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Abstract— Commercial-off-the-shelf devices are often 

advocated as the only solution to the increasing performance 
requirements in space applications. This paper presents the 
solutions developed in the frame of the European Space Agency’s 
HiRel program, concluded in December 2014, in which a number 
of techniques proposed in the past 10 years have been used to 
design a highly reliable system, which has been selected for 
forthcoming space missions. The paper presents the system 
architecture, describes performed evaluations and discusses the 
results. 
 

Index Terms— Commercial-off-the-shelf (COTS); Space 
Applications; Software Implemented Fault Tolerance (SIFT); 
Watchdog Timer; Watchdog Processor; Memory Protection; 
Memory Encoding; Fault Injection; Single Event Upset (SEU); 
Central Processing Unit (CPU). 
 

I. INTRODUCTION 
SE of commercial off the shelf (COTS) devices is often 
advocated as the only answer to the growing demand for 

more on-board computing power in future space missions.  
Although a number of high-performance computers for space 
applications are available that are based on COTS 
components, like [1] and [2], a solution entirely conceived in 
Europe able to provide comparable performance was not 
available. To solve this problem, in 2008 the European Space 
Agency (ESA) launched three programs focused on using 
COTS technology for developing space computers to provide 
either high reliability (HiRel program), high performance (HiP 
program), or high availability (HiV program). 

This paper describes the results of the HiRel program, 
which concluded in December 2014 and resulted in a highly 
reliable space computer that is also able to provide high 
computing performance.  

The main novelty of this work is in presenting a case study, 
where a number of known techniques developed in the past 10 
years have been systematically adopted to obtain a highly 
reliable computer, including extensive experimental results 
validating robustness of the proposed architecture. 

The results of the HiRel program were very satisfactory; 
indeed the computer has been recently selected for a 
forthcoming space mission. 

 The paper is organized as follows: section II summarizes 
the previous works regarding COTS components in space 
applications and software fault tolerance; section III details the 
proposed solution; section IV discusses the simulations 
performed to evaluate the proposed architecture; finally, 
section V draws some conclusions and proposes future 
enhancements. 

II. PREVIOUS WORKS 
Several approaches have been proposed to meet 

dependability requirements for space applications when COTS 
components are used. Many have focused on a purely 
hardware approach, most notably the Maxwell’s SCS750 
architecture [1], based on hardware triple modular redundancy 
(TMR). Other solutions focused on software means to harden 
the system against radiations effects. Some works have taken a 
hybrid approach to the problem, mixing software and 
hardware solutions in order to achieve the required 
dependability. The basic concepts of these techniques are 
presented in the following, to introduce the readers to the 
technique deployed in the HiRel computer. 

A. Software Implemented Fault Tolerance 
Several software approaches to fault detection and fault 

tolerance have been proposed. Such methods require 
modifying the software being executed on the system in order 
to detect and correct errors deriving from transient hardware 
faults such as Single Event Effects (SEEs). Such methods are 
grouped under the term Software Implemented Fault 
Tolerance (SIFT) and can be classified as purely software 
techniques or hybrid techniques relying on some special 
hardware to detect and correct an error. 

Among the purely software techniques we can classify 
techniques oriented to protect data and techniques oriented to 
protect control flow.  In the following we introduce some of 
the main techniques, which are covered in more detail in [3]. 

 
1) Data Hardening Techniques 

These techniques share the main goal of protecting system 
data against SEEs. All require duplication of computation at 
some level of granularity [4][5][6][7][8]. The main idea is to 
duplicate all the variables in the code and to perform the same 
operations on each replica. Each time a variable is read, 
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consistency between its two replicas is checked and an error is 
detected in case of mismatch. Many improvements have been 
proposed on this idea, both to automate it [5][7] and to reduce 
its overhead [8]. 

Instead of duplicating each instruction, procedure calls can 
be duplicated [9]. The main advantage over instruction level 
duplication is the lower memory and performance overheads, 
whereas the main drawback is the longer error latency, due to 
the fact that error checks are performed after a duplicated 
procedure execution rather than after each instruction. 
Procedure calls duplication can be selective and can be 
merged with instruction level duplication. 

The coarser granularity of data hardening technique is the 
program duplication, in which an entire program is executed 
twice in a Virtual Duplex System (VDS) configuration [10]. 
This solution has the lowest memory and performance 
overheads, but also the longest error latency.  Performance 
overhead can be mitigated exploiting the multi-threading 
capabilities of modern architectures [11]. 

 
2) Control Flow Check (CFC) Techniques 

Many techniques focus on the effects of transient faults on 
the control flow of a software program. All CFC techniques 
are based on the concepts of Basic Block (BB) and Control 
Flow Graph (CFG) in order to build a system capable of 
understanding whether the execution is proceeding as 
expected or an error occurred at some point.  
Path Identification [12] is based on a partitioning of the CFG 
in which loop-free intervals are identified. A check is 
performed at the beginning of each loop-free interval, 
evaluating both a path predicate and an interval identifier, 
which is unique to each interval.  
The Enhanced Control Flow Checking using Assertion 
(ECCA) [13] is an approach using assertions in order to detect 
control flow errors (CFEs). ECCA assertions are designed to 
cause a division by zero when an error affected the control 
flow of the program. 

The Yet Another Control flow Check using Assertion 
(YACCA) [14][15] solution uses assertions to check for the 
correctness of the current control flow. YACCA has a 
performance overhead lower than ECCA, but it adds 
conditional branches that might be target of CFE. This can be 
avoided by moving the check at the end of the program, at the 
cost of longer error latency. 

 
3) Hybrid methods 

Several methods have been proposed to implement fault 
tolerance through a cooperation of hardware and software. 
This is achieved chiefly by adding special purpose hardware to 
the system called a watchdog [16]. There are several kinds of 
watchdog; the simpler ones are timers triggering an interrupt 
when the central processing unit (CPU) fails to reset them or if 
the watchdog does not perceive any activity on the system bus 
within a given timeout. More complex watchdogs are properly 
called watchdog processors. Several techniques have been 
proposed using watchdogs [17][18][19][20]. Watchdog 
processors are mainly used to implement CFC, reducing the 

overhead introduced by the techniques described in the 
previous section. Some proposed architectures are described 
below, each implementing some hybrid method for fault 
tolerance. 

The Proton 100k [2] introduced the concept of Temporal 
Triple Modular Redundancy (TTMR). In TTMR software is 
executed three times and the correct output is selected through 
a majority vote among replicas’ outputs. In Proton 100k, 
TTMR is paired to H-CORE, which is a hardware solution for 
Single Event Functional Interruptions (SEFIs).  

The DMT (Duplex Multiplexed in Time) architecture [21] 
is composed of hardened software and memory protection 
hardware. In the DMT architecture, I/O operations are 
grouped before and after the processing phase. Each phase is 
duplicated in order to allow fault detection. Each replica has 
its own set of variables, in order to avoid common mode 
errors. Fault detection is performed using bit-by-bit 
comparison of the outputs. Recovery is implemented through 
checkpoints, stored in a safe-storage memory, protected by a 
special component implemented on an SEE-free chip. 

The DT2 (Dual Duplex Tolerant to Transients) [21] 
architecture is very similar to the DMT architecture and 
implements the same recovery strategies, however it uses an 
hardware duplex system, in which two instances of the 
Processing Unit Core (PUC), composed of the 
microprocessor, the companion chip and the memory, are 
implemented. A special hardware component is used to 
compare the outputs of the two PUCs, and it is implemented 
on an SEE-free companion chip. 

In [22] a hybrid approach is proposed to use hardware to 
reduce the code size overhead and performance overhead of 
fault tolerance, aimed specifically at Systems on Chip (SoCs). 
An infrastructure IP (I-IP) is introduced in the architecture, 
with access to the SoC bus. The I-IP implements both CFC 
and data hardening. CFC is implemented through specific 
write operations performed by the software on the I-IP 
registers, while data hardening is performed monitoring the 
bus.  

III. PROPOSED ARCHITECTURE 

A. Overview 
The target system used in this work is a payload computer 

implemented for ESA by a team including several Italian 
universities and companies. Main goal of the cooperation was 
to implement a space-worthy system using only COTS 
components. The system is part of ESA’s HiRel program and 
will be part of forthcoming missions. 
The system is composed of a CPU based on the PowerPC 
(PPC) architecture, capable of operations at 1GHz. The central 
memory is implemented via a double data rate II (DDR-II) 
memory of 1GB, used to store both code and data. It also 
features a non-volatile flash memory for long term storage of 
code and data. The interface between this payload computer 
and the satellite and/or instruments is implemented via several 
communications interfaces: a back-panel connector, two high-
speed serial links (HSSL) and a bank of Space Wire 
connections (SpW). 
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Fig. 1 The overall system Architecture 

 
In this architecture, the CPU is responsible for executing the 

code, preparing both the input and the output operations. The 
control of all the interfaces is allocated to a companion field 
programmable gate array (FPGA), which implements the 
bridge towards memory and other high-speed functionalities, 
described in the next subsection. A second companion FPGA 
is used to implement health control functionalities and low 
speed functionalities, as described in section III.C. 

All the components of the HiRel computer are based on 
COTS technology, and therefore they exhibit sensitivity to 
SEEs. To guarantee reliable operations, a number of SEE 
mitigations techniques have been included in the architecture, 
as detailed in the following sections. The main techniques we 
adopted are the following: 
• Hybrid software-implemented fault tolerance was 

adopted to mitigate SEEs affecting the CPU. This 
design decision was taken by considering the high 
power consumption of the adopted CPU, which made 
hardware redundancy for SEE mitigation not suitable. 
In our architecture dedicated hardware functions are 
implemented in the companion FPGAs to support 
detection of SEEs affecting the CPU behavior, as 
described in Section III.B and III.C; moreover, the 
software running on the CPU is designed to exploit 
coarse-grain data hardening and control flow checking, 
as detailed in III.D.  

• Information redundancy is implemented through a 
Reed-Solomon coding scheme and protects volatile and 
non-volatile memories.  

• TMR is used to harden the design implemented in both 
the companion FPGAs. The bridge FPGA device is a 
high-performance SRAM-based component, therefore a 
configuration-memory scrubber has been implemented 
to detect and correct SEE in the FPGA configuration 
memory. The second companion FPGA is a Flash-
based device, and therefore no particular mitigation is 
needed other than TMR of the memory elements in the 
design. 

 
The focus of this paper is the overall architecture of the 

HiRel computer, and the description of the SEE mitigation 
technique we deployed to protect CPU’s operations; therefore, 
details of memory and FPGA hardening are not addressed. 

B. Bridge FPGA 
The Bridge FPGA is a high-speed commercial FPGA used 

to implement the system’s high-speed functionalities. It 
implements the following functionalities: 

• Memory bridge; 
• Memory protection unit; 
• HSSL controller; 
• SpW controller. 

The memory bridge includes two main reliability-related 
functionalities: it implements the memory encoding, using a 
Reed-Solomon code, and the memory scrubber, which 
periodically operates a read-write operation in order to avoid 
accumulation of faults in the memory. 

The memory protection unit is one of the hardware 
components used to implement fault detection as described in 
section III.D. When properly configured, this unit is able to 
detect write attempts to a memory area and to prevent them, 
enforcing a memory partitioning. The HSSL controller and the 
SpW controller send and receive data from their respective 
physical interfaces, using direct memory access (DMA) in 
order to operate without using CPU time. 

C. Board Health Manager 
The Board Health Manager (BHM) implements a series of 

functionalities useful to check whether the system is operating 
as expected. It is a low-speed component, since it does not 
operate at the same frequency of the Bridge FPGA. The main 
components implemented in the BHM are: 
• Watchdogs and timers; 
• Debug interface; 
• FPGA configuration scrubber. 
The BHM implements two watchdogs, WD1 and WD2, and 

two timers T1 and T2. The timers are independent from each 
other and offer the same functionalities. They can interrupt the 
processor through two dedicated interrupt lines.  

WD1 offers a window of time in which the operations of the 
CPU must fit. The software is responsible for arming WD1 
within the window boundaries. The window is composed of 
two times: a minimum Tm and a maximum TM. If the time ΔT 
between two consecutive arm operations is ΔT < Tm or ΔT > 
TM, the watchdog triggers a panic reaction, stopping the whole 
system and signaling the problem to the platform computer. 
The only way to recover from this situation is to reset the 
system. 

WD2 implements the operations necessary to implement a 
CFC strategy as described in section III.D. It implements a 
double check on signatures and timeouts. The software is 
responsible for configuring the WD2, communicating both the 
correct sequence of signatures it must expect and the 
maximum time that it must wait between two consecutive 
signatures and between the start and the first signature. The 
operations of the WD2 can be summarized as follows: 

• Wait configuration and enable signal; 
• Wait for the first signature for at most T1;  
• Wait for the second signature for at most T2; 
• …. 
• Wait for the nth signature for at most Tn;  
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• Restart from the first signature. 
At each step, WD2 configures an internal counter with the 

time Ti associated to the ith signature. WD2 is triggered either 
when the counter reaches zero, meaning that the software 
timed-out, or when the received signature is not the expected 
one, meaning that it is either wrong or it is not in the expected 
order. When WD2 is triggered it sends a non-maskable 
interrupt to the CPU, allowing the software to implement the 
proper recovery action as described in section III.D 

The debug interface is used as support for the fault injection 
system. It is used to send pulses to an external system for 
synchronization purposes and to receive a freeze signal, which 
stops all watchdogs and timers in the BHM to allow the fault 
injection operation without generating  any  watchdog timeout. 

The FPGA configuration scrubber is responsible for 
periodically scrubbing the configuration map of the Bridge 
FPGA in order to avoid misbehaviors in the Bridge FPGA as 
consequence of some upset in its configuration memory. 

D. Software Fault Tolerance  
The implemented software fault tolerance technique is a 

hybrid technique, using a combination of watchdogs available 
in the BHM and time redundancy technique. 

The software is divided in three main phases: 
1. Input acquisition (I): in this phase the data to be 

processed by the software are  acquired. The data can 
be provided either by a communication device 
available in the system or can be provided as an array 
in a suitable location in memory. 

2. Processing phase (P): in this phase the data are  
processed by the application code and an output buffer 
is prepared in memory. 

3. Output phase (O): the results of the processing phase 
are prepared as output of the system and are sent to an 
available communication system or are copied to a 
suitable location in memory. 

We also define a terminology used in the following: 
• Major Cycle (MajC) is the time required to complete 

the execution of all three phases composing a 
benchmark software (I, P, O), 

• Minor Cycle (MinC) is the time required to complete 
one of the phases composing the benchmark software (I 
or P or O). 

The software is composed at least of one MajC, and can 
include several MajCs. 

The time redundancy is implemented for each MinC. This 
means that a single execution of the software adheres to the 
following timeline: 

1. The first input acquisition phase (I0) is executed and 
immediately followed by the second input acquisition 
phase (I1). 

2. The first processing phase (P0) is executed and 
immediately followed by the second processing phase 
(P1). 

3. A check is performed to ensure the correct execution so 
far. In this phase the signatures computed during the 
processing phases are compared, along with a set of 

flags signaling the occurrence of a hardware exception 
or that WD2 has been triggered. These flags are 
described in more detail in the following of this section. 
If an error is detected in this phase, either by an 
exception flag being set or by a mismatch in either the 
input or the output signatures, the recovery strategy is 
activated.  

4. If all checks pass, the first output phase (O0) is 
executed immediately followed by the second output 
phase (O1). 

Two recovery strategies were devised and implemented. 
The first strategy is a Backward Recovery (BWR) strategy in 
which the two instances of the software are re-executed when 
an error is detected. The second strategy is a Forward 
Recovery (FWR) strategy in which a third instance of the 
software is executed when an error is detected and a voter 
decides the correct output among the three produced. In the 
following of this section we describe the hardware used to 
support the error detection. 

Two watchdogs are used to detect CFEs and SEFI. WD1 
provides a time window in which the execution of the MajC is 
constrained. The lower boundary of the window is WD1MIN, 
which is the minimum time required to complete the execution 
of MajC. Its value is measured through profiling and is the 
best-case execution time of the MajC when the software is 
never preempted from the CPU. The upper boundary is 
WD1MAX; its value depends on the recovery strategy adopted. 
If a BWR strategy is adopted, the value of WD1MAX is four 
times the duration of MajC, whereas if a FWR strategy is 
selected the value of WD1MAX is three times the duration of 
MajC. This is due to the fact that in a backward recovery 
scenario, WD1 should allow the execution of the two replicas 
of the benchmark to be executed twice, whereas in a forward 
recovery scenario, the WD1 should allow the execution of just 
one extra MajC. When WD1 is triggered no recovery action is 
possible besides a full reset of the system, to be performed by 
an external controller, e.g. a platform computer. WD2 is used 
to check the correctness of the control flow. It allows 
controlling both that the path of the execution is in the CFG 
and that each block of the execution is performed within a 
timeout, which is measured through profiling. A signature and 
a timeout are assigned to each phase at compile time. At the 
end of a phase, the software sends the signature to the WD2 
which compares the received signature with the expected one 
and it is triggered in case of mismatch or if the signature is not 
received within the timeout. When WD2 is triggered, it sends 
an interrupt to the CPU; the correspondent interrupt service 
routine (ISR) is responsible for setting a flag signaling that an 
error has been detected. The flag is read in the check phase 
described above. Since the detection of faults through WD2 
relies on the capability of the CPU to execute an ISR, this 
mechanism is not able to react to SEFI or other faults stopping 
the CPU from executing software, which are detected by 
WD1. 

A DDR protection unit is used in order to isolate 
input/output buffers of each replica of the software from the 
other. When properly configured, this unit forbids access to a 
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region of memory. For each replica two regions are defined, 
one for the input buffer and one for the output buffer. When an 
access is performed on a protected region, an interrupt is 
triggered and the CPU executes the associated ISR that sets a 
flag to signal the error. The software reads this flag during the 
check phase described above. 

To help the comparison phase a hardware comparator is 
used, which is able to compare two words. During the check 
phase the input signatures are sent to the comparator and the 
result is retrieved. Afterwards, the output signatures are sent to 
the comparator and result is retrieved. For each comparison if 
a mismatch is detected, the recovery is immediately triggered. 

It is to be noticed that this approach uses procedure call 
duplication, meaning that each phase can be implemented as a 
procedure called twice, thus reducing the code size overhead. 
Moreover, each replica of the software operates in its own 
memory region, which is protected by the DDR protection unit 
during the execution of the other replica, so to grant that a 
fault would not modify the data consumed or produced by the 
replica which is not currently in execution. 

IV. EXPERIMENTAL SETUP AND RESULTS 
The proposed architecture has been validated from a 

performance point-of-view by measurements of the execution 
time, while the fault detection mechanisms were evaluated by 
means of fault injection simulation campaigns targeting the 
CPU register file, both level one (L1) and level two (L2) cache 
memories, and the Bridge FPGA configuration memory. In 
order to validate the SIFT technique a benchmark software 
was developed for the target system. 

A. Benchmark Software 
The benchmark software implemented the SIFT technique 

described in section III.D and was composed of a RICEa 
compression algorithm [23], of a Fast Fourier Transform 
(FFT) [24] implementation, and of the Dhrystone benchmark 
[25][26].  

Each algorithm has been implemented in its own MajC to 
improve fault containment. Table 1 and Table 2 report 
duration of the portions of the benchmark, which were target 
of the fault injection, as measured through the BHM’s timers. 
The output phase duration includes the duration of the checks 
performed before actually sending results on the outputs. All 
duration are measured when no fault is injected in the system 
and are referred to the redundant software, as described 
before. 
TABLE 1. DURATION OF BENCHMARK PORTIONS WITH BACKWARD RECOVERY 

 MINOR CYCLES MAJOR CYCLE 
 INPUT PROC. OUTPUT 

RICE 0.51 MS 12.41 MS 1.03 MS 13.95 MS 
FFT 0.25 MS 7.35 MS 0.50 MS 8.10 MS 

 
 

TABLE 2. DURATION OF BENCHMARK PORTIONS WITH FORWARD RECOVERY 
 MINOR CYCLES MAJOR CYCLE 
 INPUT PROC. OUTPUT 

RICE 0.51 MS 12.41 MS 2.03 MS 14.95 MS 
FFT 0.25 MS 7.35 MS 1.46 MS 9.06 MS 

 
a Name of the first author of the paper that first proposed the algorithm. 

B. Fault Injection 
The system was evaluated for fault tolerance against faults 

affecting the CPU. In particular, we considered only Single 
Event Upsets (SEUs) affecting the instruction set architecture 
of the CPU, i.e., registers accessible through the instruction 
set, like the register file, the program counter, and the cache 
memories. We recognize that the CPU includes many other 
memory elements, like the boundary registers of the CPU 
pipeline, where SEUs cannot be inoculated using the approach 
we adopted. Although further validations are needed, for 
example using accelerated radiation ground testing; we relied 
on our fault injection method to get an initial feedback on the 
robustness of the HiRel computer architecture.  

The following sections describe: how the fault list was 
generated, the injection system specifically conceived for the 
target system, and the fault injection results. 
The following terminology is used in sections below: 
• Simulation: a single fault injection consisting of a 

single execution of the software  with a single injected 
fault 

• Simulation Campaign or Campaign: a collection of 
fault injection simulations. 

 
1) Fault list generation 

As far as the CPU registers are considered, the fault list was 
composed of faults randomly selected from a pruned fault list. 
The total number of possible faults (software runtime 
multiplied by the number of CPU registers) is such that an 
exhaustive campaign is infeasible. As such the fault list has 
been pruned applying the following considerations: 
• The software does not use all the General Purpose 

Registers (GPRs) and Floating Point Registers (FPRs). 
• Since the software uses only single precision floating 

point arithmetic, it is useless to inject faults on the 
higher 32 bits in the FPRs. 

These considerations allow for a reduction of the fault list size 
even though it has some specificity on the application.  
Although we achieved a very reduced fault list with respect to 
the original one, the size of this fault list is still too large for a 
fault injection simulation campaign. To obtain a feasible 
campaign a preselected number of faults were randomly 
sampled from the pruned list. 
 
2) Fault injection system 

A fault injection system was specifically conceived to run 
the campaigns on the target system. The systems features three 
main components, connected as shown in Fig. 2. 

Host is a workstation PC and it is responsible for: 
 
• Generating a fault list as described in previous section; 
• Selecting a fault to inject for the current simulation, 
• Sending needed fault details to the Supervisor, 
• Modifying target’s fault injection ISR as required by 

the selected fault, 
• Collecting and analyzing the results in order to classify 

fault effects at the end of each simulation. 
 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 

Fig. 2 Fault Injection System architecture 
 

Supervisor is an external board responsible for: 
• Generating an interrupt signal for the Target at the 

injection time for the selected fault; 
• Freezing Target’s watchdogs during fault injection; 
• Reset the board between simulations. 
Target is the target system on which the application 

software runs. In order to support the fault injection, the 
application software is instrumented as follows: 
• Calls to a driver function used to generate a pulse have 

been added 
• A specific fault injection routine has been implemented 

as the ISR for the external interrupt sent by the 
Supervisor. 

Each fault is injected using the following procedure. Host 
sends to Supervisor a reset request, to which Supervisor 
answers resetting itself and then sending a reset signal to 
Target. Once the reset sequence is completed, Host sends the 
fault injection time to Supervisor. The fault injection time is 
expressed in pulses and microseconds, meaning that the 
Supervisor has to receive the specified number of pulses 
before starting a timer configured to count a given number of 
microseconds. When configuration is completed, Supervisor 
asserts a freeze signal, which stops the watchdogs on Target. 
After configuring Supervisor, Host loads the program image 
with a stub of the fault injection routine in Target memory and 
release Target, which executes up to a specific breakpoint 
before the first MajC. This portion of software is responsible 
for system initialization and for watchdogs’ configuration; it 
was considered immune to faults since it only runs once at 
system bootstrap. At the end of this configuration phase, Host 
modifies the fault injection routine to include the details of the 
fault to inject. This is done at this point of execution to be able 
to use a low complexity routine without having to compile a 
new binary at each simulation. The binary contains a stub 
identical for any given fault. The modifications performed by 
Host at this step change the stub in an injection routine 
specific for the fault to inject. This step is performed after 
initialization because the system bootstrap procedure would 
overwrite the modification during the interrupt vector table 

loading. Once Target is configured as described, execution 
resumes and Target sends a pulse to Supervisor, to which 
Supervisor answers by de-asserting the freeze signal, allowing 
watchdogs to perform their tasks. During software execution, 
Target sends a pulse to signal the end of each MinC. 
Supervisor counts the pulses to reach the target MinC then it 
starts a timer. When such timer expires, Supervisor asserts the 
freeze signal and an external interrupt request line. Target 
reacts to the external interrupt request by executing the fault 
injection routine. Once the fault injection routine is completed, 
Target sends a pulse to Supervisor, which de-asserts the freeze 
signal. Then Target resumes execution until the end of the 
program. At the end of software execution, Host reads results 
from the Target memory and classifies the fault as described 
in section IV.C. 

C. Classification of faults 
The faults injected during the campaigns were classified 

with respect to the effect they had on the system. The 
following classification has been adopted and will be used in 
the following: 
• Silent (S): a fault that had no detectable effect on the 

system.  
• WD1 timeout (WD1 TO): a fault that led the system to a 

state from which it cannot rearm the WD1 or that 
caused a rearm operation outside the time window 
defined for WD1. 

• Illegal instruction (I.I.): a fault that led to the fetching 
of an invalid instruction, for instance by modifying the 
PC so that it no longer points inside the code area of the 
program memory, or by modifying the return address 
of a subroutine. This is not a failure, since in a running 
system, the exception handler would be called and a 
recovery could be initiated. However, in this 
experimental setup, the exception associated to an 
illegal instruction was used by the debugger to 
implement breakpoints, thus no recovery was possible 
and the outcome was reported. 

• Signature Collision (C): the fault led to the production 
of two identical output signatures, escaping detection, 
even though the results were different. Faults of this 
class can be detected since results produced by 
redundant executions are different. Using a signature 
with a lower aliasing probability solves these errors. 

• Failure (F): a fault which escaped any detection 
mechanism and which led to the production of two 
identical outputs, which were nonetheless different 
from the expected output. 

D. Experimental Results 
1) Fault injection simulation campaigns on CPU registers 

Three fault injection simulation campaigns were executed, 
the first on a non-protected version of the benchmark, in 
which RICE and FFT are simply called one after the other, the 
other two on the backward recovery version and on the 
forward recovery version respectively. Results of all three 
campaigns are presented in Table 3. 

In the first campaign a fault list of 1,000 faults was 
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produced sampling the same pruned fault list described in 
section IV.B. 

Without any SIFT technique, 283 faults end with a failure 
or a hardware exception, as shown in the second row of Table 
3. In plain software, this would mean that wrong results or no 
results are provided to the user. This campaign provided a 
baseline reference for the results achieved in the subsequent 
campaigns, allowing a meaningful evaluation of both recovery 
strategies. Only in this campaign, hardware exception (H.E.) 
includes any possible hardware exception cause, since no 
exception handling mechanism is implemented in the plain 
software. 

In the second campaign 2,000 faults sampled from the fault 
list described in section IV.B were injected on the backward 
recovery version. Results are shown on the third row of Table 
3. There are no failures and a limited number of illegal 
instructions. Detected WD1 timeouts are due to faults 
persisting in the register file and leading to the repetition of 
the backward recovery, until the WD1 is triggered, or to faults 
locking the CPU in an infinite loop between checkpoints, thus 
preventing detection of the WD2 error. A significant increase 
in silent faults is observed, with respect to the results of the 
fault injection simulation campaign on the plain version of the 
software. This is due to the successful recovery performed by 
the software protection mechanisms. A little number of 
signature collisions is observed, due to the very simple 
signature used in our simulations. A more complex signature 
will lead to complete removal of this class of faults. 

In the third campaign 2,000 faults sampled from the fault 
list described in section IV.B were injected on the forward 
recovery version. Results are shown on the fourth row of 
Table 3. Similarly to what was observed for the backward 
recovery mechanism, there are no failures and a limited 
number of illegal instructions. The faults detected through 
WD1 timeout are roughly half the number of faults of the 
same class detected in the backward recovery version, due to 
the lack of a backward recovery, which can lock the CPU in a 
loop if a fault persists in the register file in between 
recoveries. 

 
TABLE 3 FAULT INJECTION RESULTS ON CPU REGISTERS 

RECOVERY S. WD1 
TO 

C. I.I. H.E. F. INJ. 

NONE 717 - - - 102 181 1000 
BACKWARD 1790 165 42 3 - 0 2000 
FORWARD 1843 95 34 28 - 0 2000 

S.: silent; WD1 TO: WD1 timeout; C.: signature collision; I.I.: illegal 
instruction; H.E.: hardware exception; F.: failure; Inj.: injected. 
 
2) Fault injection simulation campaigns on CPU caches and 
Bridge FPGA configuration memory 

A similar set of campaigns was performed to evaluate the 
effects of faults injected in the CPU caches and in the Bridge 
FPGA (Tables 4 and 5).  Results show that the proposed 
architecture is virtually immune to faults injected in caches or 
in the Bridge FPGA. The caches are indeed protected either by 
a parity code or by an ECC by hardware means, while the 
Bridge FPGA is protected by the BHM through a bit stream 
scrubber. These fault injection campaigns used a more 

complex Supervisor system, which was also in charge of 
timing the communication of results through the Space Wire 
links.  

The results of the campaign targeting the cache memories 
(Table 4), showed that the implemented SIFT strategy is able 
to recover faults with no failure, WD1 timeout or collision in 
over 2000 faults injected, whereas results of the campaign 
targeting the Bridge FPGA configuration memory (Table 5), 
show a very low rate of WD1 TO or Transmission Errors 
(T.E.), i.e. faults leading to an erroneous timing of the 
communication with respect to the timing a platform computer 
would expect. 
 

TABLE 4 FAULT INJECTION RESULTS ON CACHE MEMORIES 
RECOVERY S. WD1 TO C. INJ. 

BACKWARD 2250 0 0 2250 
FORWARD 2250 0 0 2250 

 
TABLE 5 FAULT INJECTION RESULTS ON THE BRIDGE FPGA CONFIGURATION 

MEMORY 
RECOVERY S. WD1 TO T. E. INJ. 

BACKWARD 995 2 3 1000 
FORWARD 994 1 5 1000 

 
 
3) Overhead evaluation 

Table 6 shows performance overhead introduced by both 
recovery strategies in fault free executions. Results show a 
performance overhead less than 100% in both cases, thanks to 
the coarse granularity used in implementing the SIFT strategy. 
Forward recovery shows a slightly worse behavior due to an 
additional check, performed in any case to decide whether to 
execute the third replica or not.  

 
TABLE 6. PERFORMANCE OVERHEAD EVALUATION. 

RECOVERY EXECUTION TIME  
NONE 13.88 MS - 

BACKWARD 22.64 MS +63% 
FORWARD 24.60 MS +77% 

 
Executable image size overhead data are reported in Table 

7. The Code column reports the size of executable code. It 
shows code memory area increase is reduced thanks to the 
coarse granularity approach to time redundancy. Even though 
the forward recovery version adds some extra check which are 
not present in the backward recovery, the lower complexity of 
the forward recovery strategy with respect to the backward 
recovery strategy allows for an equivalent overhead. The Data 
column reports size of all data included in the program image, 
i.e. initialized, unitialized, and read-only data. It shows a 
significant increase, due to the need to duplicate, for backward 
recovery, or triplicate, for forward recovery all input and all 
output areas of each MajC; the difference among the recovery 
strategies accounts also for the higher overhead of the forward 
strategy in this area. The Total column reports the total size of 
the stripped executable image. The difference on each row 
between this column and the sum of the other two columns is 
due to other parts of the executable image which are of little 
concern in this analysis.  

Overall, the forward strategy shows an higher overhead in 
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both performance and memory area occupation than the 
backward strategy. 

 
TABLE 7. EXECUTABLE IMAGE SIZE OVERHEAD EVALUATION  

RECOVERY CODE  DATA  TOTAL  
NONE 1892 B - 183 KB - 237 KB - 

BACKWARD 1968 B +4% 250 KB +37% 317 KB +34% 
FORWARD 1968 B +4% 264 KB +44% 336 KB +42% 

V. CONCLUSIONS 
This paper proposes a case study where a European space 

computer based on COTS technology is presented. By 
combining software techniques with special hardware 
implementing Watchdog Timer, Watchdog Processor, 
Memory Partitioning, Memory Encoding, and two scrubbers 
(one for the Main Memory and one for the Bridge-FPGA   
configuration memory) the proposed architecture can grant 
high level of reliability while containing performance and 
memory area overhead to a reasonable level, as results show. 
Fault injection simulations show no SEE-induced failures and 
a limited number of detected but not recovered faults, which 
should either be addressed by a platform computer using a 
stand-by spare or by improving the signature computation 
algorithm in order to reduce aliasing.  

Simulations also compared two recovery strategies, named 
backward and forward recovery. Results shows that forward 
recovery achieves a better fault recovery, while introducing a 
slightly higher overhead in both performance and memory 
area occupation. Although accelerated radiation ground testing 
experiments are needed to further validate the HiRel computer 
(for example allowing evaluating the impact of SEEs in the 
memory elements not accessible though fault injection, like 
the CPU pipeline boundary registers), the results we obtained 
suggest a very high tolerance against SEEs. 

In the foreseeable future, space mission performance 
requirements will grow out of the capabilities of contemporary 
single-core base COTS solutions. Although the strategy 
presented in this paper could be ported to a multicore system, 
for instance to parallelize the redundant executions, multicore 
system’s use in mission-critical systems still poses many 
problems, especially when hard-real time constraints are into 
play. Since most multicore systems are actually System-on-
Chips, time interference among the cores, resource sharing 
and susceptibility to SEE effects of the configuration registers, 
are among the main challenges that future designs will have to 
address. 
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