
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Autonomous Neuro-Fuzzy Solution for Fault Detection and Attitude Control of a 3U Cubesat / Feruglio, Lorenzo; Franchi,
Loris; Mozzillo, Raffaele; Corpino, Sabrina; Stesina, Fabrizio. - ELETTRONICO. - (2015). (Intervento presentato al
convegno 66th IAC International Astronautical Congress tenutosi a Jerusalem (Israel) nel 12-16 October 2015).

Original

Autonomous Neuro-Fuzzy Solution for Fault Detection and Attitude Control of a 3U Cubesat

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2625720 since: 2016-12-01T12:46:21Z

International Astronautical Federation

IAC-15-B4.6B.8 Page 1 of 11

IAC-15-B4.6B.8

AUTONOMOUS NEURO-FUZZY SOLUTION FOR FAULT DETECTION AND ATTITUDE

CONTROL OF A 3U CUBESAT

Lorenzo Feruglio

Politecnico di Torino, Italy, lorenzo.feruglio@polito.it

Loris Franchi

Politecnico di Torino, Italy, loris.franchi@polito.it

Raffaele Mozzillo

Politecnico di Torino, Italy, raffaele.mozzillo@polito.it

Fabrizio Stesina

Politecnico di Torino, Italy, fabrizio.stesina@polito.it

Sabrina Corpino

Politecnico di Torino, Italy, sabrina.corpino@polito.it

In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the

computational capabilities of on-board processing, algorithms involving artificial intelligence (i.e. neural networks and

fuzzy logics) have begun to spread even in the space applications. Nowadays, thanks to these reasons, the

implementation of such techniques is becoming realizable even on smaller platforms, such as CubeSats. The paper

presents an algorithm for the fault detection and for the fault-tolerant attitude control of a 3U CubeSat, developed in

MathWorks Matlab & Simulink environment. This algorithm involves fuzzy logic and multi-layer feed-forward

offline-trained neural network. It is utilized in a simulation of a CubeSat satellite placed in LEO, considering as

available attitude control actuators three magnetic torquers and one reaction wheel. In particular, fuzzy logics are used

for the fault detection and isolation, while the neural network is employed for adapting the control to the perturbation

introduced by the fault. The simulation is performed considering the attitude of the satellite known without

measurement error. In addition, the paper presents the system, simulator and algorithm architecture, with a particular

focus on the design of fuzzy logics (connection and implication operators, rules and input/output qualificators) and the

neural network architecture (number of layers, neurons per layer), threshold and activation functions, offline training

algorithm and its data management. With respect to the offline training, a model predictive controller has been adopted

as supervisor. In conclusion the paper presents the control torques, state variables and fuzzy output evolution, in the

different faulty configurations. Results show that the implementation of the fuzzy logics joined with neural networks

provide good robustness, stability and adaptability of the system, allowing to satisfy specified performance

requirements even in the event of some malfunctioning of a system actuator.

I. INTRODUCTION AND BACKGROUND

I.I 3-STAR Mission as a technology test bed
3-STAR mission is a 3U CubeSat mission that is

being developed by the CubeSat Team at Politecnico di

Torino. It will take part in the GEOID constellation for

the validation of the GENSO network through the

HumSat communication payload. In addition, 3-STAR

carries a remote sensing GNSS-based payload. This

payload will open the door to several applications, from

Earth monitoring to civil protection warning services.

In addition to the main mission objectives, 3-STAR

will be used as a validation platform for different

technologies currently being developed in the team’s

facilities. Among these, Artificial Intelligence (AI) based

Autonomous Command and Data Handling System (A-

C&DH) and Attitude Determination and Control System

(A-ADCS) will be included.

This paper presents a joint effort between the GNC

and C&DH teams to design an algorithm for attitude

control robust enough to maintain acceptable

performances even in the event of a failure of one

magnetic torquer (MT).

The paper will be structured as follows. The

remaining part of the introduction will cover the

simulation environment, and will introduce the main two

technologies used in the work: fuzzy logics and neural

networks. The successive chapter will focus on magnetic

mailto:lorenzo.feruglio@polito.it
mailto:loris.franchi@polito.it
mailto:raffaele.mozzillo@polito.it
mailto:fabrizio.stesina@polito.it
mailto:sabrina.corpino@polito.it

IAC-15-B4.6B.8 Page 2 of 11

torquers technology, highlighting their typical features

and describing the most common failures that usually

affect them. Continuing, a chapter describing the failure

detection will cover into details how fuzzy logics have

been used to solve this type of problem. Then, a chapter

on neural networks will describe the developed neural

network architecture and the training methods.

Simulations and results will provide insight on the

behavior of the system. Lastly, conclusions and future

directions will be presented.

I.II Simulation Setup and model description
The simulation has been completely realized in

MathWorks Matlab / Simulink environment (Figure 1).

The top level blocks are traditional ones: environment,

dynamics and kinematics for the 3-STAR mission, a

controller block where the neural networks are deployed,

an actuation block where the failures for the MT are

injected, and a FDIR block that stores all the fuzzy logics

needed in the simulation to perform the failure detection.

The FDIR output is then fed as an input for the control

magnetic torque distribution.

Main characteristics of the simulations are described.

Since the paper presents a simulation not related to

attitude determination algorithms, the attitude of the

spacecraft is considered perfectly estimated.

Magnetometer sensor, as well as on board actuators, are

modeled with the most typical disturbances. Failure

injection is executed by configuring a time of failure and

a type, as described in the next chapter.

I.III Simulation Models
We assume we can treat the satellite as a rigid body.

�̇�𝑏
𝑖𝑏 = 𝐼−1(−𝑆(𝜔𝑖𝑏

𝑏)̇𝐼𝜔𝑖𝑏
𝑏 + 𝜏𝑒𝑥𝑡

𝑏 + 𝜏𝑖𝑛𝑡
𝑏) [1]

Where 𝑆(𝑘) is the skew-symmetric matrix and I

represent the (constant in the body frame) inertia tensor,

the torque 𝜏𝑒𝑥𝑡 = [𝜏𝑒𝑥𝑡1 𝜏𝑒𝑥𝑡2 𝜏𝑒𝑥𝑡3]
𝑇 is the total torque

acting on the body and 𝜏𝑖𝑛𝑡 = [[𝜏𝑖𝑛𝑡1 𝜏𝑖𝑛𝑡2 𝜏𝑖𝑛𝑡3]
𝑇 is the

internal torque acting on the body.

The kinematic equations of motion of how the

attitude quaternions change are given by

�̇� = −
1

2
𝜖𝑇𝜔𝑖𝑏

𝑏 [2]

𝜖̇ =
1

2
(𝜂𝐼 + 𝑆(𝜖))𝜔𝑖𝑏

𝑏 [3]

Where 𝜂 is the scalar component of the quaternion

and 𝜖 are the three vector components.

Among the included torques are also included

environment disturbance such as Earth gravitational

field, atmospheric drag, satellite magnetic residual and

solar radiation pressure, and internal reaction wheel

gyroscopic torque.

II. MAGNETIC TORQUERS FAILURES

MODELING AND RECOVERY APPROACH

II.I Magnetic torquers failures
Magnetic torquers provide a reliable way to control

attitude, and are one of the most used technology for LEO

CubeSats as, unlike other actuator options (such as

thrusters), are usually cheaper, low power consuming,

and lightweight.

Nevertheless, as all the hardware components in

general, they can be affected by failures, whether

temporary or definitive. The typical problems

encountered in the reliability of magnetic torquers are

four, and they sensibly alter the behavior of the actuator:

 Float: output is zero

 Lock in place: output is stuck to a value different

than zero

 Hard-over: output assumes a ramp characteristic,

until saturation

 Loss of efficiency: the behavior remains similar to

unaffected torquer, but lower efficiency causes the

response to be smaller in output

Figure 2 illustrates examples of the most recurrent

failures, where time of failure event is set at 100 seconds.

One important thing to notice is that a hard-over failure

Figure 1 - Matlab / Simulink model

Figure 2 - Starting from top left, clockwise: float, lock in

place, hard-over, loss of efficiency failures

IAC-15-B4.6B.8 Page 3 of 11

will result in a lock in place failure once the actuator

output reaches saturation value.

II.II Modeling
Magnetic torquers modeling takes into account the

complete discretization of the real commands performed

by the controller, as the frequency of the attitude control

loop is 2 Hz. The effect of this behavior can be seen in

Figure 2, where it can be noticed that the commands are

not continuous-time signals. In addition, since this is a

digital system, the quantization of the output for the MTs

is also considered. PWM control logic is adopted: the

duty cycle is commanded with a value between 0 and

999, which corresponds to a voltage from -Vmax to

+Vmax.

The interaction between the earth magnetic field and the

magnetic dipole moment generate the control torque,

modelled as shown in formula 4:

�⃗� 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = �⃗⃗� × �⃗� 𝑏𝑜𝑑𝑦 [4]

Where 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙the 3x1-control torque vector, m is the 3x1

magnetic torquer dipole moment and B is the 3x1 vector

of the earth magnetic field expressed in body axis.

II.III First recovery approach
In first recovery approach an optimal solution is

obtained, from which the neural network will be trained.

The selected cost function for the optimization

problem is involving the square of the torque error for

each axis as in 5:

𝐽 = (𝑇𝑑𝑥 − 𝑇𝑎𝑥)
2 + (𝑇𝑑𝑦 − 𝑇𝑎𝑦)

2
+ (𝑇𝑑𝑧 − 𝑇𝑎𝑧)

2 [5]

Where 𝑇𝑑 is the desired torque from the control algorithm

and 𝑇𝑎 is the actuated torque, which involved the

actuator failure.

This cost function, from the Hessian and eigenvalue

analysis applied in all fault types, results convex. This

entails the good behavior for each kind of failure.

Considering an unconstrained quad prog optimization

approach as finding a minimum for the multivariable

function as searching the zero value of the gradient we

obtain:

 Float

𝑀𝑥 = 0 [6]

𝑀𝑦 = −
𝑇𝑑𝑧𝐵𝑥

2− 𝐵𝑧𝑇𝑑𝑥𝐵𝑥+ 𝑇𝑑𝑧𝐵𝑦
2− 𝐵𝑧𝑇𝑑𝑦𝐵𝑦

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

 [7]

𝑀𝑧 =
𝑇𝑑𝑦𝐵𝑥

2− 𝐵𝑦𝑇𝑑𝑥𝐵𝑥+ 𝑇𝑑𝑦𝐵𝑧
2− 𝐵𝑦𝑇𝑑𝑧𝐵𝑧

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

 [8]

 Lock in place

𝑀𝑥 = 𝑚𝑥̅̅ ̅̅ [9]

𝑀𝑦 =

−
Mx𝐵𝑥

2𝐵𝑦− 𝑇𝑑𝑧𝐵𝑥
2+ 𝑇𝑑𝑥𝐵𝑥𝐵𝑧+ Mx𝐵𝑦

3− 𝑇𝑑𝑧𝐵𝑦
2+ 𝑀𝑥𝐵𝑦𝐵𝑧

2+ 𝑇𝑑𝑦𝐵𝑦𝐵𝑧

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

[10]

𝑀𝑧 =
𝑇𝑑𝑦𝐵𝑥

2− 𝐵𝑦𝑇𝑑𝑥𝐵𝑥+ 𝑇𝑑𝑦𝐵𝑧
2− 𝐵𝑦𝑇𝑑𝑧𝐵𝑧

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

 [11]

 Hard over

𝑀𝑥 = 𝑚𝑠𝑎𝑡 [12]

𝑀𝑦 =

−
Mx𝐵𝑥

2𝐵𝑦− 𝑇𝑑𝑧𝐵𝑥
2+ 𝑇𝑑𝑥𝐵𝑥𝐵𝑧+ Mx𝐵𝑦

3− 𝑇𝑑𝑧𝐵𝑦
2+ Mx𝐵𝑦𝐵𝑧

2+ 𝑇𝑑𝑦𝐵𝑦𝐵𝑧

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

[13]

𝑀𝑧 =
𝑇𝑑𝑦𝐵𝑥

2− 𝐵𝑦𝑇𝑑𝑥𝐵𝑥+ 𝑇𝑑𝑦𝐵𝑧
2− 𝐵𝑦𝑇𝑑𝑧𝐵𝑧

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

 [14]

 Loss of efficiency

𝑀𝑥 = 𝑘𝑚𝑥 [15]

𝑀𝑦 =
𝑀𝑥𝐵𝑥

2𝐵𝑦− 𝑇𝑑𝑧𝐵𝑥
2+ 𝑇𝑑𝑥𝐵𝑥𝐵𝑧+ 𝑀𝑥𝐵𝑦

3− 𝑇𝑑𝑧𝐵𝑦
2+𝑀𝑥𝐵𝑦𝐵𝑧

2+ 𝑇𝑑𝑦𝐵𝑦𝐵𝑧

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

[16]

𝑀𝑧 =
(𝑀𝑥𝐵𝑥

2𝐵𝑧+ 𝑇𝑑𝑦𝐵𝑥
2− 𝑇𝑑𝑥𝐵𝑥𝐵𝑦+𝑀𝑥𝐵𝑦

2𝐵𝑧− 𝑇𝑑𝑧𝐵𝑦𝐵𝑧+ 𝑀𝑥𝐵𝑧
3+ 𝑇𝑑𝑦𝐵𝑧

2)

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

[17]

III. FAILURE DETECTION WITH FUZZY

LOGICS

III.I Understanding the problem
In order to define the algorithm, insights on the

different types of failures have been examined, and for

each one of them the most evident characteristics were

defined.

 Float failure: output current and current rate of

change are both zero.

 Lock in place failure: output current is not zero, but

rate of change is.

 Hard-over failure: current rate of change is constant,

therefore its derivative is zero.

 Loss of Efficiency failure: considering an estimated

loss of efficiency parameter, the difference between

the real current output and the ideal one multiplied

by the estimated changed efficiency is zero.

Considerations could have been made regarding the

fact that both current curves have the same

concavity, but it turned out to be not needed.

These considerations led directly to the definition of

the algorithm, as the main input variables were defined

and the insight on the needed rules was obtained.

III.II Fuzzy logics configuration

Input variables
The failure detection algorithm for the MTs has been

designed using the Fuzzy Logics theory, and

implemented using the Fuzzy Logic Designer toolbox in

MathWorks Matlab environment (Figure 3).

As stated above, five different input variables were

considered: current flow on the MTs, current rate of

change, error between ideal current and effective one,

IAC-15-B4.6B.8 Page 4 of 11

derivative of the current rate of change and finally the

estimated loss of efficiency.

Input variables have been defined using three typical

membership functions: triangular-shaped membership

function (trimf), Z-shaped membership function (zmf)

and S-shaped membership function (smf), appropriately

tuned to the expected input behaviors.

Output variables
The output variable has been designed to reflect

directly the output of the decision rules of the fuzzy logic.

In this case, five different and distinct output were

needed, so the output has been designed by using five

triangular membership functions, each one representing

a type of failure (Figure 4).

In this way, the designed output variable provides

directly an integer value for the detected failure of the

MTs.

Inference system and detection example
The detection of the MT failures has been done by

using a five rule mamdani inference system (Figure 5).

Common traits of the designed rules are that for every

type of failure the error is different than zero. The rule

definition follows explicitly what has been defined

above.

IV. ANN AND APPLICATION IN CONTROL

SYSTEM

Neural networks can be used in control systems with

different approaches, such as inverse dynamics or

supervised control, in function of the intrinsic system

characteristics.

Principally we consider five types of neural

controllers: supervised control, direct inverse control,

internal model control, model reference control and

unsupervised with off-line training or on-line training.

Due to the fact that the system is a nonlinear MIMO

(multi-input multi-output) with open-loop instability and

taking into account the computational cost we decided to

use a supervised controller with off-line training.

In fact, is possible to teach to a neural network the

correct actions by using an existing controller or human

feedback.

Most traditional controllers are based around an

operating point. These controllers will fail if there is any

sort of uncertainty or change in the unknown plant. The

advantages of neuro-control are that, if an uncertainty in

the plant occurs, the ANN (Artificial neural network) will

be able to adapt its parameters and maintain the plant

controlled. In supervised control, a teacher provides

correct actions for the neural network to learn.

In offline training the targets are provided by an

existing controller data, the neural network adjusts its

weights until the output from the ANN is similar to the

controller one.

IV.I ANN Training algorithm
The training process normally minimizes the output

error through the application of an optimization method.

These methods need to know, to some extent, how the net

output varies with respect to a given neuron weight

(Figure 6).

Figure 3 - Fuzzy logics input variables. Starting from top

left, clockwise order: current, current derivative,

difference between real MT output and ideal one

multiplied by the estimated loss of efficiency, current

rate of change derivative. Last input variable, the

error, has been not included, but has the same graph as

current derivative one.

Figure 4 - Output variable: types of failure. Starting

from the left, no failure (1), float (2), lock in place

(3), hard-over (4), loss of efficiency (5) failures.

Number in the parenthesis are the corresponding

integer output values.

Figure 5 - Rule viewer for a case of hard-over failure.

Current is non zero, and so is its derivative. Error is

different than zero. Current rate of change derivative

is zero. Therefore, the result of this set of inputs is a

hard-over failure, as expected.

IAC-15-B4.6B.8 Page 5 of 11

The problem of neural network learning can be seen

as a function optimization problem, where we are trying

to determine the best network parameters (weights and

biases) in order to minimize network error.

This said, several function optimization techniques

from numerical linear algebra can be directly applied to

network learning, one of these techniques is Levenberg-

Marquardt algorithm.

The Levenberg-Marquardt algorithm is a very simple,

but robust, method for approximating a function.

It consists in solving the equation 17:

(𝐽𝑇𝐽 + 𝜇𝐼)𝜎 = 𝐽𝑇𝑒 [18]

Where J is the Jacobian matrix for the system, 𝜇 is

the Levenberg's damping factor, 𝜎 is the weight update

vector that we want to find and e is the error vector

containing the output errors for each input vector used on

training the network. 𝜎 models how much we should

change our network weights to achieve a better solution.

The JTJ matrix can also be known as the

approximated Hessian.

In term of state sequential steps, the formulation

becomes:

𝑥𝑘+1 = 𝑥𝑘 − [𝐽𝑇𝐽 + 𝜇 𝐼] 𝐽𝑇𝑒 [19]

The 𝜇 damping factor is adjusted at each iteration, and

guides the optimization process. When the scalar µ is

zero, this is just Newton's method, using the approximate

Hessian matrix. When µ is large, this becomes gradient

descent with a small step size. Newton's method is faster

and more accurate near an error minimum.

Thus, µ is decreased after each successful step

(reduction in performance function) and is increased only

when a tentative step would increase the performance

function.

IV.II ANN architecture
For modelling the network it is necessary to perform

a trade-off on the ANN architecture, in terms of:

 Type of network (MLP, RBF, HONN, ADALINE,

NARX)

 Number of layers

 Number of neurons for layer

 Threshold function

Taking into account the computational cost (least

number of neurons possible), training performance

evolution and correct interpolation of the control

behaviour, we obtain the follow ANN structure (shown

in Figure 7), with:

 3 output signals

 4 hidden layers (3 with log-sigmoid function and 1

with linear function emulating a linear filter) with

mirror neuron configuration, respectively from the

first to the last, 15, 30, 30, 15 neurons

 1 linear output layer

IV.III Network Training

The training, after weights and bias initialization, was

performed off-line by collecting several data, such as

attitude state {𝑞2,4, �̇�2,4}
𝑇
 evolution, reference quaternion

𝑞𝑟𝑒𝑓 , control torque {𝑚𝑥 , 𝑚𝑦, 𝑚𝑧}
𝑇
, and failure detection

value from a previous MPC (Model Predictive Control)

controlled and recovered plant.

During the ANN configuration and training the data

collection and organization is very important and results

in a delicate phase.

The collected data was then used for the off-line

training (70%), validation (15%) and test (15%) with

Levenberg's back propagation method and considering

Mean Square Error as performance index, obtaining the

training performance summarized in Figure 8Error!

Reference source not found..

Figure 6 - Supervised Learning NN control

Figure 7 - Neural network architecture

Figure 8 - Neural Training Performance

IAC-15-B4.6B.8 Page 6 of 11

The mean square error between desired output and

NN output, reached the value of 0.011742 after 291

epochs involving test and validation phases.

To avoid over-training, after some test cases the

number of training epochs chosen was 300.

In Figure 9 are reported the training states as

gradient (g = JTe), 𝜇 parameter and validation.

A small value of the scalar 𝜇 verifies an optimal

training.

Furthermore, the fact that the gradient reaches a small

value entails the reaching of minimum error with respect

to the variation of artificial neural network weights. In

fact, in formula:

Δ𝑊𝑖 = 𝜂
𝛿𝑒

𝛿𝑤𝑖𝑜

 [19]

where W is the weight for each neuron and 𝜂 is the

learning rate .Value of learning rate between 0.1 and 0.01

it is recommended to avoid slow learning or learning

oscillations.

At last, Figure 10 is representing the evolution of the

regression vector, which shows the relationship between

the outputs of the network and the targets. If the training

was perfect, the network outputs and the targets would be

exactly equal, but the relationship is rarely perfect in

practice.

If R = 1, this indicates that there is an exact linear

relationship between outputs and targets. If R is close to

zero, then there is no linear relationship between outputs

and targets.

In our analysis the regression value results greater

than 0.9, therefore verifying a good fit of the output data

set with respect to target data. At last, it is important to

note that considering a different manoeuvre the off-line

neural network will need modified training data (state,

control couple) to guarantee the correct control

operations.

V. SIMULATIONS

V.I Simulation Parameters
The developed controller and autonomous FDIR

solution is tested using the 3-STAR mass proprieties and

orbital parameters, involving only the stabilization phase

as follows:

Mass properties

Property Value Unit

Mass 3 kg

Inertia

(Principal

axes)

x y z

𝐾𝑔𝑚2 0.025 0.025 0.005

Initial

condition

Pitch

10

Roll

0

Yaw

10

deg

Reference

attitude

Pitch

0

Roll

0

Yaw

0

deg

Orbital Parameters

RaanG 0 deg

Inclination 98 deg

Eccentricity 0 -

Perigee

argument

0 deg

Mean

anomaly

0 deg

Altitude 800 km

Table 1 - Simulation Parameters

V.II Simulations Results
In this section the simulation results are presented.

For each type of failure the detection value for the

fuzzy network, the attitude of the spacecraft, the

magnetic torquer dipole, the failed torquer dipole and the

Figure 9 - Neural training state

Figure 10 – Training Regression Vector

IAC-15-B4.6B.8 Page 7 of 11

control torque applied to the spacecraft are plotted. For a

better comparison in term of magnetic dipole

distribution, the nominal operational case is sub plotted

for each simulated fault.

Failure detection
Failure detection algorithm has been tested during

different stages of the development. The bare Fuzzy

Logic Algorithm showed good performance in detecting

the following failure modes: float, lock in place and hard-

over. During the testing of the loss of efficiency failure,

several spurious peaks were detected, and this was

related to the fact that, when the commanded value and

the real actuator one were the same (such as when the

actuator is commanded to be off), the fuzzy didn’t

properly detect the failure. Nonetheless, these peaks were

instantaneous. This allowed the introduction of simple

fixed average filtering algorithms to come up with a more

stable detection of the failures, even during the loss of

efficiency one (Figure 11).

Nominal operation

The first case with absence of magnetic torque failure is

shown from Figure 12 to Figure 14, which show the

parameters evolution in case of torquer nominal

condition. The neural attitude controller in condition of

nominal operation is able to stabilize and tracking the

attitude in presence of external disturbance. Is possible to

notice the natural attitude oscillation due to the damping

nature of the magnet torquer, which never goes to

saturation values.

Float Failure
The Float simulation results are shown from Figure

15 to Figure 18, which show the parameters evolution in

case of fault failure on the torque along X body axis at

300 seconds from the simulation start.

When the failure occurs, the recovery controller is

able to distribute the desired magnetic dipole on the y and

z axis granting the desired control torque despite the zero

value of the x torquer magnetic dipole and leading to the

desired attitude stability and tracking behavior.

Figure 11 - Failure detection output for different types

of failure, original detection logic output at the left.

Errors in the detection are caused by instantaneous

equivalence between the failed output state and the

commanded one. As these errors are usually one

sample long, they can be easily filtered out.

Figure 12 - Attitude evolution: Nominal case

Figure 13 - Magnetic dipole evolution: Nominal case

Figure 14 - Torque evolution: Nominal case

IAC-15-B4.6B.8 Page 8 of 11

Hard Over
The Hard Over simulation results are shown from

Figure 19 to Figure 22, which shown the parameters

evolution in case of Hard over failure with saturation

limit of 𝑚𝑠𝑎𝑡 = 0.5 𝐴𝑚2 along the x body axis on the

torquer along 𝑥 body axis at 300 seconds from the

simulation starts. In this case, the neural controller was

not able to recover the attitude due to the high and

nonlinear behavior involved in the saturation torque of

the x torquer.

When the failure accurse the system become instable.

In case of Hard Over detection, during the linear

behavior, is possible to turn off the failed torquer

switching from hard over to fault failure mode and

guaranteeing the attitude control.

Figure 15 - Attitude evolution: Float case

Figure 16 - Magnetic dipole: Float vs Nominal case

Figure 17 - X dipole evolution: Float vs Nominal case

Figure 18 - Torque evolution: Float vs Nominal case

Figure 19 - Attitude evolution: HO vs Nominal case

IAC-15-B4.6B.8 Page 9 of 11

Loss of efficiency
The Loss of efficiency simulation results are shown

from Figure 23 to Figure 26, which show the parameters

evolution in case of Loss of efficiency torque failure

(involving constant gain of 𝑘 = 0.003) applied to x axis

torquer .

Due to the low value of the applied torque, and to a better

understanding of the control behavior the failure

recovery begins when the simulation starts. When the

failure occurs, the recovery controller is able to distribute

the desired magnetic dipole given by the y and z torquers

guaranteeing the desired control torque despite the loss

of efficiency of the x torquer magnetic dipole.

Figure 20 - Magnetic dipole: HO vs Nominal case

Figure 21 - X dipole evolution: HO vs Nominal case

Figure 22 - Torque evolution: HO vs Nominal case

Figure 23 - Attitude evolution: LOE vs Nominal case

Figure 24 - Magnetic dipole: LOE vs Nominal case

Figure 25 - X dipole evolution: LOE vs Nominal case

IAC-15-B4.6B.8 Page 10 of 11

This leads to a still operational attitude controller with

good tracking and stability performances.

Lock in Place
The Lock in Place simulation results are shown from

Figure 27 to Figure 30, which show the parameters

evolution in case of a Lock in Place failure involving a

magnetic dipole of 𝑚𝐿𝐼𝑃 = 0.1 𝐴𝑚2 on the torquer along

𝑥 body axis at 300 seconds from the simulation start.

When the failure occurs, the system results able to

recover the attitude and generate the desired control

torque despite the constant activation of the x-torquer.

Is important to notice that the Lock in Place value

have a threshold value over which the attitude control is

not guaranteed. In fact high values of Lock in Place tend

to the hard-over behavior leading to instability of the

system.

VI. CONCLUSIONS
An autonomous neuro-fuzzy solution for ADCS fault

detection and recovery has been developed. The

simulated system in Matlab and Simulink environment

was the 3U CubeSat 3-STAR, with an attitude control

Figure 26 - Torque evolution: LOE vs Nominal case

Figure 27 - X dipole evolution: LIP vs Nominal case

Figure 28 - Attitude evolution: LIP vs Nominal case

Figure 29 - Magnetic dipole: LIP vs Nominal case

Figure 30 - Torque evolution: LIP vs Nominal case

IAC-15-B4.6B.8 Page 11 of 11

configuration of 3 magnetic torquers and one reaction

wheel.

State of art failure injection on magnetic torquers has

been implemented, and typical failure modes such as

floats, lock in place, hard-over and loss of efficiency

were considered. A detection algorithm based on fuzzy

logics has been developed, while a neural network

architecture was employed as adaptive attitude control.

The fuzzy logic setup was not complex, as only five

rules and five input variables were enough to fully

capture the behaviour of the faulty actuator. By using a

look-up table, the implementation of this algorithm on

resource-constrained on-board processors is feasible.

The fuzzy network left errors in the detection caused

by instantaneous equivalence between the failed output

state and the commanded one. As these errors are usually

one sample long a fixed mean filter can easily filter them,

aiding the neural network of the handling of the failure

type and the definition of the recovery solution without

signal oscillation.

The neural network controller, due to an initial trade-

off between structure-training methods vs computational

cost, was chosen as feed forward off line trained with

back propagation algorithm. This entails that, aiming to

obtain a single adaptive and recovery controller, the

neural network was trained with a pre-existing controller

and recovery data.

Nonetheless, a definitive network able to redistribute

the desired magnetic dipole in function of the fuzzy

network output was developed.

The proposed solution maintains desired

performances of the attitude control recovery except for

the case of the hard-over and near saturation lock in place

failures.

In these cases, the controller was not able to guarantee

the pointing performance due to the higher constant

torque applied in the two orthogonal axis by the failed

magnetorquer. In case of hard-over failure, if the

magnetorquer can be turned off, the failure will be

converted to a float one and this will ensure attitude

recovery and the mission safety. Aiming to obtain a

general fault model, given the ACS configuration, future

research will provide the study of single reaction wheel

and reaction wheel plus single torquer failures.

Once the computational cost of the implemented

algorithm will be evaluated, and given the increasing

capabilities of the COTS processors used in CubeSats,

the generalization of the fuzzy logic detection algorithm

or the use other types of off-line neural network based

controllers (such as model reference adaptive control),

and on line adaptive solution (such as MADALINE or

RBF networks) will be investigated.

VII. REFERENCES
[1] James R. Wertz and Wiley J. Larson: “Spacecraft

attitude determination and control”, First Edition, Space

Technology Series,

Space Technology Library, Springer, 1978

[2] James R. Wertz and Wiley J. Larson: “Space

Mission Analysis and Design”, Third Edition,

Space Technology Series, Space Technology Library,

Microcosm Inc, Kluwer Academic Publishers, 2005

[3] F. Landis Markley, John L. Crassidis:

“Fundamentals of Spacecraft Attitude Determination and

Control”, First Edition, Space Technology Series, Space

Technology Library, Springer-Verlag London, 2013

[4] Ali Zolghadri David Henry Jérôme Cieslak Denis

Efimov Philippe Goupilailure: “Fault Diagnosis and

Fault-Tolerant Control and Guidance for Aerospace

Vehicles”, Advances in Industrial Control, Springer,

2013

[5] Bai, Y., & Wang, D.: “Fundamentals of Fuzzy

Logic Control – Fuzzy Sets, Fuzzy Rules and

Defuzzifications”, 1982.

[6] Li, H., & Gatland, H.: “A new methodology for

designing a fuzzy logic controller”. Systems, Man and

Cybernetics, IEEE, 25(3), 505–512, 1995.

[7] Nathalia, J., & Bemal, P: “A Model-based Fault

Recovery for the Attitude Control Subsystem of a

Satellite using Magnetic Torquers”, Concordia

University, 2008.

[8] Singiresu S. Rao: “Engineering Optimization-

Theory and Practice”, Fourth Edition, John Wiley &

Sons, Inc., 2009

[9] Dr. Abebe Geletu: “Solving Optimization

Problems using the Matlab Optimization Toolbox - a

Tutorial”, 2007

[10] Shigeo Abe: “Neural networks and fuzzy

systems Theory and Applications”, First Edition,

Springer Science and Business Media LLC, 1997

[11] Mark Hudson Beale Martin T. Hagan, Howard

B. Demuth: “Neural Network Toolbox: User’s Guide”,

The MathWorks, Inc., 2014

http://gen.lib.rus.ec/search.php?req=F.%20Landis%20Markley&column=author
http://gen.lib.rus.ec/search.php?req=%20John%20L.%20Crassidis%20(auth.)&column=author
http://gen.lib.rus.ec/book/index.php?md5=38772512458ff2b2c86f40fdbb5f1e5c
http://gen.lib.rus.ec/book/index.php?md5=38772512458ff2b2c86f40fdbb5f1e5c

