
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

COTS-Based High-Performance Computing for Space Applications / Esposito, Stefano; Albanese, Cristian; Alderighi,
Monica; Casini, Fabio; Giganti, Luca; Esposti, Maria Livia; Monteleone, Claudio; Violante, Massimo. - In: IEEE
TRANSACTIONS ON NUCLEAR SCIENCE. - ISSN 0018-9499. - STAMPA. - 62:6(2015), pp. 2687-2694.
[10.1109/TNS.2015.2492824]

Original

COTS-Based High-Performance Computing for Space Applications

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNS.2015.2492824

Terms of use:

Publisher copyright

©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2625761 since: 2016-02-25T11:26:18Z

IEEE

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Commercial-off-the-shelf devices are often

advocated as the only solution to the increasing performance
requirements in space applications. This paper presents the
solutions developed in the frame of the European Space Agency’s
HiRel program, concluded in December 2014, in which a number
of techniques proposed in the past 10 years have been used to
design a highly reliable system, which has been selected for
forthcoming space missions. The paper presents the system
architecture, describes performed evaluations and discusses the
results.

Index Terms— Commercial-off-the-shelf (COTS); Space
Applications; Software Implemented Fault Tolerance (SIFT);
Watchdog Timer; Watchdog Processor; Memory Protection;
Memory Encoding; Fault Injection; Single Event Upset (SEU);
Central Processing Unit (CPU).

I. INTRODUCTION
SE of commercial off the shelf (COTS) devices is often
advocated as the only answer to the growing demand for

more on-board computing power in future space missions.
Although a number of high-performance computers for space
applications are available that are based on COTS
components, like [1] and [2], a solution entirely conceived in
Europe able to provide comparable performance was not
available. To solve this problem, in 2008 the European Space
Agency (ESA) launched three programs focused on using
COTS technology for developing space computers to provide
either high reliability (HiRel program), high performance (HiP
program), or high availability (HiV program).

This paper describes the results of the HiRel program,
which concluded in December 2014 and resulted in a highly
reliable space computer that is also able to provide high
computing performance.

The main novelty of this work is in presenting a case study,
where a number of known techniques developed in the past 10
years have been systematically adopted to obtain a highly
reliable computer, including extensive experimental results
validating robustness of the proposed architecture.

The results of the HiRel program were very satisfactory;
indeed the computer has been recently selected for a
forthcoming space mission.

 The paper is organized as follows: section II summarizes
the previous works regarding COTS components in space
applications and software fault tolerance; section III details the
proposed solution; section IV discusses the simulations
performed to evaluate the proposed architecture; finally,
section V draws some conclusions and proposes future
enhancements.

II. PREVIOUS WORKS
Several approaches have been proposed to meet

dependability requirements for space applications when COTS
components are used. Many have focused on a purely
hardware approach, most notably the Maxwell’s SCS750
architecture [1], based on hardware triple modular redundancy
(TMR). Other solutions focused on software means to harden
the system against radiations effects. Some works have taken a
hybrid approach to the problem, mixing software and
hardware solutions in order to achieve the required
dependability. The basic concepts of these techniques are
presented in the following, to introduce the readers to the
technique deployed in the HiRel computer.

A. Software Implemented Fault Tolerance
Several software approaches to fault detection and fault

tolerance have been proposed. Such methods require
modifying the software being executed on the system in order
to detect and correct errors deriving from transient hardware
faults such as Single Event Effects (SEEs). Such methods are
grouped under the term Software Implemented Fault
Tolerance (SIFT) and can be classified as purely software
techniques or hybrid techniques relying on some special
hardware to detect and correct an error.

Among the purely software techniques we can classify
techniques oriented to protect data and techniques oriented to
protect control flow. In the following we introduce some of
the main techniques, which are covered in more detail in [3].

1) Data Hardening Techniques

These techniques share the main goal of protecting system
data against SEEs. All require duplication of computation at
some level of granularity [4][5][6][7][8]. The main idea is to
duplicate all the variables in the code and to perform the same
operations on each replica. Each time a variable is read,

COTS-Based High-Performance Computing for
Space Applications

S. Esposito, C. Albanese, M. Alderighi, F. Casini, L. Giganti, M. L. Esposti, C. Monteleone, M.
Violante

U

This paper was partially funded by the European Space Agency.
C. Albanese and F. Casini are with Sanitas EG s.r.l., Milan, Italy.
M. Alderighi is with Istituto Nazionale di Astrofisica (INAF), Italy.
S. Esposito and M. Violante are with Politecnico di Torino, Italy (email:

stefano.esposito@polito.it).
L. Giganti and M.L. Esposti are with Thales Alenia Space Italia, Milan,

Italy.
C. Monteleone is with ESA/ESTEC, Noordwijk, The Netherlands.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

consistency between its two replicas is checked and an error is
detected in case of mismatch. Many improvements have been
proposed on this idea, both to automate it [5][7] and to reduce
its overhead [8].

Instead of duplicating each instruction, procedure calls can
be duplicated [9]. The main advantage over instruction level
duplication is the lower memory and performance overheads,
whereas the main drawback is the longer error latency, due to
the fact that error checks are performed after a duplicated
procedure execution rather than after each instruction.
Procedure calls duplication can be selective and can be
merged with instruction level duplication.

The coarser granularity of data hardening technique is the
program duplication, in which an entire program is executed
twice in a Virtual Duplex System (VDS) configuration [10].
This solution has the lowest memory and performance
overheads, but also the longest error latency. Performance
overhead can be mitigated exploiting the multi-threading
capabilities of modern architectures [11].

2) Control Flow Check (CFC) Techniques

Many techniques focus on the effects of transient faults on
the control flow of a software program. All CFC techniques
are based on the concepts of Basic Block (BB) and Control
Flow Graph (CFG) in order to build a system capable of
understanding whether the execution is proceeding as
expected or an error occurred at some point.
Path Identification [12] is based on a partitioning of the CFG
in which loop-free intervals are identified. A check is
performed at the beginning of each loop-free interval,
evaluating both a path predicate and an interval identifier,
which is unique to each interval.
The Enhanced Control Flow Checking using Assertion
(ECCA) [13] is an approach using assertions in order to detect
control flow errors (CFEs). ECCA assertions are designed to
cause a division by zero when an error affected the control
flow of the program.

The Yet Another Control flow Check using Assertion
(YACCA) [14][15] solution uses assertions to check for the
correctness of the current control flow. YACCA has a
performance overhead lower than ECCA, but it adds
conditional branches that might be target of CFE. This can be
avoided by moving the check at the end of the program, at the
cost of longer error latency.

3) Hybrid methods

Several methods have been proposed to implement fault
tolerance through a cooperation of hardware and software.
This is achieved chiefly by adding special purpose hardware to
the system called a watchdog [16]. There are several kinds of
watchdog; the simpler ones are timers triggering an interrupt
when the central processing unit (CPU) fails to reset them or if
the watchdog does not perceive any activity on the system bus
within a given timeout. More complex watchdogs are properly
called watchdog processors. Several techniques have been
proposed using watchdogs [17][18][19][20]. Watchdog
processors are mainly used to implement CFC, reducing the

overhead introduced by the techniques described in the
previous section. Some proposed architectures are described
below, each implementing some hybrid method for fault
tolerance.

The Proton 100k [2] introduced the concept of Temporal
Triple Modular Redundancy (TTMR). In TTMR software is
executed three times and the correct output is selected through
a majority vote among replicas’ outputs. In Proton 100k,
TTMR is paired to H-CORE, which is a hardware solution for
Single Event Functional Interruptions (SEFIs).

The DMT (Duplex Multiplexed in Time) architecture [21]
is composed of hardened software and memory protection
hardware. In the DMT architecture, I/O operations are
grouped before and after the processing phase. Each phase is
duplicated in order to allow fault detection. Each replica has
its own set of variables, in order to avoid common mode
errors. Fault detection is performed using bit-by-bit
comparison of the outputs. Recovery is implemented through
checkpoints, stored in a safe-storage memory, protected by a
special component implemented on an SEE-free chip.

The DT2 (Dual Duplex Tolerant to Transients) [21]
architecture is very similar to the DMT architecture and
implements the same recovery strategies, however it uses an
hardware duplex system, in which two instances of the
Processing Unit Core (PUC), composed of the
microprocessor, the companion chip and the memory, are
implemented. A special hardware component is used to
compare the outputs of the two PUCs, and it is implemented
on an SEE-free companion chip.

In [22] a hybrid approach is proposed to use hardware to
reduce the code size overhead and performance overhead of
fault tolerance, aimed specifically at Systems on Chip (SoCs).
An infrastructure IP (I-IP) is introduced in the architecture,
with access to the SoC bus. The I-IP implements both CFC
and data hardening. CFC is implemented through specific
write operations performed by the software on the I-IP
registers, while data hardening is performed monitoring the
bus.

III. PROPOSED ARCHITECTURE

A. Overview
The target system used in this work is a payload computer

implemented for ESA by a team including several Italian
universities and companies. Main goal of the cooperation was
to implement a space-worthy system using only COTS
components. The system is part of ESA’s HiRel program and
will be part of forthcoming missions.
The system is composed of a CPU based on the PowerPC
(PPC) architecture, capable of operations at 1GHz. The central
memory is implemented via a double data rate II (DDR-II)
memory of 1GB, used to store both code and data. It also
features a non-volatile flash memory for long term storage of
code and data. The interface between this payload computer
and the satellite and/or instruments is implemented via several
communications interfaces: a back-panel connector, two high-
speed serial links (HSSL) and a bank of Space Wire
connections (SpW).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Fig. 1 The overall system Architecture

In this architecture, the CPU is responsible for executing the

code, preparing both the input and the output operations. The
control of all the interfaces is allocated to a companion field
programmable gate array (FPGA), which implements the
bridge towards memory and other high-speed functionalities,
described in the next subsection. A second companion FPGA
is used to implement health control functionalities and low
speed functionalities, as described in section III.C.

All the components of the HiRel computer are based on
COTS technology, and therefore they exhibit sensitivity to
SEEs. To guarantee reliable operations, a number of SEE
mitigations techniques have been included in the architecture,
as detailed in the following sections. The main techniques we
adopted are the following:
• Hybrid software-implemented fault tolerance was

adopted to mitigate SEEs affecting the CPU. This
design decision was taken by considering the high
power consumption of the adopted CPU, which made
hardware redundancy for SEE mitigation not suitable.
In our architecture dedicated hardware functions are
implemented in the companion FPGAs to support
detection of SEEs affecting the CPU behavior, as
described in Section III.B and III.C; moreover, the
software running on the CPU is designed to exploit
coarse-grain data hardening and control flow checking,
as detailed in III.D.

• Information redundancy is implemented through a
Reed-Solomon coding scheme and protects volatile and
non-volatile memories.

• TMR is used to harden the design implemented in both
the companion FPGAs. The bridge FPGA device is a
high-performance SRAM-based component, therefore a
configuration-memory scrubber has been implemented
to detect and correct SEE in the FPGA configuration
memory. The second companion FPGA is a Flash-
based device, and therefore no particular mitigation is
needed other than TMR of the memory elements in the
design.

The focus of this paper is the overall architecture of the

HiRel computer, and the description of the SEE mitigation
technique we deployed to protect CPU’s operations; therefore,
details of memory and FPGA hardening are not addressed.

B. Bridge FPGA
The Bridge FPGA is a high-speed commercial FPGA used

to implement the system’s high-speed functionalities. It
implements the following functionalities:

• Memory bridge;
• Memory protection unit;
• HSSL controller;
• SpW controller.

The memory bridge includes two main reliability-related
functionalities: it implements the memory encoding, using a
Reed-Solomon code, and the memory scrubber, which
periodically operates a read-write operation in order to avoid
accumulation of faults in the memory.

The memory protection unit is one of the hardware
components used to implement fault detection as described in
section III.D. When properly configured, this unit is able to
detect write attempts to a memory area and to prevent them,
enforcing a memory partitioning. The HSSL controller and the
SpW controller send and receive data from their respective
physical interfaces, using direct memory access (DMA) in
order to operate without using CPU time.

C. Board Health Manager
The Board Health Manager (BHM) implements a series of

functionalities useful to check whether the system is operating
as expected. It is a low-speed component, since it does not
operate at the same frequency of the Bridge FPGA. The main
components implemented in the BHM are:
• Watchdogs and timers;
• Debug interface;
• FPGA configuration scrubber.
The BHM implements two watchdogs, WD1 and WD2, and

two timers T1 and T2. The timers are independent from each
other and offer the same functionalities. They can interrupt the
processor through two dedicated interrupt lines.

WD1 offers a window of time in which the operations of the
CPU must fit. The software is responsible for arming WD1
within the window boundaries. The window is composed of
two times: a minimum Tm and a maximum TM. If the time ΔT
between two consecutive arm operations is ΔT < Tm or ΔT >
TM, the watchdog triggers a panic reaction, stopping the whole
system and signaling the problem to the platform computer.
The only way to recover from this situation is to reset the
system.

WD2 implements the operations necessary to implement a
CFC strategy as described in section III.D. It implements a
double check on signatures and timeouts. The software is
responsible for configuring the WD2, communicating both the
correct sequence of signatures it must expect and the
maximum time that it must wait between two consecutive
signatures and between the start and the first signature. The
operations of the WD2 can be summarized as follows:

• Wait configuration and enable signal;
• Wait for the first signature for at most T1;
• Wait for the second signature for at most T2;
• ….
• Wait for the nth signature for at most Tn;

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

• Restart from the first signature.
At each step, WD2 configures an internal counter with the

time Ti associated to the ith signature. WD2 is triggered either
when the counter reaches zero, meaning that the software
timed-out, or when the received signature is not the expected
one, meaning that it is either wrong or it is not in the expected
order. When WD2 is triggered it sends a non-maskable
interrupt to the CPU, allowing the software to implement the
proper recovery action as described in section III.D

The debug interface is used as support for the fault injection
system. It is used to send pulses to an external system for
synchronization purposes and to receive a freeze signal, which
stops all watchdogs and timers in the BHM to allow the fault
injection operation without generating any watchdog timeout.

The FPGA configuration scrubber is responsible for
periodically scrubbing the configuration map of the Bridge
FPGA in order to avoid misbehaviors in the Bridge FPGA as
consequence of some upset in its configuration memory.

D. Software Fault Tolerance
The implemented software fault tolerance technique is a

hybrid technique, using a combination of watchdogs available
in the BHM and time redundancy technique.

The software is divided in three main phases:
1. Input acquisition (I): in this phase the data to be

processed by the software are acquired. The data can
be provided either by a communication device
available in the system or can be provided as an array
in a suitable location in memory.

2. Processing phase (P): in this phase the data are
processed by the application code and an output buffer
is prepared in memory.

3. Output phase (O): the results of the processing phase
are prepared as output of the system and are sent to an
available communication system or are copied to a
suitable location in memory.

We also define a terminology used in the following:
• Major Cycle (MajC) is the time required to complete

the execution of all three phases composing a
benchmark software (I, P, O),

• Minor Cycle (MinC) is the time required to complete
one of the phases composing the benchmark software (I
or P or O).

The software is composed at least of one MajC, and can
include several MajCs.

The time redundancy is implemented for each MinC. This
means that a single execution of the software adheres to the
following timeline:

1. The first input acquisition phase (I0) is executed and
immediately followed by the second input acquisition
phase (I1).

2. The first processing phase (P0) is executed and
immediately followed by the second processing phase
(P1).

3. A check is performed to ensure the correct execution so
far. In this phase the signatures computed during the
processing phases are compared, along with a set of

flags signaling the occurrence of a hardware exception
or that WD2 has been triggered. These flags are
described in more detail in the following of this section.
If an error is detected in this phase, either by an
exception flag being set or by a mismatch in either the
input or the output signatures, the recovery strategy is
activated.

4. If all checks pass, the first output phase (O0) is
executed immediately followed by the second output
phase (O1).

Two recovery strategies were devised and implemented.
The first strategy is a Backward Recovery (BWR) strategy in
which the two instances of the software are re-executed when
an error is detected. The second strategy is a Forward
Recovery (FWR) strategy in which a third instance of the
software is executed when an error is detected and a voter
decides the correct output among the three produced. In the
following of this section we describe the hardware used to
support the error detection.

Two watchdogs are used to detect CFEs and SEFI. WD1
provides a time window in which the execution of the MajC is
constrained. The lower boundary of the window is WD1MIN,
which is the minimum time required to complete the execution
of MajC. Its value is measured through profiling and is the
best-case execution time of the MajC when the software is
never preempted from the CPU. The upper boundary is
WD1MAX; its value depends on the recovery strategy adopted.
If a BWR strategy is adopted, the value of WD1MAX is four
times the duration of MajC, whereas if a FWR strategy is
selected the value of WD1MAX is three times the duration of
MajC. This is due to the fact that in a backward recovery
scenario, WD1 should allow the execution of the two replicas
of the benchmark to be executed twice, whereas in a forward
recovery scenario, the WD1 should allow the execution of just
one extra MajC. When WD1 is triggered no recovery action is
possible besides a full reset of the system, to be performed by
an external controller, e.g. a platform computer. WD2 is used
to check the correctness of the control flow. It allows
controlling both that the path of the execution is in the CFG
and that each block of the execution is performed within a
timeout, which is measured through profiling. A signature and
a timeout are assigned to each phase at compile time. At the
end of a phase, the software sends the signature to the WD2
which compares the received signature with the expected one
and it is triggered in case of mismatch or if the signature is not
received within the timeout. When WD2 is triggered, it sends
an interrupt to the CPU; the correspondent interrupt service
routine (ISR) is responsible for setting a flag signaling that an
error has been detected. The flag is read in the check phase
described above. Since the detection of faults through WD2
relies on the capability of the CPU to execute an ISR, this
mechanism is not able to react to SEFI or other faults stopping
the CPU from executing software, which are detected by
WD1.

A DDR protection unit is used in order to isolate
input/output buffers of each replica of the software from the
other. When properly configured, this unit forbids access to a

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

region of memory. For each replica two regions are defined,
one for the input buffer and one for the output buffer. When an
access is performed on a protected region, an interrupt is
triggered and the CPU executes the associated ISR that sets a
flag to signal the error. The software reads this flag during the
check phase described above.

To help the comparison phase a hardware comparator is
used, which is able to compare two words. During the check
phase the input signatures are sent to the comparator and the
result is retrieved. Afterwards, the output signatures are sent to
the comparator and result is retrieved. For each comparison if
a mismatch is detected, the recovery is immediately triggered.

It is to be noticed that this approach uses procedure call
duplication, meaning that each phase can be implemented as a
procedure called twice, thus reducing the code size overhead.
Moreover, each replica of the software operates in its own
memory region, which is protected by the DDR protection unit
during the execution of the other replica, so to grant that a
fault would not modify the data consumed or produced by the
replica which is not currently in execution.

IV. EXPERIMENTAL SETUP AND RESULTS
The proposed architecture has been validated from a

performance point-of-view by measurements of the execution
time, while the fault detection mechanisms were evaluated by
means of fault injection simulation campaigns targeting the
CPU register file, both level one (L1) and level two (L2) cache
memories, and the Bridge FPGA configuration memory. In
order to validate the SIFT technique a benchmark software
was developed for the target system.

A. Benchmark Software
The benchmark software implemented the SIFT technique

described in section III.D and was composed of a RICEa
compression algorithm [23], of a Fast Fourier Transform
(FFT) [24] implementation, and of the Dhrystone benchmark
[25][26].

Each algorithm has been implemented in its own MajC to
improve fault containment. Table 1 and Table 2 report
duration of the portions of the benchmark, which were target
of the fault injection, as measured through the BHM’s timers.
The output phase duration includes the duration of the checks
performed before actually sending results on the outputs. All
duration are measured when no fault is injected in the system
and are referred to the redundant software, as described
before.
TABLE 1. DURATION OF BENCHMARK PORTIONS WITH BACKWARD RECOVERY

 MINOR CYCLES MAJOR CYCLE
 INPUT PROC. OUTPUT

RICE 0.51 MS 12.41 MS 1.03 MS 13.95 MS
FFT 0.25 MS 7.35 MS 0.50 MS 8.10 MS

TABLE 2. DURATION OF BENCHMARK PORTIONS WITH FORWARD RECOVERY
 MINOR CYCLES MAJOR CYCLE
 INPUT PROC. OUTPUT

RICE 0.51 MS 12.41 MS 2.03 MS 14.95 MS
FFT 0.25 MS 7.35 MS 1.46 MS 9.06 MS

a Name of the first author of the paper that first proposed the algorithm.

B. Fault Injection
The system was evaluated for fault tolerance against faults

affecting the CPU. In particular, we considered only Single
Event Upsets (SEUs) affecting the instruction set architecture
of the CPU, i.e., registers accessible through the instruction
set, like the register file, the program counter, and the cache
memories. We recognize that the CPU includes many other
memory elements, like the boundary registers of the CPU
pipeline, where SEUs cannot be inoculated using the approach
we adopted. Although further validations are needed, for
example using accelerated radiation ground testing; we relied
on our fault injection method to get an initial feedback on the
robustness of the HiRel computer architecture.

The following sections describe: how the fault list was
generated, the injection system specifically conceived for the
target system, and the fault injection results.
The following terminology is used in sections below:
• Simulation: a single fault injection consisting of a

single execution of the software with a single injected
fault

• Simulation Campaign or Campaign: a collection of
fault injection simulations.

1) Fault list generation

As far as the CPU registers are considered, the fault list was
composed of faults randomly selected from a pruned fault list.
The total number of possible faults (software runtime
multiplied by the number of CPU registers) is such that an
exhaustive campaign is infeasible. As such the fault list has
been pruned applying the following considerations:
• The software does not use all the General Purpose

Registers (GPRs) and Floating Point Registers (FPRs).
• Since the software uses only single precision floating

point arithmetic, it is useless to inject faults on the
higher 32 bits in the FPRs.

These considerations allow for a reduction of the fault list size
even though it has some specificity on the application.
Although we achieved a very reduced fault list with respect to
the original one, the size of this fault list is still too large for a
fault injection simulation campaign. To obtain a feasible
campaign a preselected number of faults were randomly
sampled from the pruned list.

2) Fault injection system

A fault injection system was specifically conceived to run
the campaigns on the target system. The systems features three
main components, connected as shown in Fig. 2.

Host is a workstation PC and it is responsible for:

• Generating a fault list as described in previous section;
• Selecting a fault to inject for the current simulation,
• Sending needed fault details to the Supervisor,
• Modifying target’s fault injection ISR as required by

the selected fault,
• Collecting and analyzing the results in order to classify

fault effects at the end of each simulation.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Fig. 2 Fault Injection System architecture

Supervisor is an external board responsible for:
• Generating an interrupt signal for the Target at the

injection time for the selected fault;
• Freezing Target’s watchdogs during fault injection;
• Reset the board between simulations.
Target is the target system on which the application

software runs. In order to support the fault injection, the
application software is instrumented as follows:
• Calls to a driver function used to generate a pulse have

been added
• A specific fault injection routine has been implemented

as the ISR for the external interrupt sent by the
Supervisor.

Each fault is injected using the following procedure. Host
sends to Supervisor a reset request, to which Supervisor
answers resetting itself and then sending a reset signal to
Target. Once the reset sequence is completed, Host sends the
fault injection time to Supervisor. The fault injection time is
expressed in pulses and microseconds, meaning that the
Supervisor has to receive the specified number of pulses
before starting a timer configured to count a given number of
microseconds. When configuration is completed, Supervisor
asserts a freeze signal, which stops the watchdogs on Target.
After configuring Supervisor, Host loads the program image
with a stub of the fault injection routine in Target memory and
release Target, which executes up to a specific breakpoint
before the first MajC. This portion of software is responsible
for system initialization and for watchdogs’ configuration; it
was considered immune to faults since it only runs once at
system bootstrap. At the end of this configuration phase, Host
modifies the fault injection routine to include the details of the
fault to inject. This is done at this point of execution to be able
to use a low complexity routine without having to compile a
new binary at each simulation. The binary contains a stub
identical for any given fault. The modifications performed by
Host at this step change the stub in an injection routine
specific for the fault to inject. This step is performed after
initialization because the system bootstrap procedure would
overwrite the modification during the interrupt vector table

loading. Once Target is configured as described, execution
resumes and Target sends a pulse to Supervisor, to which
Supervisor answers by de-asserting the freeze signal, allowing
watchdogs to perform their tasks. During software execution,
Target sends a pulse to signal the end of each MinC.
Supervisor counts the pulses to reach the target MinC then it
starts a timer. When such timer expires, Supervisor asserts the
freeze signal and an external interrupt request line. Target
reacts to the external interrupt request by executing the fault
injection routine. Once the fault injection routine is completed,
Target sends a pulse to Supervisor, which de-asserts the freeze
signal. Then Target resumes execution until the end of the
program. At the end of software execution, Host reads results
from the Target memory and classifies the fault as described
in section IV.C.

C. Classification of faults
The faults injected during the campaigns were classified

with respect to the effect they had on the system. The
following classification has been adopted and will be used in
the following:
• Silent (S): a fault that had no detectable effect on the

system.
• WD1 timeout (WD1 TO): a fault that led the system to a

state from which it cannot rearm the WD1 or that
caused a rearm operation outside the time window
defined for WD1.

• Illegal instruction (I.I.): a fault that led to the fetching
of an invalid instruction, for instance by modifying the
PC so that it no longer points inside the code area of the
program memory, or by modifying the return address
of a subroutine. This is not a failure, since in a running
system, the exception handler would be called and a
recovery could be initiated. However, in this
experimental setup, the exception associated to an
illegal instruction was used by the debugger to
implement breakpoints, thus no recovery was possible
and the outcome was reported.

• Signature Collision (C): the fault led to the production
of two identical output signatures, escaping detection,
even though the results were different. Faults of this
class can be detected since results produced by
redundant executions are different. Using a signature
with a lower aliasing probability solves these errors.

• Failure (F): a fault which escaped any detection
mechanism and which led to the production of two
identical outputs, which were nonetheless different
from the expected output.

D. Experimental Results
1) Fault injection simulation campaigns on CPU registers

Three fault injection simulation campaigns were executed,
the first on a non-protected version of the benchmark, in
which RICE and FFT are simply called one after the other, the
other two on the backward recovery version and on the
forward recovery version respectively. Results of all three
campaigns are presented in Table 3.

In the first campaign a fault list of 1,000 faults was

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

produced sampling the same pruned fault list described in
section IV.B.

Without any SIFT technique, 283 faults end with a failure
or a hardware exception, as shown in the second row of Table
3. In plain software, this would mean that wrong results or no
results are provided to the user. This campaign provided a
baseline reference for the results achieved in the subsequent
campaigns, allowing a meaningful evaluation of both recovery
strategies. Only in this campaign, hardware exception (H.E.)
includes any possible hardware exception cause, since no
exception handling mechanism is implemented in the plain
software.

In the second campaign 2,000 faults sampled from the fault
list described in section IV.B were injected on the backward
recovery version. Results are shown on the third row of Table
3. There are no failures and a limited number of illegal
instructions. Detected WD1 timeouts are due to faults
persisting in the register file and leading to the repetition of
the backward recovery, until the WD1 is triggered, or to faults
locking the CPU in an infinite loop between checkpoints, thus
preventing detection of the WD2 error. A significant increase
in silent faults is observed, with respect to the results of the
fault injection simulation campaign on the plain version of the
software. This is due to the successful recovery performed by
the software protection mechanisms. A little number of
signature collisions is observed, due to the very simple
signature used in our simulations. A more complex signature
will lead to complete removal of this class of faults.

In the third campaign 2,000 faults sampled from the fault
list described in section IV.B were injected on the forward
recovery version. Results are shown on the fourth row of
Table 3. Similarly to what was observed for the backward
recovery mechanism, there are no failures and a limited
number of illegal instructions. The faults detected through
WD1 timeout are roughly half the number of faults of the
same class detected in the backward recovery version, due to
the lack of a backward recovery, which can lock the CPU in a
loop if a fault persists in the register file in between
recoveries.

TABLE 3 FAULT INJECTION RESULTS ON CPU REGISTERS

RECOVERY S. WD1
TO

C. I.I. H.E. F. INJ.

NONE 717 - - - 102 181 1000
BACKWARD 1790 165 42 3 - 0 2000
FORWARD 1843 95 34 28 - 0 2000

S.: silent; WD1 TO: WD1 timeout; C.: signature collision; I.I.: illegal
instruction; H.E.: hardware exception; F.: failure; Inj.: injected.

2) Fault injection simulation campaigns on CPU caches and
Bridge FPGA configuration memory

A similar set of campaigns was performed to evaluate the
effects of faults injected in the CPU caches and in the Bridge
FPGA (Tables 4 and 5). Results show that the proposed
architecture is virtually immune to faults injected in caches or
in the Bridge FPGA. The caches are indeed protected either by
a parity code or by an ECC by hardware means, while the
Bridge FPGA is protected by the BHM through a bit stream
scrubber. These fault injection campaigns used a more

complex Supervisor system, which was also in charge of
timing the communication of results through the Space Wire
links.

The results of the campaign targeting the cache memories
(Table 4), showed that the implemented SIFT strategy is able
to recover faults with no failure, WD1 timeout or collision in
over 2000 faults injected, whereas results of the campaign
targeting the Bridge FPGA configuration memory (Table 5),
show a very low rate of WD1 TO or Transmission Errors
(T.E.), i.e. faults leading to an erroneous timing of the
communication with respect to the timing a platform computer
would expect.

TABLE 4 FAULT INJECTION RESULTS ON CACHE MEMORIES
RECOVERY S. WD1 TO C. INJ.

BACKWARD 2250 0 0 2250
FORWARD 2250 0 0 2250

TABLE 5 FAULT INJECTION RESULTS ON THE BRIDGE FPGA CONFIGURATION

MEMORY
RECOVERY S. WD1 TO T. E. INJ.

BACKWARD 995 2 3 1000
FORWARD 994 1 5 1000

3) Overhead evaluation

Table 6 shows performance overhead introduced by both
recovery strategies in fault free executions. Results show a
performance overhead less than 100% in both cases, thanks to
the coarse granularity used in implementing the SIFT strategy.
Forward recovery shows a slightly worse behavior due to an
additional check, performed in any case to decide whether to
execute the third replica or not.

TABLE 6. PERFORMANCE OVERHEAD EVALUATION.

RECOVERY EXECUTION TIME
NONE 13.88 MS -

BACKWARD 22.64 MS +63%
FORWARD 24.60 MS +77%

Executable image size overhead data are reported in Table

7. The Code column reports the size of executable code. It
shows code memory area increase is reduced thanks to the
coarse granularity approach to time redundancy. Even though
the forward recovery version adds some extra check which are
not present in the backward recovery, the lower complexity of
the forward recovery strategy with respect to the backward
recovery strategy allows for an equivalent overhead. The Data
column reports size of all data included in the program image,
i.e. initialized, unitialized, and read-only data. It shows a
significant increase, due to the need to duplicate, for backward
recovery, or triplicate, for forward recovery all input and all
output areas of each MajC; the difference among the recovery
strategies accounts also for the higher overhead of the forward
strategy in this area. The Total column reports the total size of
the stripped executable image. The difference on each row
between this column and the sum of the other two columns is
due to other parts of the executable image which are of little
concern in this analysis.

Overall, the forward strategy shows an higher overhead in

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

both performance and memory area occupation than the
backward strategy.

TABLE 7. EXECUTABLE IMAGE SIZE OVERHEAD EVALUATION

RECOVERY CODE DATA TOTAL
NONE 1892 B - 183 KB - 237 KB -

BACKWARD 1968 B +4% 250 KB +37% 317 KB +34%
FORWARD 1968 B +4% 264 KB +44% 336 KB +42%

V. CONCLUSIONS
This paper proposes a case study where a European space

computer based on COTS technology is presented. By
combining software techniques with special hardware
implementing Watchdog Timer, Watchdog Processor,
Memory Partitioning, Memory Encoding, and two scrubbers
(one for the Main Memory and one for the Bridge-FPGA
configuration memory) the proposed architecture can grant
high level of reliability while containing performance and
memory area overhead to a reasonable level, as results show.
Fault injection simulations show no SEE-induced failures and
a limited number of detected but not recovered faults, which
should either be addressed by a platform computer using a
stand-by spare or by improving the signature computation
algorithm in order to reduce aliasing.

Simulations also compared two recovery strategies, named
backward and forward recovery. Results shows that forward
recovery achieves a better fault recovery, while introducing a
slightly higher overhead in both performance and memory
area occupation. Although accelerated radiation ground testing
experiments are needed to further validate the HiRel computer
(for example allowing evaluating the impact of SEEs in the
memory elements not accessible though fault injection, like
the CPU pipeline boundary registers), the results we obtained
suggest a very high tolerance against SEEs.

In the foreseeable future, space mission performance
requirements will grow out of the capabilities of contemporary
single-core base COTS solutions. Although the strategy
presented in this paper could be ported to a multicore system,
for instance to parallelize the redundant executions, multicore
system’s use in mission-critical systems still poses many
problems, especially when hard-real time constraints are into
play. Since most multicore systems are actually System-on-
Chips, time interference among the cores, resource sharing
and susceptibility to SEE effects of the configuration registers,
are among the main challenges that future designs will have to
address.

REFERENCES
[1] R. Hillman, G. Swift, P. Layton, M. Conrad, C. Thibodeau, and F. Irom,

“Space Processor Radiation Mitigation and Validation Techniques For
an 1,800 MIPS Processor Board,” Proc. RADECS 2003, pp. 347-352,
Sep. 2003.

[2] D. R. Czajkowski, M. P. Pagey, P. K. Samudrala, M. Goksel, and M. J.
Viehman, “Low Power, High-Speed Radiation Hardened Computer &
Flight Experiment,”, Aerospace Conference, 2005, IEEE, pp. 1-10,
IEEE, 2005

[3] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, M. Violante,
“Software-implemented Hardware Fault Tolerance”, Springer Science &
Business Media, 2006.

[4] M. Rebaudengo, M. Sonza Reorda, M. Torchiano, and M. Violante,
“Soft-error detection through software fault-tolerance techniques,” Int’l
Symp. on Defect and Fault Tolerance in VLSI Systems, 1999, pp. 210-
218, IEEE, 1999

[5] M. Rebaudengo, M. Sonza Reorda, M. Torchiano and M. Violante, “A
source-to-source compiler for generating dependable software,” in Proc.
of the 1st IEEE Int’l Workshop on Source Code Analysis and
Manipulation, pp. 33-42, IEEE, 2001

[6] P. Cheynet, B. Nicolescu, R.Velazco, M. Rebaudengo, M. Sonza
Reorda, and M. Violante, “Experimentally evaluating an automatic
approach for generating safety-critical software with respect to transient
errors,” IEEE Trans. on Nuclear Science, vol. 47, no. 6, pp. 2231-2236,
2000.

[7] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection by
duplicated instructions in super-scalar processors,” IEEE Trans. on
Reliability, vol 51, no. 1, pp. 63-75, 2002

[8] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri, “A C/C++ source-
to-source compiler for dependable applications,” in Proc. Int’l
Conference on Dependable Systems and Networks, pp.71-78, IEEE,
2000

[9] N. Oh and E. J. McCluskey, “Error detection by selective procedure call
duplication for low energy consumption,” IEEE Trans. on Reliability,
vol. 51, no. 4, pp. 392-402, 2002

[10] K. Echtle, B. Hinz, and T. Nikolov, “On hardware fault detection by
divers software,” Proc. of the 13th Int’l Conference on Fault-Tolerant
Systems and Diagnostics.

[11] S.K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” Proc. of the 27th Int’l Symp. on Computer
Architecture, pp. 25-36, 2000.

[12] S. S. Yau and F.-C. Chen, “An approach to concurrent control flow
checking,” IEEE Trans. on Software Engineering, no. 2, pp. 126-137,
1980.

[13] Z. Alkhalifa, V.S. Nair, N. Krishnamurthy, and J.A. Abraham, “Design
and evaluation of system-level checks for on-line control flow error
detection,” IEEE Trans. on Parallel and Distributed Systems, vol. 10,
no. 6, pp. 627-641, 1999.

[14] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante,
“Soft-error detection using control flow assertions,” Proc. of the 18th
IEEE Int’l Symp. on Defect and Fault Tolerance in VLSI Systems, pp.
581-588, IEEE, 2003.

[15] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante,
“Improved software-based processor control-flow errors detection
technique,” Proc. of the Annual Reliability and Maintainability Symp.,
pp. 583-589, IEEE, 2005

[16] J.R. Connet, E. J. Pasternak, and B. D. Wagner, “Software defenses in
real-time control systems,” Digest of the 1972 Int’l Symp. On Fault-
Tolerant Computing, pp. 94-99, 1972.

[17] M. Namjoo and E. J. McCluskey, “Watchdog processors and capability
checking” Twenty-Fifth Int’l Symp. on Fault-Tolerant Computing,
Highlights from Twenty-Five Years, p. 94, IEEE, 1995.

[18] S. Saib, “Distributed architectures for reliability,” Proc. of the AIAA
Computers in Aerospace Conference II, Los Angeles, 1979.

[19] A. Mahmood, A. Ersoz, and E. J. McCluskey, “Concurrent system-level
error detection using a watchdog processor,” 1985.

[20] F. E. Allen, “Control flow analysis,” SIGPLAN, No. 5, Vol. 7, pp. 1-19,
Jul 1970

[21] M. Pignol, “DMT and DT2: two fault-tolerant architectures developed
by CNES for COTS-based spacecraft supercomputers,” 12th IEEE Int’l
On-Line Testing Symp, 2006. IOLTS 2006, pp. 10-pp, IEEE, 2006

[22] P. Bernardi, L.M.V. Bolzani, M. Rebaudengo, M. Sonza Reorda, J.J.
Rodríguez-Andina, M. Violante, “A new hybrid fault detection
technique for systems-on-a-chip,” IEEE Trans. on Computers, Vol. 55,
No.2, pp.185-198, Feb. 2006

[23] R. Rice, J. Plaunt, “Adaptive variable-length coding for efficient
compression of spacecraft television data,” IEEE Trans. on Comm., Vol
19 No. 6, pp. 889-897, 1975

[24] J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of
complex Fourier series,” Math. of computation, vol. 19, no. 90 pp. 297-
301, 1965

[25] R. P. Weicker, “Dhrystone: a synthetic systems programming
benchmark.” Comm. of the ACM, vol. 27, no. 10, pp. 1013-1030, 1984

[26] R. P. Weicker, “Dhrystone benchmark: rationale for version 2 and
measurement rules,” AcM SIGPLAn notices, vol. 23, no. 8, pp. 49-62,
1988.

