(Q,FC(−C)

)
−→ 0.

Thus the latter vanishing, the equalities h1(Q, F(−C)
)

= h1(C, FC(−C)
)

= 2 and Serre’s duality yield 
h1(Q, F

)
= h1(Q, F(−2C)

)
= 0.

Since h0(C, FC(tC)
)

= 0 for each t ≤ −2, it follows that the map H1(Q, F((t − 1)C)
)
→ H1(Q, F(tC)

)
is injective, thus h1(Q, F(tC)

)
= 0 in the same range.

Since h1(C, FC(tC)
)

= 0 for each t ≥ 0, it follows that the map H1(Q, F((t − 1)C)
)
→ H1(Q, F(tC)

)
is 

surjective, thus again h1(Q, F(tC)
)

= 0 in the same range.
Equality (10) for i = 1 and t 	= −1 becomes

h1(F, e(F)(th)
)

= h0(Q,F(tC)
)
h1(

P
1,OP1(t)

)
.

On the one hand, we already know that h0(Q, F(tC)
)

= 0, t ≤ −2. On the other hand, h1(
P

1, OP1(t)
)

= 0, 
t ≥ 0.

We conclude that h1(F, e(F)(th)
)

= 0 for each t ∈ Z. �
The above proposition gives the existence of a well-defined map

e : Mμs
Q (0, 2) → Mss,U

F (2; 2h, 2h2h3 + 2h1h3 + 4h1h2).

The morphism π has a section σ : Q → F . In particular σ∗π∗ = (πσ)∗ is the identity, hence we deduce the 
injectivity of e. Since both spaces have dimension 5, we conclude that e is obviously dominant.

Proposition 8.2. The moduli space Mss,U
F (2; 2h, 2h2h3 + 2h1h3 + 4h1h2) is rational.

Proof. Since e is injective and

dim(Mμs
Q (2; 0, 2)) = dim(Mss,U

F (2; 2h, 2h2h3 + 2h1h3 + 4h1h2)) = 5,
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it follows that e is birational. Since Mμs
Q (2; 0, 2) is rational, it follows that the same is true for 

Mss,U
F (2; 2h, 2h2h3 + 2h1h3 + 4h1h2). �

Remark 8.3. In [22] J. Le Potier analyzes the restriction to the quadric Q of the null correlation bundles N . 
We denote by Mss

P3(2; 0, 1) the moduli space of normalized semistable bundles of rank 2 on P3 with c2 = 1. 
Let Mss,0

P3 (2; 0, 1) be the open subset of Mss
P3(2; 0, 1) consisting of all bundles N such that N ⊗OQ is stable 

on Q.
The restriction gives an étale quasi-finite morphism from Mss,0

P3 (2; 0, 1) onto an open proper subset 
U ⊂ Mμs

Q (2; 0, 2). The generic bundle E of U has a twin pair (a Tjurin pair) of null correlation bundles 
restricting to it, while there are bundles E in U with a unique null correlation bundle restricting to it.

Example 4.2 of [27] shows the existence of a bundle in Mμs
Q (2; 0, 2) but not in U , i.e. a stable bundle 

which is not the restriction of a null correlation bundle. The pull-back of this bundle gives an example of 
Ulrich bundle E on F with c1(E) = 2h and c2(E) = 2h2h3 + 2h1h3 + 4h1h2 which is not related, under this 
construction to an instanton bundle on P3. By the way, if E is a generic bundle on Mss,U

F (2; 2h, 2h2h3 +
2h1h3 + 4h1h2) then E(−h) can be obtained from a pair of null correlation bundles, hence E(−h) is the 
homology of the monad

0 −→ OF (−h1 − h2) −→ O⊕4
F −→ OF (h1 + h2) −→ 0.
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