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Analysis of One-Time Random Projections for
Privacy Preserving Compressed Sensing

Tiziano Bianchi, Member, IEEE, Valerio Bioglio, Member, IEEE, and Enrico Magli, Senior Member, IEEE

Abstract—In this paper, the security of the compressed sensing
(CS) framework as a form of data confidentiality is analyzed. Two
important properties of one-time random linear measurements
acquired using a Gaussian i.i.d. matrix are outlined: i) the
measurements reveal only the energy of the sensed signal; ii)
only the energy of the measurements leaks information about
the signal. An important consequence of the above facts is
that CS provides information theoretic secrecy in a particular
setting. Namely, a simple strategy based on the normalization
of Gaussian measurements achieves, at least in theory, perfect
secrecy, enabling the use of CS as an additional security layer in
privacy preserving applications. In the generic setting in which
CS does not provide information theoretic secrecy, two alternative
security notions linked to the difficulty of estimating the energy of
the signal and distinguishing equal-energy signals are introduced.
Useful bounds on the mean square error of any possible estimator
and the probability of error of any possible detector are provided
and compared to simulations. The results indicate that CS is in
general not secure according to cryptographic standards, but
may provide a useful built-in data obfuscation layer.

Index Terms—Compressed sensing, confidentiality, encryption,
privacy preservation, random matrices, security.

I. INTRODUCTION

Compressed sensing (CS) has emerged in recent years as
an efficient framework for acquiring signals, able to surpass
the bounds of the classical Shannon-Nyquist theory [1]–[3].
This result can be achieved observing that, if the signal
satisfies certain properties of sparsity, linear measurements
enable signal recovery with high probability, provided that
enough measurements are available with respect to signal
sparsity. The measurements have to satisfy certain incoherence
properties, which is the case of linear measurements acquired
using random matrices [4], [5].

Several applications can benefit from the low complexity
acquisition and reduced energy consumption offered by CS, as
demonstrated by recent works on spectrum sensing for cogni-
tive radios [6], [7], wireless sensor networks [8]–[10], network
anomaly detection [11]. In many recent papers [12]–[15], it has
been suggested that the randomness in the acquisition process

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

Tiziano Bianchi and Enrico Magli are with the Dept. of Electronics and
Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129, Torino, Italy. Valerio Bioglio was with the Dept. of Electronics and
Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129, Torino, Italy. He is now with the Mathematics and Algorithmic
Sciences Lab., Huawei Technologies France, Boulogne-Billancourt, France.

This work was supported by the European Research Council under the
European Community’s Seventh Framework Programme (FP7/2007-2013) /
ERC Grant agreement n. 279848.

may also implicitly provide some kind of privacy preservation
for similar applications. Hence, it is important to precisely
characterize the confidentiality of CS measurements, since in
applications where CS is already useful as a signal acquisition
strategy, CS may also provide confidentiality at no cost, or a
very little additional cost.

Since its early days, the structure of CS hinted the pos-
sibility that such a framework may provide some notion of
confidentiality. In [16] the authors conclude that, even if CS
does not provide information theoretic secrecy [17], it offers
computational secrecy if viewed as a cryptosystem. Many
subsequent works tried to further investigate the security of
CS as a cryptosystem [18]–[21].

In this paper, we analyze the confidentiality of CS measure-
ments in the case of one-time random projections. To begin
with, we prove that, differently from [16], under specific dis-
tributions of the signal, a CS framework that exploits Gaussian
i.i.d. sensing matrices can achieve secrecy in an information
theoretic sense. Namely, we demonstrate that in this case the
measurements reveal only the energy of the sensed signal,
and conversely that only the energy of the measurements
leaks information about the signal. As a consequence, a CS
framework that uses Gaussian random matrices is, at least in
theory, perfectly secure when sensing constant energy signals.

However, our study is not limited to Gaussian sensing
matrices. When the measurements are acquired with a generic
matrix, we prove that the spherical angle of the measurements
reveals only the spherical angle of the signal. In the case of
Gaussian sensing matrices, this allows us to propose a simple
strategy based on the normalization of the measurements
which achieves perfect secrecy irrespective of the distribution
of the sensed signal, even though the energy of the original
signal must be transmitted through an alternative secure chan-
nel if the correct signal has to be recovered.

For the generic cases in which CS does not provide in-
formation theoretic secrecy, we propose alternative security
notions linked to the difficulty of solving particular signal
processing tasks. The first metric is related to the minimum
mean square error achievable by practical estimators when
estimating the energy of the sensed signals from the mea-
surements. The second metric links the confidentiality of CS
to the performance of a detector trying to distinguish equal-
energy signals with different spherical angles. For specific
distributions of the sensed signal and the sensing matrix
we are able to provide closed form bounds characterizing
the confidentiality of CS according to both security notions.
Simulation results are included to validate such bounds in
simple scenarios and to provide further insight about the
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behavior of the aforementioned metrics in the case of more
general distributions.

This paper extends a previous work by Bianchi et al. [22]
both from a theoretical and an experimental point of view.
The most significant novelty is the analysis of generic sensing
matrices, providing important insights on the confidentiality
of non-Gaussian sensing matrices. We also discuss possible
attacks to generic sensing matrices in the case of equal-energy
signals and we experimentally verify their performance with
respect to the security bounds. Finally, we provide detailed
proofs for all the propositions in [22]. The results complement
those in [22], and show that Gaussian sensing matrices are
indeed a very special case, since generic sensing matrices can
only provide a weak notion of secrecy.

The rest of the paper is organized as follows. In Section II,
some background material about compressed sensing and
standard security definitions is provided. The main results
of the paper, dealing with the confidentiality of random
measurements, are presented in Section III. In Section IV
useful bounds on the confidentiality of the measurements
are derived, while in Section V some possible attacks are
introduced. Experimental results are presented in Section VI,
while issues related to signal recovery, quantization, and
practical implementation of the proposed system are discussed
in Section VII. The main implications of the obtained results
are finally discussed in Section VIII.

II. BACKGROUND

A. Notations

We denote column vectors x by lowercase letters, and
matrices A by uppercase letters. We denote as [A]ij the
element at the i-th row and j-th column of matrix A. The
p-norm, p ≥ 1, of a vector x is denoted as ||x||p; the notation
||x||0 indicates the number of nonzero elements of x. The
probability density function (pdf) of x is denoted as PX(x),
or, when the meaning is unambiguous, simply as P(x), while
E[x] and Var[x] denote the expectation and the variance of x,
respectively. The function log is always taken to the base e.

B. Compressed Sensing

A signal x ∈ Rn is called k-sparse if there exists a n × n
basis Φ and a vector θ ∈ Rn such that

x = Φθ (1)

and θ has at most k nonzero entries, i.e., ||θ||0 ≤ k. According
to the compressed sensing framework, a k-sparse signal can be
exactly recovered from m < n linear measurements acquired
using the m× n sensing matrix A

y = Ax (2)

by solving the minimization problem

θ̂ = arg min
θ
||θ||0, subject to AΦθ = y (3)

as long as the smallest number of columns of the m × n
matrix AΦ that are linearly dependent is strictly greater than
2k, which implies m ≥ 2k [1], [2].

In practice, if the entries of A are i.i.d. variables from a sub-
Gaussian distribution, then exact recovery of k-sparse signals
can be achieved with very high probability by solving the
convex minimization problem

θ̂ = arg min
θ
||θ||1, subject to AΦθ = y (4)

as long as m = O(k log(n/k)) [4]. Hence, in the following
we will focus on random sensing matrices A with i.i.d. entries.

C. Security definitions

Let us call the set of possible plaintexts P , the set of cipher
texts C and a key K. A private key cryptosystem is a pair
of functions eK : P → C, dK : C → P such that, given
a plain text p ∈ P , and a ciphertext c ∈ C, we have that
dK(eK(p)) = p and that it is unfeasible, without knowing the
key K, to determine p such that eK(p) = c.

A cryptosystem is said to be perfectly secure [17] if the
posterior probability of the ciphertext given the plaintext p is
independent of p, i.e., if

P(c|p) = P(c). (5)

Given a perfectly secure cryptosystem, an attack can not be
more successful than guessing the plaintext at random. It can
be proved that a cryptosystem can be perfectly secure only
if the size of the plaintext p is smaller than or equal to the
size of the key K and the key is used only once; this can be
achieved only by the one-time pad scheme. However, practical
cryptosystems are usually only computationally secure; this
means that breaking the cryptosystem is equivalent to solve
an NP-hard problem, i.e., a problem whose solution can not
be computed in polynomial time with respect to the size of
the key.

It is possible to find the following equivalences between a
CS scheme described in (2) and a private key cryptosystem:
the signal x is the plain text p, the sensing matrix A is the
secret key K and the measurement vector y is the cipher
text c. The encryption function eA is the matrix multiplication
between the sensing matrix A and the signal x; the decryption
is achieved by an algorithm able to solve the problem in (4).
The notions of perfect security and computational security can
be naturally extended to CS measurements.

Apart from the above security definitions, implying perfect
message confidentiality, in multimedia encryption it is some-
times required that an attacker is not able to recover a copy
of the plaintext with a sufficiently high quality. This leads
to a different security notion with respect to the standard
cryptographic definitions, which is often referred to as percep-
tual/transparent encryption [23]–[25]. Since this is usually an
application-dependent notion, in this case there are no formal
and universally agreed security definitions.

D. Security Scenarios and Attack Models

We assume a scenario in which a device acquire some
signals using CS and transmit the measurements on a publicly
accessible channel. The sensing matrix is communicated only
to the intended receivers through a secure channel, while
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possible adversaries have no knowledge of the sensing matrix.
We also assume that intended receivers and adversaries do not
collude.

In the case of sensing of multiple signals, the confidentiality
of CS measurements is affected by the policies of generation
and managing of the sensing matrix. In this paper, we will
focus on the one-time sensing matrix (OTS) scenario. We will
assume that each sensing matrix is used only once, and that
different sensing matrices are statistically independent. Under
this scenario, it is sufficient to consider the confidentiality of a
single CS framework y = Ax, since measurements of multiple
signals will be statistically independent. It is also sufficient to
consider the case where the adversary has only knowledge
of the measurements y, that corresponds to a ciphertext-only
attack (COA) scenario.

The OTS scenario seems the most promising one for provid-
ing an effective confidentiality layer. When the sensing matrix
is used multiple times, blind source separation techniques can
be applied to identify the sensing matrix [26]. Moreover, other
attack models are possible, e.g., the known-plaintext attack
(KPA), where the attacker knows both the message x and the
corresponding encryption y. Obviously, CS is not secure under
KPA when the same sensing matrix is used multiple times
[16], since the knowledge of n linearly independent messages
would be sufficient to solve the system of linear equations.
An analysis of KPA under the OTS scenario, restricted to the
case of Bernoulli sensing matrices, can be found in [21].

E. Related Works

The security of CS as a symmetric cryptosystem was
first analyzed in [16], where the authors show that CS does
not provide information theoretic secrecy but argue that it
is computationally secure, as long as the sensing matrix is
used only once. Similarly, in [18] the authors prove the
computational security of CS against a systematic search of
the sensing matrix, even in the case of known signal sparsity.
More recently, a practical CS system with two confidentiality
levels based on Bernoulli sensing matrices has been proposed
and analyzed in [19], [20] and its security against KPAs has
been investigated in [21].

Some results suggest that CS can also provide some notion
of security in the wiretap channel model [27], [28]. In this
model, an eavesdropper has access to a secret communication
through a different channel with respect to the intended
receiver. In [27], the authors show that, if the channels use
different sensing matrices and the eavesdropper obtains less
measurements than the intended receiver, the secrecy capacity
of the intended receiver is nearly equal to the channel capacity.
In [28], the authors construct the sensing matrix in such a
way that the combination of the eavesdropper’s channel and
the sensing matrix does not guarantee signal recovery. In this
way, the channel knowledge can be exploited in order to offer
security against an eavesdropper through the construction of a
special sensing matrix.

Finally, some authors suggest that CS can implicitly provide
a privacy preserving layer [29]. In [30], random projections
were proposed as a tool for enabling privacy preserving

data mining, even if reconstruction of the original data from
projections was not addressed. In [31], the authors show
that a similar setting can be used for sparse regression and
analyze its privacy properties. In [32], the authors propose a
mechanism to achieve differential privacy by adding noise to
CS measurements.

A number of application relying on privacy properties of
random projections have been recently proposed. In [13], the
authors propose to combine random projections and multi-
party computation for outsourcing watermarked image data
to the cloud. When a watermark, compressed with the same
sensing matrix, is presented to the cloud, this enables privacy-
preserving watermark detection. A similar framework is pro-
posed in [14], where outsourced random projections can be
used for privacy-preserving data mining and other signal
processing tasks. Alternatevely, random projections can be
used for generating a robust image hash [15].

With respect to [16], [18], our paper analyzes the statistical
properties of random linear projections, so that its results
hold also in the presence of computationally unbounded
adversaries. In this sense, the more closely related papers
are [19], [20]. However, results in our paper are based on
novel confidentiality metrics based on MSE and signal dis-
tinguishability, which permit a precise characterization of the
confidentiality of the measurements under different system
parameters. Since we assume a perfect channel for transmitting
the measurements, our results are not directly related to the
wiretap channel model. Similarly, our results do not apply
to most of the papers about privacy-preserving data mining
applications [14], [15], [30], [32], which are not based on the
OTS strategy. However, applications like that described in [13]
could benefit from the proposed framework.

III. CONFIDENTIALITY OF THE MEASUREMENTS

In this section, we summarize the main results of the paper.
The first two results regard Gaussian sensing matrices, which,
as we will see, play a special role in the confidentiality of
CS measurements. Namely, we prove that a Gaussian sensing
matrix discloses the energy of the sensed signal, and that only
the energy of the measurements carries information about the
signal. The third result holds for generic sensing matrices and
states that the spherical angle of the measurements provides
information only on the spherical angle of the signal. An
important consequence of the above results is that normal-
ized measurements obtained with a Gaussian sensing matrix
provide a perfectly secret channel. For the sake of conciseness,
most of the proofs are given in the Appendix.

Let us consider OTS measurements defined by y = Ax. Let
us assume that x is a random vector with an arbitary proba-
bility distribution, denote with I(x, y) the mutual information
between x and y [33], and define Ex = ||x||22. We have the
following important result:

Proposition 1. If [A]i,j are i.i.d. zero-mean Gaussian vari-
ables, then OTS measurements satisfy I(x; y) = I(Ex; y).

Proof. See the Appendix.
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The above result says that OTS measurements obtained
using an i.i.d. Gaussian sensing matrix do not reveal anything
more about x than its energy and what can be inferred
by knowing its energy. It is worth noting that this is true
irrespective of the sparsity degree of x, that is, x does not
necessarily have to be sparse. In the following, we will denote
such measurements as Gaussian-OTS (G-OTS) measurements.
An immediate consequence of the above proposition is that G-
OTS measurements do not reveal anything about a family of
signals with a constant energy.

Corollary 1. If x ∈ Sβ , where Sβ = {x|Ex = β > 0}, then
G-OTS measurements are perfectly secure.

Proof. If Ex is an a priori known constant, then P(y|Ex) =
P(y). Hence, from Prop. 1 we have P(y|x) = P(y).

Since for most signals of interest the constant energy
condition is usually not verified, it is interesting to evaluate the
information leakage of the signal x due to the observation of
y. Calling Ey = ||y||22, for the case of i.i.d. Gaussian sensing
matrices, we have the following result:

Proposition 2. If [A]i,j are i.i.d. zero-mean Gaussian vari-
ables, then we have that I(Ex; y) = I(Ex; Ey).

Proof. See the Appendix.

The above result says that Ey is a sufficient statistic for
estimating Ex, irrespective of the distribution of x. This result
holds only for Gaussian sensing matrices. Nevertheless, a
similar weaker property holds for generic sensing matrices.
Let us define the spherical angle of x and y as ux = x/

√
Ex

and uy = y/
√
Ey , respectively. We have the following result:

Proposition 3. If Ey > 0, then generic OTS measurements
satisfies I(x;uy) = I(ux;uy).

Proof. See the Appendix.

The above result says that the spherical angle of generic
OTS measurements y does not reveal anything more about
x than its spherical angle ux and what can be inferred by
knowing ux.

Finally, a very interesting consequence of the above results
is that they can be exploited to obtain a perfectly “secured”
version of G-OTS measurements. Let us assume that normal-
ized G-OTS measurements are transmitted according to the
following strategy

uy =

{
y/
√
Ey Ey > 0

U Ey = 0
(6)

where U is a random vector uniformly distributed on a unit
radius m-sphere. We denote it as SG-OTS.

Lemma 1. SG-OTS measurements are perfectly secure, i.e.,
P(uy|x) = P(uy).

Proof. According to the proof of proposition 2, uy is uni-
formly distributed on the unit radius m-sphere irrespective of
x.

IV. SECURITY METRICS

The results of the previous section indicate that measure-
ments acquired using linear random projections may leak
some information about the sensed signal. In this Section, we
will introduce some metrics linking this information leakage
to the performance attainable by attacks based on simple
signal processing tasks. More specifically, we will analyze the
precision with which the energy of the sensed signal can be
estimated and the distinguishability of equal-energy signals
having different spherical angles. Practical upper bounds on
the above metrics will also be derived for specific signal
distributions.

For what concerns the energy of the sensed signal, we will
show that the mean squared error (MSE) of the estimated
energy can be bounded according to the mutual information
between the measurements and the energy of the signal. Al-
though such mutual information can be difficult to characterize
in the case of generic signals and generic sensing matrices,
we will provide useful closed-form bounds in the case of
Gaussian sensing matrices and exactly sparse signals with
Gaussian componenents. As to the distinguishability of equal-
energy signals, we will first characterize the distinguishability
of a fixed pair of signals in the case of sensing matrices
having generic distributions. Then, we will analyze the ex-
pected behavior of the distinguishability for signals uniformly
distributed on a sphere and exactly sparse signals.

A. Energy Estimation

The standard cryptographic definition of security fails to
capture the fact that an attacker may try to estimate Ex up to
a certain precision instead of recovering it exactly. Hence, we
introduce an alternative notion of confidentiality linked to the
MSE between Ex and an estimate Êx obtained by observing
only the measurements y. In the following, we will say that
the measurements are η-MSE secure with respect to Ex, if, for
every possible estimator Êx(y) of Ex, we have that

ηÊx ,
E[||Ex − Êx(y)||22]

σ2
Ex

≥ η (7)

where σ2
Ex is the variance of Ex. Note that a Bayesian estimator

is always at least 1-MSE secure, since, in the absence of any a
posteriori information, the minimum MSE (MMSE) estimator
of Ex is Êx(y) = E[Ex], yielding E[||Ex − Êx(y)||22] = σ2

Ex .
Let us consider an estimator Êx(y) of Ex which relies on the

measurement y. By using rate-distortion theory, we can link
the mutual information between y and Ex to the MSE of the
estimator through the following lower bound [33, Th. 8.6.6.]:

E[||Ex − Êx(y)||22] ≥ 1

2π
e2h(Ex|y)−1 =

1

2π
e2h(Ex)−2I(Ex;y)−1.

(8)
This leads immediately to the following result:

Lemma 2. Generic measurements are at least η-MSE secure
with respect to Ex, where

η =
e2h(Ex|y)−1

2πσ2
Ex

. (9)
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The practical evaluation of the MSE security of CS measure-
ments requires to specify a distribution for A and x. Though a
characterization for generic distributions is difficult, in the case
of Gaussian sensing matrices we have the following useful
lemma:

Lemma 3. For G-OTS measurements I(Ex; Ey) can be upper
bounded as

I(Ex; Ey) ≤ ξ(κ∗)− ξ
(m

2

)
− ψ(κ∗) + ψ

(m
2

)
(10)

where ξ(κ) , κ + log(Γ(κ)) + (1 − κ)ψ(κ), Γ(κ) =∫∞
0
tκ−1e−tdt is the Gamma function, ψ(κ) = d log(Γ(κ))

dκ
is the digamma function, and κ∗ is the solution to the
nonlinear equation log(κ∗)−ψ(κ∗) = log(m/2)−ψ(m/2) +
log(E[Ex])− E[log(Ex)].

Proof. See the Appendix.

It is worth noting that the upper bound in (10) does not
depend on the variance of [A]i,j .

The above lemma can be used to provide a closed form
expression of η in the case of specific signal distributions.
If x can be modeled as an exactly k-sparse signal, whose
nonzero entries are i.i.d. Gaussian variables with zero mean
and variance σ2

x, then Ex is distributed as a chi-square variable
with k degrees of freedom scaled by σ2

x. The above fact,
together with (8), leads immediately to the following

Corollary 2. If x is an exactly k-sparse signal with i.i.d.
Gaussian nonzero entries, G-OTS measurements are at least
η-MSE secure with respect to Ex, where

η =
e2ξ( k2 )+2ξ′(m2 )−2ξ′(κ∗)−1

kπ
(11)

ξ′(κ) = ξ(κ) − ψ(κ) and κ∗ satisfies log(κ∗) − ψ(κ∗) =
log(m/2)− ψ(m/2) + log(k/2)− ψ(k/2).

Proof. See the Appendix.

B. Signal Distinguishability

Most of the theorems in Section III are valid only in
the case of Gaussian i.i.d. sensing matrices. However, in
practical CS framework, sub-Gaussian i.i.d. sensing matrices
are often exploited due to their recovery guarantees when
solving (4) and their simpler implementation. As an example,
Bernoulli i.i.d. matrices, i.e., such that [A]i,j = ±1 with
equal probability, belong to this class and permit to avoid
multiplications in the sensing process.

For what concerns the confidentiality of random measure-
ments, the main drawback of using a generic non-Gaussian
sensing matrix is that the measurements are not Gaussian dis-
tributed; hence, in general, it is not true that P(y|x) = P(y|Ex).
Nevertheless, when n tends to infinity, according to the central
limit theorem (CLT) P(y|x) tends to a multivariate Gaussian
distribution with zero mean and covariance matrix equal to
σ2
AExIm. Hence, we can expect that the information leakage

due to the non Gaussianity of A will decrease as n grows. The
same observation was made in [19], [20], where the authors
argued that a CS system using a Bernoulli matrix can achieve
a sort of asymptotic secrecy.

1) Security Definition: In order to characterize this infor-
mation leakage, we introduce a security notion based on the
problem of distinguishing whether the measurements y comes
from one of two known given signals x1 and x2. This security
definition is inspired by indistinguishability definitions com-
monly used in cryptography [34]. When the two signals have
the same energy, this problem is equivalent to distinguishing
the two different distributions of y that are implied by either
x1 or x2 and the fact that A is non-Gaussian.

Let us consider a signal x that belongs to a two-element set
{x1, x2}; a detector is a function that given the measurements
y outputs one of two possible signals x1, x2. Formally, this can
be defined as D : Rm → {x1, x2}. Given a certain detector,
we define the probability of detection with respect to signal
xi as Pd,i = Pr{D(y) = xi|x = xi} and the respective
probability of false alarm as Pf,i = Pr{D(y) = xi|x 6= xi}.
It is immediate to verify Pd,2 = 1−Pf,1 and Pf,2 = 1−Pd,1,
so that Pd,1−Pf,1 = Pd,2−Pf,2 , Pd−Pf . In the following,
we will say that CS measurements are ϑ-indistinguishable with
respect to two signals x1 and x2 if for every possible detector
D(y) we have

Pd − Pf ≤ ϑ. (12)

According to the above definition, lower values of ϑ cor-
respond to higher security, with ϑ = 0 being equivalent
to perfect secrecy, since in the absence of any information
random guessing achieves Pd = Pf .

Given OTS measurements acquired using a sensing ma-
trix A with a certain distribution, we can link their ϑ-
indistinguishability to P(y|x1) and P(y|x2). Let us denote the
total variation (TV) distance between the random variables a
and b as δ(a, b) = δ(PA(a),PB(b)) = 1

2

∫
|PA(t)− PB(t)|dt.

Let us also denote in short δ(P(y|x1),P(y|x2)) =
δ(Ax1, Ax2). We have the following:

Lemma 4. OTS measurements are at least δ(Ax1, Ax2)-
indistinguishable with respect to two signals x1 and x2.

Proof. The sum of error probabilities in a statistical hypothesis
test can be lower bounded as [35]

Pr{D(y) = x2|x1}+Pr{D(y) = x1|x2}
= 1− Pd + Pf

≥ 1− δ(P(y|x1),P(y|x2))

(13)

from which it is immediate to derive Pd−Pf ≤ δ(Ax1, Ax2).

2) Confidentiality of Generic Sensing Matrices: The above
result can be used to characterize the confidentiality of OTS
measurements in the case of a generic sensing matrix. Let us
assume that [A]i,j are independent and identically distributed
with zero mean. Moreover, let us assume that the above matrix
is used to sense vectors with constant energy. In the following,
without loss of generality we will assume Ex = 1. Given any
two different signals x1 and x2, with Ex1 = Ex2 = 1, we have
the following result:

Proposition 4. If the random variables a = [A]i,j satisfy
a Poincaré inequality with constant c > 0, i.e. for every
smooth function s with derivative s′, one has Var[s(a)] ≤
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c−1E[(s′(a))2], then the TV distance between Ax1 and Ax2

is upper bounded as

δ(Ax1, Ax2) ≤ϑA(x1, x2)

,

√
mD(a||G)||x1||44
c+ (2− c)||x1||44

+

√
mD(a||G)||x2||44
c+ (2− c)||x2||44

(14)

where D(a||G) = h(G) − h(a) is the Kullback-Leibler (KL)
divergence of a Gaussian variable G with zero mean and
variance σ2

A from a.

Proof. See the Appendix.

The above result is based on Theorem 1 in [36], which
states that the KL divergence between the distribution of the
linear combination of i.i.d. variables satisfying the Poincaré
inequality and a Gaussian distribution converges to zero, where
the rate of convergence depends on the sum of the fourth
powers of the normalized weights. In [37], it was proved
that the Poincaré inequality in the above Proposition holds
for every log-concave probability density function, i.e., if
P(a) ∼ e−f(a), where f(a) is a convex function, which
include exponential, Gaussian, and sub-Gaussian distributions.

The above result can be used to quantify the distinguishabil-
ity of the measurements of any two given signals. First of all,
let us examine two limit cases. The lowest value of the bound
occurs when ||x1||44 = ||x2||44 = 1/n, which corresponds to
x = [±1/

√
n, . . . ,±1/

√
n]. In this case, the bound becomes

δ(Ax1, Ax2) ≤

√
4mD(a||G)

c(n− 1) + 2
. (15)

The highest value of the bound occurs when ||x1||44 =
||x2||44 = 1, which happens when x has only one non-zero en-
try equal to 1, and is given by δ(Ax1, Ax2) ≤

√
2mD(a||G).

It is evident that in the best case the TV distance goes to zero at
least as O(n−1/2), which is consistent with Berry-Esseen type
estimates [38], as recognized in [36], [39]. Moreover, some
recent results on the entropic central limit theorem suggest
that the convergence in the best case can be O(n−1), as long
as the sensing matrix distribution satisfies some additional
constraints1 [40]. Berry-Esseen theorem is also used in [20]
to argue asymptotic spherical secrecy of CS measurements.
However, Berry-Esseen theorem is about the convergence of
the cumulative distribution function and can not be directly
used to provide a bound on TV distance here. Conversely,
in the worst case the TV distance is independent of n, since
obviously each entry of y has the same distribution as the
entries of A and does not converge to a Gaussian distribution.

It is worth noting that the upper bound in (14), even if
asymptotically correct, is surely pessimistic. As a matter of
fact, if x1 and x2 are equal, or, more generally, they have
the same entries but in a permuted order, which implies
||x1||44 = ||x2||44, it follows that y1 and y2 have exactly

1In [40], the authors show that if E[a3] = 0, E[a6] < +∞, and ||x||44 =
1/n, then we have D(Ax,G) = O(n−2). The above result, when used in
the proof of Proposition 4, yields a O(n−1) convergence rate of the TV
distance.

the same distribution, so that δ(y1, y2) = 0. A reasonable
conjecture is that tighter upper bounds may exists.

Interestingly, the above upper bounds can be used even in
the case of normalized measurements, when x1 and x2 are not
necessarily unit norm vectors. Let us define uxi = xi/

√
Exi

and uyi = yi/
√
Eyi , where yi = Axi, i = 1, 2. Then we have

the following

Corollary 3. Under the hypotheses of Prop. 4

δ(uy1 , uy2) ≤ ϑA(ux1
, ux2

). (16)

Proof. See the Appendix.

The above result implies that if OTS measurements are ϑ-
indistinguishable with respect to equal-energy signals, then the
normalized version of the same measurements is at least ϑ-
indistinguishable with respect to generic signals.

Finally, it is worth noting that G-OTS measurements
are always 0-indistinguishable with respect to equal-energy
signals (equivalently, SG-OTS measurements are always 0-
indistinguishable with respect to generic signals), since for
a Gaussian sensing matrix D(a||G) = 0, which is consistent
with the fact that G-OTS measurements achieve perfect se-
crecy when sensing equal-energy signals.

3) Expected Confidentiality for Constant Energy Signals:
A remark on the previous results is that the worst case
distinguishability, for non-Gaussian sensing matrices, can be
very high, meaning that in an adaptive chosen plaintext attack
the adversary can always find a set of signals that are easy to
distinguish. In this sense, the definition of signal distinguisha-
bility is different from the cryptographic notion of message
distinguishability. However, the interesting property is that the
set of bad signal is usually very small, so that the probability of
finding two signals that can be easily distinguished is very low.
The following results, valid when x is uniformly distributed
on a unit n-sphere, tells us that with high probability the upper
bound is usually close to the best case. First, we will introduce
the following useful lemma:

Lemma 5. If x is uniformly distributed on a unit n-sphere,
then for ε1 > 0 and 0 < ε2 < 1

Pr

{
||x||44 ≥

3 + ε1
(1− ε2)n

}
≤ 96

nε21
+ e−

nε22
16 (17)

and

Pr

{
||x||44 ≥

ε1
(1− ε2)n

}
≤ 5

2
e−
√
ε1
4 + e−

nε22
16 . (18)

Proof. See the Appendix.

We are now ready to state the main result:

Proposition 5. If x1, x2 are uniformly distributed on a unit

n-sphere, then with probability exceeding 1 − 192
nε21
− 2e−

nε22
16

we have

δ(Ax1, Ax2) ≤

√
4m(3 + ε1)D(a||G)

c(1− ε2)n+ (2− c)(3 + ε1)
. (19)
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Moreover, with probability exceeding 1 − 5e−
4√n
4 − 2e−

nε2

16

we have

δ(Ax1, Ax2) ≤

√
4mD(a||G)

c(1− ε)
√
n+ 2− c

. (20)

Proof. By using the union bound, from (17) we have
that Pr

{
max(||x1||44, ||x2||44) ≤ 3+ε1

(1−ε2)n

}
≥ 1 − 192

nε21
−

2e−
nε22
16 , which together with (14) immediately proves (19).

Moreover, by setting ε1 =
√
n in (18) we also have

Pr
{

max(||x1||44, ||x2||44) ≤ 1
(1−ε2)

√
n

}
≥ 1 − 5e−

4√n
4 −

2e−
nε22
16 , which together with (14) immediately proves

(20).

An important consequence of the above bounds on TV
distance is that we can characterize the distinguishability of
OTS measurements for messages uniformly distributed on the
unit n-sphere:

Corollary 4. If the hypotheses of the above theorems hold,
then with probability exceeding 1−O(n−1) we have that OTS
measurements are at least O

(√
m
n

)
-indistinguishable, whereas

with probability exceeding 1 − O(e−
4
√
n) we have that OTS

measurements are at least O
(√

m√
n

)
-indistinguishable.

4) Expected Confidentiality for k-sparse Signals: The
above result says that for most of the signals on the unit n-
sphere the distinguishability per measurement goes to zero as
n grows. In order to extend this result to k-sparse signals, let
us consider the class of signals expressed as x = Φθ, where θ
has k nonzero components uniformly distributed on the unit k-
sphere and Φ is an orthonormal basis. Obviously, such signals
lies on unit n-sphere. It is quite easy to verify that for Φ = In
the problem is equivalent to having a dense signal uniformly
distributed on a unit k-sphere. Hence, in this case we have
δ(Ax1, Ax2) = O(

√
m
k ) = O(1), i.e., the TV distance does

not vanish even if m
n → 0. On the other hand, for a different

Φ it is reasonable to think that the bounds about dense signals
on the unit n-sphere are still valid. If the columns φi of Φ
satisfy ||φi||44 ≤ C

n where C is some constant independent of
n, by using Cauchy-Schwarz inequality it is easy to prove that
||x||44 ≤ Ck2

n . Hence, if k2

n → 0 we have that the TV distance
vanish for this class of orthonormal basis. It is worth noting
that the Hadamard basis belong to this class with C = 1.

V. ATTACKS TO CS MEASUREMENTS

The bounds introduced in the previous section are very
general, in the sense that they hold for any possible attack
under the COA scenario. However, it is interesting to assess
how practical attacks to CS measurements, trying to extract
information about x without knowing A, will perform with
respect to those upper bounds. In this section, we consider two
possible kinds of attacks to CS measurements. The first attack
aims at estimating the energy of the signal from the energy of
the measurements. The second attack aims at distinguishing
two different equal-energy signals by exploiting the fact that
a generic sensing matrix may produce different probability

distributions of the measurements for different signals. Since
the first kind of attack is essentially an estimation problem,
while the second kind of attack is a detection problem, the
two classes of attacks will be referred to as estimation attacks
and detection attacks, respectively.

A. Estimation Attacks

Corollary 2 gives a lower bound for the MSE of any possible
estimator of Ex in the case of exactly k-sparse signal with
i.i.d. Gaussian nonzero entries. Such a bound can be compared
with the performance of practical estimators. An interesting
question is whether such a bound is actually tight with respect
to practical estimators. In the absence of any prior knowledge
on Ex, classical estimation theory states that the variance of
any unbiased estimator is always greater than the Cramér-Rao
lower bound (CRLB) [41], i.e.,

σ2
Êx
≥ − 1

E
[
∂2L(y;Ex)

∂E2x

] (21)

where L(y; Ex) = log(P(y|Ex)) denotes the log-likelihood
function. In the case of Gaussian sensing matrices this can
be computed as

σ2
Êx
≥ 2E2

x

m
. (22)

The maximum likelihood (ML) estimator of Ex in the case
of a Gaussian sensing matrix is given by

Êx,ML = max
Ex

log(P(y|Ex)) =
Ey
mσ2

A

. (23)

For the considered model, it is easy to verify that the
ML estimator is unbiased and achieves the CRLB, since
E
[
Êx,ML

]
= Ex and σ2

Êx,ML
=

2E2x
m . The performance of the

ML estimator depends on the value of the unknown parameter
Ex. In order to obtain the MSE of the ML estimator under a
specific distribution of Ex, we can observe that, for an unbiased
estimator, EEx,y[(Ex − Êx)2] = EEx [σ2

Êx,ML
]. In the case of a

Gaussian k-sparse source, this results in

E[(Ex − Êx,ML)2] =
2k(k + 2)σ4

x

m
, (24)

from which
ηÊx,ML =

k + 2

m
. (25)

Bayesian estimators can be obtained by assuming a prior
distribution for Ex. It is well known that in this case the MSE
is minimized by the posterior mean of Ex, i.e., Êx,MMSE =
EEx|y[Ex] [41]. For a Gaussian k-sparse signal, a closed form
of the MMSE estimator can be derived as

Êx,MMSE =
σx
√
Ey

σA

K k
2−

m
2 +1

(√
Ey

σAσx

)
K k

2−
m
2

(√
Ey

σAσx

) (26)

where Kν(x) denotes the modified Bessel function of the
second kind of order ν (see the Appendix). Unfortunately,
there is no closed form for the MSE of the above estimator.
A simpler estimator can be obtained by searching for the
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estimator minimizing the MSE among all estimators which
can be expressed as a linear function of Ey . The general
expression of the linear MMSE (LMMSE) is Êx,LMMSE =
CExEyC

−1
Ey (Ey − E[Ey]) + E[Ex], where CEy = σ2

Ey and
CExEy = E[ExEy]−E[Ex]E[Ey] [41]. For a Gaussian k-sparse
signal, the LMMSE estimator can be easily derived as

Êx,LMMSE =
Ey

σ2
A(m+ k + 2)

+
k(k + 2)σ2

x

m+ k + 2
. (27)

The MSE can be evaluated as

E[(Ex − Êx,LMMSE)2] =
2k(k + 2)σ4

x

m+ k + 2
(28)

from which we obtain

ηÊx,LMMSE =
k + 2

m+ k + 2
. (29)

The performance of the above estimators will be compared to
the theoretical bound (11) in Section VI.

B. Detection Attacks

We consider an hypothetical scenario in which OTS mea-
surements are used to sense two distinct signals x1 and
x2 having equal energy. Without loss of generality, we can
assume that Ex1

= Ex2
= 1. The aim of the attacker is to

guess whether the measurements conceal the signal x1 or the
signal x2. This is a classical detection problem, where the
aim is to distinguish whether the measurements y come from
the probability distribution P(y|x1) or from the probability
distribution P(y|x2).

Let us consider a detector D. The Neyman-Pearson (NP)
lemma states that for Pf = α, the probability of detection is
maximized by letting D(y) = x1 whenever

Λ(y) =
P(y|x1)

P(y|x2)
≥ θ (30)

where θ satisfies Pr{Λ(y) ≥ θ|x2} = α.
When the sensing matrix is made up of i.i.d. elements, it

turns out that the elements of y are i.i.d. as well. This permits
to rewrite the optimal NP test as

Λ′(y) =

m∑
i=1

(log(P([y]i|x1))− log(P([y]i|x2))) ≥ θ′. (31)

Moreover, since each element of y is given by the sum of
independent variables, this gives us a convenient way for
evaluating the test function Λ′(y). Let us consider the charac-
teristic function of the random variable a = [A]ij , defined as
φa(t) = E[ejta]. It is well known that the pdf of a random
variable a can be obtained as P(a) = 1

2π

∫∞
−∞ φa(t)e−jtadt,

i.e., that the characteristic function and the corresponding pdf
form a Fourier transform pair. We have that the characteristic
function of [y]i given a generic signal x can be computed as

φ[y]i|x(t) =

n∏
j=1

φa([x]jt) (32)

where φa(t) is the characteristic function of a generic ele-
ment of the sensing matrix A. Hence, given x1 and x2, we
can use (32) to evaluate the characteristic functions φ[y]i|x1

and φ[y]i|x2
, find the corresponding P([y]i|x1) and P([y]i|x2)

through a Fourier transform, and use them in (30) in order to
compute the optimal NP test.

In general, it is difficult to find a closed form expression for
the error probability of a detector implemented according to
the above procedure. Under the assumption that the elements
of y are i.i.d., it is possible to find an upper bound for
Pd − Pf by numerically evaluating the KL divergence be-
tween P([y]i|x1) and P([y]i|x2) and using Pinsker’s inequality.
Namely, we can estimate

Pd − Pf ≤ϑA,KL(x1, x2)

,

√
m

2
min (D([Ax1]i||[Ax2]i), D([Ax2]i||[Ax1]i))

(33)

where D([Ax1]i||[Ax2]i) and D([Ax2]i||[Ax1]i) can be com-
puted numerically.

VI. SIMULATION RESULTS

In the following sections we propose experimental results
to assess the accuracy of the bounds obtained in the previous
sections. Namely, we evaluate the estimation of the energy
of the signal in the case of different sensing matrices, and
the distinguishability of equal-energy signals for non-Gaussian
sensing matrices. In both cases, all the matrices have entries
that are extracted from distributions with zero mean and
unitary variance.

A. Estimation of Ex
In this section, we evaluate the MSE security of OTS

measurements in the case of k-sparse signals whose nonzero
components are i.i.d. Gaussian. Both G-OTS measurements
and OTS measurements acquires using a Bernoulli sensing ma-
trices (B-OTS) are considered. For each experiment, empirical
MSE values for the ML (25), LMMSE (29), and MMSE (26)
estimators are obtained by averaging over 105 independent
realizations of the measurements for each choice of k and m.

In a first experiment, we consider a fixed spar-
sity/measurement ratio ρ = k/m = 0.5 and we vary k in
the interval [1, 100]. For G-OTS measurements, the obtained
empirical η values versus the number of measurements m are
shown in Fig. 1-(a), together with the theoretical performance
of the ML and LMMSE estimator, given in (25) and (29)
respectively, and the theoretical lower bound given in (11).
For a fixed ρ, G-OTS measurements tend to have a constant
MSE security as m grows, with the η value that does not
decrease significantly for m > 50. It is also worth noting
that the theoretical lower bound is quite loose for m < 50,
but becomes relatively tight when m increases. For B-OTS
measurements, the empirical η values are shown in Fig. 1-
(b), together with the lower bound given in (11). B-OTS
measurements are less secure for small m, whereas both
systems have similar MSE security for m > 50.

In a second experiment, we consider a fixed number of
measurements m = 100 and we vary k in the interval [1, 50],
obtaining different sparsity/measurement rates ρ in the interval
[0.01, 0.5]. For G-OTS measurements, the obtained empirical

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2015.2493982

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

η

 

 

lower bound

ML theoretical

ML simulated

LMMSE theoretical

LMMSE simulated

MMSE simulated

(a)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

η

 

 

lower bound (G−OTS)

ML simulated

LMMSE simulated

MMSE simulated

(b)

Figure 1. MSE security for different number of measurements at a fixed
sparsity/measurement ratio ρ = k/m = 0.5. a) G-OTS; b) B-OTS.

η versus ρ are shown in Fig. 2-(a), together with the theoretical
performance of the estimators and the theoretical lower bound.
It is evident that the confidentiality of G-OTS measurements
decreases with ρ. It is also evident that for values of ρ that are
relevant to practical CS systems all the estimators can estimate
the energy of x with an MSE lower than σ2

Ex/10, which means
that the measurements permit to obtain a reasonable guess of
Ex even if the sensing matrix is unknown. Fig. 2-(b) shows
the empirical η values for B-OTS measurements, for which a
similar behavior is observed. Interestingly, in both experiments
the performance of B-OTS measurements is close to the lower
bound obtained for G-OTS measurements, suggesting that the
latter can be used to predict a sort of asymptotic behavior for
large m.

As to the different estimation attacks, the above results
indicate that the MMSE estimator obtains only a very slight
advantage with respect to the LMMSE estimator, unless the
attacker observes a very small number of measurements.
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Figure 2. MSE security for different sparsity/measurement ratios: m = 100,
k ranges form 1 to 50. a) G-OTS; b) B-OTS.

Moreover, the ML estimator is comparable to the Bayesian
estimators only for ρ < 0.1, whereas becomes quite ineffective
for higher sparsity/measurement rates due to the lack of prior
knowledge about the energy of x.

B. Distinguishing equal-energy signals

In this section, we evaluate the distinguishability of equal-
energy signals in different scenarios. In each experiment,
for the numerical evaluation of ϑA,KL(x1, x2) and the NP
test (31), the involved pdfs have been sampled on 10000
equispaced bins between −8 and 8.

The first experiment has been carried out with the aim of
assessing the different upper bounds on the distinguishability
of equal-energy signals. The signals have been defined as
[x1]i = 1/

√
n and [x2]i = Z(α)e−α(i−1), for i = 1, . . . , n,

where Z(α) is a suitable normalizing constant such that Ex2
=

1. In Fig. 3 we show the theoretical upper bound ϑA(x1, x2)
and the numerically evaluated upper bound ϑA,KL(x1, x2)
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Figure 3. Distinguishability of unit energy vectors using a uniform sensing
matrix, for m = 1, n = 1000.

when the entries of A are i.i.d. uniform variables with unit
variance (uniform sensing matrix), for α ∈ [0, 1], m = 1, and
n = 1000. In the same plot, we also show the maximum value
of Pd−Pf achieved by the optimal NP test (31), evaluated over
106 independent realizations. As can be seen, the performance
of the detection attack is predicted quite well by the numerical
upper bound, whereas the theoretical upper bound appears
overly pessimistic regarding the security of the system.

In the second experiment, we computed the numerical upper
bound ϑA,KL(x1, x2) (33) for different realizations of equal-
energy signals x1 and x2 and different scenarios. Namely,
we considered 1000 pairs θ1, θ2 of independent vectors with
k nonzero entries uniformly distributed on a unit norm n-
sphere, where the respective k-sparse signals were obtained
by multiplying those vectors by a unitary matrix Φ. The first
scenario considered as Φ the identity matrix, i.e., the signals
were sparse in the sensing domain. The second scenario
considered as Φ the discrete cosine transform (DCT) matrix.
In both scenarios we computed ϑA,KL(x1, x2) for m = 1,
since for m > 1 ϑA,KL(x1, x2) can be easily obtained by
multiplying the distinguishability calculated previously by a
factor

√
m.

In Fig. 4, we show the 0.95 percentile of ϑA,KL(x1, x2)
when n = 1000 and k varies in the interval [1, 500]. As
expected, if the signals are sparse in the sensing domain the
distinguishability decreases when k increases, whereas if the
signal are sparse in a different domain the distinguishability
is almost constant with respect to k. In Fig. 5, we show the
0.95 percentile of ϑA,KL(x1, x2) when k = 10 and n varies
in the interval [20, 1000]. As expected, the distinguishability
of signals that are sparse in the DCT domain decreases when
n increases, whereas if the signals are sparse in the sensing
domain the distinguishability does not depend on n.

It is evident that Bernoulli matrices are less secure than
uniform matrices. However, both kinds of matrix appears to
have the same asymptotic behavior, both with respect to k
(signal is sparse in the sensing domain) and with respect to n
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Figure 4. Distinguishability of k-sparse unit energy signals when using
different sensing matrix, for n = 1000.
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Figure 5. Distinguishability of k-sparse unit energy signals when using
different sensing matrix, for k = 10.

(signal is sparse in the DCT domain). Namely, in the case of
Fig. 4, least square fitting reports ϑA,KL(x1, x2) ≈ O(k−1.5)
for both kinds of sensing matrix, while in the case of Fig. 5,
least square fitting reports ϑA,KL(x1, x2) ≈ O(n−1.3). It is
worth noting that this behavior is much better than the upper
bound given by Corollary 4.

VII. DISCUSSION

A. Confidentiality vs. Signal Recovery

The security metrics introduced in the previous sections do
not consider signal recovery. However, an interesting problem
is investigating the trade-off between the number of mea-
surements required for successful signal recovery, when the
sensing matrix is known at the receiver, and the confidentiality
of those measurements, when the sensing matrix is kept secret.
The problem of signal recovery has been extensively studied
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Figure 6. MSE security for different undersampling ratios m/n, assuming
n = 1000 and k = m · ρ(m/n).

in CS literature [42]. In the noiseless setting we consider, an
important result in this paper [43] states that, given a signal
of dimension n and m measurements taken with a sensing
matrix composed of i.i.d. Gaussian variables, when n tends to
infinity the signal is recovered almost surely using (4) as long
as its sparsity satisfies

k ≤ m · ρ(m/n). (34)

where the curve ρ(m/n) depends on polytope geometry and
denotes a phase transition behavior of the recovery problem.

In Fig. 6, we report the MSE security of G-OTS mea-
surements for different undersampling ratios m/n, assuming
n = 1000 and k = m · ρ(m/n). This can be interpreted
as the maximum achievable confidentiality conditional on
signal recovery, i.e., when the signal can be exactly recovered
from m measurements (knowing A), the MSE security of the
measurements (A being secret) almost never exceeds the value
given in Fig. 6. Interestingly, this value increases with m: with
a higher number of measurements, less sparse signals can be
recovered, for which energy estimation is less precise. It is also
evident that signal recovery at very low m/n ratios implies
low confidentiality of the measurements.

In Fig. 7, we report the 0.95 percentile of ϑA,KL(x1, x2)
for different undersampling ratios m/n, assuming n = 1000
and k = m · ρ(m/n), when A is a Bernoulli matrix. In this
case, the curves can be interpreted as the minimum (expected)
distinguishability conditional on signal recovery, i.e., when
the signal can be exactly recovered from m measurements
(knowing A), the (expected) distinguishability (A being secret)
is almost never lower than the given curve. As can be seen,
when the signal is sparse in the DCT domain we can have both
signal recovery and a certain level of confidentility, whereas
for signals sparse in the sensing domain signal recovery at low
m/n ratios implies very low confidentiality.
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Figure 7. Distinguishability for different undersampling ratiosm/n, assuming
n = 1000 and k = m · ρ(m/n), when A is a Bernoulli matrix.

B. Quantization

The analysis in the previous sections assumes that signals,
sensing matrices, and measurements are represented with
infinite precision. If we assume that in a practical setting an
attacker observes the quantized measurements Q(y), the data
processing inequality [33] states that I(x;Q(y)) ≤ I(x; y),
meaning that quantized measurements are at least as secure as
infinite precision measurements. Hence, results based on the
model in (2) can be used to lower bound the confidentility of
quantized measurements.

An interesting case of quantized measurements is offered by
the one-bit compressed sensing framework [44], in which only
the sign of the random projections is taken as a measurement.
One-bit compressed sensing has received a lot of attention
because of its applications in analog to digital conversion
and its connections to locality sensitive hashing [45]. In this
case, it is easy to see that one-bit measurements depends only
on the spherical angle of unquantized measurements. Hence,
according to Lemma 1 one-bit measurements obtained with a
Gaussian sensing matrix achieve perfect secrecy in the OTS
setting. This is an example of a practical scenario in which
CS can provide useful security properties.

As a last remark, usually the sensing hardware will be
implemented relying on a digital architecture in practice,
meaning that a practical sensing matrix will be composed of
quantized entries. The confidentiality of a quantized matrix
will in general be different that the corresponding real valued
matrix. However, the security metrics in Section IV can be
applied to quantized matrices as well, as shown in Section VI
when dealing with Bernoulli matrices.

C. Implementation Issues

The implementation of either the G-OTS or the SG-OTS
acquisition system will require to transmit a sequence of i.i.d.
Gaussian sensing matrices. A solution is to use a secure ran-
dom number generator (SRNG) [46] and assume that sender
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and receiver synchronize their generators by sharing a secret
seed, that acts like a secret key. Like a stream cipher replaces
the key of the one-time pad with a keystream generated from
a shared key, a practical OTS system will be based on a
“keystream” of sensing matrices generated from this shared
key. However, since in a OTS system the size of this keystream
will be much larger than in a conventional stream cipher, a
drawback is that in order to guarantee the same security level
the shared key should be changed more often. The resulting
acquisition system is not perfectly secure, since a brute force
search of the key space will surely break it [16]. Moreover,
the resulting sensing matrices will be inevitably correlated and
the attacker may exploit this correlation, together with some
weaknesses of the SNRG, in order to try to estimate the key.
Finally, the distribution of the SRNG may slightly deviate
from Gaussian, so that the hypotheses of the G-OTS/SG-OTS
acquisition system are not exactly satisfied.

An alternative way for securely exchanging a private sensing
matrix is provided by wireless physical layer security, which
exploits the randomness of the wireless channel for extracting
a common secret between sender and receiver. A solution
is studied in [12], however it requires several iterations for
generating a secure sensing matrix and may not be well suited
for a OTS scenario.

As to the SG-OTS system, an auxiliary secure channel to
transmit the value of Ey is required in order to exactly recover
x at the intended receiver. Such a secure channel can be imple-
mented by relying on conventional cryptographic techniques.
As a consequence, the combination of SG-OTS measurements
and auxiliary channel will not be perfectly secure, since a
practical cryptosystem like AES offers only computational
security. Alternatively, the intended receiver could exploit prior
knowledge on x and avoid an auxiliary channel. However, this
solution will imply the nonexact recovery of x.

VIII. CONCLUSIONS AND FUTURE WORK

The results obtained in this paper give interesting insights
regarding the confidentiality of CS measurements. The first
important result is that a sensing matrix with zero mean i.i.d.
Gaussian entries reveals only the energy of the sensed signal.
As a consequence, the spherical angle of the signal is perfectly
hidden by the measurements if the energy and the angle are
statistically independent. Moreover, the energy of the signal
is revealed only by the energy of the measurements, since
Gaussian measurements have a uniformly distributed spherical
angle. This result holds irrespective of the distribution of the
signal x, which makes it a very general result.

The second important result is that the spherical angle
of the measurements taken with a generic sensing matrix
reveals only the spherical angle of the sensed signal. As
a consequence, normalizing the measurements can provide
an efficient way for increasing their confidentiality. As a
matter of fact, normalizing Gaussian measurements actually
provides a perfectly secret channel, that can be used to provide
an effective confidentiality layer, offering similar security as
standard cryptographic tools.

Apart from the special case of normalized measurements
obtained with a Gaussian sensing matrix, CS can not provide

confidentiality according to standard cryptographic definitions.
Nevertheless, we provide useful criteria to assess the confiden-
tiality of one-time CS measurements as a weak form of en-
cryption. In the case of unnormalized Gaussian measurements,
it is possible to upper bound the information leakage about
the energy and predict the precision with which the energy
can be estimated. In the case of normalized measurements
taken with a non-Gaussian matrix, it is possible to lower
bound the error of any detector trying to distinguish different
signals. According to such quantities, a system designer can
decide whether CS provides sufficient confidentiality for the
application at hand, or standard encryption is needed.

The results obtained with the above metrics indicate that CS,
even if it is not a replacement for standard encryption methods,
can be used to provide a built-in data obfuscation layer
complementing traditional cryptographic tools in many privacy
preserving applications. As an example, let us imagine a sensor
network that acquires and broadcasts CS measurements. In
this setting, the use of CS is justified by the need to achieve
a compact but computationally cheap signal representation for
data communication. By using the proposed OTS framework,
only authorized nodes knowing the actual sensing matrix
can recover meaningful information. At the same time, the
confidentiality of the measurements is guaranteed with respect
to non-authorized nodes, without the need of an additional and
power consuming encryption layer.

There are still interesting open questions regarding the
confidentiality of CS measurements. Possible directions for
future research include the characterization of more structured
sensing matrices, the effects of quantization, and the extension
to the case of sensing matrices that are used multiple times.

APPENDIX

1) Proof of Proposition 1: Let us consider the probability
distribution function P(y|x) for a given x. Since [A]i,j are
i.i.d. Gaussian, we have that P(y|x) is a multivariate Gaussian
distribution with mean µy|x and covariance matrix Cy|x. It is
immediate to find µy|x = E[y|x] = E[A]x = 0, whereas by
rewriting y = (I ⊗ xT )vec(AT ), where ⊗ denotes Kronecker
product and vec(A) vectorizes matrix A by stacking its
columns, we have

E[y · yT |x] =(I ⊗ xT )E[vec(AT )vec(AT )T ](I ⊗ x)

=σ2
A(I ⊗ xT )(I ⊗ x)

=σ2
Ax

TxIm = σ2
AExIm

(35)

where m is the number of measurements, Im denotes an m×m
identity matrix, and we assume that [A]i,j have variance σ2

A.
From the above results, it follows that P(y|x) depends only
on Ex, i.e. P(y|x) = P(y|Ex). The proof then follows from
the following chain of mutual information equalities [33]

I(x; y) =I(x, Ex; y)

=I(Ex; y) + I(x; y|Ex)

=I(Ex; y).

(36)

since P(y|x) = P(y|Ex) implies I(x; y|Ex) = 0.
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2) Proof of Proposition 2: For a given Ex, y is distributed
as a multivariate Gaussian with a scaled identity covariance
matrix, hence we have that P(y|Ex) can be expressed as a
function of yT y = Ey , i.e., P(y|Ex) , f(Ey, Ex). Moreover,
this implies that also P(y) can be expressed as a function of Ey ,
i.e., P(y) =

∫
f(Ey, Ex)P(Ex)dEx , g(Ey), meaning that y is

distributed according to a spherically symmetric distribution.
Let us define uy = y/

√
Ey . The proposition is proved by

Prop. 1 and the following chain of equalities

I(Ex; y) =I(Ex; Ey, uy)

=I(Ex; Ey) + I(Ex;uy|Ey)

=I(Ex; Ey).

(37)

since uy is uniformly distributed on the unit m-sphere and
independent of Ex and Ey .

3) Proof of Proposition 3: Let us consider the equalities
y = Ax =

√
Ex · Aux and Ey = yT y = Ex · uTxATAux. It

follows

uy = y/
√
Ey = (uTxA

TAux)−1/2Aux (38)

which implies P(uy|x) = P(uy|ux). The proof then follows
on the same lines as the proof of Prop. 1.

4) Proof of Lemma 3: We have the following chain of
inequalities

I(Ex; Ey) =h(Ey)− h(Ey|Ex)

=h(Ey) + E

[∫
P(Ey|Ex) logP(Ey|Ex)dEy

]
=h(Ey)− ξ

(m
2

)
− log(2σ2

A)− E [log(Ex)]

(39)

where we used the fact that P(Ey|Ex) is a chi-square dis-
tribution with m degrees of freedom scaled by σ2

AEx. The
differential entropy of Ey can be upper bounded by the
differential entropy of a Gamma distribution with the same
expectation and log-expectation [47], i.e.,

h(Ey) ≤ ξ(κ∗) + log(ϑ∗) (40)

where κ∗ and ϑ∗ satisfy κ∗ϑ∗ = E[Ey] and ψ(κ∗)+log(ϑ∗) =
E[log(Ey)]. The moments of Ey can be derived as E[Ey] =
mσ2

AE[Ex] and E[log(Ey)] = ψ
(
m
2

)
+log(2σ2

A)+E[log(Ex)].
Hence, by doing some simple algebra, it is easy to derive

h(Ey) ≤ ξ(κ∗)− ψ(κ∗) + ψ
(m

2

)
+ log(2σ2

A) + E[log(Ex)]

(41)
with κ∗ satisfying log(κ∗)−ψ(κ∗) = log(m/2)−ψ(m/2) +
log(E[Ex]) − E[log(Ex)]. The solution κ∗ is unique, since
log(κ∗)− ψ(κ∗) is positive and strictly decreasing (see, e.g.,
Th. 3.1 in [48]) and log(E[Ex]) ≥ E[log(Ex)]. The proof then
easily follows by combining (39) and (41).

5) Proof of Corollary 2: Since Ex is a chi-square variable
with k degrees of freedom scaled by σ2

x, we have σ2
Ex =

2kσ4
x and log(E[Ex])−E[log(Ex)] = log(k/2)−ψ(k/2) [49].

Moreover, by using (10) in (8) we have

E[(Ex − Êx)2] ≥ 1

2π
e2h(Ex)−2ξ′(κ∗)+2ξ′(m2 )−1

=
4σ4

x

2π
e2ξ( k2 )+2ξ′(m2 )−2ξ′(κ∗)−1

(42)

from which the proof easily follows.

6) Proof of Proposition 4: Let us consider a generic el-
ement [yi]k of the vector yi = Axi, for i = 1, 2. Clearly,
Var[[yi]k] = σ2

A||xi||22 = σ2
A. The CLT states that, as n

goes to infinity, the variable [yi]k converges in distribution
towards a Gaussian variable G with variance σ2

A. Moreover,
according to Theorem 1 in [36], if the entries of A are i.i.d.,
admit a probability density function, and satisfy the Poincaré
inequality with constant c > 0, the following inequality holds

D([yi]k||G) ≤ 2||xi||44
c+ (2− c)||xi||44

D(a||G). (43)

Let us assume that G(m) is a vector of m i.i.d. Gaussian
variables with variance σ2

A. The proof then follows from the
following chain of inequalities

δ(Ax1, Ax2) ≤ δ(Ax1, G
(m)) + δ(Ax2, G

(m))

≤
√

1

2
D(Ax1||G(m)) +

√
1

2
D(Ax2||G(m))

=

√
m

2
D([y1]k||G) +

√
m

2
D([y2]k||G)

(44)

where the first line follows from the fact TV distance satisfies
the triangle inequality, the second line follows from Pinsker’s
inequality between TV distance and KL divergence [50], [51],
and the third line follows form the fact that the entries of y1

and y2 are i.i.d..
7) Proof of Lemma 5: Since a vector x uniformly dis-

tributed on a unit norm n-sphere can be obtained by normal-
izing a vector of n i.i.d. zero mean and unit variance Gaussian
variables [52], we have that its components satisfy x2

i = Γi/Z,
i = 1, . . . , n, where Γi are i.i.d. according to a chi-squared
distribution with 1 degree of freedom and Z =

∑n
i Γi is a

chi-squared variable with n degrees of freedom. Hence, we
immediately have

Pr

{
n∑
i=1

Γ2
i ≥ t

}
= Pr

{
Z2||x||44 ≥ t

}
= Pr

{
||x||44 ≥

t

Z2

}
.

(45)
Hence, we can derive the following bound

Pr

{
||x||44 ≥

t

K

}
≤Pr

{
Z2 > K

}
Pr

{
||x||44 ≥

t

Z2

}
+ Pr

{
Z2 ≤ K

}
≤Pr

{
n∑
i=1

Γ2
i ≥ t

}
+ Pr

{
Z2 ≤ K

}
.

(46)

Using a simple Chernoff bound on chi-squared distributed
variables, we obtain

Pr
{
Z2 ≤ (1− ε)n2

}
≤Pr

{
Z2 ≤ (1− ε/2)2n2

}
=Pr {Z ≤ (1− ε/2)n} ≤ e−

nε22
16 .

(47)

As to the bound in (17), this can be derived by applying
Chebyshev’s inequality to

∑n
i=1 Γ2

i . We have E[Γ2
i ] = 3.
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Hence, since Γi are i.i.d,

Pr

{
n∑
i=1

Γ2
i ≥ (3 + ε)n

}
≤

Var[
∑n
i=1 Γ2

i ]

n2ε2

=

∑n
i=1 Var[Γ2

i ]

n2ε2
=

96

nε2
.

(48)

By using (47) and (48) in (46), we obtain the result in (17).
As to the bound in (18), let us consider the function f(t) =

cosh
√
t. The function f(t) is nondecreasing and convex for

t > 0, hence, for − 1
2 < s < 1

2 we have

Pr

{
n∑
i=1

Γ2
i ≥ nε

}
=Pr

{
f

(
s2

n

n∑
i=1

Γ2
i

)
≥ f(s2ε)

}

≤
E
[
f
(
s2

n

∑n
i=1 Γ2

i

)]
f(s2ε)

≤
E
[

1
n

∑n
i=1 f

(
s2Γ2

i

)]
f(s2ε)

=
E
[
esΓi

]
+ E

[
e−sΓi

]
2 cosh(s

√
ε)

=
(1− 2s)−

1
2 + (1 + 2s)−

1
2

2 cosh(s
√
ε)

(49)

where the first inequality follows from Markov’s inequality
and the second inequality from Jensen’s inequality. The result
in (18) can then be obtained by choosing s = 1

4 and using
(47) and (49) in (46).

8) Proof of Corollary 3: Let us define y′i = Auxi . It is
easy to verify uy′i = y′i/

√
Ey′i = uyi . We have the following

inequalities involving the KL divergence

D(Auxi ||G(m)) =D(P(uyi , Ey′i)||P(uG, EG))

=D(uyi ||uG) +D(P(Ey′i |uyi)||P(EG|uG))

≥D(uyi ||uG)
(50)

where uG = G(m)/
√
EG and we exploited the chain rule for

KL divergence [33] and the fact that KL divergence is always
nonnegative. Hence, the proof follows from the following
chain of inequalities

δ(uy1 , uy2) ≤ δ(uy1 , uG) + δ(uy2 , uG)

≤
√

1

2
D(uy1 ||uG) +

√
1

2
D(uy2 ||uG)

≤
√

1

2
D(Aux1 ||G(m)) +

√
1

2
D(Aux2 ||G(m)).

(51)

9) Derivation of (26): The MMSE estimator can be ana-
lytically computed as

Êx,MMSE =

∫
ExP(y|Ex)P(Ex)dEx∫
P(y|Ex)P(Ex)dEx

=

∫∞
0
E
k
2−

m
2

x e
− Ey

2σ2
A
Ex
− Ex

2σ2x dEx∫∞
0
E
k
2−

m
2 −1

x e
− Ey

2σ2
A
Ex
− Ex

2σ2x dEx

(52)

where we exploited the fact that y, conditional on Ex, is
distributed according to a multivariate Gaussian with covari-
ance matrix σ2

AExIm and Ex is distributed as a chi-square
with k degrees of freedom scaled by σ2

x. The result then
follows by applying the equality

∫∞
0
xν−1e−a/x−bxdx =

2(a/b)ν/2Kν(2
√
ab) (see [53, Page 368]).
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