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In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the 

computational capabilities of on-board processing, algorithms involving artificial intelligence (i.e. neural networks and 

fuzzy logics) have begun to spread even in the space applications. Nowadays, thanks to these reasons, the 

implementation of such techniques is becoming realizable even on smaller platforms, such as CubeSats. The paper 

presents an algorithm for the fault detection and for the fault-tolerant attitude control of a 3U CubeSat, developed in 

MathWorks Matlab & Simulink environment. This algorithm involves fuzzy logic and multi-layer feed-forward 

offline-trained neural network. It is utilized in a simulation of a CubeSat satellite placed in LEO, considering as 

available attitude control actuators three magnetic torquers and one reaction wheel. In particular, fuzzy logics are used 

for the fault detection and isolation, while the neural network is employed for adapting the control to the perturbation 

introduced by the fault. The simulation is performed considering the attitude of the satellite known without 

measurement error. In addition, the paper presents the system, simulator and algorithm architecture, with a particular 

focus on the design of fuzzy logics (connection and implication operators, rules and input/output qualificators) and the 

neural network architecture (number of layers, neurons per layer), threshold and activation functions, offline training 

algorithm and its data management. With respect to the offline training, a model predictive controller has been adopted 

as supervisor. In conclusion the paper presents the control torques, state variables and fuzzy output evolution, in the 

different faulty configurations. Results show that the implementation of the fuzzy logics joined with neural networks 

provide good robustness, stability and adaptability of the system, allowing to satisfy specified performance 

requirements even in the event of some malfunctioning of a system actuator. 

 

 

I. INTRODUCTION AND BACKGROUND 

 

I.I 3-STAR Mission as a technology test bed 
3-STAR mission is a 3U CubeSat mission that is 

being developed by the CubeSat Team at Politecnico di 

Torino. It will take part in the GEOID constellation for 

the validation of the GENSO network through the 

HumSat communication payload. In addition, 3-STAR 

carries a remote sensing GNSS-based payload. This 

payload will open the door to several applications, from 

Earth monitoring to civil protection warning services. 

In addition to the main mission objectives, 3-STAR 

will be used as a validation platform for different 

technologies currently being developed in the team’s 

facilities. Among these, Artificial Intelligence (AI) based 

Autonomous Command and Data Handling System (A-

C&DH) and Attitude Determination and Control System 

(A-ADCS) will be included.  

This paper presents a joint effort between the GNC 

and C&DH teams to design an algorithm for attitude 

control robust enough to maintain acceptable 

performances even in the event of a failure of one 

magnetic torquer (MT). 

The paper will be structured as follows. The 

remaining part of the introduction will cover the 

simulation environment, and will introduce the main two 

technologies used in the work: fuzzy logics and neural 

networks. The successive chapter will focus on magnetic 
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torquers technology, highlighting their typical features 

and describing the most common failures that usually 

affect them. Continuing, a chapter describing the failure 

detection will cover into details how fuzzy logics have 

been used to solve this type of problem. Then, a chapter 

on neural networks will describe the developed neural 

network architecture and the training methods. 

Simulations and results will provide insight on the 

behavior of the system. Lastly, conclusions and future 

directions will be presented. 

 

I.II Simulation Setup and model description 
The simulation has been completely realized in 

MathWorks Matlab / Simulink environment (Figure 1). 

The top level blocks are traditional ones: environment, 

dynamics and kinematics for the 3-STAR mission, a 

controller block where the neural networks are deployed, 

an actuation block where the failures for the MT are 

injected, and a FDIR block that stores all the fuzzy logics 

needed in the simulation to perform the failure detection. 

The FDIR output is then fed as an input for the control 

magnetic torque distribution.  

 

 
 

Main characteristics of the simulations are described. 

Since the paper presents a simulation not related to 

attitude determination algorithms, the attitude of the 

spacecraft is considered perfectly estimated. 

Magnetometer sensor, as well as on board actuators, are 

modeled with the most typical disturbances. Failure 

injection is executed by configuring a time of failure and 

a type, as described in the next chapter. 

  

I.III Simulation Models 
We assume we can treat the satellite as a rigid body.  

�̇�𝑏
𝑖𝑏 = 𝐼−1(−𝑆(𝜔𝑖𝑏

𝑏   )̇𝐼𝜔𝑖𝑏
𝑏 + 𝜏𝑒𝑥𝑡

𝑏 + 𝜏𝑖𝑛𝑡
𝑏 ) [1] 

Where 𝑆(𝑘) is the skew-symmetric matrix and I 

represent the (constant in the body frame) inertia tensor, 

the torque  𝜏𝑒𝑥𝑡 = [𝜏𝑒𝑥𝑡1 𝜏𝑒𝑥𝑡2 𝜏𝑒𝑥𝑡3 ]
𝑇 is the total torque 

acting on the body and 𝜏𝑖𝑛𝑡 = [[𝜏𝑖𝑛𝑡1 𝜏𝑖𝑛𝑡2 𝜏𝑖𝑛𝑡3 ]
𝑇 is the 

internal torque acting on the body. 

The kinematic equations of motion of how the 

attitude quaternions change are given by 

�̇� = −
1

2
𝜖𝑇𝜔𝑖𝑏

𝑏  [2] 

𝜖̇ =
1

2
(𝜂𝐼 + 𝑆(𝜖))𝜔𝑖𝑏

𝑏  [3] 

Where 𝜂 is the scalar component of the quaternion 

and 𝜖 are the three vector components. 

Among the included torques are also included 

environment disturbance such as Earth gravitational 

field, atmospheric drag, satellite magnetic residual and 

solar radiation pressure, and internal reaction wheel 

gyroscopic torque. 

 

 

II. MAGNETIC TORQUERS FAILURES 

MODELING AND RECOVERY APPROACH 

 

II.I Magnetic torquers failures 
Magnetic torquers provide a reliable way to control 

attitude, and are one of the most used technology for LEO 

CubeSats as, unlike other actuator options (such as 

thrusters), are usually cheaper, low power consuming, 

and lightweight. 

Nevertheless, as all the hardware components in 

general, they can be affected by failures, whether 

temporary or definitive. The typical problems 

encountered in the reliability of magnetic torquers are 

four, and they sensibly alter the behavior of the actuator: 

 Float: output is zero 

 Lock in place: output is stuck to a value different 

than zero 

 Hard-over: output assumes a ramp characteristic, 

until saturation 

 Loss of efficiency: the behavior remains similar to 

unaffected torquer, but lower efficiency causes the 

response to be smaller in output 

 

 
 

Figure 2 illustrates examples of the most recurrent 

failures, where time of failure event is set at 100 seconds. 

One important thing to notice is that a hard-over failure 

Figure 1 - Matlab / Simulink model 

Figure 2 - Starting from top left, clockwise: float, lock in 

place, hard-over, loss of efficiency failures 
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will result in a lock in place failure once the actuator 

output reaches saturation value. 

 

II.II Modeling 
Magnetic torquers modeling takes into account the 

complete discretization of the real commands performed 

by the controller, as the frequency of the attitude control 

loop is 2 Hz. The effect of this behavior can be seen in 

Figure 2, where it can be noticed that the commands are 

not continuous-time signals. In addition, since this is a 

digital system, the quantization of the output for the MTs 

is also considered. PWM control logic is adopted: the 

duty cycle is commanded with a value between 0 and 

999, which corresponds to a voltage from -Vmax to 

+Vmax. 

The interaction between the earth magnetic field and the 

magnetic dipole moment generate the control torque, 

modelled as shown in formula 4: 

�⃗� 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = �⃗⃗� × �⃗� 𝑏𝑜𝑑𝑦 [4] 

Where 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙the 3x1-control torque vector, m is the 3x1 

magnetic torquer dipole moment and B is the 3x1 vector 

of the earth magnetic field expressed in body axis.  

 

II.III First recovery approach 
In first recovery approach an optimal solution is 

obtained, from which the neural network will be trained. 

The selected cost function for the optimization 

problem is involving the square of the torque error for 

each axis as in 5: 

𝐽 = (𝑇𝑑𝑥 − 𝑇𝑎𝑥)
2 + (𝑇𝑑𝑦 − 𝑇𝑎𝑦)

2
+ (𝑇𝑑𝑧 − 𝑇𝑎𝑧)

2 [5] 

Where 𝑇𝑑 is the desired torque from the control algorithm 

and  𝑇𝑎 is the actuated torque, which involved the 

actuator failure. 

This cost function, from the Hessian and eigenvalue 

analysis applied in all fault types, results convex. This 

entails the good behavior for each kind of failure.  

Considering an unconstrained quad prog optimization 

approach as finding a minimum for the multivariable 

function as searching the zero value of the gradient we 

obtain: 

 

 Float 

𝑀𝑥 = 0 [6] 

𝑀𝑦 = −
𝑇𝑑𝑧𝐵𝑥

2− 𝐵𝑧𝑇𝑑𝑥𝐵𝑥+ 𝑇𝑑𝑧𝐵𝑦
2− 𝐵𝑧𝑇𝑑𝑦𝐵𝑦

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

  [7] 

𝑀𝑧 =
𝑇𝑑𝑦𝐵𝑥

2− 𝐵𝑦𝑇𝑑𝑥𝐵𝑥+ 𝑇𝑑𝑦𝐵𝑧
2− 𝐵𝑦𝑇𝑑𝑧𝐵𝑧

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

  [8] 

 

 Lock in place 

𝑀𝑥 = 𝑚𝑥̅̅ ̅̅   [9] 

𝑀𝑦 =

−
Mx𝐵𝑥

2𝐵𝑦− 𝑇𝑑𝑧𝐵𝑥
2+ 𝑇𝑑𝑥𝐵𝑥𝐵𝑧+ Mx𝐵𝑦

3− 𝑇𝑑𝑧𝐵𝑦
2+ 𝑀𝑥𝐵𝑦𝐵𝑧

2+ 𝑇𝑑𝑦𝐵𝑦𝐵𝑧

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

  
[10] 

𝑀𝑧 =
𝑇𝑑𝑦𝐵𝑥

2− 𝐵𝑦𝑇𝑑𝑥𝐵𝑥+ 𝑇𝑑𝑦𝐵𝑧
2− 𝐵𝑦𝑇𝑑𝑧𝐵𝑧

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

   [11] 

 Hard over 

𝑀𝑥 = 𝑚𝑠𝑎𝑡  [12] 

𝑀𝑦 =

−
Mx𝐵𝑥

2𝐵𝑦− 𝑇𝑑𝑧𝐵𝑥
2+ 𝑇𝑑𝑥𝐵𝑥𝐵𝑧+ Mx𝐵𝑦

3− 𝑇𝑑𝑧𝐵𝑦
2+ Mx𝐵𝑦𝐵𝑧

2+ 𝑇𝑑𝑦𝐵𝑦𝐵𝑧

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

  
[13] 

𝑀𝑧 =
𝑇𝑑𝑦𝐵𝑥

2− 𝐵𝑦𝑇𝑑𝑥𝐵𝑥+ 𝑇𝑑𝑦𝐵𝑧
2− 𝐵𝑦𝑇𝑑𝑧𝐵𝑧

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

  [14] 

  

 Loss of efficiency 

𝑀𝑥 = 𝑘𝑚𝑥  [15] 

𝑀𝑦 =
𝑀𝑥𝐵𝑥

2𝐵𝑦− 𝑇𝑑𝑧𝐵𝑥
2+ 𝑇𝑑𝑥𝐵𝑥𝐵𝑧+ 𝑀𝑥𝐵𝑦

3− 𝑇𝑑𝑧𝐵𝑦
2+𝑀𝑥𝐵𝑦𝐵𝑧

2+ 𝑇𝑑𝑦𝐵𝑦𝐵𝑧

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

  
[16] 

𝑀𝑧 =
(𝑀𝑥𝐵𝑥

2𝐵𝑧+ 𝑇𝑑𝑦𝐵𝑥
2− 𝑇𝑑𝑥𝐵𝑥𝐵𝑦+𝑀𝑥𝐵𝑦

2𝐵𝑧− 𝑇𝑑𝑧𝐵𝑦𝐵𝑧+ 𝑀𝑥𝐵𝑧
3+ 𝑇𝑑𝑦𝐵𝑧

2)

𝐵𝑥(𝐵𝑥
2+ 𝐵𝑦

2+ 𝐵𝑧
2)

  
[17] 

 

 

III. FAILURE DETECTION WITH FUZZY 

LOGICS 

 

III.I Understanding the problem 
In order to define the algorithm, insights on the 

different types of failures have been examined, and for 

each one of them the most evident characteristics were 

defined.  

 Float failure: output current and current rate of 

change are both zero. 

 Lock in place failure: output current is not zero, but 

rate of change is. 

 Hard-over failure: current rate of change is constant, 

therefore its derivative is zero. 

 Loss of Efficiency failure: considering an estimated 

loss of efficiency parameter, the difference between 

the real current output and the ideal one multiplied 

by the estimated changed efficiency is zero. 

Considerations could have been made regarding the 

fact that both current curves have the same 

concavity, but it turned out to be not needed. 

These considerations led directly to the definition of 

the algorithm, as the main input variables were defined 

and the insight on the needed rules was obtained. 

 

III.II Fuzzy logics configuration 

Input variables 
The failure detection algorithm for the MTs has been 

designed using the Fuzzy Logics theory, and 

implemented using the Fuzzy Logic Designer toolbox in 

MathWorks Matlab environment (Figure 3). 

As stated above, five different input variables were 

considered: current flow on the MTs, current rate of 

change, error between ideal current and effective one, 
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derivative of the current rate of change and finally the 

estimated loss of efficiency. 

Input variables have been defined using three typical 

membership functions: triangular-shaped membership 

function (trimf), Z-shaped membership function (zmf) 

and S-shaped membership function (smf), appropriately 

tuned to the expected input behaviors. 

 

 
Output variables 
The output variable has been designed to reflect 

directly the output of the decision rules of the fuzzy logic. 

In this case, five different and distinct output were 

needed, so the output has been designed by using five 

triangular membership functions, each one representing 

a type of failure (Figure 4). 

In this way, the designed output variable provides 

directly an integer value for the detected failure of the 

MTs. 

 

 
Inference system and detection example 
The detection of the MT failures has been done by 

using a five rule mamdani inference system (Figure 5).  

Common traits of the designed rules are that for every 

type of failure the error is different than zero. The rule 

definition follows explicitly what has been defined 

above. 

 
 

IV. ANN AND APPLICATION IN CONTROL 

SYSTEM 

 
Neural networks can be used in control systems with 

different approaches, such as inverse dynamics or 

supervised control, in function of the intrinsic system 

characteristics. 

Principally we consider five types of neural 

controllers: supervised control, direct inverse control, 

internal model control, model reference control and 

unsupervised with off-line training or on-line training. 

Due to the fact that the system is a nonlinear MIMO 

(multi-input multi-output) with open-loop instability and 

taking into account the computational cost we decided to 

use a supervised controller with off-line training. 

In fact, is possible to teach to a neural network the 

correct actions by using an existing controller or human 

feedback.  

Most traditional controllers are based around an 

operating point. These controllers will fail if there is any 

sort of uncertainty or change in the unknown plant. The 

advantages of neuro-control are that, if an uncertainty in 

the plant occurs, the ANN (Artificial neural network) will 

be able to adapt its parameters and maintain the plant 

controlled. In supervised control, a teacher provides 

correct actions for the neural network to learn.  

In offline training the targets are provided by an 

existing controller data, the neural network adjusts its 

weights until the output from the ANN is similar to the 

controller one. 

 

IV.I ANN Training algorithm 
The training process normally minimizes the output 

error through the application of an optimization method. 

These methods need to know, to some extent, how the net 

output varies with respect to a given neuron weight 

(Figure 6). 

Figure 3 - Fuzzy logics input variables. Starting from top 

left, clockwise order: current, current derivative, 

difference between real MT output and ideal one 

multiplied by the estimated loss of efficiency, current 

rate of change derivative. Last input variable, the 

error, has been not included, but has the same graph as 

current derivative one. 

Figure 4 - Output variable: types of failure. Starting 

from the left, no failure (1), float (2), lock in place 

(3), hard-over (4), loss of efficiency (5) failures. 

Number in the parenthesis are the corresponding 

integer output values. 

Figure 5 - Rule viewer for a case of hard-over failure. 

Current is non zero, and so is its derivative. Error is 

different than zero. Current rate of change derivative 

is zero. Therefore, the result of this set of inputs is a 

hard-over failure, as expected. 
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The problem of neural network learning can be seen 

as a function optimization problem, where we are trying 

to determine the best network parameters (weights and 

biases) in order to minimize network error.  

This said, several function optimization techniques 

from numerical linear algebra can be directly applied to 

network learning, one of these techniques is Levenberg-

Marquardt algorithm. 

The Levenberg-Marquardt algorithm is a very simple, 

but robust, method for approximating a function.  

It consists in solving the equation 17: 

(𝐽𝑇𝐽 + 𝜇𝐼)𝜎 = 𝐽𝑇𝑒 [18] 

Where J is the Jacobian matrix for the system, 𝜇 is 

the Levenberg's damping factor, 𝜎 is the weight update 

vector that we want to find and e is the error vector 

containing the output errors for each input vector used on 

training the network. 𝜎 models how much we should 

change our network weights to achieve a better solution. 

The JTJ matrix can also be known as the 

approximated Hessian. 

In term of state sequential steps, the formulation 

becomes: 

𝑥𝑘+1 = 𝑥𝑘 − [ 𝐽𝑇𝐽 + 𝜇 𝐼] 𝐽𝑇𝑒 [19] 

The 𝜇 damping factor is adjusted at each iteration, and 

guides the optimization process. When the scalar µ is 

zero, this is just Newton's method, using the approximate 

Hessian matrix. When µ is large, this becomes gradient 

descent with a small step size. Newton's method is faster 

and more accurate near an error minimum. 

Thus, µ is decreased after each successful step 

(reduction in performance function) and is increased only 

when a tentative step would increase the performance 

function.  

 

IV.II ANN architecture 
For modelling the network it is necessary to perform 

a trade-off on the ANN architecture, in terms of: 

 Type of network (MLP, RBF, HONN, ADALINE, 

NARX)  

 Number of layers 

 Number of neurons for layer  

 Threshold function 

Taking into account the computational cost (least 

number of neurons possible), training performance 

evolution and correct interpolation of the control 

behaviour, we obtain the follow ANN structure (shown 

in Figure 7), with: 

 3 output signals 

 4 hidden layers (3 with log-sigmoid function and 1 

with linear function emulating a linear filter) with 

mirror neuron configuration, respectively from the 

first to the last, 15, 30, 30, 15 neurons 

 1 linear output layer 

 

 
IV.III Network Training 

The training, after weights and bias initialization, was 

performed off-line by collecting several data, such as 

attitude state {𝑞2,4, �̇�2,4}
𝑇
 evolution, reference quaternion 

𝑞𝑟𝑒𝑓 , control torque {𝑚𝑥 , 𝑚𝑦, 𝑚𝑧}
𝑇
, and failure detection 

value from a previous MPC (Model Predictive Control) 

controlled and recovered plant. 

During the ANN configuration and training the data 

collection and organization is very important and results 

in a delicate phase. 

The collected data was then used for the off-line 

training (70%), validation (15%) and test (15%) with  

Levenberg's back propagation method and considering 

Mean Square Error as performance index, obtaining the 

training performance summarized in Figure 8Error! 

Reference source not found.. 

 

 

Figure 6 - Supervised Learning NN control 

Figure 7 - Neural network architecture 

Figure 8 - Neural Training Performance 
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The mean square error between desired output and 

NN output, reached the value of 0.011742 after 291 

epochs involving test and validation phases. 

To avoid over-training, after some test cases the 

number of training epochs chosen was 300. 

  

 
In Figure 9 are reported the training states as 

gradient ( g = JTe ), 𝜇 parameter and validation. 

A small value of the scalar 𝜇 verifies an optimal 

training. 

Furthermore, the fact that the gradient reaches a small 

value entails the reaching of minimum error with respect 

to the variation of artificial neural network weights. In 

fact, in formula: 

Δ𝑊𝑖 = 𝜂
𝛿𝑒

𝛿𝑤𝑖𝑜

 [19] 

where W is the weight for each neuron and  𝜂 is the 

learning rate .Value of learning rate between 0.1 and 0.01 

it is recommended to avoid slow learning or learning 

oscillations. 

 

At last, Figure 10 is representing the evolution of the 

regression vector, which shows the relationship between 

the outputs of the network and the targets. If the training 

was perfect, the network outputs and the targets would be 

exactly equal, but the relationship is rarely perfect in 

practice. 

If R = 1, this indicates that there is an exact linear 

relationship between outputs and targets. If R is close to 

zero, then there is no linear relationship between outputs 

and targets. 

In our analysis the regression value results greater 

than 0.9, therefore verifying a good fit of the output data 

set with respect to target data. At last, it is important to 

note that considering a different manoeuvre the off-line 

neural network will need modified training data (state, 

control couple) to guarantee the correct control 

operations. 

 

 

V. SIMULATIONS 

 

V.I Simulation Parameters 
The developed controller and autonomous FDIR 

solution is tested using the 3-STAR mass proprieties and 

orbital parameters, involving only the stabilization phase 

as follows: 

 

Mass properties 

Property Value Unit 

Mass 3 kg 

Inertia 

(Principal 

axes) 

x y z  

𝐾𝑔𝑚2 0.025 0.025 0.005 

Initial 

condition 

Pitch 

10 

Roll 

0 

Yaw 

10 

 

deg 

Reference 

attitude 

Pitch 

0 

Roll 

0 

Yaw 

0 

 

deg 

Orbital Parameters 

RaanG 0        deg 

Inclination 98        deg 

Eccentricity 0          - 

Perigee 

argument 

0        deg 

Mean 

anomaly 

0        deg 

Altitude 800        km 

Table 1 - Simulation Parameters 

 

V.II Simulations Results 
In this section the simulation results are presented. 

For each type of failure the detection value for the 

fuzzy network, the attitude of the spacecraft, the 

magnetic torquer dipole, the failed torquer dipole and the 

Figure 9 - Neural training state 

Figure 10 – Training Regression Vector 



IAC-15-B4.6B.8   Page 7 of 11 

control torque applied to the spacecraft are plotted. For a 

better comparison in term of magnetic dipole 

distribution, the nominal operational case is sub plotted 

for each simulated fault. 

 

Failure detection 
Failure detection algorithm has been tested during 

different stages of the development. The bare Fuzzy 

Logic Algorithm showed good performance in detecting 

the following failure modes: float, lock in place and hard-

over. During the testing of the loss of efficiency failure, 

several spurious peaks were detected, and this was 

related to the fact that, when the commanded value and 

the real actuator one were the same (such as when the 

actuator is commanded to be off), the fuzzy didn’t 

properly detect the failure. Nonetheless, these peaks were 

instantaneous. This allowed the introduction of simple 

fixed average filtering algorithms to come up with a more 

stable detection of the failures, even during the loss of 

efficiency one (Figure 11). 

 

 
 

Nominal operation 

The first case with absence of magnetic torque failure is 

shown from Figure 12 to Figure 14, which show the 

parameters evolution in case of torquer nominal 

condition. The neural attitude controller in condition of 

nominal operation is able to stabilize and tracking the 

attitude in presence of external disturbance. Is possible to 

notice the natural attitude oscillation due to the damping 

nature of the magnet torquer, which never goes to 

saturation values. 

  

 

 
Float Failure  
The Float simulation results are shown from Figure 

15 to Figure 18, which show the parameters evolution in 

case of fault failure on the torque along X body axis at 

300 seconds from the simulation start.  

When the failure occurs, the recovery controller is 

able to distribute the desired magnetic dipole on the y and 

z axis granting the desired control torque despite the zero 

value of the x torquer magnetic dipole and leading to the 

desired attitude stability and tracking behavior. 

Figure 11 - Failure detection output for different types 

of failure, original detection logic output at the left. 

Errors in the detection are caused by instantaneous 

equivalence between the failed output state and the 

commanded one. As these errors are usually one 

sample long, they can be easily filtered out. 

Figure 12 - Attitude evolution: Nominal case 

Figure 13 - Magnetic dipole evolution: Nominal case 

Figure 14 - Torque evolution: Nominal case 
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Hard Over  
The Hard Over simulation results are shown from 

Figure 19 to Figure 22, which shown the parameters 

evolution in case of  Hard over failure with saturation 

limit of  𝑚𝑠𝑎𝑡 = 0.5 𝐴𝑚2 along the x body axis on the 

torquer along  𝑥 body axis at 300 seconds from the 

simulation starts. In this case, the neural controller was 

not able to recover the attitude due to the high and 

nonlinear behavior involved in the saturation torque of 

the x torquer. 

When the failure accurse the system become instable. 

In case of Hard Over detection, during the linear 

behavior, is possible to turn off the failed torquer 

switching from hard over to fault failure mode and 

guaranteeing the attitude control. 

 

Figure 15 - Attitude evolution: Float case 

Figure 16 - Magnetic dipole: Float vs Nominal case 

Figure 17 - X dipole evolution: Float vs Nominal case 

Figure 18 - Torque evolution: Float vs Nominal case 

Figure 19 - Attitude evolution: HO vs Nominal case 
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Loss of efficiency  
The Loss of efficiency simulation results are shown 

from Figure 23 to Figure 26, which show the parameters 

evolution in case of Loss of efficiency torque failure 

(involving constant gain of  𝑘 = 0.003) applied to x axis 

torquer . 

Due to the low value of the applied torque, and to a better 

understanding of the control behavior the failure 

recovery begins when the simulation starts. When the 

failure occurs, the recovery controller is able to distribute 

the desired magnetic dipole given by the y and z torquers 

guaranteeing the desired control torque despite the loss 

of efficiency of the x torquer magnetic dipole.  

Figure 20 - Magnetic dipole: HO vs Nominal case 

Figure 21 - X dipole evolution: HO vs Nominal case 

Figure 22 - Torque evolution: HO vs Nominal case 

Figure 23 - Attitude evolution: LOE vs Nominal case 

Figure 24 - Magnetic dipole: LOE vs Nominal case 

Figure 25 - X dipole evolution: LOE vs Nominal case 
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This leads to a still operational attitude controller with 

good tracking and stability performances. 

  

 
Lock in Place 
The Lock in Place simulation results are shown from 

Figure 27 to Figure 30, which show the parameters 

evolution in case of a Lock in Place failure involving a 

magnetic dipole of  𝑚𝐿𝐼𝑃 = 0.1 𝐴𝑚2 on the torquer along  

𝑥 body axis at 300 seconds from the simulation start. 

When the failure occurs, the system results able to 

recover the attitude and generate the desired control 

torque despite the constant activation of the x-torquer. 

Is important to notice that the Lock in Place value 

have a threshold value over which the attitude control is 

not guaranteed. In fact high values of Lock in Place tend 

to the hard-over behavior leading to instability of the 

system. 

 

 

 
 

 
 

VI. CONCLUSIONS 
An autonomous neuro-fuzzy solution for ADCS fault 

detection and recovery has been developed. The 

simulated system in Matlab and Simulink environment 

was the 3U CubeSat 3-STAR, with an attitude control 

Figure 26 - Torque evolution: LOE vs Nominal case 

Figure 27 - X dipole evolution: LIP vs Nominal case 

Figure 28 - Attitude evolution: LIP vs Nominal case 

Figure 29 - Magnetic dipole: LIP vs Nominal case 

Figure 30 - Torque evolution: LIP vs Nominal case 
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configuration of 3 magnetic torquers and one reaction 

wheel. 

State of art failure injection on magnetic torquers has 

been implemented, and typical failure modes such as 

floats, lock in place, hard-over and loss of efficiency 

were considered. A detection algorithm based on fuzzy 

logics has been developed, while a neural network 

architecture was employed as adaptive attitude control. 

The fuzzy logic setup was not complex, as only five 

rules and five input variables were enough to fully 

capture the behaviour of the faulty actuator. By using a 

look-up table, the implementation of this algorithm on 

resource-constrained on-board processors is feasible. 

The fuzzy network left errors in the detection caused 

by instantaneous equivalence between the failed output 

state and the commanded one. As these errors are usually 

one sample long a fixed mean filter can easily filter them, 

aiding the neural network of the handling of the failure 

type and the definition of the recovery solution without 

signal oscillation. 

The neural network controller, due to an initial trade-

off between structure-training methods vs computational 

cost, was chosen as feed forward off line trained with 

back propagation algorithm. This entails that, aiming to 

obtain a single adaptive and recovery controller, the 

neural network was trained with a pre-existing controller 

and recovery data. 

Nonetheless, a definitive network able to redistribute 

the desired magnetic dipole in function of the fuzzy 

network output was developed.  

The proposed solution maintains desired 

performances of the attitude control recovery except for 

the case of the hard-over and near saturation lock in place 

failures. 

In these cases, the controller was not able to guarantee 

the pointing performance due to the higher constant 

torque applied in the two orthogonal axis by the failed 

magnetorquer. In case of hard-over failure, if the 

magnetorquer can be turned off, the failure will be 

converted to a float one and this will ensure attitude 

recovery and the mission safety. Aiming to obtain a 

general fault model, given the ACS configuration, future 

research will provide the study of single reaction wheel 

and reaction wheel plus single torquer failures. 

Once the computational cost of the implemented 

algorithm will be evaluated, and given the increasing 

capabilities of the COTS processors used in CubeSats, 

the generalization of the fuzzy logic detection algorithm 

or the use other types of off-line neural network based 

controllers (such as model reference adaptive control), 

and on line adaptive solution (such as MADALINE or 

RBF networks) will be investigated. 
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