In-network reconstruction of jointly sparse signals with ADMM

Original
In-network reconstruction of jointly sparse signals with ADMM / Matamoros, J.; Fosson, S. M.; Magli, E.; Antón-Haro, C.. - (2015). ((Intervento presentato al convegno European Conference on Networks and Communications (EUCNC 2015) tenutosi a Paris (France) nel jun 29 - jul 02, 0215.

Availability:
This version is available at: 11583/2624989 since: 2015-12-05T14:56:50Z

Publisher:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

(Article begins on next page)
In-network reconstruction of jointly sparse signals with ADMM

Javier Matamoros, Sophie M. Fosson, Enrico Magli and Carles Antón-Haro

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)
Politecnico di Torino

EUCNC 2015, June 29- July 2, Paris (France)
Motivation

- Reconstruction of jointly sparse signals with innovations
- Sensing applications where information is acquired by a geographically distributed set of nodes
- No need for a fusion center → In-network processing
- Focus on efficient ADMM techniques with low signalling overhead
Outline

Signal Model

Centralized ADMM

Distributed ADMM

Distributed ADMM with 1 bit

Numerical results

Conclusions
Signal Model

- Consider N sensor nodes
- Observed signal at the ith sensor node

$$y_i = A_i x_i + \eta_i \quad ; \quad i \in \mathcal{N}$$

- $x_i \in \mathbb{R}^n$: Signal of interest
- $A_i \in \mathbb{R}^{M \times L}$ with $M \ll L$: Measurement matrix
- $\eta_i \in \mathbb{R}^L$: Acquisition noise
Signal Model

- Consider N sensor nodes
- Observed signal at the ith sensor node

\[y_i = A_i x_i + \eta_i \quad ; \quad i \in \mathcal{N} \]

- $x_i \in \mathbb{R}^n$: Signal of interest
- $A_i \in \mathbb{R}^{M \times L}$ with $M \ll L$: Measurement matrix
- $\eta_i \in \mathbb{R}^L$: Acquisition noise

- **Assumption**: JSM-1 model [Duarte06]

\[x_i = \Psi z_c + \Omega_i z_i \quad ; \quad i \in \mathcal{N} \]

- $z_c \in \mathbb{R}^n$: Common signal with k_c non-zero components
- $z_i \in \mathbb{R}^n$: Innovation with k_i non-zero components
- $\Psi, \Omega_i \in \mathbb{R}^{L \times L}$: Sparsity basis (w.l.g. $\Psi = \Omega_i = I_L$)
Centralized ADMM

Optimization problem

- Lasso formulation...

\[
\min_{\{x_i, z_i\}, z_c} \frac{1}{2} \sum_{i=1}^{N} \left(\|y_i - A_i x_i\|_2^2 + \tau_1 \|z_i\|_1 + \tau_2 \|z_c\|_1 \right)
\]

s.t. \quad x_i = z_c + z_i; \quad i = 1, \ldots, N

- Promotes sparsity in the innovation component
- Promotes sparsity in the common component
Augmented cost function

\[
\min_{\{x_i, z_i\}, z_c} \frac{1}{2} \sum_{i=1}^{N} \left(\|y_i - A_i x_i\|_2^2 + \tau_1 \|z_i\|_1 + \tau_2 \|z_c\|_1 \right) + \frac{\rho}{2} \|x_i - z_i - z_c\|_2^2
\]

s.t. \(x_i = z_i + z_c; \quad i = 1, \ldots, N \)
Centralized ADMM

Review

- Augmented cost function

\[
\min_{\{x_i, z_i\}, z_c} \frac{1}{2} \sum_{i=1}^{N} \left(\|y_i - A_i x_i\|_2^2 + \tau_1 \|z_i\|_1 + \tau_2 \|z_c\|_1 \right)
+ \frac{\rho}{2} \|x_i - z_i - z_c\|_2^2
\]

s.t. \(x_i = z_i + z_c; \quad i = 1, \ldots, N \)

- Augmented Lagrangian

\[
\mathcal{L} := \frac{1}{2} \sum_{i=1}^{N} \|y_i - A_i x_i\|_2^2 + \sum_{i=1}^{N} \tau_1 \|z_i\|_1 + N \tau_2 \|z_c\|_1
+ \sum_{i=1}^{N} \frac{\rho}{2} \|x_i - z_i - z_c\|_2^2 + \sum_{i=1}^{N} \lambda_i^T (x_i - z_i - z_c)
\]
Centralized ADMM

Algorithm

- ADMM iterates

\[
x_i(t + 1) = (\rho I + A_i^T A_i)^{-1} (A_i^T y_i + \rho (z_i(t) + z_c(t)) - \lambda_i(t))
\]

\[
z_c(t + 1), \{z_i(t + 1)\} = \arg \min_{z_c,\{z_i\}} \mathcal{L}(t + 1)
\]

\[
\lambda_i(t + 1) = \lambda_i(t) + \rho (x_i(t + 1) - z_i(t + 1) - z_c(t + 1))
\]
Centralized ADMM

Algorithm

- ADMM iterates

\[x_i(t + 1) = (\rho I + A_i^T A_i)^{-1}(A_i^T y_i + \rho (z_i(t) + z_c(t)) - \lambda_i(t)) \]

\[z_c(t + 1), \{z_i(t + 1)\} = \arg \min_{z_c,\{z_i\}} \mathcal{L}(t + 1) \]

\[\lambda_i(t + 1) = \lambda_i(t) + \rho (x_i(t + 1) - z_i(t + 1) - z_c(t + 1)) \]

- Difficult to compute (Algorithm 1 in the paper)

- Centralized solution!
Nodes only communicate with their neighbors (no fusion center)

Goal: In-network reconstruction of \(\{x_i\} \).
Distributed ADMM

Distributed formulation

▶ New formulation...

\[
\min_{\{x_i, z_i, \zeta_i, c_i\}} \frac{1}{2} \sum_{i=1}^{N} \|y_i - A_i x_i\|_2^2 + \tau_1 \|z_i\|_1 + \tau_2 \|\zeta_i\|_1
\]

s.t. \quad x_i = z_i + \zeta_i; \quad i \in N

\[\zeta_i = c_j; \quad j \in N_i \cup \{i\}\]

▶ Forces consensus on the local guesses
Distributed ADMM

Distributed formulation

- Augmented cost function

\[
\min_{\{x_i, z_i, \zeta_i, c_i\}} \frac{1}{2} \sum_{i=1}^{N} \|y_i - A_i x_i\|_2^2 + \tau_1 \|z_i\|_1 + \tau_2 \|\zeta_i\|_1 \\
+ \frac{\rho}{2} \|x_i - z_i - \zeta_i\|_2^2 + \frac{\theta}{2} \sum_{j \in N_i} \|\zeta_i - c_j\|_2^2 \\
\text{s.t.} \quad x_i = z_i + \zeta_i; \quad i \in N \\
\zeta_i = c_j; \quad j \in N_i \cup \{i\}
\]

- Difficult to solve by means of classical ADMM (i.e. with 2 primal iteration blocks)
Distributed ADMM

Distributed formulation

- Augmented cost function

\[
\begin{align*}
\min_{\{x_i, z_i, \zeta_i, c_i\}} \frac{1}{2} & \sum_{i=1}^{N} \| y_i - A_i x_i \|^2_2 + \tau_1 \| z_i \|_1 + \tau_2 \| \zeta_i \|_1 \\
& + \frac{\rho}{2} \| x_i - z_i - \zeta_i \|^2_2 + \frac{\theta}{2} \sum_{j \in N_i} \| \zeta_i - c_j \|^2_2 \\
\text{s.t.} \quad & x_i = z_i + \zeta_i, \quad i \in N \\
& \zeta_i = c_j, \quad j \in N_i \cup \{i\}
\end{align*}
\]

- Difficult to solve by means of classical ADMM (i.e. with 2 primal iteration blocks)

- Instead, we propose to minimize the primal variables in a sequential fashion
Distributed ADMM

Algorithm

- **Primal iterates**

\[
x_i(t + 1) = (\rho I + A_i^T A_i)^{-1}(A_i^T y_i + \rho(z_i(t) + \zeta_i(t)) - \lambda_i^T)
\]

\[
z_i(t + 1) = S_{\frac{\tau_1}{\rho}} \left[(x_i(t + 1) - \zeta_i(t)) + \frac{\lambda_i(t)}{\rho} \right]
\]

\[
\zeta_i(t + 1) = S_{\frac{\tau_2}{\rho + \theta|\mathcal{N}_i|}} \left[\frac{1}{\rho + \theta|\mathcal{N}_i|} \left(\rho (x_i(t + 1) - z_i(t + 1)) + \frac{\lambda_i(t)}{\rho} \right) + \theta \sum_{j \in \mathcal{N}_i} \left(c_j(t) - \frac{\mu_{i,j}(t)}{\theta} \right) + \lambda_i(t) \right]
\]

\[
c_i(t + 1) = \frac{1}{|\mathcal{N}_i|} \sum_{j:i \in \mathcal{N}_j} \left(\zeta_j(t + 1) + \frac{\mu_{j,i}(t)}{\theta} \right);
\]

- **Dual iterates**

\[
\lambda_i(t + 1) = \lambda_i(t) + \rho (x_i(t + 1) - z_i(t + 1) - \zeta_i(t + 1))
\]

\[
\mu_{i,j}(t + 1) = \mu_{i,j}(t) + \theta (\zeta_i(t + 1) - c_j(t + 1)); \quad j \in \mathcal{N}_i
\]
Distributed ADMM (cont’d)

Algorithm

- Compute \(\{x_i(t + 1), z_i(t + 1), \zeta_i(t + 1)\} \) at each node
Distributed ADMM (cont’d)

Algorithm

- Compute \(\{x_i(t+1), z_i(t+1), \zeta_i(t+1)\} \) at each node
- Broadcast \(\{\zeta_i(t+1)\} \) to your neighbors
Distributed ADMM (cont’d)

Algorithm

- Compute \(\{x_i(t+1), z_i(t+1), \zeta_i(t+1)\} \) at each node
- Broadcast \(\{\zeta_i(t+1)\} \) to your neighbors
- Compute \(\{c_i(t+1)\} \) at each node
Distributed ADMM (cont’d)

Algorithm

1. Compute \(\{x_i(t + 1), z_i(t + 1), \zeta_i(t + 1)\} \) at each node
2. Broadcast \(\{\zeta_i(t + 1)\} \) to your neighbors
3. Compute \(\{c_i(t + 1)\} \) at each node
4. Broadcast \(\{c_i(t + 1)\} \) to your neighbors
Distributed ADMM (cont’d)

Algorithm

- Compute \(\{ x_i(t + 1), z_i(t + 1), \zeta_i(t + 1) \} \)
- Broadcast \(\{ \zeta_i(t + 1) \} \) to your neighbors
- Compute \(\{ c_i(t + 1) \} \) at each node
- Broadcast \(\{ c_i(t + 1) \} \) to your neighbors
- Compute \(\{ \lambda_i(t + 1), \mu_{j,i}(t + 1) \} \) at each node
Distributed ADMM with 1 bit

- DADMM requires the exchange of analog values

\[
\zeta_i(t+1) = \zeta_i(t) - \epsilon \text{sign}(g_{\zeta t_i(t)}), \\
c_i(t+1) = c_i(t) - \epsilon \text{sign}(g_{c t_i(t)}),
\]

\{g_{\zeta t_i(t)}, g_{c t_i(t)}\} stand for the subgradients with respect to \{c_i\} and \{\zeta_i\} at time \(t\).

Only requires the exchange of 1-bit per variable!!!
Distributed ADMM with 1 bit

- DADMM requires the exchange of analog values
- We propose to modify the updates of \(\{\zeta_i(t+1)\} \) and \(\{c_i(t+1)\} \) as follows:

\[
\begin{align*}
\zeta_i(t+1) &= \zeta_i(t) - \epsilon \cdot \text{sign} \left(g^{\zeta_i}_t \right) \\
c_i(t+1) &= c_i(t) - \epsilon \cdot \text{sign} \left(g^{c_i}_t \right)
\end{align*}
\]
Distributed ADMM with 1 bit

- DADMM requires the exchange of analog values
- We propose to modify the updates of \(\{\zeta_i(t + 1)\} \) and \(\{c_i(t + 1)\} \) as follows:

\[
\zeta_i(t + 1) = \zeta_i(t) - \epsilon \text{ sign} \left(g_{\zeta_i}^t \right)
\]

\[
c_i(t + 1) = c_i(t) - \epsilon \text{ sign} \left(g_{c_i}^t \right)
\]

- \(\{g_{\zeta_i}^t, g_{c_i}^t\} \) stand for the subgradients with respect to \(\{c_i\} \) and \(\{\zeta_i\} \) at time \(t \)
Distributed ADMM with 1 bit

- DADMM requires the exchange of analog values
- We propose to modify the updates of \(\{ \zeta_i(t + 1) \} \) and \(\{ c_i(t + 1) \} \) as follows:

\[
\zeta_i(t + 1) = \zeta_i(t) - \epsilon \text{ sign} \left(g_{\zeta_i}^t \right)
\]

\[
c_i(t + 1) = c_i(t) - \epsilon \text{ sign} \left(g_{c_i}^t \right)
\]

- \(\{ g_{\zeta_i}^t, g_{c_i}^t \} \) stand for the subgradients with respect to \(\{ c_i \} \) and \(\{ \zeta_i \} \) at time \(t \)
- Only requires the exchange of 1-bit per variable!!!!
Numerical results

![Graph showing MSE over Iteration number]

- **MSE** (Mean Squared Error) is plotted on the y-axis.
- **Iteration number** is plotted on the x-axis.
- The graph shows the MSE decreasing as the iteration number increases.
- The MSE starts at a high value and decreases sharply initially, then stabilizes near the end.
Numerical results

- Centralized
- DADMM

Iteration number vs MSE
Numerical results

![Graph showing MSE vs Iteration number for different methods: Centralized, DADMM, and DADMM-1bit (\(\epsilon = 0.01\)).]
Numerical results

![Graph showing MSE vs. Iteration number for different methods: Centralized, DADMM, DADMM-1bit (ε = 0.01), and DADMM-1bit (ε = 0.05).]
Numerical results

![Graph showing MSE vs. iteration number for different algorithms.](image)

- **Centralized**
- **DADMM**
- **DADMM-1bit ($\epsilon = 0.01$)**
- **DADMM-1bit ($\epsilon = 0.05$)**
- **DADMM-1bit ($\epsilon = 0.1$)**
Numerical results (cont’d)

![Graph showing MSE versus Iteration number]

- Comm. signal (Centralized)
- Indiv. signal (Centralized)
Numerical results (cont’d)

![Graph showing MSE vs Iteration number for different communication and individual signal cases.

- Comm. signal (Centralized)
- Indiv. signal (Centralized)
- Comm. signal (DADMM)
- Indiv. signal (DADMM)]
Numerical results (cont’d)

![Graph showing MSE vs. iteration number for different communication and individual signals using Centralized, DADMM, and DADMM-1bit methods.](image)

- **Comm. signal (Centralized)**
- **Indiv. signal (Centralized)**
- **Comm. signal (DADMM)**
- **Indiv. signal (DADMM)**
- **Comm. signal. (DADMM-1bit)**
- **Indiv. signal (DADMM-1bit)**

EUCNC 2015, June 29- July 2, Paris (France)
Conclusions

▶ We have addressed the problem of reconstruction of jointly sparse signals with innovations
▶ 1 Centralized ADMM solution and 2 distributed ADMM solution for in-network reconstruction have been proposed
▶ Distributed versions are shown to converge to the centralized ADMM
▶ The 1 bit version is shown to reduce the number of transmitted bits significantly
Thank you!
Questions?