
21 February 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Leveraging client-side DNS failure patterns to identify malicious behaviors / Pengkui Luo, Null; Torres, Ruben; Zhi Li
Zhang, Null; Saha, Sabyasachi; Sung Ju Lee, Null; Nucci, Antonio; Mellia, Marco. - ELETTRONICO. - (2015), pp. 406-
414. (Intervento presentato al  convegno IEEE Conference on Communications and Network Security (CNS) tenutosi a
Florence, IT nel September 2015) [10.1109/CNS.2015.7346852].

Original

Leveraging client-side DNS failure patterns to identify malicious behaviors

Publisher:

Published
DOI:10.1109/CNS.2015.7346852

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2625367 since: 2015-12-12T21:43:03Z



21 February 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Leveraging client-side DNS failure patterns to identify malicious behaviors / Pengkui Luo, Null; Torres, Ruben; Zhi Li
Zhang, Null; Saha, Sabyasachi; Sung Ju Lee, Null; Nucci, Antonio; Mellia, Marco. - ELETTRONICO. - (2015), pp. 406-
414. (Intervento presentato al  convegno IEEE Conference on Communications and Network Security (CNS) tenutosi a
Florence, IT nel September 2015) [10.1109/CNS.2015.7346852].

Original

Leveraging client-side DNS failure patterns to identify malicious behaviors

Publisher:

Published
DOI:10.1109/CNS.2015.7346852

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2625367 since: 2015-12-12T21:43:03Z



A natural idea is to run multiple detection algorithms in
parallel, each designed to identify a specific family of failure
patterns. However, simultaneously applying these algorithms
on the same DNS failure stream poses several challenging
issues. In particular, among multiple distinct but overlapping
clusters, each identified by a different algorithm, which one
should be selected as the “true” suspicious cluster(s)?

To address these issues, we develop a framework that
leverages evolutionary learning to automatically detect diverse
failure patterns. We let the temporary clusters identified by the
various clustering algorithms evolve and compete over time.
We associate each cluster with a quality measure or “fitness”
score determined by a number of factors such as the cluster
cohesiveness, size, temporal closeness, etc., and update the
measure as each cluster evolves over time. The clusters with
good fitness scores “survive” and are selected as the output of
our framework.

Our main contributions are as follows: (i) We perform a
systematic study of DNS failures using large ISP datasets.
(ii) We discover various failure patterns that are diverse and
stealthy, which shows that relying on single detection algo-
rithms may fail at detecting more complex attacks that abuse
DNS failures. (iii) We propose a comprehensive framework
that leverages evolutionary learning to detect diverse clusters
of suspicious DNS failures, using both syntactic and temporal
features. (iv) Our framework detects DNS failure clusters on a
per-client basis and different from previous work [5], [6], does
not hinge on the existence of multiple clients infected by the
same malware. Therefore, we can operate even on a single host
or in a small edge network. (v) Evaluation results demonstrate
that our framework effectively detects diverse, stealthy DNS
failure patterns, where at least 97% clients with suspicious
DNS behaviors are detected with over 81% precision.

II. RELATED WORK

There has been a large amount of work on analyzing DNS
traffic for cyber security. Several papers have focused on
studying successfully resolved, malicious domain names. No-
tos [7] and EXPOSURE [8] are DNS reputation systems that
employ a variety of features to identify potentially malicious
domains. Kopis [9] monitors DNS query patterns from the
vantage point of authoritative nameservers and TLD (Top
Level Domain) servers. Using spamtraps, it was shown that the
initial DNS behavior of malicious domains differs from that of
benign ones [10]. Gao et al. [4] empirically re-examined the
global DNS behavior, and proposed to detect malicious domain
groups using only temporal correlation in DNS queries.

Detecting domain-flux botnets has also been a popular topic.
A clustering algorithm was developed to identify fast-flux
domains based on the similarity among successfully resolved
IPs [11], while several syntactic metrics in the successfully
resolved domain names were used to identify groups of DGA
generated, mostly random-looking domains [3]. Our work is
complementary to these work as we leverage DNS failures to
identify malicious clients and expand the coverage of domain
name syntactic patterns beyond random-looking cases [3], [8].

TABLE I
OVERVIEW OF THE TWO DNS DATASETS.

Items Aug2011 Apr2012
Total A:IN DNS sessions w/ eTLDs 12,816,150 24,039,008
Failed DNS sessions 335,588 (2.62%) 516,047 (2.15%)
Queried names 892,255 1,113,073
Clients 12,272 15,911

Another group of studies has focused on analyzing DNS
failures [5], [6], [12], [13]. In particular, Pleiades [6] collects
all the failed queries from clients in an ISP and clusters
them based on syntactic features (mostly targetting random
domains) and coocurrence of failures across multiple clients.
In contrast, we show that there are diverse and stealthy failure
patterns that require multiple techniques for syntactic analy-
sis (for non random-looking domains), as well as temporal
correlation. In addition, our approach does not hinge on the
existence of multiple clients infected by the same malware,
and thus can be used on a single host or in a small edge
network with a limited vantage point. Finally, our approach
is completely unsupervised as we do not require models of
known bot DNS behavior ahead of time.

III. DATASETS OVERVIEW AND PRELIMINARY ANALYSIS

We use network traces collected at a vantage point within
a large European ISP. The monitored network covers over
15000 unique (and mostly residential) client IP addresses. We
collected traces in August 2011 and April 2012, each spanning
24 hours. All incoming and outgoing TCP connections and
UDP flows of the network were captured. We extract all the
DNS queries and responses from the traces and produce two
24-hour long DNS datasets. We refer to the two datasets
as Aug2011 and Apr2012, respectively. We also use the
relevant TCP/UDP flows for investigating certain suspicious or
malicious activities uncovered in the DNS datasets. Finally, we
identify suspicious clients as those that have resolved domains
present in popular blacklists [14]–[16] or that have a bad rep-
utation from Web-of-Trust (WoT) [17] or that have generated
TCP/UDP flows labeled as malicious by a commercial IDS.
These client set will be the basis of our analysis.

A. Data Preprocessing and DNS Failures

We match DNS queries with the corresponding responses
and refer to the resulting query-response pair as a DNS session.
We focus only on A:IN type DNS sessions (namely, queries for
the IPv4 address using an Internet domain name) since they
are the most predominant in our dataset, and remove other
types of sessions. Although our framework is agnostic to the
DNS session type (e.g. TXT, etc.), we leave this to future
work. In addition, our analysis mainly focuses on failed DNS
sessions, whose RCODE (server response) is 3 (Name Error)
or 2 (Server Failure). In some cases we also analyze successful
DNS sessions (RCODE = 0) when the domain name queried
can be correlated with suspicious failed DNS sessions. Table I
summarizes key statistics of the two datasets.



Fig. 1. DNS failures of clients with at least one DNS failure.

B. Manual Categorization of DNS Failures

We aim at finding malicious behavior out of DNS failures
traffic. Our motivation is twofold: (i) to systematically analyze
the various patterns of malicious behavior found in our dataset
and (ii) to create ground truth to evaluate the system proposed
in Section V.

We begin by removing those cases that are benign. In
particular, we eliminate all DNS failures that do not contain an
effective top-level domain (eTLD)1 and thus cannot be resolved
by a public resolver. They are typically a product of typos,
misconfigurations or malformed DNS queries generated by
some browsers. Fig. 1 plots the CDF of the DNS failures
generated by all residential clients in Aug2011. The solid
blue line represents all DNS failures while the dashed red
line shows failures to domain names containing eTLDs. We
observe that after removing these benign DNS failures, we still
have over 1,200 clients that generate more than 10 failures. As
we see later, many of these clients turned out to be malicious.

In order to separate suspicious DNS failures from benign
ones, we conduct an analysis of the failed domain names.
We first identify clients that satisfy any of the following
conditions: (i) at least one failed domain name is present in
a blacklist, (ii) at least one successful DNS query is flagged
by a commercial IDS, (iii) generating more than 100 DNS
failures, or (iv) generating failed queries containing at least
five distinct eSLDs, as this correlates with higher chances of
a client being malicious in our dataset.

Once we have distinguished such clients, we look for
syntactic failure patterns as well as successful DNS queries
related to those suspicious patterns. In addition, we look for
any suspicious activity after a DNS query, such as contacted
webpages or IP addresses that appear in blacklists and Web of
Trust. We also search WHOIS databases to check the dates and
owners of registered domain names. Newly registered domain
names may raise more suspicion than names that have existed
for a long time. In addition, we look for suspicious-looking

1An effective top-level domain (eTLD) separates the responsibility of the
registrant from registrars. For example, .com, and .co.uk are eTLDs, in
that domains such as foo.com, and bar.co.uk can be directly registered.
Here foo or bar is termed an effective second-level domain (eSLD). We
use a list of public suffixes [18] to extract eTLDs and eSLDs.

TABLE II
CAT-R EXAMPLES.

Conficker Torpig Simda-E
arjynor.net bfejhvfe.com fobiqab.su
bdjcuenagtq.ws dibxfhci.com qedihyp.su
clrkknzxm.cc gwubvjue.com kyjiluj.su
zumxknrjcy.net xxjgwbwd.com xuxukyd.su

domain names that were alive in our traces but are no longer
registered, which provides a hint of suspiciousness.

We find that the most common benign failure cases are:
(i) clients that generate a small number of DNS failures over
the 24-hour period, mostly caused by typos and temporary
network issues or misconfigurations, (ii) clients that generate
a large number of failures to a few distinct domain names,
caused by network misconfigurations (e.g., running applica-
tions with disconnected VPN connections), and (iii) clients that
generate a large number of distinct failures to a few eSLDs.
These cases are mostly caused by DNS overloading [19] (i.e.,
applications leverage DNS for their own purposes, such as mail
servers communicating through DNS with anti-spam services
for spam filter) and DNS suffix appending (often configured
in machines to handle non-FQDNs).

Finally, we create the grey category for those DNS fail-
ures that we cannot categorize as benign or malicious. In
this category we have clients with DNS failures to domain
names used for P2P activities (e.g. piratebay.com and
domain names containing keywords such as publisher and
torrent). We also find many failed names containing adult-
themed keywords that belong to websites that are no longer in
business. Finally, there are two clients for which the failed
domain names are related to mail servers (i.e., the names
contain strings mx or mail).

IV. SUSPICIOUS FAILURE PATTERNS

We look in-depth at suspicious DNS failure patterns and
classify them based on their most distinct syntactic patterns.
We discuss the challenges posed by the diversity and stealthi-
ness of these suspicious failure patterns in automatic detection,
which motivates our evolutionary framework in Section V.

Highly Random Domain Name Failure Patterns (Cat-R):
This is the most dominant failure pattern category in our
dataset. It is often associated with various families of domain-
flux malware that generate random domains (as defined in
Section V-B) to query in a short period of time. As only few of
the domains might be registered by bot handlers, the malware
activities lead to a large number of query failures. The most
dominant domain-flux malware belongs to the Conficker

family [2], and the second most dominant to the Torpig

family [1]. Other random domain failure patterns are produced
by malware of the Sality family, Simda-E, etc. We provide
a few samples of the failed domains of this group in Table II.

“Partially Random” Domain Name Failure Patterns with
Limited Character Set (Cat-C): This category is the second
most popular and contains several sub-categories. They share
some characteristics with Cat-R in that the failed domain



TABLE III
CAT-C EXAMPLES.

C.1 Letter-digit mixture C.2 Hexadecimal scan
89s7dgf78ger367gs6.com 02e4f47239ec4228bdf59872697367ce.com
9sd7fg87sgdfg7sfd.co.cc (s) 11de14271e4c4d66beaecdac7de4295a.com
s87fggsdfuyvsdvtftds.ar fdf298c0b6894524ba373f230ef843ba.com
s89d7fgh37rsh7f8.eu C.3 Anchored letter w/ random digits
s89dfhshdf8hsdf.cw a65255b65255.com
sd9f08hsdfybs76dft.cc a686435b686435.com
sd98f7ghsdfysdg6f.co.gp (s) a7098373b7098373.com

TABLE IV
CAT-M EXAMPLES.

M.1 Base-string mutation M.2 Evolving mutation
oogle.xx (s) housemetaset.metase.xx (s)
googl.xx (s) housemetaset.meta.xx
giogle.xx housemetase.xx (s)
go9gle.xx housemeta.xx (s)
gokgle.xx house.xx (benign)
goohle.xx (s) ho.xx

names look partially random, except for a key difference: the
letters or numbers come from a limited character set. As in
Cat-R, some of the failure patterns occur in multiple bursts
spreading over time. This seems to indicate a malware bot is
running in the background sporadically or activated by certain
user actions to generate bursts of DNS queries. Compared with
Cat-R, the failure patterns generate fewer numbers of failures
per burst, which makes them stealthier and harder to detect.
We describe three sub-categories with representative examples.
(C.1) Random mixture of letters and digits: Examples are
shown in Table III where both failed and successful query
samples from several instances of the same failure pattern
are presented (the successful queries are marked by “(s)”).
The eSLDs in the queried domains consist of a mixture of
letters and digits of various lengths, which at first glance looks
random. A closer look reveals that the letters come from a
limited set of characters, {b, d, e, f, g, h, i, n, r, s, u,
v, w, y}, and the digits from 3 to 9, with some letters (e.g.,
{d, f, g, s}) and digits (e.g., {6, 7, 8}) appearing more
frequent than others. In addition, a diverse set of eTLDs (e.g.,
com, net, ar, by, cc, ve, asia, co.cc, co.uk, web.gg,
int.nf, pro.vg) are involved.
(C.2) Hexadecimal scan: Table III shows examples of a failure
pattern where any failed eSLD consists of a long string of
characters from the hexadecimal representation of integers.
(C.3) Anchored letters with random digits: In this failure
pattern, all eSLDs start with the letter “a” followed by a string
of random digits of varying lengths, and then the letter “b”
followed by the same string of random digits.

Mutated String Domain Name Failure Patterns (Cat-M):
This category groups various subtly different patterns, in which
the failed eSLDs look similar to each other. They are mutated
from a common string (M.1) or transformed from one set to
another by changing (e.g., inserting, deleting, or substituting)
one or two characters at a time (M.2). Note that for M.2, we
have anonymized the country code and slightly changed the
domain name itself, to avoid revealing the country of origin of
our ISP. Table IV presents examples of such failure patterns.

For M.1, we observed a burst of more than 100 queries for

TABLE V
CAT-S EXAMPLES.

S.1 Fixed prefix + varying letters S.2 Fixed prefix + varying digits
searchodd.org lonelyday01.in (s)
searchangle.org lonelyday04.in
searchcommon.org ginsburg03.in
searchhissing.org ginsburg04.in (s)
findthousand.org domain510005.com
findexpensive.org domain490002.com (s)
clickbrake.org agng78sagdfdkjdtwa195.com
clickafraid.org agng78sagdfdkjdtwa655.com

domains mutated from the string google, with a couple of
legitimate queries to google.xx and gogle.xx intermixed
in between (gogle.xx is registered by Google, presumably
to prevent typosquatting). Besides these legitimate queries, a
significant portion is successful, each returning a single IP
address. However, the returned IPs belong to a variety of ISPs.
Many of these IPs have been blacklisted, and the remaining
ones are deemed highly suspicious (e.g. they are in the same
subnet as blacklisted IPs.). The queries were issued in a short
span of 48 seconds, with the interval between consecutive
queries varying from 0 to 2400 ms.

In the case of M.2, the suspicious queries follow the exact
order (from top to bottom) of those shown in Table IV. The
sequence starts with a two-part string separated by “.” that
is mutated from a legitimate website and gradually evolves
to a shorter string by deleting one character at a time. The
suspicious queries were issued in a short span of less than a
minute, with the interval between consecutive queries ranging
from 30 to 800 ms.

A key feature that distinguishes failed domains of this
category from the previous categories is that they do not look
“random.” In fact, when examined in isolation, each appears
as if it was generated by a typo made by a human user.
Hence the failure patterns in this category are far stealth-
ier. In addition, most failure patterns in this category were
observed only once per client. Compared with the previous
two categories, the failed queries are often associated with a
significant number of successful queries that share the same
distinct mutation/evolution patterns.

Substring Domain Name Failure Patterns (Cat-S): This
category contains a large number of distinct failure patterns,
each containing only a small number of failed (as well as
successful) query domains that share a common substring.
Table V shows examples in the two sub-categories: (S.1) fixed
prefix with varying letters and (S.2) fixed prefix with varying
digits. These failure patterns are the least noisy and the most
stealthy. All the examples in S.1 and the first three examples in
S.2 have been generated by clients infected with Trojan mal-
ware such as Troj/Agent-VUD and Troj/DwnLdr-JVY.

Summary: The above categories are the major failure patterns
we have uncovered. There are a few minor failures that are
difficult to classify. For simplicity, we have placed them in
one of the four categories that they are closest to.

Fig. 2 shows the cumulative distribution of the failure cluster
sizes for all categories in Aug2011 (Apr2012 shows similar



Fig. 2. Distribution of per-category labeled cluster sizes.

distributions). An (x,y) point shows that y clusters are less
than or equal in size to x. Not surprisingly, we see that most
failure clusters in Cat-R are large, with more than half of them
containing nearly 100 or more failed domain names. Those in
Cat-C have moderately large sizes, and those in Cat-M have
generally smaller sizes. While the number is large, the sizes
of Cat-S clusters are the smallest, with the largest containing
around 10 failed domain names.

We provide in Table VII a quantitative analysis of each
category. In the “Ground Truth” column, we summarize the
results obtained through our systematic analysis and detailed
manual inspection for both Aug2011 and Apr2012 datasets.
We list the number of clients that exhibited any of the detected
suspicious DNS query behaviors and a break-down of the
number of clients that generated suspicious failure patterns
belonging to each four major categories. We also list the total
number of DNS failure patterns that we identified as well as
a break-down of the clusters in each category.

V. COMPREHENSIVE DETECTION FRAMEWORK

We present an evolutionary learning framework for automat-
ically detecting and classifying diverse DNS failure patterns.
The basic idea is to run multiple detection algorithms in
parallel, with each designed to create a set of temporary
clusters of a specific failure pattern, and let the clusters of
different patterns evolve over time. The evolution is based on
a fitness score that is a quality measure dynamically assigned
to each cluster according to its cohesiveness, size, temporal
closeness, etc. The score is updated as each cluster evolves.
For example, clusters that expand over time by absorbing
new failed query strings and clusters that re-occur repeatedly,
would improve their fitness scores and increase their odds of
survival. Once its fitness score passes a threshold, the cluster
would be elevated as a detected failure cluster as part of the
framework output. In contrast, those clusters that do not grow
over time or subsumed by other clusters, would not survive.

Clustering FrameworkDNS
traffic

Preprocessing

Clustering  (Creation & Augmentation)

Edit distance detection

Jaccard distance detection

R d d i

Evaluation......

traffic
Evolutionary Learning

Consolidation

Detected
Failure 
Cl tPreprocessing Randomness detection

Substring detection

Consolidation

Deprecation
& Elevation

Clusters

Failed DNS 
query stream

Fig. 3. System architecture.

We first describe the evolutionary learning framework that is
the basis of our system. We then describe the various detection
algorithms we use to form the clusters of suspicious DNS
query failures.

A. System Architecture and Evolutionary Learning

Fig. 3 depicts the key system components of our framework.
The system operates on a stream of DNS queries generated
by each individual client. The stream of DNS queries is
first passed through the Preprocessing module that filters
failed queries without eTLDs, failures resulting from DNS
overloading or misconfigurations, or other benign failures (as
discussed in Section III). This module then extracts the eSLD
strings contained in the failed DNS queries.

The Cluster Creation & Augmentation module runs multiple
clustering algorithms in parallel, and periodically generates
potential clusters of failed domain names. The “brain” of the
system lies in the Evolutionary Learning module that consists
of three submodules. The Evaluation module assigns each
cluster with a fitness score updated over time. The Cluster
Consolidation and the Cluster Deprecation & Elevation mod-
ules use the cluster fitness to merge closely related clusters,
subsume smaller clusters into larger ones, deprecate temporary
clusters that do not grow sufficiently or re-occur over time, and
elevate those with fitness scores exceeding the threshold to the
detected status.
Cluster Creation and Augmentation: This module operates
in two modes. (i) Cluster creation: given a collection of
failed eSLD strings, it extracts possible termporary clusters by
running different clustering algorithms in parallel. (ii) Cluster
augmentation: given a new failed domain, the module adds it
to an existing cluster if applicable.

Clusters created in the first mode evolve over time. The
operations of the system are illustrated in Fig. 4 from the
perspective of the “lifecycle” of temporary clusters. Each
failed eSLD is fed to all clustering algorithms in parallel
to evaluate whether it can be included in one of existing
temporary clusters C

1

, . . . , Cm. If affirmative, it is included
in the corresponding cluster(s) – the clusters thus expand in
size. If all existing clusters reject, it is put into the pool of
unclustered queries.

For efficiency, instead of operating on one string at a time,
we apply the cluster augmentation operation every �t (e.g.,
1 minute) to all the failed eSLDs generated within �t. In



C3

C2

Cluster C1

Pool of unclustered queries

Failed DNS
query stream 

New
failures

Existing clusters

Merged to
existing clusters?

Yes

No

C3

C2
Cluster C1

Creating
New clusters

New Ci

Existing clusters

Evaluation

ǻt
ǻT

Bad clusters

Deprecated

Consolidated

Ci1

Ci3

Fig. 4. Illustration of operations.

contrast, the cluster creation mode runs various clustering
algorithms in parallel to identify and create new clusters from
the pool of unclustered failed eSLDs. It is invoked periodically
every �T (e.g., 1 hour), or when the pool size exceeds a
threshold.

Evolutionary Learning - Cluster Fitness Score and Cluster
Evaluation: We assign each temporary cluster, Ci, a fitness
score based on four metrics of cluster quality: (i) cluster
cohesiveness, vi, (ii) cluster size, zi, (iii) temporal closeness,
ai, and (iv) the number of occurrences, ni. The definition of
cohesiveness depends on the specific clustering algorithm and
is discussed in Section V-B. We normalize vi to a value within
[0, 1], with 1 being the most cohesive. The cluster size is self-
explanatory. The temporal closeness, ai, is the average inter-
arrival time of consecutive failed queries in the cluster. The
number of occurrences, ni � 1, records the number of times
the same/similar cluster occurs.

We define fi, the fitness score of cluster Ci, as a function
of these four metrics: fi = F (vi, zi, ai, ni). Intuitively, high
scores are assigned to clusters with tight cohesiveness and
short inter-arrival times, and those that grow consistently over
time or re-occur. We use the following heuristic function F to
map vi, zi, ai, and ni to a fitness score in [0, 1]:

fi =
1

1 + e�↵izi
· [1� (1� vi)

ni
] · e��max{ai�a0,0}. (1)

The formula follows simple intuitions. All three multiplicative
terms fall within [0, 1]. The first term is the logistic function,
widely used in many applications (e.g., for modeling popu-
lation growth), and it grows monotonically from 0.5 to 1 as
↵izi > 0 increases. ↵i (0 < ↵i  1) differentiates types of
clusters and controls the effect of the cluster size on the fitness
score (see Section V-B). Its value, along with the minimum
cluster size threshold, are algorithm specific. Based on our
experiments, we selected the values reported in Table VI.

When ni = 1, the second multiplicative term is simply vi;
when ni > 1, the second term assigns a “new” cohesiveness
metric to the cluster that is an increasing function of ni. It
states that even when a cluster is less cohesive, if such a
cluster re-occurs over time, it is rewarded with a higher fitness
score. The third multiplicative term is an exponential decaying
function, where parameter a

0

is a constant (say, a
0

= 1 sec).
If ai  a

0

, the third term is 1; otherwise, it decreases as

TABLE VI
CLUSTERING ALGORITHM SPECIFIC PARAMETERS.

Parameter Rand Jacc Edit Subs
↵i 0.1vi 0.2vi 0.4vi 0.8vi

min threshold zi 10 8 5 4

ai � a
0

increases. The scaling constant � controls the rate of
the decay; in our implementation, we set � = 0.1 based on
our experiments.

Cluster Consolidation, Deprecation and Elevation: As the
temporary clusters evolve over time, we compute and update
the metrics, vi, zi, ai and ni, as well as the overall fitness
score fi, associated with each cluster. On every �T period,
we evaluate the existing clusters to determine whether some
clusters can be consolidated, deprecated or elevated.

Given two clusters Ci and Cj identified by the same
clustering algorithm, we evaluate whether they are sufficiently
similar based on the metric used by each clustering algorithm.
We then decide whether to merge the two clusters as a result.
Two similar clusters occurring in different times are considered
as two occurrences of the same cluster. We consolidate two
clusters only when the resulting new cluster has a higher
fitness score than both existing clusters. Such consolidation
starts with the two clusters with the smallest sizes, and
proceeds recursively until no more consolidations are possible.

Temporary clusters that have not grown in size since the
last update (say, at time t

0

) are penalized, and the fitness
score at time t is reduced to fi(t) = e��(t�t0)fi(t0) where
� is a decay factor. We choose � = 0.01 (with t in units
of minutes) that showed good results in our tests. When its
fitness score falls below a threshold, the cluster is removed
from further consideration. We also remove eSLD strings
in the pool of unclustered queries every three �T periods.
Furthermore, we compare the clusters identified by different
clustering algorithms, to make a joint deprecation decision.
Suppose we have a larger cluster C

1

identified as one type,
and a smaller cluster C

2

of a different type. We deprecate C
2

if it passes both an overlap test |C
1

\ C
2

|/|C
2

| � 0.9 and a
fitness score test f

1

> f
2

. Such deprecation decision is crucial
for removing poor-quality or redundant clusters.

Finally, temporary clusters whose fitness scores exceed
certain threshold (e.g., fi > 0.75) for a long period of time
(e.g., 5�T ) are elevated to detected failure patterns. We record
these clusters, together with all the metrics, as part of the
output of the system.

B. Clustering/Detection Algorithms

We describe the clustering algorithms developed in conjunc-
tion with our framework. In each algorithm, we implement
hierarchical agglomerative clustering with different metrics
to identify similarities of string properties. We remark that
the presented algorithms are meant as example algorithms to
illustrate how diverse failure patterns can be detected. While
the efficacy of our framework hinges on the accuracy of the
algorithms employed, the framework in itself is general as it



allows additional – and more sophisticated – algorithms to be
installed as “plug-&-play” detection modules.

Randomness Based Detection (Rand): The key syntactic
feature of DNS failures in Cat-R is that all failed eSLDs of
various lengths are random-looking. To determine if an eSLD
is random, we leverage the fact that in any language, characters
do not appear randomly or independently after each other.
For example, the letter ‘u’ occurs very frequently after ‘q’
in English. We create a dictionary of domains crawled from
dmoz.org, a multilingual directory of web links, from which
we compute the conditional probabilities of one character
occurring after another. To test the randomness of an eSLD, s,
we compute �(s), the log-likelihood of the character sequence
in s comparing with that of generating the same string from
a uniform distribution. We then convert �(s) to a randomness
score within [0, 1], with a value closer to 1 indicating a
string closer to random. The cohesiveness vi is the average
randomness score of all strings in cluster Ci.

Jaccard Similarity Based Detection (Jacc): The key com-
mon feature of the failed queries in Cat-C is that they are
permutations of a limited character set. Jaccard similarity
based detection algorithm is very effective in clustering such
failed queries. Given two strings s

1

and s
2

on two character
sets A

1

and A
2

, the Jaccard similarity is defined as J(s
1

, s
2

) =

|A
1

\ A
2

|/|A
1

[ A
2

|. We use a modified Jaccard similarity
measure that takes the length of the strings into account by
multiplying J(s

1

, s
2

) by a weight w(s
1

, s
2

) that is a logistic
function of min{|s

1

|, |s
2

|}. In other words, longer strings with
the same (standard) Jaccard similarity measure are considered
more similar than shorter strings. We use this modified Jaccard
similarity metric to perform clustering, employing a method
similar to [11]. The cohesiveness metric vi for a Jaccard
similarity cluster Ci is computed as the average of the pair-
wise (modified) Jaccard similarity of all strings in the cluster.

Edit Distance Based Detection (Edit): In order to detect the
mutated string failure patterns in Cat-M , we apply the Leven-
shtein edit distance [20] that measures the dissimilarity of the
two strings. The edit distance of two strings, Edit(s

1

, s
2

), is
the minimum number of single-character edit operations (i.e.,
insertion, deletion, substitution) required to transform s

1

to
s
2

. We use a normalized version [21] that takes string lengths
into account and produces a value within [0,1]. We apply
this distance metric to group strings with short edit distances
occurring together within a relatively short time span, and
declare them an edit-distance cluster when the number of
such strings exceeds the threshold. The cohesiveness metric
vi for an edit distance cluster Ci is computed as one minus
the average pair-wise normalized edit distance over all pairs.

Substring Based Detection (Subs): Given s
1

and s
2

, we
apply the standard substring extraction algorithm to find
the (longest) common substring — for instance, a common
substring can be extracted as a by-product of computing the
edit distance of the two strings. When applying this method
to an ensemble of strings, we extract the common substring

Jaccard
detector

Edit
detector

Substring
detector

89s7dgf78ger367gs6
89s7dgf87gsdfg
……..

89s7dgf87gsdfg
89s7dgfsvdf6gsdgf
8shdf878sdfgs 
89s7dgf78ger367gs6

……..
s7dfgs87gdfg8s7df
s879dgfhs78df6sgdf         
s87fggsdfuyvsdvtftds
s78dgfyg87sdfs6dvf

……

89s7dgf87gsdfg
89s7dgf78gsdgf
89shdf878sdfgs               

……..

s7dfgs87gdfg8s7df
s87dfs78df6sgdf         
s87fgg78df6fduy

……

sd98f7ghsdfysdg6f
sdf9s87dfh78y6rg8we
sdfg7sdfsdf67g
………

w47rg7hubisdf7svdf          
3r497w886frg87sudfg
w87r97hufysdf7vsfd
w38r97ggsdhfbysdf7y
9sd7fg87sgdfgs87dfs
.......

sdf7gsd78fs8d7fg
s78dgh78ydf6dwe
sfbnsuf67e5w5g6fsd
s87dsg s87dfy3wf 
w47rg7hubisdf7svdf          
3r497w886frg87su 

……

S78dgh78ydf6dwe
s87dsg s87dfy3wf 

s87dfs78df6sgdf 
s87dsg s87dfy3wf 
……..

w47rg7hubisdf7svdf          
w87r97hufysdf7vsfd
……..

t0 t1 t2 t3 t4
first burst of
failed queries

additional
failed queries

second burst of
failed queries

cluster evaluation
Is executed

Jaccard cluster
elevated as a 
detected failure
pattern

Edit clusters
consolidated 
& deprecated

Substring clusters
consolidated & 

deprecated

Fig. 5. Framework illustration using an example.

for all pairs of strings in the ensemble. We sort the extracted
substrings based on the frequency they occur in the set of
extracted pair-wise substrings and discard those with a length
of less than four. We select the most frequently occurring
substrings using a cut-off threshold based on the empirical
frequency distribution. For each selected substring, we group
the strings containing the substring and declare it a substring
cluster if the cluster size zi � 4. Let h denote the length of the
substring for a substring cluster Ci. The cohesiveness metric
vi is defined using the logistic function, vi = 1/(1+e�(h�3)

).

C. An Illustration of Framework in Action

To illustrate our evolutionary framework, we use a semi-
random looking failure pattern C.1, shown in Table III as an
example. We run four detection algorithms, Rand, Jacc, Edit
and Subs in parallel. Since the failed eSLD strings have a
limited character set (e.g., d, f, g, s, 7, 8) and bi-grams
(e.g., dg, gf, gs) occur more frequently than others, many
of the failed domain names in C.1 fail our randomness test.
Therefore, we focus primarily on the operations of Jacc, Edit
and Subs, as illustrated in Fig. 5.

When applying the three detectors to the first burst of 20+
failed eSLD strings that occur in a span of 5 minutes, the
Jacc detector groups all failed queries into a single temporary
cluster. Both the Edit and Subs detectors group subsets of
these strings into multiple clusters at time instant t

1

in Fig. 5
(only one or two are shown). In the next few minutes, more
failed queries of the same pattern continue to occur. The Jacc
detector includes them in the same cluster and the cluster
quickly expands. On the other hand, the two Edit clusters grow
slowly, each adding one or two strings, while the Subs clusters
do not grow; instead, new Subs clusters are created. Hence,
only the Jacc cluster increases its fitness score significantly.

When the next burst of the same failure patterns occur
in 25 minutes, the Jacc detector recognizes these as a new
instance of the previously detected cluster, includes them in
the same Jacc cluster, and increments the occurrence count ni.
In contrast, both the Edit and Subs detectors include some of
them into the existing clusters and create new clusters out of



some remaining failed eSLDs. When the Cluster Evaluation
module is executed, the fitness score of the Jacc cluster
exceeds the elevation threshold. The Cluster Consolidation,
Deprecation & Elevation modules are then invoked. The Jacc
cluster is elevated to the “detected” status and recorded in the
output of the system. Various temporary Edit and Subs clusters
that have survived so far are subsumed by the Jacc cluster, and
thereby removed from the system.

VI. EVALUATION

To evaluate the accuracy of our framework in detecting
malicious activities, we run our framework on the DNS traffic
of each individual client from the same set of clients that we
manually labeled in Section III-B. These clients contain at
least five unique eSLDs in the DNS failures. There are a total
of 802 such clients from Aug2011 and 1,277 from Apr2012.
For each client, our framework generates a (possibly empty)
set of suspicious clusters, which we term reported clusters.
The quality of our framework is measured by how these
reported clusters match our labeled clusters (or the ground
truth), on both the cluster level and the client level.

A. Methodology

Baseline: To quantify the benefits of our framework, we
design two baseline systems that we compare against. In (i)
the Standalone mode, we implement a simple approach where
each of the four detection algorithms runs independently (i.e.,
in isolation) on the whole 24-hour trace, and only consolidate
among the clusters reported by the same detector. In (ii) the
Batch mode, clusters across different detectors are consoli-
dated. The consolidation is based on the same overlapping
threshold used in our framework (Section V-A), except that
here, we do not conduct fitness test or utilize temporal features.

The baseline comparisons serve two purposes. First, we
quantify the benefits of integrating clusters of multiple cat-
egories, as opposed to running them in isolation (i.e., the
Standalone mode). Second, we evaluate the benefits of our
evolutionary framework that manages the lifecycles of all clus-
ters in an online fashion (vs the Batch mode). The results from
our framework are in the “Framework” columns of Table VII,
whereas the baseline comparison results are presented in the
“Standalone” and “Batch” columns.

Next, we illustrate our use of True Positive (TP), False
Negative (FN) and False Positive (FP) notations. We focus on
Table VII, using the Cat-S row and the “Framework” columns
for the Aug2011 dataset as examples.

Cluster-Level Evaluation: Suppose a client has a set of
clusters LC = {Li} manually labeled as Cat-S clusters, and a
set of clusters RC = {Rj} reported by the Cat-S detector. We
want to measure how LC “matches” RC. For simplicity, we
use binary classification as follows. For each labeled cluster
Li, we find from RC the R⇤

j that has the largest Jaccard index
w.r.t. Li, i.e., J⇤

i = maxj |Li \ Rj |/|Li [ Rj |. If J⇤
i � 0.5

(i.e. a reasonable degree of similarity), we match Li and R⇤
j

and consider them a TP cluster of Cat-S, and remove R⇤
j

from RC. Otherwise, Li is considered an FN cluster of Cat-
S. When all Li have been processed, the remaining clusters Rj

in RC are FP clusters of Cat-S. Summing over all categories
for each TP/FN/FP of the same client, we have the overall
cluster count. We aggregate the numbers on all clients and
produce the statistics.

Client-Level Evaluation: To measure the accuracy of detect-
ing clients with suspicious DNS query behaviors, we cumulate
the cluster-level results of each client and produce client-level
statistics. If a client has at least one labeled clusters of Cat-
S, we label this client as a suspicious client of Cat-S (note
that one client may have labels of different categories); for
example, 31 clients contribute to a total of 38 Cat-S labeled
clusters in Aug2011. We consider a client as a TP client
of Cat-S if it contains Cat-S labeled clusters and the Cat-S
detector reports at least one Cat-S labeled cluster.

An FN client of Cat-S contains Cat-S labeled clusters, but
no TP clusters of Cat-S. In other words, when a client contains
labeled clusters of Cat-S, it is classified as either TP or FN
client for this category. On the contrary, when it contains no
Cat-S labeled clusters but has at least one falsely reported
clusters by the Cat-S detector, it becomes an FP client of
Cat-S; otherwise it is a TN client of this category.

We report TP/FN/FP per category. When calculating the
overall client-level statistics for all categories (i.e., the first
row), the number is not a simple sum over all categories, as
one client may be reported by multiple detectors. In particular,
we define an overall FP client as an FP client of at least one
category, and at the same time, no TP client of any other
category. For example, our framework results in zero overall
FP clients on the Aug2011 dataset; although we have three
Cat-S FP clients, they are excluded from the overall FP client
as they are also TP clients of other categories.

B. Results

The results in Table VII convey the following. First, for
both datasets, our framework narrows down a large number of
clients to few suspicious ones with very high accuracy. The
false negatives are extremely low and false positives are well
controlled, on both the client and cluster levels. At the client
level, our framework achieves 100% recall, 100% precision on
Aug2011, and 97% recall, 81% precision on Apr2012.

Second, compared with the two baseline schemes, our
framework significantly reduces the cluster-level false pos-
itives, thanks to evolutionary learning. For example, in
Aug2011, our framework yields only 11 FP clusters, as
opposed to 113 for the Batch and 243 for the Standalone. This
result shows the high detection accuracy of our framework.

Our framework has extremely low false negative rates.
There are two FN clients/clusters of Cat-R in Apr2012.
One is a client infected with Win32/Cutwail.BQ that
generated no syntactically clusterable DNS failures. The other
is a client infected by Simda-E whose DGA exhibits certain
randomness with subtle structure (e.g., hapydub, hanydow,
halydob, hapidyz, etc.), for which we would need a



TABLE VII
EVALUATION RESULTS OF OUR FRAMEWORK AGAINST TWO BASELINE SCHEMES: BATCH MODE AND STANDALONE MODE.

TP FN FP TP FN FP TP FN FP TP FN FP TP FN FP TP FN FP
Aug2011 802 101 101 0 0 94 7 19 97 4 19 111 111 0 11 103 8 113 107 4 243
Cat-R n/a 47 47 0 2 47 0 11 47 0 12 47 47 0 2 47 0 11 47 0 12
Cat-C n/a 8 8 0 0 3 5 12 5 3 25 8 8 0 1 3 5 48 5 3 147
Cat-M n/a 17 17 0 2 15 2 8 16 1 13 18 18 0 2 15 3 11 17 1 24
Cat-S n/a 31 31 0 3 31 0 32 31 0 36 38 38 0 6 38 0 43 38 0 60
Apr2012 1227 68 66 2 15 63 5 50 63 5 50 74 72 2 33 66 8 278 68 6 662
Cat-R n/a 39 37 2 7 37 2 14 37 2 14 39 37 2 8 37 2 15 37 2 15
Cat-C n/a 5 5 0 6 2 3 4 2 3 19 8 8 0 7 2 6 16 4 4 90
Cat-M n/a 0 0 0 5 0 0 13 0 0 27 0 0 0 6 0 0 153 0 0 182
Cat-S n/a 26 26 0 11 26 0 59 26 0 59 27 27 0 12 27 0 94 27 0 375

Batch Standalone
Number of Clusters

ALL
BatchFramework Standalone

Number of Clients
FrameworkGround 

Truth
Ground 
Truth

specific detector different from the ones we deployed. We
acknowledge the possibility of under-estimating false nega-
tives, as our labeling was conducted manually (although very
carefully) and might have missed some ground truth.

Our framework produces noticeable false positives, in par-
ticular on Apr2012 at the cluster level. It is caused by
“over-splitting,” where a (reported) cluster splits into two and
the smaller part (or even both parts) contributes to the false
positives, although it partially overlaps with the labeled cluster.
We are working on ways to improve this. Another cause is
our stringent definition of false positives: our cluster-level
evaluation does not go beyond the detector boundary. For
example, if a labeled cluster of Cat-S is falsely reported by a
Cat-R detector rather than a Cat-S detector, the labeled cluster
becomes a Cat-S FN and the Cat-R detector is considered
an FP. Because of these two reasons, the calculated FP rates
“under-estimate” the efficacy of our framework.

VII. CONCLUSION

We presented a systematic study of DNS failures using a
large ISP datasets. Our findings demonstrate that attackers
are employing a variety of disparate domain name patterns
for their malicious activities. In addition to random-looking
failures generated by domain-flux botnets, we have uncovered
many diverse and stealthy DNS failure patterns. We build on
these observations to design a comprehensive evolutionary
learning framework to detect diverse clusters of suspicious
DNS failures. Our framework is developed as a “plug-&-
play” system, enabling new detectors to be easily incorporated.
We evaluated our framework against a large set of manually
labeled malicious clients and clusters, and showed that our
framework identifies over 97% manually labeled suspicious
clients with at least 81% precision.

We recognize that our framework has a few limitations.
First, DNS failure monitoring only provides a “first-order”
detector to generate alerts, and in itself is insufficient to
confirm malicious activities. We plan to expand our analysis
to suspicious successful DNS queries and the corresponding
network traffic triggered by them (e.g. HTTP flows). We also
note that stealthy malware that generates few DNS failures

with little temporal correlation or syntactic patterns, will
be difficult for our framework to detect. Addressing these
challenges is part of future research.

VIII. ACKNOWLEDGEMENTS

Pengkui Luo and Zhi-Li Zhang were supported in part
by NSF grants CNS-1117536, CRI-1305237, CNS-1411636
and DTRA grant HDTRA1-14-1-0040 and DoD ARO MURI
Award W911NF-12-1-0385. Part of the research was con-
ducted while Pengkui Luo was a summer intern at Narus Inc.

REFERENCES

[1] B. Stone-Gross et al., “Your Botnet is My Botnet: Analysis of a Botnet
Takeover,” in ACM CCS, 2009.

[2] P. Porras, H. Saidi, and V. Yegneswaran, “A Foray into Conficker’s Logic
and Rendezvous Points,” in USENIX LEET, 2009.

[3] S. Yadav et al., “Detecting Algorithmically Generated Malicious Domain
Names,” in ACM IMC, 2010.

[4] Y. Gao et al., “An Empirical Reexamination of Global DNS Behavior,”
in ACM SIGCOMM, 2013.

[5] N. Jiang et al., “Identifying Suspicious Activities through DNS Failure
Graph Analysis,” in IEEE ICNP, 2010, pp. 144–153.

[6] M. Antonakakis et al., “From Throw-Away Traffic to Bots: Detecting
the Rise of DGA-Based Malware,” in USENIX Security, 2012.

[7] ——, “Building a Dynamic Reputation System for DNS,” in USENIX
Security, 2010.

[8] L. Bilge et al., “EXPOSURE: Finding Malicious Domains Using Passive
DNS Analysis,” in NDSS, 2011.

[9] M. Antonakakis et al., “Detecting Malware Domains at the Upper DNS
Hierarchy,” in USENIX Security, 2011.

[10] S. Hao, N. Feamster, and R. Pandrangi, “Monitoring the Initial DNS
Behavior of Malicious Domains,” in ACM IMC, 2011.

[11] R. Perdisci et al., “Detecting Malicious Flux Service Networks through
Passive Analysis of Recursive DNS Traces,” in ACSAC, 2009.

[12] Z. Zhu, V. Yegneswaran, and Y. Chen, “Using Failure Information
Analysis to Detect Enterprise Zombies,” in SecureComm, 2009.

[13] K. Sato et al., “Extending Black Domain Name List by Using Co-
occurrence Relation between DNS Queries,” in USENIX LEET, 2010.

[14] Malware Domains, http://malwaredomains.com.
[15] Malware Domain List, http://malwaredomainlist.com.
[16] PhishTank, http://phishtank.com.
[17] Web of Trust, http://www.mywot.com.
[18] Public Suffix List, http://publicsuffix.org/.
[19] D. Plonka and P. Barford, “Context-aware Clustering of DNS Query

Traffic,” in ACM IMC, 2008.
[20] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions,

Insertions, and Reversals,” Soviet Physics Doklady, vol. 10, 1966.
[21] Y. Li and B. Liu, “A Normalized Levenshtein Distance Metric,” IEEE

Trans. PAMI, vol. 29, no. 6, June 2007.


