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Mathematical problem

Compressed sensing (compressed sampling, compressive sensing... CS)
deals with

Underdetermined linear systems ...

Ax=y

x € R" (unknown), y € R™ (measurements), A€ R™*"  m <n

Within the infinite set of solutions, CS looks for the sparsest one

... with sparsity assumptions

x is k-Sparse, i.e., it has k non-zero components, where k << n
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Mathematical problem
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Questions

Ax=y,x € R"(sparse),y e R". m<n

Is the problem well-posed (= is the solution unique)?
Are there feasible algorithms to find the solution?

Which applications motivate this study?

Answers
Yes, under some conditions
A number of recovery algorithms have been proposed
Sparsity is ubiquitous: many signals are sparse in some basis
(y = Agx where ¢ is the sparsifying basis, e.g., DCT, wavelets,

Fourier... )
Applications where data acquisition is difficult/expensive, and

one aims to move the computational load to the receiver
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Medical Imaging

Magnetic Resonance Imaging (MRI): acquisition is slow
[Lustig (2012)]
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Compression and sampling

S.M. Fosson

Ax =y, x € R"(sparse),y € R", m < n

Sampling: Nyquist-Shannon sampling theorem states given a
signal bandlimited in (B, B), to represent it over a time
interval T, we need at least 2BT samples

CS indicates a way to merge compression and sampling, and
sample at a sub-Nyquist rate [Tropp et al. (2009)]
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Compression and sampling
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Wideband spectrum sensing

Modulated wideband converter (MWC) [Mishali and Eldar (2010)]
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Sub-Nyquist sampling for signals sparse in the frequency domain

Realized in hardware (with commercial devices)
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Single-pixel camera
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Boufonos et al., ICASSP 2008

Key ingredient: a microarray consisting of a large number of small
mirrors that can be turned on or off individually

Light from the image is reflected on this microarray and a lens
combines all the reflected beams in one sensor, the single pixel of
the camera
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Mathematical formulation

-norm

Ix]lg := number of nonzeros entries of x € R"

Natural formulation of the CS problem:

Po : i bject to Ax =
o:  min fIxo subject to Ax=y

Is the solution unique?
Py is NP-hard!
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Uniqueness of the solution

spark(A) := minimum number of columns of A that are linearly
dependent

Theorem [D. Donoho, M. Elad (2003)]

For any vector y € R™, there exists at most one k-sparse signal
x € R" such that y = Ax if and only if spark(A) > 2k.
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Uniqueness of the solution

Coherence

ATA; .
w(A) = max;ijm (A; = ith column of A)

Theorem [D. Donoho, M. Elad (2003)]

If
k<;<1+ﬂ(1/4)>

y € R™, there exists at most one k-sparse signal x € R” such that
y= Ax.
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Basis Pursuit (BP)

Possible solution: convex relation

Basis Pursuit

P : i bject to Ax =
1 )EggonHl subject to Ax=y

P1 is convex; can be solved by linear programming

Are Py and P; equivalent?
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Coherence

AlA
p(A) := maxiy; i | u |

AT AL A
AllL A, (A; = ith column of A)

Theorem [Elad and Bruckstein (2002)]

If for the sparset solution x* we have

V21
¥ llo < ——5*

1(A)

then the solution of P; is equal to the solution of Py.
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Restricted Isometry Property (RIP)

Matrix A satisties the RIP of order k if there exists dx € (0,1) such
that the following relation holds for any k-sparse x:

(1= 8k lIxll3 < IAXII3 < (1 +6) I3

Theorem [Candés (2008)]

If 5 < /2 — 1, then for all k-sparse x € R” such that Ax =y, the
solution of P; is equal to the solution of Pg.
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Which matrices?

Coherence, spark, RIP: not easy to compute
Random matrices A with i.i.d. entries drawn from continuous
distributions have spark(A) = m + 1 with probability one.

Gaussian, Bernoulli matrices: given 6 € (0,1) there exist c1, &
depending on ¢ such that G. and B. matrices satisfy the RIP
with constant 6 and any m > ciklog(n/k) with probability

> 1—2e 2™ [Baraniuk (2008)]

Structured matrices: circulant matrices, partial Fourier
matrices
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Orthogonal Matching Pursuit (OMP)

S.M. Fosson

“When we talk about BP, we often say that the linear
program can be solved in polynomial time with standard
scientific software, and we cite books on convex programming
[...]. This line of talk is misleading because it may take a long
time to solve the linear program, even for signals of moderate
length” [Tropp and Gilbert (2007)]

Possible solution: greedy algorithm, fast, easy to implement
— OMP
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Orthogonal Matching Pursuit (OMP)

Initialize g =y, Ao = 0
For t=1,..., Tomax

¢ = argmax |AJ-Trt_1\
Jj=1,...,n

/\t = /\t—l U {)\t}

X¢ = argmin ||y — Ap,x||,
xeRn

n=y— A/\t/)'\(t

Thax ~ k
OMP requires the knowledge of k!
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Variants of BP

Basis Pursuit Denoise (BPDN)

P1:  min ||x||; subjectto ||[Ax=yl|, <e
xER"

Unconstrained version of BPDN

Lasso
minern ( [|Ax — yl3 + A |x]l; )

For some A > 0, Lasso and BPDN have the same solution (the
choice of A is tricky!)
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Iterative soft thresholding (IST)

X =0
Fort=1,..., Thax
3\(1‘ = S)\(/)\(t_]_ aF TAT(y— A *?t—l))

where the operator S) is defined entry by entry as
Sxa(x) = sgn(|x| — A) if [x| > A, O otherwise

IST achieves a minimum of the Lasso [Fornasier (2010)], and
in many common situations such minimum is unique
[Tibshirani (2012)]

Faster method to get a minimum of the Lasso: alternating
direction method of multipliers (ADMM)
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Iterative hard thresholding

X =0
Fort=1,..., Tmax
Xt = Hi(Xe—1 + AT(y— AX¢-1))

where the operator Hy(x) is the non-linear operator that sets all

but the largest (in magnitude) k elements of x to zero [Blumensath
(2008)]
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Distributed compressed sensing (DCS)

Data acquisition is perfomed by a network of sensors

yw=Awx, veV=/{sensors }

First works: recovery is performed by a fusion center that
gathers information from the network (sensing matrices,
measurements)

New: in-network recovery, exploiting local communication and
consensus procedures

We need iterative algorithms
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Distributed Compressed Sensing (DCS)

Measurements .
acquired by a

network
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Distributed Compressed Sensing (DCS)

- @

Signals to be reconstructed
by each node are
e inter-correlated

(example: same support)
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Distributed Compressed Sensing (DCS)
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Distributed Compressed Sensing (DCS)
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DCS: in-network recovery
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