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Unravelling the Impact of Temporal and
Geographical Locality in Content Caching Systems

Stefano Traverso, Mohamed Ahmed, Michele Garetto,
Paolo Giaccone, Emilio Leonardi, Saverio Niccolini

Abstract—To assess the performance of caching systems, the
definition of a proper process describing the content requests
generated by users is required. Starting from the analysis of
traces of YouTube video requests collected inside operational
networks, we identify the characteristics of real traffic that need
to be represented and those that instead can be safely neglected.
Based on our observations, we introduce a simple, parsimonious
traffic model, named Shot Noise Model (SNM), that allows us to
capture temporal and geographical locality of content popularity.
The SNM is sufficiently simple to be effectively employed in both
analytical and scalable simulative studies of caching systems. We
demonstrate this by analytically characterizing the performance
of the LRU caching policy under the SNM, for both a single
cache and a network of caches. With respect to the standard
Independent Reference Model (IRM), some paradigmatic shifts,
concerning the impact of various traffic characteristics on cache
performance, clearly emerge from our results.

I. INTRODUCTION

It is no surprise to find that the design and analysis of
content caching systems continue to receive attention from
both industry and academia. The big players in the market
(Google, Akamai, Limelight, Level3, etc.), today preside over
a multi-billion dollar business built on content delivery net-
works (CDNs), which employ massively distributed networks
of caches to carry over half of Internet traffic, according to
recent measurements [1]. To illustrate this reality, in 2010
Akamai listed its CDN to include over 60,000 servers in 1000
networks, spread over 70 countries [2]. The impressive growth
of CDNs is essentially driven by the explosion of multimedia
traffic. It is expected that video traffic alone will be around
70 percent of all consumer Internet traffic in 2017, and almost
two-thirds of it will be delivered by CDNs [1].

The fundamental role played by caching systems goes
beyond existing CDNs. Indeed, a radical change of com-
munication paradigm may take place in the future Internet,
from the traditional host-to-host communication model created
in the 1970s, to a new host-to-content kind of interaction,
in which the main networking functionalities are directly
driven by object identifiers, rather than host addresses. In
particular, Content-Centric-Networking proposals (CCN) [3]
aim at redesigning the entire global network architecture with
named data as the central element of the communication. This
translates in practice into the need to redesign core routers by
equipping them with fast, small caches, capable of processing
requests at line speed. Nonetheless, to date, the design and
evaluation of large-scale, interconnected systems of caches is
still poorly understood. In the first place, it is unclear how
to properly describe the traffic (in terms of the sequence
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of contents’ requests) generated by the users, that is then
processed by cache networks. In this regard, just resorting to
trace-driven simulations to assess the performance of a cache
architecture clearly has severe limitations, as we will elaborate
in the next section. It is therefore highly desirable to have,
first of all, a proper model for the arrival process of contents’
requests at the caches. The main challenge here is to find
a good compromise between: i) the fidelity of the model in
describing the behavior of real traffic; and ii) its simplicity,
which permits the development of analytical tools to predict
the system performance. To fully address this problem, one
needs to identify the traffic features playing the most crucial
role for the resulting cache performance, and capture them into
in a flexible, parsimonious, and analytically tractable manner.
To the best of our knowledge, this problem has not yet received
a satisfactory answer.

A. The necessity of a traffic model
Although caching systems continue to attract interest in the

networking community, there is still no common agreement
on the traffic assumptions under which system design and
performance evaluation should be carried out, especially in
the context of pervasive CDN and CCN architectures. To
obtain the best fidelity in evaluating a given system, one could
simply follow the approach of performing trace-driven analysis
[4], [5]. This approach, however, has several shortcomings.
First, it does not enable us to identify the important factors
that influence system performance and understand their role.
Second, it does not permit us to explore “what if” scenarios,
such as: how will my system perform if I increase/modify the
catalogue of available contents? or if the users’ population
becomes much larger? Third, too often, we are constrained by
the size and/or the availability of data sets, their diversity as
well as legal and privacy concerns, which impacts the fidelity
of the analysis.

To overcome these limitations, we can instead analyze
caching systems using synthetic traces produced by a traffic
model. The simplest, and still most widely adopted traffic
model in the cache literature [6], [7], [8], [9] is the so-
called Independent Reference Model (IRM) [10], according
to which the sequence of content requests arriving at a cache
is characterized by the following fundamental assumptions: i)
there exists a fixed catalogue of N distinct contents, which
does not change over time; ii) the probability a request is
for a specific content is constant (i.e. the content popularity
does not vary) and independent of all past requests. The IRM
is commonly used in combination with a Zipf-like law of
content popularity. In its simplest form, Zipf’s law states that
the probability to request the nth most popular content is
proportional to 1/nα, where the exponent α depends on the
considered system (especially on the type of contents) [8], and
plays a crucial role on the resulting cache performance.
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By construction, the IRM completely ignores all tempo-
ral correlations in the sequence of requests. In particular,
it does not take into account a key feature of real traffic,
usually referred to as temporal locality, which occurs when
requests for a given content densify over short periods of
time (with respect to the trace duration). The important role
played by temporal locality, especially its beneficial effect on
cache performance, is well known in the context of computer
memory architecture [10] and web traffic [11]. Indeed, several
extensions of IRM have been already proposed to incorporate
temporal correlations in the request process [10], [11], [12],
[13], i.e., the fact that, if a content is requested at a given time
instant, then it is more likely that the same content will be
requested again in the near future. Existing models, however,
have been primarily thought for web traffic, and they share the
following two assumptions: i) the content catalogue is fixed; ii)
the request process for each content is stationary (i.e., either a
renewal process or a semi-Markov-modulated Poisson process
or a self-similar process). As we will see, these assumptions
are not appropriate to capture the kind of temporal locality
usually encountered in Video-on-Demand traffic, because they
do not easily capture intrinsically non-stationary macroscopic
effects related to content popularity dynamics. Moreover some
of the previously proposed models are too complex to allow
an analytical study of caching systems.

At the other extreme, some recent studies have proposed
rather sophisticated models describing the evolution of con-
tents popularity at the macroscopic level. These show that
the aggregate download process of popular on-line contents
is highly non-stationary and exhibits a complex correlation
structure resulting from social cascades and other viral phe-
nomena [14], [15]. Fairly complex stochastic models, i.e.
based on Hawkes processes [14] or autoregressive (ARIMA)
models [15], have been recently proposed to accurately de-
scribe the large-scale content popularity evolution. However, it
is unclear how these models can be used to generate a synthetic
sequence of content requests arriving at a specific cache, which
aggregates traffic from a limited number of users.

Furthermore, with respect to distributed systems of caches,
the geographical locality of user requests has been little
investigated in the literature and largely ignored by existing
analytical models. Large-scale, pervasive systems of caches
typically serve heterogeneous communities of users having
different interests, and therefore the probability of a request for
a given content can vary significantly from region to region.
The studies that have appeared [16], [17], [18], show that
geographical locality is (as expected) hardly observable within
culturally homogeneous regions, and becomes evident in large
systems serving different linguistic/cultural communities. Our
results (see Sec. II-B) show that geographical locality can be
observed to some extent even in limited geographical regions
because users associated to different caches vary in their
social/ethnic/linguistic composition.

To the best of our knowledge, no traffic models have been
proposed so far to incorporate various degrees of geographical
locality in the content request processes arriving at different
caches. Furthermore, the impact of geographical locality on
cache performance, especially in distributed systems of inter-
connected caches, is still poorly understood [19], [20].

B. Paper contributions

Because of its dominant and growing role in the Internet,
in this paper we focus on video traffic, specifically, Video-
on-Demand (VoD). Nonetheless, our methodology and results
have broader applicability, and may also be of interest to other
kinds of contents. We are especially interested in pervasive
CDN or CCN architectures, comprising several caches (which
can be small relative to the content catalogue size) serving
localized communities of users. However, in this work, we do
not consider the case in which users are spread over many
different time zones.

Our first main contribution is a new traffic model describing
the contents’ request processes originated by the users, to be
used in input to the edge caches of the system. In pursuing
this goal, we aimed at filling the existing gap between simple,
stationary traffic generators developed for traditional caching
systems (computer architecture, web traffic) [10], [11] and
the complex stochastic models describing macroscopic world-
wide content popularity dynamics [14], [15]. Our proposed
traffic model meets the following requirements: (1) be gen-
eral and flexible; (2) provide a native explanation for the
temporal and geographical locality in the request process; (3)
explicitly represent content popularity dynamics; (4) capture
the phenomena having major impact on cache performance,
while neglecting those with no or limited impact; (5) be as
simple as possible while maintaining accuracy; and (6) permit
developing analytical models of popular caching policies.

Our second main contribution is an accurate analysis of the
LRU (Least Recently Used) caching policy under the newly
proposed traffic model, that provides fundamental insights on
the impact of several traffic characteristics on cache perfor-
mance, which have not been documented before.

In more detail, we provide the following contributions, listed
in the sequence in which they are derived in the paper: (C1)
We analyze the temporal and geographical locality of real
Video-on-Demand traffic collected in six different locations
(Sec. II). (C2) We show that the standard IRM approach to
modeling users’ contents requests leads to significant errors
when estimating the cache size needed to achieve a given
hit ratio, especially when cache sizes are small relative to
the catalogue size (Sec. II-A). (C3) We propose and validate
(using our traces) the Shot Noise Model (SNM), a more
accurate and flexible model alternative to the IRM (Sec. III).
(C4) We show that, in contrast to common expectation, daily
variations in the aggregate request rate, as well as the detailed
shape of the popularity profile of individual contents, have
negligible impact on cache performance, advocating the idea
of a parsimonious traffic model (in terms of the number of
parameters) (Sec. III-B). (C5) We explain how the SNM
can be extended to the case of a cache network, validating
some simplifying assumptions that we propose to incorporate
geographical locality in the model (Sec. III-C and III-D).
(C6) We analytically characterize the performance of the
LRU caching policy under the SNM, providing enlightening
closed-form expressions for the large and small cache regimes
(Sec. IV). (C7) Using numerical and simulative analysis, we
explore the effect of a wider range of model parameterizations
than the one available from the traces (Sec. V), gaining deeper
insights into the impact of several traffic parameters, which in
some cases depart from the general understanding gained using
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Fig. 1: Evolution of the vol-
ume of requests over three
weeks for Trace 3.
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Fig. 2: Cumulative number of
requests over time for a subset
of videos in Trace 2.

the IRM. (Sec. V-A). (C8) At last, we show how our traffic
model and analysis can be effectively used for system design
and optimization, investigating some additional examples of
traffic mixes (Sec. V-B and V-C).

II. A DIVE INTO REAL TRAFFIC

We employed Tstat1 an open-source traffic monitoring tool
to analyze TCP/IP packets sent/received by actual end-users,
captured at monitored vantage points. Probes were installed in
five PoPs located at different cities of two different countries,
Italy and Poland. Table I provides details about our vantage
points inside the network. Probes Home 1, Home 2, Home 3
and Home 4 are located in three cities in Italy, and monitor
the traffic of about 65,000 residential customers of a large ISP
offering Internet access by ADSL and FTTH technologies.
Similarly, Home 5, located in Poland, monitors the network
activity of approximately 5,000 residential customers. Finally,
probe Campus 1 was deployed within the network backbone of
Politecnico di Torino in Italy, which provides Internet access
to about 15,000 students mainly through Wi-Fi access.

Table II details the ten traces employed in our study.
Measurements were performed on both incoming and out-
going traffic over two different periods (March-May 2012
and February-April 2013) and together cover approximately
6 months. In total, we observed the activity of about 85,000
end-users accessing the Internet, and identified the TCP flows
corresponding to YouTube video requests and downloads. In
total, we recorded more than 20 million transactions.

A. Temporal locality
From analyzing the traces, we observe two main factors re-

sponsible for the temporal locality in the sequence of requests
made by users. First, the aggregate arrival rate of requests
follows the expected diurnal variation, as shown in Fig. 1.

1http://www.tstat.polito.it

Probe Type IPs Probe Type IPs
Home 1 ADSL 16172 Home 4 ADSL 2543
Home 2 ADSL/FTTH 17242 Home 5 ADSL 5080
Home 3 ADSL/FTTH 31124 Campus 1 LAN/Wi-Fi 15000

TABLE I: Probe characteristics.
Probe Trace Period Length Requests Videos

Home 1
Trace 1 20/03/12-25/04/12 35 days 1.7M 0.93M
Trace 2 30/04/12-28/05/12 27 days 1.8M 0.95M
Trace 6 18/03/13-24/04/13 36 days 1.6M 0.86M

Home 2 Trace 3 20/03/12-30/04/12 40 days 2.4M 1.24M
Trace 7 12/03/13-24/04/13 42 days 2.4M 1.22M

Home 3 Trace 4 20/03/12-25/04/12 35 days 3.8M 1.76M
Trace 10 18/03/13-24/04/13 36 days 3.7M 1.69M

Home 4 Trace 5 15/02/13-23/04/13 67 days 0.4M 0.25M
Home 5 Trace 8 28/02/13-21/03/13 21 days 0.6M 0.28M

Campus 1 Trace 9 7/03/12-13/05/12 67 days 0.55M 0.35M

TABLE II: Measurement traces.
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Fig. 3: The cache size required to achieve a desired hit prob-
ability, when an LRU cache is fed by the requests contained
in Trace 1, subject to different degrees of trace reshuffling.

Second, the arrival rate of requests for a given content can
be highly non-stationary, being often concentrated in intervals
much shorter than the total trace duration. Furthermore, as
illustrated in Fig. 2, contents display a wide range of popularity
evolution patterns [21]. Although these facts are well known
and have been already examined before, their impact on cache
performance must be carefully evaluated.

With regard to diurnal variations, we observe that, con-
trary to what is sometimes believed [21], accounting for this
variation has no impact on the main performance metrics
for caches such as the hit probability (see Sec. IV-A5). To
intuitively understand why this is the case, consider that the
hit probability of almost all proposed caching policies depends
only on the sequence of content identifiers arriving at the
cache, and not on the time-stamps associated with the requests.
Therefore, if we arbitrarily squeeze or stretch (over time) the
aggregated sequence of content requests arriving at a cache,
we obtain the same hit probability (this holds for all caching
policies which do not explicitly use the information about the
request arrival time). For this reason, in our synthetic traffic
model we will ignore the diurnal rate variations.

On the other hand, the non-stationarity of the popularity of
individual contents has a significant impact on the performance
of a cache. Accounting for this property is a difficult task due
to the complexity and heterogeneity of content popularity dy-
namics. For example, the popularity of some videos vanishes
after only a few days, while others continue to attract requests
for significantly long periods of time (months or even years).
Besides the life-span, clearly also the number of requests
attracted by the videos can be very diverse.

To better understand the impact on cache performance of
the temporal locality present in our traces, we carried out the
following experiment: we fed an LRU cache (initially empty,
and transient effects have been filtered out in the evaluation)
with the sequence of requests contained in Trace 1 (similar
results were obtained using the other traces) and derived the
cache size necessary to achieve a given cache hit probability.
Results are reported in Fig. 3 by the curve labeled “Original
trace”. Then, we partitioned Trace 1 into K slices, each
containing an equal number of requests, and we randomly
permuted the requests within each slice. Such artificially
shuffled traces (one for each K) are then fed again into an
LRU cache, deriving again the required cache size to achieve
a given hit probability. Different values of K correspond to
washing out the temporal locality at a time scale equal to
the corresponding slice duration (for clarity, the approximate
slice duration is also reported in the legend of Fig. 3, for
each considered value of K). Note that the original trace can

http://www.tstat.polito.it
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Fig. 4: Scatter-plot of the number of content requests in trace pairs. Each point corresponds to a specific content.

be considered as a limit case of very large K (equal to the
number of requests in the trace), whereas K = 1 corresponds
to the case in which we randomly permute the entire trace,
destroying all temporal correlations within the whole trace
duration (about one month).

As expected, we find that temporal locality plays a sig-
nificant role on cache performance – the cache size needed
to achieve a desired hit probability increases considerably
between the original trace and the extreme case with K = 1.
Now, suppose that we were to completely ignore the effects
of temporal locality, by adopting a naive IRM approach in
which we just compute from the trace the empirical popularity
distribution for the contents requested in the trace, and use
such empirical distribution as the popularity law of the IRM.
The hit probability achieved for a given cache size, according
to the above IRM model, would be essentially equivalent to the
one derived in our experiment in the case K = 1. Indeed, the
complete trace shuffling leads to an i.i.d. sequence of requests
following the long-term empirical probability distribution of
the trace, just as in the considered IRM model. In conclusion,
the adoption of a naive IRM approach for VoD contents leads
to considerably erroneous (pessimistic) estimates of cache
performance, especially when caches are small.

We also observe that, as the slice duration approaches the
order of a few hours, the required cache size becomes very
close to the one resulting from the original trace. This means
that: i) the evolution of content popularity over timescales
of few days/weeks is important for the resulting cache per-
formance; ii) we can, instead, ignore short timescale effects
(i.e., correlations taking place over timescales of few hours
or less). The practical consequence of this is that we do not
need to take into account complex fine-grained correlations
in the arrival process of requests (in particular at the level
of contents’ inter-request times). Actually, given that short
time-scale correlations (up to a few hours) are not important
to predict cache performance for VoD contents, we can well
adopt (locally) a Poisson approximation for the arrival process
of requests, which enables us to build simple analytical models
of cache behavior, such as those developed in Sec. IV.

We remark that our findings are in sharp contrast with what
has been observed in the case of web traffic, whereby the
impact of short time-scale correlations greatly outweighs that
due to long-term correlations [22]. This observation signifies
the different nature of VoD with respect to web browsing, mo-
tivating the development of new models specifically tailored
to this kind of traffic.

We emphasize that the IRM approach could, in principle,

still be adopted to effectively predict the hit probability in
the scenario considered in Fig. 3. This would require us to
estimate from the trace a proper content catalogue size (which
is a non-trivial task in its own) and to properly set the contents
popularity law of IRM so as to match the short-term (say, over
a few hours) distribution of content popularity observed in the
trace. Estimating a short-term popularity distribution from a
trace, however, is a challenging task (as recognized in [9]), be-
ing any measurement collected over a short period necessarily
affected by a large amount of noise. Moreover, the proper
timescale at which the IRM could be effectively employed
is hard to predict, as it depends on many parameters (cache
size, caching policy, arrival rate of requests, etc.), forcing us
to compute a different short-term popularity distribution for
each considered scenario. On the contrary, the parameters of
our traffic model can be derived, once for all, from long-term
measurements, and our analysis of cache performance does not
require to explicitly compute any short-term popularity law.

B. Geographical locality

Geographical diversity in the contents’ popularity is ex-
pected to play a significant role in a large-scale systems
of interconnected caches, in which edge caches receive the
requests of subsets of users geographically localized in the
same region, and thus likely to share similar interests. Thanks
to the significant time-overlap between some of the traces
belonging to our data set (see Table II), we were able to
assess, to some extent, the geographical locality of VoD traffic.
In particular, we counted the number of requests received by
each video, during the largest common time interval between
two given traces of our data set. Fig.s 4a-4c show the resulting
number of requests in one trace vs. the one in the other trace,
for three significant cases. Note that a perfect linear relation
here would imply exactly the same relative popularity of
contents in the two different traces, corresponding to a Pearson
correlation coefficient equal to 1. In Fig. 4a we consider two
traces collected at probes belonging to the same residential ISP
in one country (Italy), i.e., serving highly homogeneous users
in terms of language and culture. As expected, contents which
are very popular in one trace are also very popular in the other
trace, as confirmed by the Pearson coefficient very close to 1.
In contrast, Fig. 4b considers two traces collected at probes
located in different countries (Italy and Poland), whose native
languages are different. In this case, we observed a very low
correlation (Pearson coefficient close to 0), suggesting that
the cultural background of users plays a crucial role in the
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diversity of the contents request process2.
Although country borders may represent a good baseline to

identify clusters of homogeneous users, we observed that even
within the same country there can be significant heterogeneity
in terms of users’ interests. In Fig. 4c we compare a trace
collected in a residential network (PoP Home 1) with the
trace from a university campus network (Campus 1), on a
time-overlap of about one month. Even though both traces are
collected in the same city, a significantly higher fraction of
points lie far from the diagonal, with respect to the scenario
in Fig. 4a, especially in the case of popular videos. This is
confirmed by the correlation coefficient, here equal of 0.638.

We conclude that accounting for geographical locality in
a traffic model can be a difficult task due to cultural/social
effects. A deep assessment of the amount of geographical
diversity in the network, by means of large measurement
campaigns, would be required to build accurate synthetic
traffic models. Unfortunately, due to the limited available data
set, we were able to investigate the impact of geographical
locality on cache performance only based on synthetic traffic
traces, as discussed later in Sec. V-C.

III. SHOT NOISE TRAFFIC MODEL

Guided by the insights gained from our traces (Sec. II),
we propose a new traffic model, aimed at striking a good
compromise between simplicity, flexibility and accuracy. We
first consider the single cache case and then move on to the
case of a network of caches.

A. Basic model for a single cache
The rationale of our traffic model is to capture the physical

origin of the temporal locality observed in the traces. Our
solution is to represent the overall request process as the
superposition of many independent processes, each referring
to an individual content. As such, the arrival process of a
given content m is specified by three physical parameters
(τm, Vm, λm(t)): τm represents the time instant at which the
content enters the system (i.e., it becomes available to the
users); Vm denotes the average number of requests generated
by the content; λm(t) is the “popularity profile”, describing
how the request rate for content m evolves over time. In
general, function λm(t) satisfies the following conditions:
(positiveness) λm(t) ≥ 0, ∀t; (causality) λm(t) = 0, ∀t < 0;
(normalization)

∫∞
0
λm(t) dt = 1. We define the average life-

span of content m, Lm, as follows:

Lm =
1∫∞

0
λ2
m(t)dt

(1)

It will become clear later, while analyzing the performance
of LRU in Sec. IV, why it is convenient to define the life-
span of a content using the formula above. For now, to get
an initial understanding of the definition, consider a content
with a uniform popularity profile λm(t) = 1/δ for t ∈ [0, δ].
By computing (1), we obtain Lm = δ, which is the intuitive
value of life-span of such content.

Given the above parameters, our model assumes that the
request process for content m is described by a time-
inhomogeneous Poisson process whose instantaneous rate at
time t is given by Vm · λm(t− τm).

2We verified that the few YouTube videos attracting a large volume of
requests in both traces considered in Fig. 4b are related to famous international
hits.
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Fig. 5: Example of requests (denoted by arrows) generated by
two contents with different catalogue insertion time (τ1, τ2),
average number of requests (V1, V2) and profiles (λ1(t),λ2(t)).

For the sake of simplicity, we assume that new contents
become available in the system according to a homogeneous
Poisson process of rate γ, i.e., time instants {τm}m form
a standard Poisson process. We refer to this model as Shot
Noise Model (SNM), since the overall process of requests
arrival is known as a Poisson shot-noise process [23]. Fig. 5
illustrates an example of the request pattern generated by the
superposition of two “shots” corresponding to two contents
having quite different parameters. We emphasize that the
above Poisson assumptions, on the (instantaneous) generation
process of requests for each content, and on the arrival process
of new contents, are essentially introduced for the sake of
analytical tractability. However, they are very well justified by
the experience gained from our traces, which show that it is
not really important to capture complex arrival dynamics at
short time-scales (see discussion about the results in Fig. 3).

For a given content, the SNM requires us to specify its entire
popularity profile in the form of the function λm(t), which,
given the difficulty in estimating popularity profiles from a
trace, could be considered as a limitation. However, we have
found that it is not necessary to precisely identify the shape of
λm(t). In fact, a simple first-order approximation, according
to which we just specify the average content life-span Lm, is
enough to obtain accurate predictions of cache performance.
In other words, we can arbitrarily choose any reasonable
function λm(t) with an assigned life-span Lm, and obtain
almost the same results in terms of cache performance (see
the later discussion on Fig. 6). Finally, content heterogeneity is
taken into account by associating to every content, its life-span
Lm, jointly with the (typically correlated) average number of
requests Vm. This means that, upon arrival of each new content
m, we randomly choose (independently for each content) the
pair of parameters (Vm, Lm) from a given assigned joint
distribution.

B. Validation of basic SNM

To show how our traffic model can accurately capture the
temporal locality observed in real data, and its impact on
cache performance, we introduce a simple procedure to fit
its parameters from a trace.

For each given content in the trace first we compute the
total number of observed requests V̂m, and then we estimate
the content life-span L̂m. The interested reader can found
the details about how to estimate L̂m from the traces in
the preliminary version of this paper [24]. Contents are then
partitioned into 6 classes (0, . . . , 5), on the basis of previous
values V̂m and L̂m. Class 0 comprises all the contents with
small number of requests (V̂m < 10), for which we cannot
derive a reliable estimate of their life-span. Contents in classes
1 to 5 contain contents with V̂m ≥ 10 which, as reported in
Table III, are partitioned according to L̂m (measured in days).
For each class, Table III reports, for four different traces,
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Class Classification rule Trace %Reqs %Videos E[L̂m] E[V̂m]

Class 0 V̂m < 10

Trace 1 74.60 98.588 - 1.41
Trace 2 72.64 98.401 - 1.42
Trace 3 72.53 98.210 - 1.44
Trace 4 67.30 97.778 - 1.49

Class 1 V̂m ≥ 10
Trace 1 2.34 0.044 1.14 86.4
Trace 2 2.71 0.083 1.09 76.2

L̂m ≤ 2
Trace 3 2.60 0.067 1.04 76.0
Trace 4 2.81 0.077 1.06 74.0

Class 2 V̂m ≥ 10
Trace 1 1.72 0.069 3.36 41.9
Trace 2 3.43 0.125 3.34 50.7

2 < L̂m ≤ 5
Trace 3 1.77 0.082 3.32 43.3
Trace 4 2.01 0.093 3.41 48.0

Class 3 V̂m ≥ 10
Trace 1 1.49 0.041 6.40 59.5
Trace 2 1.84 0.070 6.31 44.9

5 < L̂m ≤ 8
Trace 3 1.66 0.052 6.42 63.3
Trace 4 1.64 0.062 6.45 60.3

Class 4 V̂m ≥ 10
Trace 1 1.39 0.062 10.53 36.9
Trace 2 2.96 0.128 10.86 39.6

8 < L̂m ≤ 13
Trace 3 1.33 0.066 10.62 39.5
Trace 4 1.75 0.103 10.65 37.8

Class 5 V̂m ≥ 10
Trace 1 18.46 1.196 24.61 25.7
Trace 2 16.41 1.193 19.29 25.3

L̂m > 13
Trace 3 20.11 1.523 28.19 25.8
Trace 4 24.49 1.887 24.59 28.1

TABLE III: Model parameters for each content class. L̂m is
evaluated in days. The numbers of requests and videos for
classes 0–5 have been normalized separately for each trace.

Profile λ(t) L
Uniform 1/δ for t ∈ [0, δ] δ

Exponential (1/δ)e−t/δ for t ≥ 0 2δ

Power law (ζ > 1)
ζ − 1

δ

( t
δ

+ 1

)−ζ
for t ≥ 0

δ(2ζ − 1)

(ζ − 1)2

TABLE IV: Popularity profile and corresponding life-span L.

the percentage of total requests attracted by the class, the
percentage of videos belonging to it, and the average values
E[L̂m] and E[V̂m]. for the videos in the class.

From Table III, we observe that: (i) The values related to
each class are quite similar (with differences of at most 20%)
across the considered traces. This is significant, because it
suggests that our broad classification captures some invariant
properties of the considered VoD traffic. (ii) Contents in
Class 1 (having L̂m < 2 days) represent roughly 0.07% of
the total number of contents (4% of contents in Classes 1-5),
but account for approximately 2.5% of all requests (10% of
requests originated by contents in Classes 1-5). These contents
exhibit the larger degree of temporal locality, and we will see
that their impact on cache performance is crucial, despite the
fact that they represent a rather small fraction of the traffic.
(iii) Contents in Class 5 have a life-span comparable with the
trace length, therefore their measured value L̂m is expected
to be strongly affected (i.e., underestimated) by border effects
due to the finiteness of the trace. We chose not to attempt
to characterize the temporal locality of contents belonging
to either Class 0 (too few requests) and Class 5 (unreliable
estimate of life-span), by using the SNM. We therefore treat
these contents as if their popularity was stationary (like in the
IRM), and generate their requests uniformly in the considered
time horizon. We emphasize that, with this choice, we miss
the opportunity to capture the temporal locality of a large
fraction of contents. On the other hand, by so doing we obtain
a conservative prediction of cache performance.

As such, only the requests for contents falling in Classes 1
to 4 are generated according to the SNM model, assuming a
common “shape” λ(t) for the popularity profile, chosen from
the profiles listed in Table IV. For each content class, the shape
parameter δ is chosen to match the average life-span E[L̂m].
Moreover, for each class modeled by the SNM, the distribu-
tion of request volumes was matched to the corresponding
empirical distribution observed in the trace.

We generated a synthetic request trace using the parameters
estimated as above, and fed it to a cache implementing the
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Fig. 6: Cache size vs hit probability under LRU, for Trace 4.

LRU policy. Fig. 6 reports the cache size required to achieve
a desired hit probability, using Trace 4 (similar results were
obtained with the other traces). For comparison, we report
also the results obtained with the original trace and those
obtained by its completely shuffled version representing the
“naive IRM” approach. We observe that the results obtained by
applying the fitted SNM (using either uniform, exponential or
power-law shape with ζ = 3) are very close to those obtained
with the original unmodified trace, and that the shape chosen
for the popularity profile has little impact on the results.

In summary, Fig. 6 shows that our SNM provides an
accurate prediction of cache performance, despite the heavy
simplifications adopted in the parameters’ identification. We
expect that even more accurate predictions could be achieved
by improving the fitting procedure, or by using much longer
traces (if available).

C. Extension of SNM to cache networks

We now extend the basic SNM introduced in Sec. III-A to
handle the case of multiple interconnected caches, in which
edge caches receive the requests generated by subsets of users
possibly having quite different interests from one ingress point
to another (geographical locality). The extension of the basic
model can be, in principle, carried out in its most general
form by associating to every content m and ingress point
i ∈ I , a tuple (τm,i, Vm,i, λm,i), so that, at ingress point i,
requests for content m arrive according to an inhomogeneous
Poisson process, whose instantaneous rate at time t is given by
Vm,i ·λm,i(t−τm,i). While this approach is fairly general, it is
not very practical, because the total number of parameters to
be specified may become very large. An alternative is to make
the following simplifications. First, we assume that the instants
at which content m starts to be available in the system at the
various ingress points (τm,i) are equal, i.e., τm,i = τm. This
is well justified since in most systems contents are enabled to
be globally available to all users at the same time. Second, the
popularity of a given content m is assumed to follow the same
profile λ(t) at every ingress point. Together with the previous
consideration regarding the negligible impact of the particular
shape of the popularity profile, we represent each content
m by: i) its (global) starting point of availability τm; ii) its
(global) life-span Lm; iii) a set {Vm,i}i of (local) parameters
denoting the volumes of requests attracted by content m at
different ingress points.

Our simplifications are realistic for cache networks covering
limited geographical areas. We remark that, when considering
content distribution systems spanning large areas, including
very different time zones (i.e. at world-wide scale), temporal
profiles (especially for contents having small life-span) should
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Fig. 7: Time overlap for different pairs of traces.

not be considered synchronized, but properly modified to take
jointly into account geographical locality and diurnal patterns.

Finally, to specify the volumes of requests generated by
contents at the various ingress points (Vm,i), we adopt the
following approach: for each content m, we assign a global
volume Vm, denoting the total number of requests generated in
the whole system. Then, we specify Vm,i as Vm,i = Vm ·pi,m,
where pi,m represents the fraction of requests for content
m arriving at ingress point i. By construction pi,m ≥ 0
and

∑
i pi,m = 1. This approach allows a large degree of

flexibility in describing the geographical locality of contents.
For example, we can obtain the case in which geographical
locality is negligible, by setting pi,m = pi, for every m;
here pi represents the “relative mass” of requests arriving at
ingress point i (i.e., the fraction of all requests generated by
the corresponding set of users). At the other extreme, we can
represent the case of complete geographical locality by setting
pi,m ∈ {0, 1} (i.e., setting each content to be requested at only
one particular ingress point).

D. Validation of SNM for cache networks
To assess the validity of our simplifying assumptions, ac-

cording to which the popularity evolution of each content is
“synchronized” across different ingress points (i.e., τm,i = τm
and λm,i = λm, ∀i), we evaluated the degree of temporal
overlap between the sequence of requests received by a content
in different traces of our data set. In particular, given a pair
of traces, we computed the following metric for each content
m which appears in both traces:

time-overlap-fraction(m) =
|intersection of life-spans|
|union of life-spans|

Note that, by definition, the above metric takes values in
[0, 1], where 0 represents no overlap and 1 is produced by
identical and perfectly overlapped life-spans. For example, the
case of two equal life-spans, shifted in time by 20%, leads to
time-overlap-fraction = 0.8/1.2 = 0.67.

Fig.s 7a and 7b, respectively report the CDFs of the time-
overlap-fraction for Trace 6 and Trace 7 (collected from
residential networks in the same country) and for Trace 3
and Trace 8 (collected from residential networks in different
countries). To get additional insight, we obtained a separate
CDF for the contents which receive at least a certain minimum
number of requests in both traces (this is the parameter “Min
Views” reported in the figures, ranging from 5 to 60). We
observe that the degree of synchronization increases with the
content popularity. This can be in part due to the fact that the
life-span interval of a content resulting from a trace is affected
randomly by border effects, which smooth out as the request
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Fig. 8: Overall cache size (60% in the root, 20% in each leaf)
vs hit probability, in a cache network fed either by real traces
or by synchronized synthetic traffic.

volume increases. Indeed, even when the popularity evolution
of a content is perfectly synchronized across different ingress
points, i.e. τm,i = τm and λm,i = λm, the overlap observed in
the actual sequence of requests can be small for contents with
few requests. Nevertheless, we observe quite a strong degree
of synchronizing in both Fig.s 7a and 7b. For example, only
about 25% of the contents receiving more than just 10 requests
show a time-overlap-fraction smaller than 0.67.

To show how the life-span of a content measured in different
traces can vary in size, Table V reports, for the same two pairs
of traces considered before, the fraction of contents that, given
an initial classification in one trace (the row), were classified
into a given class (the column) in the second trace (we refer
to the definition of classes in Table III). By construction, each
row in the table sums to one. We observe that the majority
of contents are classified into the same class in both traces.
Moreover, the fraction of contents for which the class index
differs by more than one is negligible. Note that contents
whose class index differs exactly by one (i.e., the cells in
the first diagonal above or below the main diagonal) should
be taken with care, because their life-spans might be close to
the threshold value separating two neighboring classes, which
can easily lead to a misclassification.

Having observed that the popularity evolution of contents
appears to be well synchronized across the traces (both in
terms of overlap and size of the corresponding life-span
intervals), we performed one more experiment to validate
our modeling approach, to check how the non-perfect syn-
chronization existing in real traces can affect the resulting
cache performance. In particular, we considered a simple cache
network composed by one root and two leaves. We assume
that the root takes 60% of the overall cache size and each leaf
takes 20% of it. Then we fed the left leaf by Trace 1 and
the right leaf by Trace 3. These traces where chosen because
they contain similar request volumes and have a large temporal
intersection. In the case of a miss, requests are forwarded to
the root. Contents are replicated on all caches traversed by a

Final class Class 1 Class 2 Class 3 Class 4 Class 5

Initial class Trace 7
Class 1 0.69 0.23 0.04 0.02 0.02
Class 2 0.11 0.64 0.16 0.05 0.04

Trace 6 Class 3 0.03 0.21 0.44 0.16 0.16
Class 4 0.01 0.07 0.18 0.35 0.39
Class 5 0.00 0.00 0.01 0.02 0.97

Trace 8
Class 1 0.86 0.06 0.04 0.00 0.01
Class 2 0.30 0.56 0.08 0.03 0.03

Trace 3 Class 3 0.10 0.27 0.39 0.13 0.11
Class 4 0.02 0.12 0.26 0.44 0.16
Class 5 0.00 0.01 0.02 0.03 0.94

TABLE V: Cross-classification of contents for two different
pairs of traces.
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request.
To obtain an easily tractable traffic model for this scenario,

relying on the synchronization assumption, we proceeded as
follows: we merged the two traces, and derived a unique SNM
from the combined trace, using the same fitting procedure
described in Sec. III-B. The requests in the synthetic trace
produced by the SNM are then randomly distributed between
the two leaves, in proportion to the number of requests in the
original traces. Note that, by so doing, contents are assumed
to be perfectly synchronized between the two ingress points.

Fig. 8 shows the overall cache size needed to obtain a given
hit probability. The curve labeled “Original trace” refers to
the case in which the network is fed by real traffic traces,
whereas the other curves refer to synthetic traffic traces
produced by the fitted SNM, using different shapes for the
popularity profile. We observe that, despite all approximations
and simplifying assumptions, our traffic model provides good
predictions of cache performance, being the required cache
size overestimated by a factor always lower than 2.

IV. ANALYSIS OF LRU UNDER SNM
The Shot Noise Model introduced and validated in Sec. II is

simple enough to permit developing accurate analytical models
of classic caching policies. In particular, in this section we
show how the Least Recently Used (LRU) caching policy
can be analyzed under the traffic produced by the SNM, by
extending a technique known as Che’s approximation [25].
Note that, to ease the readability, the extension of our analysis
to cache networks was moved to Appendix B.

A. The single cache case
Consider a cache capable of storing C distinct contents. Let

TC(m) be the time needed for C distinct contents, not includ-
ing m, to be requested by users. TC(m) therefore gives the
cache eviction time for content m, i.e., the time since the last
request for content m, after which content m is evicted from
the cache. Of course TC(m) is a stochastic variable whose
distribution typically depends on the considered content m;
Che’s approximation is based on the simplifying assumption
that the cache eviction time (TC(m)) is deterministic and in-
dependent of the considered content (m). This assumption has
recently been given a theoretical justification in [9], where it
was shown that, under IRM with a Zipf-like (static) popularity
distribution, the coefficient of variation of TC(m) tends to
vanish as the cache size grows. Furthermore, the dependence
of the eviction time on m becomes negligible when the
content catalogue is sufficiently large. Moreover, in [9] authors
discover that Che’s approximation is also surprisingly accurate
in critical cases (small catalogue, very skewed popularity
law). The arguments used in [9] are easily extended to our
non-stationary traffic model when the product γ · E[Lm] (the
average number of concurrently “active” contents) and C are
sufficiently large.

We start our analysis by considering the single-class case,
in which the popularity profile (λ(t)) is the same for all
contents, being characterized by the average content life-span
L. The request volumes (Vm) are assumed to be i.i.d. random
variables, distributed as V , with E[V ] <∞. Finally, we define
φV (x) = E[exV ] to be the moment generating function of V
and φ′V (x) = E[V exV ] its first derivative, such that φ′V (x) ≥ 0

for any x. Heterogeneity of the contents’ popularity is handled
by a multi-class extension that will be described later in
Sec. IV-A4.

1) Main result for the single-class model: In the case of a
single class of contents, the application of Che’s approximation
to analyze LRU performance under the SNM leads to the
following fundamental result:

Theorem 1: Consider a cache of size C implementing LRU
policy, operating under a SNM request arrival process with
total stochastic intensity:

Λ(t) =
∑

m:τm<t

Vmλ(t− τm)

representing τm points of an homogeneous Poisson process
with intensity γ and Vm i.i.d. random variables. Under the
Che’s approximation, the hit probability is given by:

phit = 1−
∫ ∞

0

λ(τ)
φ′V

(
−
∫ TC

0
λ(τ − θ)dθ

)
E[V ]

dτ (2)

where TC is the only solution to equation:

C = γ

∫ ∞
0

1− φV
(
−
∫ TC

0

λ(τ − θ)dθ
)
dτ (3)

Proof: The proof is reported in Appendix A.
2) Small-cache regime: For small cache sizes, it is possible

to derive a closed-form approximation of (2) and (3) as
follows:

Corollary 1: If E[V 2] <∞, for small cache sizes the hit
probability is approximated by:

phit ≈
TC
L

E[V 2]

E[V ]
(4)

where TC derives from equation:

C = γE[V ]TC (5)

Proof: The expression in (4) is obtained from (2) by
approximating

∫ TC
0

λ(τ − θ)dθ with λ(τ)TC � 1, and by
locally approximating φ′V (x), in a right neighborhood of x =
0, with its linear Taylor expansion: φ′V (x) = E[V e−xV ] ≈
E[V ] − xE[V 2]. At the same time, (5) can be obtained by
linearizing (3) for small TC .

By combining (4) and (5), we obtain the important result:
Corollary 2: The hit probability under small-cache regime

can be approximated as

phit ≈
C

γL

E[V 2]

E2[V ]
(6)

Remark. From (6), we gain the fundamental insight that,
when the cache size is small, relatively to the catalogue size,
the hit probability of LRU under SNM traffic is insensitive to
the detailed shape of the popularity profile, being inversely
proportional to the average content life-span L. Moreover,
the dependency of cache performance on the requests volume
distribution (V ) is mediated by only the first two moments of
it, through the ratio E[V 2]/E2[V ]. Finally, according to (6),
the hit probability increases linearly with the cache size. We
will show in Sec. V that (6) also provides a satisfactory
approximation for quite large cache sizes, suggesting the
practical relevance of this simple formula.



9

3) Large-cache regime: As the cache size (C) tends to
infinity, a closed-form expression for the asymptotic hit prob-
ability, denoted by phit,∞, can be derived from (2) by making
TC →∞.

Corollary 3: For large cache sizes,

phit,∞ = 1− 1− φV (−1)

E[V ]
= 1− 1

E[V ]
+

E[e−V ]

E[V ]
(7)

Observe that the dependency on the content popularity
profile (λ(t)) is completely washed out in (7). Thus, the impact
of temporal locality on cache performance (in particular, the
popularity profile) tends to vanish as the cache size increases.
This fact can be easily explained by observing that, for
arbitrarily large cache sizes, the first request for a content
necessarily produces a miss, whereas all subsequent requests
lead to a hit.

Remark. As the cache size increases and (6) degrades
in its accuracy, the hit probability tends to be affected by the
detailed shape of the temporal profile as well as the distribution
of the requests volume (as predicted by (2)). However, the
overall impact of temporal locality on the cache performance
decreases, up to the point of completely vanishing when the
time scale of cache dynamics (governed by the eviction time
(TC)) becomes larger than the content life-span (L) (see (7)).

4) Extension to multi-class scenario: The single-class
model in Sec. IV-A can be extended to consider the more real-
istic scenario in which contents are partitioned into K classes.
We assume that each class is characterized by a different
popularity profile (λk(t)), with an associated average content
life-span Lk, and a request volume V(k), for 1 ≤ k ≤ K.
Similarly to the single-class case, we assume E[V(k)] <∞ and
we define φV(k)

(x) as the moment generating function for V(k).
We can formalize the multi-class scenario by assuming that
every generated content m is assigned a random mark Wm,
representing the class the content belongs to, taking values in
{1, . . . ,K}. Assuming {Wm}m to be i.i.d. random variables,
the total stochastic intensity of the request process at time t
is given by:

Λ(t) =
∑

m:τm<t

VmλWm(t− τm)

Under this assumption, we can state the following:
Theorem 2: Consider a cache of size C, implementing the

LRU policy, and operating under a multi-class SNM model
with total stochastic intensity: Λ(t) =

∑
m VmλWm(t − τm).

Extending Che’s approximation, the hit probability is given
by:

phit = 1−
K∑
k=1

Pr{W1 = k}
∫ ∞

0

λk(τ)
φ′V(k)

(
−
∫ Tc

0
λk(τ − θ)dθ

)
E[V(k)]

dτ

(8)where TC is the only solution to equation:

C=γ

∫ ∞
0

[
1−

K∑
1

Pr{W1 =k} · φV(k)

(
−
∫ TC

0

λk(τ − θ)dθ
)]

dτ

(9)
The proof for Theorem 2 (not reported here for the sake of
brevity) follows the same lines as in the proof of Theorem 1.
Furthermore, when the cache size becomes small, it is possible
to derive a closed-form approximation of (8) and (9):

Corollary 4: If E[V 2
(k)] <∞ for any 1 ≤ k ≤ K, for small

cache sizes the hit probability can be approximated as:

phit ≈ TC
K∑
k=1

Pr{W1 = k} 1

Lk

E[V 2
(k)]

E[V(k)]
(10)

where TC derives from equation: C = γE[V ]TC .
Remark. When cache size is small, the hit probability in

the multi-class case is given by a weighted sum of contribu-
tions, related to the various classes, where each contribution
is inversely proportional to the average life-span of the corre-
sponding class and proportional to the ratio E[V 2

(k)]/E[V(k)].

5) Diurnal patterns and cache invariance: From our
model we can derive an analytical explanation of why diurnal
variations in the aggregate arrival rate of requests, such as
those illustrated in Fig. 1, have no impact on the hit probability.

Diurnal variations in the intensity of the arrival process
of requests can be obtained from the resulting effect of
an envelope-modulation applied to all its constituent com-
ponents (i.e., the shots associated to individual contents).
In fact, we can obtain any desired modulation in the total
intensity of the arrival process by starting from a stationary
sequence of content requests, and properly diluting/densifying
the associated timestamps over time, whilst preserving the
ordering of the requests. To make the previous argument more
rigorous, we introduce a virtual time function represented by
a generic increasing and continuously differentiable function
w(t), whose first derivative w′(t) is proportional to the de-
sired instantaneous aggregate request rate at time t. Function
w(t) satisfies the following additional properties: w(0) = 0,
limt→∞ w(t)/t = 1. Then we can specify a generalized
SNM whereby all temporal dynamics are defined over the
virtual time w(t) (which replaces the original real time t). In
particular, the starting time and the popularity profile of each
individual content are transformed according to: τm → w(τm)
and λ(t− τ)→ λ(w(t)−w(τ))w′(t). In doing so, we obtain
the desired effect of applying the amplitude modulation w′(t)
to the original process. Indeed, by construction, the average
aggregate instantaneous request rate at time t becomes:

lim
∆t→0

E[
∑
m

∫ t+∆t

t
Vmλ(w(t)− w(τm))w′(t)dt]

∆t
= γE[V ]w′(t)

We can prove the following:
Theorem 3: Under Che’s approximation, cache perfor-

mance is invariant under the transformation t→ w(t).
Proof: We follow exactly the same lines as in the proof

of Theorem 1. In particular, the expression for phit can be
obtained from (2) and (3) by substituting τ with w(τ), θ with
w(θ), dτ → w′(τ)dτ , dθ → w′(θ)dθ. Then the invariance
property of phit derives from the standard change of variable
rule inside the integrals.
Remark. Day-night fluctuations in the arrival rate of requests
have no impact on cache performance, so long as such
fluctuations are roughly synchronized at the ingress points of
the cache network, i.e., when users reside in the same time-
zone (or in few adjacent time-zones). Diurnal variations can
be important in cache systems covering several time zones.
In this paper we do not investigate the effects of different
time-zones, because they are not observed in our data-set,
and therefore cannot be validated with any reasonable level
of confidence. Nonetheless, if needed, our SNM traffic (and
the relative analysis) can be easily extended to incorporate
“out-of-phase” fluctuations at different ingress points.

V. NUMERICAL EVALUATION

The goal of this section is two-fold. First, we assess the
accuracy of the analytical model for the cache hit probability,
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(a) The impact of varying the average content
life-span L (expressed in days).
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(b) The impact of two different values of
Pareto exponent β (and the corresponding
Zipf’s α).
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Fig. 9: Cache performance when varying the average life-span L, in the case of a Pareto distribution (with β = 3) of requests’
volume (Fig. 9a); and while varying the Pareto exponent β, in the case of average content life-span L = 7 days (Figs. 9b
and 9c).

described in Sec. IV. Second, we exploit the insights gained
from the model to better understand the performance of
caching systems in the presence of temporal and geographical
locality, showing that our analysis can be useful for system
design and optimization. We compare the results obtained by
the model against Monte-Carlo simulations of LRU, using
the same synthetic SNM traffic considered in the analysis.
By so doing, we are able to decouple the errors arising
from modeling approximations, from those that derive from
a non-perfect match between experimental (trace-driven) and
synthetic traffic patterns, which have been discussed before
(see Fig. 6 in Sec. III-B, and Fig. 8 in Sec. III-D). Moreover,
simulating LRU under the SNM traffic model enables us to
explore a much wider range of scenarios than are present in
our data set, and provides us with fundamental insights into
the impact of the various traffic parameters.

A. Single-cache, single-class scenario

We start by considering the basic case of a single cache fed
by a single-class SNM traffic. We set the arrival rate of new
contents (γ) to 10, 000 units per day and assume the average
number of requests (V ) attracted by each content to follow a
Pareto distribution: fV (v) = βV βmin/v

1+β , for v ≥ Vmin
3. The

choice of a Pareto distribution for V is justified by two factors.
First, previous works have shown that the aggregate requests
attracted by many types of contents (including popular movies
or user-generated videos) over long time periods are well
described by the Zipf’s law [9]. Second, a Zipf-like distribution
is obtained when a large number of individual content request
volumes are generated independently according to a Pareto
distribution with exponent β. For the experiments presented
in this section, we fix the average number of requests for each
content to E[V ] = 3. Since the shape of the popularity profile
has been shown to have a negligible impact on the resulting
cache performance (see Sec. III and IV), unless otherwise
specified we assume a uniform popularity profile, with average
life-span L. Finally, for the results obtained by simulation, we
show the error bars corresponding to 95% confidence intervals.

Fig. 9a shows the required cache size to achieve a given hit
probability, for different values of L. We observe an almost
perfect match between simulation results (the horizontal error-
bars appear as points) and the model prediction from (2)

3 Note that the second moment of V is finite for β > 2

(dotted lines). We find that our small-cache approximation (4)
(solid line) is very accurate for a wide range of values of
phit. As expected, cache performance is deeply impacted by
the average life-span of contents (L): as suggested by the
closed-form approximation (4), for a given cache size, the hit
probability is roughly inversely proportional to the average
life-span (L).

To investigate the impact of the distribution of the number
of requests attracted by contents (V ), Figs. 9b and 9c show the
results obtained when varying the value of the Pareto exponent
β. Comparing the analytical prediction (2) against simulations
for two extreme values of β, in Fig. 9b, we observe that the
model is very accurate. Fig. 9c reports the results for a wider
range of β; for the sake of clarity, here we omit the simulation
results, since we observed a strong agreement between model
and simulation results in all cases.

As expected in general the distribution of the number of
requests attracted by contents (V ), may play an important
rule on the cache performance (i.e., the cache size required
to achieve a given hit probability); the performance of the
caching system benefits from making the popularity distribu-
tion less and less skewed (i.e., by decreasing β). Note, however
that the impact on cache performance of the specific β is fairly
limited as long as β > 2 (i.e., the variance of the number
of content requests keeps finite). This is in sharp contrast to
results obtained under IRM traffic, where a small change of the
Zipf’s exponent has a huge impact on cache performance [9].
As a consequence, under SNM, a precise characterization of
popularity distribution parameters is not that important to
predict cache performance (as long as the number of requests
attracted by contents has a finite variance).

B. Single-cache, multi-class scenario
We now move on to the case of a single cache fed by

a multi-class SNM traffic, with the goal of understanding
the impact on cache performance of a mixture of highly
heterogeneous contents characterized by different degrees of
temporal locality. This is indeed the kind of traffic that we
observe in a real network, as we found in our data set
(see Table III). In particular, we consider the 6 classes of
contents listed in Table VI, whose parameters have been
chosen to reasonably match a realistic scenario (see Sec. II).
Class 0 collects unpopular contents with request volumes
smaller than 10. Classes 1–5 correspond to popular contents
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Class L (days) E[V ] Vmax β Scen. 1 Scen. 2 Scen. 3
0 500 1.61 10 2.5 0.85 0.85 0.85
1 2 83.33 ∞ 2.5 0.00 0.00 0.01
2 7 75.00 ∞ 2.5 0.00 0.02 0.02
3 30 66.66 ∞ 2.5 0.02 0.02 0.02
4 100 50.00 ∞ 2.5 0.02 0.02 0.02
5 1000 50.00 ∞ 2.5 0.11 0.09 0.08

TABLE VI: Content class parameters and their composition
for each multi-class scenario.

having different degree of temporal locality, with average
life-span (L) ranging from a few days (Class 1) to several
years (Class 5). The different values for the average number
of requests attracted by contents in these classes reflect the
observations from our traces (see Table III).

In order to understand the impact of different traffic mixes,
we consider 3 traffic scenarios in which we vary the proportion
of each class of contents (i.e., the probability Pr{W1 = k}
that a new content belongs to a given class), as reported in the
last 3 columns of Table VI. Note that Class 1 is missing in
both Scenario 1 and Scenario 2, whereas Class 2 is missing
only in Scenario 1. For all scenarios the arrival rate of new
contents is set to γ = 105 contents/day. Finally, an exponential
popularity profile is chosen for all the classes.

Fig. 10 reports the cache performance under the three
considered scenarios, as obtained by (8). We observe that
the presence of just a small fraction of highly cacheable
contents (in Scenario 3 only 3% of the contents belong to
either Class 1 or 2) has a huge beneficial impact on the hit
probability, especially with small caches. Even for medium-
size caches the gain is very significant: for example, in the case
of C = 10, 000, the hit probability goes from 5% (Scenario
1) to about 20% (Scenario 3).

Previous results suggest that contents characterized by high
temporal locality, although few in number, do play the major
role in the resulting hit probability. This fact also suggests
that, when the cache size is limited, it may be convenient to
devote the entire cache space only to highly cacheable contents
(i.e., contents with large volumes and significant temporal
locality), and to forbid other contents from entering the cache.
This strategy minimizes the probability of evicting from the
cache contents with a high temporal locality in their request
pattern, to let room to an unpopular content which will likely
not be requested again while being cached (hence storing this
content in the cache is useless). To check the extent to which
this assertion is valid, we modified the classical LRU caching
strategy (and the corresponding analysis) such that contents
belonging to specified classes are never cached (notice that,
by so doing, all requests for filtered contents deterministically
produce a miss). The extension of the analysis to compute
the resulting hit probability on this LRU variant is rather
straightforward, hence we omit the details here. Under Sce-
nario 3, Fig 11 compares the performance of LRU against the
performance of LRU-0 and LRU-(0+5), which do not cache
contents of class 0 and of both classes 0 and 5, respectively.
Observe that, when the cache size is limited, a significant
performance improvement is achieved by filtering out contents
that are either unpopular (class 0) or popular but long-lived
(class 5). For example, the adoption of LRU-(0+5) leads
to a reduction of more than one order of magnitude in the
cache size needed to achieve phit = 0.1, with respect to LRU.
Finally, as expected, filtering out contents when the cache size
increases must at some point become deleterious, since filtered
contents lead to a miss in the cache. This is confirmed by the
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intersection between the curves in Fig 11.
The practical implementation of filters to detect unpopu-

lar/long lived contents raises issues that go beyond the scope
of this paper. Here we limit ourselves to mentioning that
content classification can be accomplished either by exploiting
a-priori information about the content, such as the category,
the producer etc., or by employing blind online techniques to
infer the instantaneous request rate subject to the history of
requests [26].

C. Multi-cache, single-class scenario

We now consider a simple cache network with a tree
structure. In addition to assessing the accuracy of the improved
approximation described in Appendix B, this scenario permits
us to understand the impact of geographical locality on cache
performance. In more detail, we consider a two-layer cache
network composed by 8 leaves and one root (plus an additional
repository above the root). As in the standard Edge CDN
architectures [2], [18], content requests arrive at the leaves,
and misses are forwarded to the root. Here, we focus on two
extreme traffic scenarios: i) an unlocalized scenario, in which
content requests are equally likely to arrive at any of the leaves
(independently at random), and ii) a fully localized scenario,
in which each leaf receives the requests for just a subset of the
entire catalog (i.e., each newly introduced content is statically
assigned to a distinct leaf, which will receive all its associated
requests). For both scenarios, we consider a single-class SNM
with the following parameters: requests volumes V are Pareto-
distributed with E[V ] = 3.0 and β = 2.5; the popularity
profile is exponential with average life-span L = 7 days; the
aggregate arrival rate of new contents (γ) is set to 10, 000
contents per day.

Being conscious that the extreme scenarios proposed above
are oversimplified and may look somehow artificial, we em-
phasize that our goal here is to understand the potential
impact of geographical locality on the overall performance of a
caching system. Hence, by considering the two extreme cases
above, we can evaluate the whole range of possible behavior of
the system under intermediate (more realistic) traffic patterns.

Fig. 12 reports the global hit probability (i.e. either at
any leaf or at the root cache), for the unlocalized (Fig. 12a)
and fully localized (Fig. 12b) scenario, as function of the
fraction of total storage capacity assigned to the leaves (i.e.,
we assume that the total capacity of all caches is kept
constant). We show both the results obtained analytically with
the improved approximation explained in Appendix B, and
simulation results obtained under the same SNM. In both
scenarios, the analytical predictions (lines) match very well
simulation results (marks). Beyond proving the accuracy of
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Fig. 12: Hit probability for different cache size under different
traffic localization scenarios. Lines refer to the analytical
model, points to the simulation results. Caches sizes are (from
bottom to top) 100, 400, 1600, 6400, 25600, 51200 contents.

the model, some interesting insights at system level can be
obtained from the plots in Fig. 12. When no geographical
locality is present (Fig. 12a), the maximum hit probability is
achieved when the whole storage capacity is located in a single
cache (the root). This can however result in longer access
delays for the users. Instead, when traffic is strongly localized,
(Fig. 12b), by increasing the cache size of the leaves (up to the
point at which all storage capacity is assigned to the leaves)
we jointly maximize the cache hit probability while reducing
the access delay. Interestingly, in this case the same maximum
hit probability is also achieved by putting all storage in the
root, although this would be detrimental in terms of delay.

At last we emphasize that geographical locality plays a
similar role also under a multi-class scenario, for which do
not report results due to space constraints.

VI. CONCLUSIONS

The Shot Noise Model provides a simple, flexible and
accurate approach to describing the temporal and geographical
locality found in Video-on-Demand traffic, allowing us also
to develop accurate analytical models of cache performance.
From the point of view of system design, our main findings
are: i) cache performance can significantly benefit from the
presence of even a relatively small portion of highly cacheable
(popular and local) contents (especially when caches are
small); ii) geographical locality plays also an important role
in the dimensioning of distributed caching systems and should
not be neglected; iii) the overall impact on cache perfor-
mance of the distribution of the number of requests attracted
by the contents (and the corresponding rank distribution) is
significantly mitigated by temporal locality with respect to
traditional stationary models (e.g., IRM); iv) especially when
caches are small, performance can be significantly improved
by restricting access into the cache only to contents which
are highly cacheable. This can be obtained either exploiting
a priori information about the contents’ nature and popularity
profiles, or by measuring the content instantaneous popularity.
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APPENDIX A
PROOF OF THEOREM 1

Proof: By adopting Che’s approximation, we assume that
the cache eviction TC time is constant and independent of the
considered content. We express the probability of finding a
given content m in the cache at time t, conditionally on its
starting time (τm) and average request volume (Vm), as:

pin(t | τm, Vm) = 1− e−Vm
∫ t
t−TC

λ(θ−τm)dθ (11)

since, under LRU, the considered content is found in the cache
at time t, iff it attracted at least one request in the time
interval [t− TC , t]. Unconditioning (11) with respect to Vm,
and recalling that Vm are i.i.d. as V , we obtain:

pin(t | τm) = EV
[
1− e−V

∫ t
t−TC

λ(θ−τm)dθ
]

=

1− φV
(
−
∫ t

t−TC
λ(θ − τm)dθ

)
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To evaluate the probability of finding content m in the cache
at time t, we uncondition the above expression with respect to
τm. To do this, recall that in a Poisson process, conditionally
over the number of points falling in the interval [0, t), each
point is uniformly distributed over the considered interval,
independently of other points. Hence, the distribution of τm
is uniform in the interval [0, t), and we obtain:

pin(t) =
1

t

∫ t

0

1− φV
(
−
∫ t

t−TC
λ(θ − τ)dθ

)
dτ (12)

Now, as in the standard IRM, for a sufficiently large t, we
can assume that the cache is completely filled with contents
introduced before t, and the number of contents in the cache
is exactly equal to its size. Therefore we can write:

C =
∑
m

[I{content m in cache at time t|τm≤t}Iτm≤t]

where the sum extends over all contents in the infinite content
catalogue. Averaging both terms we obtain:

C =
∑
m

E[I{m in cache at t|τm≤t}Iτm≤t] = pin(t)
∑
m

E[Iτm≤t]

(13)
Recalling that the average rate at which new contents are
introduced is γ, by combining (12) with (13), we can express
the size of the cache C as:

C =

(∑
m

E[Iτm<t]
t

)∫ t

0

1−φV
(
−
∫ t

t−TC
λ(θ − τ)dθ

)
dτ =

γ

∫ t

0

1− φV
(
−
∫ t

t−TC
λ(θ − τ)dθ

)
dτ (14)

Eq. (14), proving (3), must be solved (numerically) to evaluate
the eviction time (TC) for a given cache size C. Furthermore,
(14) provides an interesting insight into the cache behavior:
for a given eviction time TC , the cache size C is proportional
to the rate at which new contents are introduced (γ).

Now we turn our attention to the hit probability. Assume
that a request Rt arrives at the cache at time t for content m of
parameters (τm, Vm). By definition, Rt generates a cache hit
iff the content is found in the cache. Therefore, as consequence
of the Lack of Anticipation (LAA) property [27] of the request
process for content m, the hit probability experienced by
request Rt is:

phit(t | τm, Vm) = pin(t | τm, Vm)

Now, when unconditioning phit(t | τm, Vm) with respect
to (τm, Vm), we have to carefully account for the fact that
contents are not uniformly requested. Observe that the instan-
taneous request at which cache requests rate for a specific
content m is given Vmλ(t− τm). Thus, we can interpret:

Vmλ(t− τm) · phit(t | τm, Vm)

as the hit rate generated by content m. Summing up all
contents, we can express phit(t) as the ratio between average
global cache hit-rate and average global request rate. It turns
out that:

phit(t) =
E[
∑
m Vmλ(t− τm) · phit(t | τm, Vm)]

E[
∑
m Vmλ(t− τm)]

Recalling (11) we have for t ≥ TC :
phit(t) =

γ
∫ t

0
EV
[
V λ(t− τ)

(
1− e−V

∫ t
t−TC

λ(θ−τ)dθ
)]
dτ

γE[V ]
∫ t

0
λ(t− σ)dσ

=

∫ t

0

λ(t− τ)

1−
φ′V

(
−
∫ t
t−TC λ(θ − τ)dθ

)
E[V ]

∫ t
0
λ(t− σ)dσ

 dτ

Substituting α = t− τ , β = t− θ, ζ = t− σ we get:

phit(t) =

∫ t

0

λ(α)

1−
φ′V

(
−
∫ TC

0
λ(α− β)dβ

)
E[V ]

∫ t
0
λ(ζ)dζ

 dα

(15)
Thanks to the integrability property of λ(t), (2) is obtained by
letting t→∞ in (15).

APPENDIX B
LRU IN CACHE NETWORKS

We now show how our analysis of LRU policy under
SNM can be extended to the case of a network of caches,
whereby misses are forwarded to other caches, according
to pre-established routes, possibly ending up at a repository
storing the entire catalogue. In doing so, we will propose
an improved approximation with respect to the one proposed
in [28], which is based on the simplifying assumption that the
arrival process of requests for a given content at any cache
is Poisson. For simplicity, we will consider only networks
implementing the so-called leave-copy-everywhere replication
strategy, according to which a copy of a requested content
is inserted in all caches traversed by the request. Moreover,
we will restrict ourselves to the case of tree-like topologies 4.
Requests arrive initially at the leaves of the tree. Whenever a
content is not found at a leave, it is forwarded to the parent
node. We assume that there exists a repository storing the
entire catalogue above the root of the tree.

A. The Poisson approximation

For any cache c in the network, we denote by C(c) the set
of children of c (caches) in the tree. Let F be the set of caches
corresponding to the leaves of the tree. We denote by F(c)
the subset of F corresponding to the descendants of c in the
tree. According to the model proposed in Sec. III-C, at time t,
the arrival rate of requests for content m at leaf node f ∈ F
is given by:
λ(f)(t | Vm, τm) = Vm,fλm(t− τm) = Vmpm,fλm(t− τm)

where Vm is the total request volume produced by content m
and τm is the time at which content m is introduced into the
catalogue. Recall also that pm,f represents the probability that
a request for content m enters the network at cache f . By
construction,

∑
f∈F pm,f = 1. We observe that each leaf can

be independently analyzed using (2) and (3).
Consider now a non-leaf node c; the intensity of the arrival

process of requests for content m at c at time t is given by:
λ(c)
m (t | Vm, τm) =

∑
c′∈C(c)

λ(c′)
m (t | Vm, τm)(1−I{m∈c′}(t | Vm, τm))

4The extension of our analysis to general mesh networks can be carried out
in a similar way as proposed in [28] under the Poisson approximation. This
extension is conceptually very simple, but requires a global multi-variable
fixed point procedure to solve the entire system.
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where I{m∈c′}(t | Vm, τm) is the indicating function cor-
responding to the event {m ∈ c′ at time t | Vm, τm}. As
such, λ(c)

m (t | Vm, τm) turns out to be a stochastic variable,
because its value dependent on the state of caches in C(c).
This implies that the arrival process of requests at cache c
is not an inhomogeneous Poisson process. The expectation of
λcm(t | Vm, τm) can be computed as:

λ
(c)

m (t | Vm, τm) = E[λ(c)
m (t | Vm, τm)] =

=
∑

c′∈C(c)

E[λ(c′)
m (t | Vm, τm)](1− p(c′)

in (t | Vm, τm)) (16)

where p(c′)
in (t | Vm, τm) is the probability that content m (with

attributes (τm, Vm)) is cached in c′ at time t.
The standard approximation to (16) would be to replace

λcm(t | Vm, τm) with its expectation λ
(c)

m (t | Vm, τm) at all
nodes which are not leaves, i.e., to approximate the arriving
process of requests for content m at c, with an inhomogeneous
Poisson process whose instantaneous intensity at time t is
equal to the average intensity of the actual process at time
t, and then independently solve each cache in isolation using
the single-cache analysis.

At last, approaches that go beyond the Poisson approxima-
tion have been recently proposed in [29]. These approaches
attempt to better characterize the cache miss stream. However,
they rely heavily on the assumption that the request arrival
process for a given content at a cache is a stationary (renewal)
process, and are therefore not applicable to our case.

B. Improved approximation
Our basic idea is to approximate the correlation between

the states of neighboring caches, which is totally neglected
under the Poisson approximation. This can be done by dis-
tinguishing between the hit probability (p(c)

hit (t | Vm, τm)) and
the probability of finding a given content m in the cache at
time t (p(c)

in (t | Vm, τm)). Note that, while the hit probability
is implicitly conditioned to the event that a request for m
arrives at cache c at time t, the probability of the content
being present in the cache is not. By virtue of the lack of
anticipation property [27], the above two probabilities would
be equal if the arrival process was an inhomogeneous Poisson
process. However, the arrival process at non-leaf nodes is not
Poisson, hence the above two probabilities can be different at
non-leaf nodes.

To approximately evaluate p
(c)
hit (t | Vm, τm), we focus on

a request for content m arriving at cache c at time t from a
given child node c′. We observe that such a request can arrive
at time t at cache c, only if content m is not stored in cache
c′ at t−. This implies that no request for m can have arrived
to c′ in the interval [t− T (c′)

C , t] (otherwise content m would
be stored in cache c′ at time t−). Therefore, a fortiori, no
request for m, coming from c′, can have arrived at cache c
in the same interval. Indeed, content m is found in cache c
at time t by a request arriving from c′ if and only if either
(i) at least one request arrived at cache c within the interval
[t−T (c)

C , t−T (c′)
C ] from any child node, including c′ (this case

is considered provided that T (c)
C > T

(c′)
C ); or (ii) at least one

request arrived at cache c within the interval [t−T (c′)
C , t] from

c′′ 6= c′, i.e., from caches different from c′ (since we know
that no request can arrive at c from c′ during this interval).

During both intervals considered above, the arrival process
of requests at cache c from any child node c′ is not Poisson
(but depends on the unknown state of the child node), and
lacking a better approach, we resort to approximating it by a
Poisson process with the expected intensity. By so doing we
can compute the conditioned hit probability phit(t | Vm, τm, c′)
for requests coming from c′ as:

phit(t | Vm, τm, c′) ≈ 1−e
−
∫ t−min(T

(c′)
C

,T
(c)
C

)

t−T (c)
C

λ
(c)
m (τ |Vm,τm) dτ

·∏
c′′∈C(c)\c′

e
−
∫ t
t−min(T

(c′)
C

,T
(c)
C

)
λ
(c′′)
m (τ |Vm,τm)

(
1−p(c

′′)
in (τ |Vm,τm)

)
dτ

Unconditioning with respect to c′ (i.e., by properly taking into
account the fraction of requests for m arriving at c at time t
from each child), we obtain an approximate expression for the
overall hit probability of content m at cache c at time t (we
omit the details of this unconditioning). The above reasoning
cannot be applied to the computation of p(c)

in (t | Vm, τm), for
which we resort to the standard Poisson approximation.
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