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Partial symmetry and existence
of least energy solutions to
some nonlinear elliptic equations
on Riemannian models

Elvise Berchio, Alberto Ferrero and Maria Vallarino

Abstract. We consider least energy solutions to the nonlinear equation
−∆gu = f(r, u) posed on a class of Riemannian models (M, g) of di-
mension n ≥ 2 which include the classical hyperbolic space Hn as well
as manifolds with unbounded sectional geometry. Partial symmetry and
existence of least energy solutions is proved for quite general nonlin-
earities f(r, u), where r denotes the geodesic distance from the pole of
M .

Mathematics Subject Classification (2010). Primary 35J20; Secondary
35B06; 58J05.

Keywords. Riemannian models, least energy solutions, partial symmetry.

1. Introduction

Let (M, g) be a n-dimensional Riemannian model (n ≥ 2), namely a manifold
admitting a pole o and whose metric is given, in spherical coordinates around
o, by

ds2 = dr2 + (ψ(r))2dΘ2, r > 0,Θ ∈ Sn−1 , (1.1)

where dΘ2 denotes the canonical metric on the unit sphere Sn−1 and

(H) ψ is a C∞ nonnegative function on [0,∞), positive on (0,∞) such that
ψ′(0) = 1 and ψ(2k)(0) = 0 for all k ≥ 0.

These conditions on ψ ensure that the manifold is smooth and the metric
at the pole o is given by the euclidean metric [27, Chapter 1, 3.4]. Then, by
construction, r := d(x, o) is the geodesic distance between a point x whose
coordinates are (r,Θ) and o.
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Let ∆g denote the Laplace-Beltrami operator on M . Our paper concerns
least energy solutions to the equation

−∆gu = f(r, u) on M . (1.2)

As a prototype of the nonlinearity think to f(r, u) = W (r)|u|p−1u, where W
is a suitable measurable function and 1 < p ≤ n+2

n−2 if n ≥ 3 (1 < p if n = 2),
but most of the results stated in the paper hold for more general f , see Section
3. Nonlinear elliptic equations like (1.2) on manifolds with negative sectional
curvatures have been the subject of intensive research in the past few years.
Many papers are settled on the simplest example of manifold with negative
curvature: the hyperbolic space Hn, corresponding to ψ(r) = sinh r in (1.1).
See [9, 19, 20, 24] and references therein, where f = f(u) = λu + |u|p−1u
is chosen. In this case, a great attention has been devoted to the study of
radial solutions (non necessarily in the energy class) either in Hn [4, 10, 24]
or in the more general Riemannian model (1.1) [8]. See also [28] where fully
nonlinear elliptic equations have been recently studied in the same setting
(1.1). It becomes then a natural and interesting subject of investigation the
study of symmetry properties of solutions to (1.2).

In the hyperbolic setting, radial symmetry of solutions has been proved
in [1, 24] for power-type nonlinearities and for positive solutions in the energy
class. See also [12]. The results in [1] hold for quite general nonlinearities f =
f(u) and non-energy solutions are also dealt. Furthermore, their extension
to general manifolds is also discussed. In the wake of the seminal paper [18],
the proofs of the just mentioned results rely on the moving plane method
and strongly exploit the structure of the space under consideration. Hence,
their extension to general manifolds seems quite difficult to be reached. In [1]
this topic is addressed by requiring two kinds of assumptions: either group
action properties, which generalize what happens in Rn and Hn, or suitable
foliation conditions.

Coming back to our Riemannian model (1.1), the results in [1] only
apply if ψ(r) = r or ψ(r) = α−1 sinh(αr) (α > 0), namely to the euclidean
and hyperbolic cases, see Open Problem 3.5. It is therefore appropriate to
investigate whether, at least, some partial symmetry holds. In the present
paper, under quite general assumptions on ψ and f , we prove that ground
states to (1.2) are foliated Schwarz symmetric with respect to some point
(see Theorem 3.2). In particular, they are either radial symmetric or axially
symmetric. The same can be said for corresponding Dirichlet boundary value
problems (see Theorem 3.4). We refer to [13] for related results about Dirich-
let problems on Riemannian models. We observe that our symmetry result
admits nonlinearities of the type f = f(r, u) with no monotonicity condition
with respect to r. As far as we are aware, this case was not covered by pre-
vious works, not even in the hyperbolic space Hn. We mention the paper [2]
where symmetry was proved for the solutions to a Dirichlet problem posed
on manifolds conformally equivalent to Rn and for nonlinearities f = f(r, u)
decreasing with respect to r.
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Our result guarantees that, when they exist, least energy solutions to
(1.2) are foliated Schwarz symmetric. The problem of existence of least en-
ergy solutions to (1.2) with subcritical growth can be easily handled if ra-
dial symmetry is a-priori assumed (see [8]). In this perspective, for instance,
compactness is gained in [25] by requiring suitable symmetry properties of
solutions. If no extra constrain is assumed, the loss of compactness may repre-
sent a serious obstacle to show existence. When f = f(u) = λu+ |u|p−1u and
M = Hn, existence of least energy solutions has been independently proved
in [14] and in [24]. Both the proofs exploit peculiar properties of Hn and
can be hardly extended to a more general setting. An important contribu-
tion in this direction is given in [15] where existence is proved for power-type
nonlinearities when the equation is posed on a weakly homogenous space.
We show in Subsection 3.2 that, under the weakly homogeneity assumption,
our Riemannian model reduces either to Rn or Hn. Nevertheless, a thorough
analysis of the peculiar structure of (1.1) allows us to obtain some compact-
ness and finally to prove in Theorem 3.9 existence of least energy solutions
to (1.2) for suitable families of f and for quite general ψ. It is worth noticing
that Theorem 3.9 applies to Riemannian models with unbounded sectional
geometry (see Remark 3.10).

The paper is organized as follows. In Section 2 we fix the notation and
describe our geometric setting. Section 3 contains the main theorems: in
Subsection 3.1 we state the partial symmetry results and in Subsection 3.2
we state the existence results. All the proofs are given in Sections 4-7.

2. Notation and geometric setting

2.1. Notation

The following table summarizes most of the notation we shall use in the
paper.

- For any P ∈ M and U1, U2 ∈ TPM we denote by 〈U1, U2〉g the scalar
product on TPM associated with the metric g.

- For any P ∈ M and U ∈ TPM we denote by |U |g :=
√
〈U,U〉g the

norm of the vector U .
- Vg denotes the volume measure in (M, g).
- ∇g denotes the Riemannian gradient in (M, g).
- For any 1 ≤ q <∞ we define the Banach space

Lq(M) := {u : M → R : u is measurable and

∫
M

|u|qdVg < +∞}

endowed with the corresponding Lq-norm.
- For any 1 ≤ q < ∞ and any measurable function W : M → [0,∞) we

define the Banach space

Lq(M ;W ) := {u : M → R : u is measurable and

∫
M

|u|qW dVg < +∞}

endowed with the corresponding weighted Lq-norm.
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- We denote by H1(M) the classical Sobolev space in M , i.e.

H1(M) = {u ∈ L2(M) : |∇gu|g ∈ L2(M)}
endowed with the usual H1-norm.

2.2. Geometric setting

Let (M, g) be an n-dimensional Riemannian model whose metric is defined
by formula (1.1) with a function ψ satisfying condition (H). Let ωn be the
area of the n-dimensional unit sphere. Then

S(r) = ωn(ψ(r))n−1, V (r) =

∫ r

0

S(t) dt = ωn

∫ r

0

(ψ(t))n−1 dt

represent, respectively, the area of the geodesic sphere ∂Br and the volume
of the geodesic ball Br, where Br denotes the geodesic ball centered at o of
radius r, i.e.

Br := {(s,Θ) : 0 ≤ s < r and Θ ∈ Sn−1} .
The Riemannian Laplacian of a scalar function f on M is given, in the above
coordinates, by

∆gf(r,Θ) =
1

(ψ(r))n−1

∂

∂r

[
(ψ(r))n−1 ∂f

∂r
(r,Θ)

]
+

1

(ψ(r))2
∆Sn−1f(r,Θ),

where ∆Sn−1 is the Riemannian Laplacian on the unit sphere Sn−1. In par-
ticular, for radial functions, namely functions depending only on r, one has

∆gf(r) =
1

(ψ(r))n−1

[
(ψ(r))n−1f ′(r)

]′
= f ′′(r) + (n− 1)

ψ′(r)

ψ(r)
f ′(r),

where from now on a prime will denote, for radial functions, derivative w.r.t.
r. By standard arguments we deduce that the bottom of the L2 spectrum of
−∆g in M admits the following variational characterization:

λ1(M) := inf
ϕ∈C∞c (M)\{0}

∫
M
|∇gϕ|2g dVg∫
M
ϕ2 dVg

. (2.1)

Notice that if lim infr→+∞
ψ′(r)
ψ(r) > 0, then λ1(M) > 0 (see [8, Lemma 4.1]).

Let (Fj)
n
j=1 be a orthonormal frame on (M, g), where F1, ..., Fn−1 correspond

to the spherical coordinates and Fn corresponds to the radial coordinate.
The curvature operator, the Ricci curvature and the scalar curvature can be
computed in terms of ψ (see [27, Chapter 3, 2.3], [5, p.3]). The curvature
operator is given by

R(Fi ∧ Fj) = − (ψ′)2 − 1

ψ2
Fi ∧ Fj 1 ≤ i, j ≤ n− 1 ,

R(Fi ∧ Fn) = −ψ
′′

ψ
Fi ∧ Fn 1 ≤ i ≤ n− 1 .

The Ricci curvature is given by

Ric(Fn) = −(n− 1)
ψ′′

ψ
Fn Ric(Fi) =

(
− (n− 2)

(ψ′)2 − 1

ψ2
− ψ′′

ψ

)
Fi ,
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where 1 ≤ i ≤ n− 1, and the scalar curvature is

K = −2(n− 1)
ψ′′

ψ
− (n− 1)(n− 2)

(ψ′)2 − 1

ψ2
. (2.2)

Hence, if

sup
r≥0

(ψ′(r))2 − 1

ψ2(r)
<∞ and sup

r≥0

ψ′′(r)

ψ(r)
<∞ , (2.3)

then the Ricci curvature of (M, g) is bounded from below, i.e. there exists a
real number κ such that Ric ≥ −κ2. Assume furthermore that

(ψ′(r))2 − 1

ψ2(r)
≥ 0 and

ψ′′(r)

ψ(r)
≥ 0 , (2.4)

then all the sectional curvatures are nonpositive and, by Hadamard Theorem
[17, Theorem 3.1], the injectivity radius of (M, g) is +∞. Finally, if (H), (2.3)
and (2.4) hold, by [3, Theorem 2.21] the following Sobolev embedding holds:

H1(M) ⊂ L2∗(M) , (2.5)

where 2∗ denotes the critical Sobolev exponent given by

2∗ =

{
2n/(n− 2) if n ≥ 3

∞ if n = 2 .

3. Main Results

3.1. Partial symmetry of least energy solutions

Throughout this section M denotes a n-dimensional Riemannian model, n ≥
2, with the function ψ in (1.1) satisfying (H). Consider the equation

−∆gu = f(r, u) on M , (3.1)

where r = d(x, o) and f ∈ C1([0,∞)×R) is a function satisfying the following
conditions:

(f1) f(r, 0) = 0 for any r > 0 and, denoting by f ′s(r, s) the derivative with
respect to s, we have

0 ≤ f ′s(r, s) ≤ C(1 +W (r)|s|p−1) for any r > 0 and s ∈ R ,

where 1 < p ≤ 2∗ − 1, C is a positive constant, W : [0,∞) → [0,∞) is
such that W ∈ L∞loc

(
[0,∞)

)
and H1(M) is continuously embedded into

Lp+1(M ;W ). Notice that W denotes the radial function on M defined
by W (x) = W

(
d(x, o)

)
;

(f2) f(r, s)s− f ′s(r, s)s2 < 0 for any r > 0 and s 6= 0.

Many situations are allowed by assumptions (H) on ψ and (f1) − (f2) on
f . For example, if we further assume that ψ satisfies (2.3)-(2.4), then thanks
to (2.5) we may choose f(r, s) = |s|p−1s. On the other hand, if we do not
require any further restriction on ψ, we can always find a suitable function f
satisfying (f1)− (f2), as one can see from Remark 3.10 (where examples of
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manifolds with unbounded negative sectional curvatures are given). Thanks
to (f1)− (f2), we may define the action functional associated with (3.1)

Φ(v) =
1

2

∫
M

|∇gv|2g dVg −
∫
M

F (r, v) dVg for any v ∈ H1(M) , (3.2)

where F (r, s) :=
∫ s

0
f(r, t) dt, and the Nehari manifold

N :=
{
v ∈ H1(M) \ {0} :

∫
M

|∇gv|2g dVg =

∫
M

f(r, v) v dVg

}
. (3.3)

We say that u ∈ N is a least energy or ground state solution to (3.1) if it
achieves the following infimum

c = inf
v∈N

Φ(v) . (3.4)

By (f1) − (f2) the set N is a natural constraint in the sense that every
constraint stationary point of the functional Φ is a “free stationary point” of
Φ itself, i.e.∫

M

〈∇gu,∇gv〉g dVg =

∫
M

f(r, u)v dVg for any v ∈ H1(M) . (3.5)

We also observe that assumption (f2) yields Φ(v) > 0 for every v ∈ N so
that by (3.4) c ≥ 0 and if it is achieved by some function u ∈ N then c > 0,
see the proof of Lemma 4.1.

Definition 3.1. A continuous function u : M → R is foliated Schwarz sym-
metric with respect to some Θ0 ∈ Sn−1 if the value of u at (r,Θ) ∈ M only
depends on r and σ = arccos(Θ · Θ0), where · denotes the standard scalar
product in Sn−1.

We state our main symmetry result.

Theorem 3.2. Let (M, g) be the Riemannian model defined by (1.1) with ψ
satisfying assumption (H). Let f : M × R → R be a C1 function satisfying
assumptions (f1)−(f2). Then, any least energy solution u to (3.1) is foliated
Schwarz symmetric with respect to some Θ0 ∈ Sn−1 and strictly of one sign
in M . Moreover, either u is radial or u is strictly decreasing with respect to
σ = arccos(Θ · Θ0) ∈ [0, π] for any r > 0 when u > 0 in M (respectively
strictly increasing with respect to σ = arccos(Θ · Θ0) ∈ [0, π] for any r > 0
when u < 0 in M).

Theorem 3.2 nothing says about existence of least energy solutions.
Nevertheless, when they exist, least energy solutions u to (3.1) are axially
symmetric with respect to the axis RΘ0 ⊂ Rn and u = u(r, σ). WhenM = Hn
and f = f(u), it is known that u does not depend on σ, namely u is radial,
see [24] and [1]. For general manifolds, a first step in this direction is made
by Proposition 3.3 below.

Proposition 3.3. Under the same assumptions of Theorem 3.2, let u ∈ H1(M)\
{0} be a nonradial least energy solution to (3.1). If the map t 7→ f(x,t)

t is
strictly increasing and locally Lipschitz then u does not admit a representa-
tion of the type u(r, σ) = R(r)h(σ) where R : [0,+∞)→ R and h : [0, π]→ R.
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The same proof of Theorem 3.2 yields foliated Schwarz symmetry of
least energy solutions to the Dirichlet problem{

−∆gu = f(r, u) in BR
u = 0 on ∂BR ,

(3.6)

where R > 0 is fixed. Indeed, by simply replacing c in the proof of Theorem
3.2 with

c0 = inf
u∈N0

Φ(u) ,

where N0 := {u ∈ H1
0 (BR) \ {0} :

∫
BR
|∇gu|2g dVg =

∫
BR

f(r, u)u dVg} , we
get

Theorem 3.4. Let (M, g) be the Riemannian model defined by (1.1) with ψ
satisfying assumption (H). Let f : M × R → R be a C1 function satisfying
assumptions (f1)−(f2). Then, any least energy solution u to (3.6) is foliated
Schwarz symmetric with respect to some Θ0 ∈ Sn−1 and strictly of one sign
in BR. Moreover, either u is radial or u is strictly decreasing with respect to
σ = arccos(Θ ·Θ0) ∈ [0, π] for any r ∈ (0, R) when u > 0 in BR (respectively
strictly increasing with respect to σ = arccos(Θ·Θ0) ∈ [0, π] for any r ∈ (0, R)
when u < 0 in BR).

Let H1
r (M) denote the set of functions u ∈ H1(M) which are radi-

ally symmetric. We define cr := infu∈N∩H1
r (M) Φ(u) . Then, c ≤ cr. When

c < cr, least energy solutions (if they exist) must be nonradial and by
Theorem 3.2 they are axially symmetric. The same hold for c0 and c0,r :=
infu∈N0∩H1

r (M) Φ(u) . If M = Hn and f(r, u) = rα|u|p−1u, it has been re-
cently proved in [23] that c0 < c0,r as p→ 2∗ − 1. In this case, Theorem 3.4
gives a sharp information.

Open problem 3.5. When the nonlinearity depends on r, our symmetry result
can be considered optimal in the sense explained above. One may ask if
something more can be said about symmetry of least energy solutions of
(3.1) when f only depends on u. In [1], radial symmetry about some point
is obtained for positive solutions of (3.1) when M = Hn and f is a suitable
nonlinearity depending only on u. Here, by radial symmetry of a function
u : M → R with respect to a point x0 ∈ M , which is not necessarily the
pole of the Riemannian model, we mean that u is constant on geodesic balls
centered at x0. We leave as an open problem to show if radial symmetry
about some point occurs also in more general Riemannian models, at least for
ground state solutions. Note that the assumptions on (M, g) introduced in [1,
Section 4] are too restrictive in the setting of our Riemannian models. Indeed,
they would imply that M has constant scalar curvature and then ψ(r) = r or
ψ(r) = α−1 sinh(αr), i.e. (M, g) is either the euclidean space or an hyperbolic
space whose scalar curvature is −n(n− 1)α2 (see also Proposition 3.8).

3.2. Existence of least energy solutions

In Subsection 3.1 we discussed partial symmetry of least energy solutions for
the equation (3.1) under the assumptions (f1) − (f2). Here we address the
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problem of existence of least energy solutions of (3.1). As already mentioned
in the Introduction, one way to gain existence of least energy solutions is
to assume that the manifold M satisfies the so-called weakly homogeneity
condition, see [15]. For completeness we recall here its definition.

Definition 3.6. Let (M, g) be a n-dimensional complete Riemannian manifold.
We say that M is weakly homogeneous if there exists a group Γ of isometries
of M and D > 0 such that for every x, y ∈ M , there exists γ ∈ Γ such that
d
(
x, γ(y)

)
≤ D. Here d represents the geodesic distance in M .

Assume that (M, g) is a Riemannian complete weakly homogeneous
manifold (not necessarily a Riemannian model in the sense of (1.1)) with
bounded geometry. Proceeding as in [15], where the pure power equation is
dealt, we prove existence of least energy solutions for the following class of
equations

−∆gu = V (x)u+ h(u) in M (3.7)

with V and h satisfying suitable assumptions. Similarly to what we did for
(3.1) we may define the Nehari manifold associated with (3.7) by

N :=

{
v ∈ H1(M) \ {0} :

∫
M

|∇gv|2g dVg −
∫
M

V (x)v2 dVg −
∫
M

h(v)v dVg

}
and the least energy solutions of (3.7) as the solutions u ∈ N of (3.7) satis-
fying

Φ(u) = c := inf
v∈N

Φ(v) (3.8)

where

Φ(v) :=
1

2

∫
M

[
|∇gv|2g − V (x)v2

]
dVg −

∫
M

H(v) dVg

and H(s) :=
∫ s

0
h(t) dt for any s ∈ R.

Proposition 3.7. Let (M, g) be a Riemannian complete weakly homogeneous
manifold of dimension n ≥ 2 with positive injectivity radius and bounded
curvature. Let V ∈ C0(M) satisfy

−∞ < V∞ := inf
x∈M

V (x) ≤ sup
x∈M

V (x) < λ1(M) (3.9)

with λ1(M) as in (2.1) and

for any fixed o ∈M lim
d(x,o)→+∞

V (x) = V∞ (3.10)

where d(·, ·) denotes the geodesic distance in (M, g). Furthermore, suppose
that h ∈ C1(R) satisfies

h(0) = 0 , h′(0) = 0 , |h′(s)| ≤ C(1 + |s|p−1) for any s ∈ R (3.11)

with 1 < p < 2∗ − 1,

h(s)s− h′(s)s2 < 0 for any s 6= 0 , (3.12)

and that there exists µ > 2 such that

0 < µH(s) ≤ h(s)s for any s 6= 0 . (3.13)

Then (3.7) admits a least energy solution in the sense of (3.8).
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Notice that the geometric assumptions of Proposition 3.7 ensure the
validity of the Sobolev embedding (2.5) [3, Theorem 2.21]. We observe that
condition (3.13), is the Ambrosetti-Rabinowitz condition. We refer to [30] and
references therein for possible alternative assumptions on h in the euclidean
setting. But in the present paper we are mainly interested in the study of (3.1)
over the Riemannian model (1.1). One may ask what happens in this case if
the weakly homogeneity condition is assumed. An answer to this question is
given by the following

Proposition 3.8. Let (M, g) be a n-dimensional Riemannian model defined by
(1.1) with n ≥ 2 and ψ satisfying assumption (H) and suppose that (M, g) is
weakly homogeneous. Then the scalar curvature is constant. Moreover if we
denote by κ this constant then only two alternatives may occur:

(i) κ < 0 and (M, g) is a hyperbolic space, namely

ψ(r) = α−1 sinh(αr) with α =

√
|κ|

n(n− 1)
;

(ii) κ = 0 and (M, g) is the Euclidean space, namely ψ(r) = r.

For results concerning manifolds with constant curvature see [7]. It is
clear from Proposition 3.8 that weakly homogeneity becomes a too restrictive
condition if (M, g) is the Riemannian model (1.1). Therefore, we look for
some alternative conditions on (M, g) and on the nonlinearity in (3.1) which
guarantee compactness of the embeddings of H1(M) into suitable weighted
Lebesgue spaces. More precisely, we assume that f ∈ C1([0,∞)× R) is such
that

(f3) f(r, 0) = 0 for any r > 0 and, denoting by f ′s(r, s) the derivative with
respect to s, we have

−C −W (r)|s|p−1 ≤ f ′s(r, s) ≤ λ+W (r)|s|p−1 for any r > 0 and s ∈ R ,

where 1 < p < 2∗ − 1, C is a positive constant, λ ∈ (−C, λ1(M)) with
λ1(M) as in (2.1), and W ∈ L∞loc

(
[0,∞)

)
is a nonnegative function;

(f4) there exists µ > 2 such that

0 < µH(r, s) ≤ h(r, s)s for any r > 0 and s 6= 0

where λ is as in (f3), h(r, s) := f(r, s)− λs and H(r, s) :=
∫ s

0
h(r, t)dt.

We are ready to state the main result of this subsection where we restrict
ourselves to n ≥ 3.

Theorem 3.9. Let (M, g) be the n-dimensional Riemannian model defined
by (1.1) with n ≥ 3 and ψ satisfying assumption (H). Let f(·, ·) satisfy

(f2)− (f4). Letting φ(r) := ψ(r)
r and W be as in (f3), we assume that

(i) φ(r) ≥ 1 for every r > 0;
(ii) the functions φn−1(r)W (r) and φn−3(r) are nondecreasing in [R,+∞)

for some R > 0;

(iii) W (r) = o(φ−
p−1

2 ) as r → +∞.
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Then (3.1) admits a least energy solution in the sense of (3.4).

Remark 3.10. It is worth noticing that Theorem 3.9 does not work for ψ(r) =
r ((ii) and (iii) would yield a contradiction) while it works if ψ(r) = sinh r,
ψ(r) = ear, ψ(r) = er

a

, ψ(r) = rbear, ψ(r) = rber
a

for r ≥ R, with a ≥ 1
and b > 0. Namely, unbounded negative sectional curvatures are allowed. For
any of the above models, as an explicit example of f , take f(r, u) = λu +
W (r)|u|p−1u withW (r) = φ−α, where p−1

2 ≤ α ≤ n−1 and λ ∈ (−C, λ1(M)).

Remark 3.11. Let u be the least energy solution found in Theorem 3.9. We
observe that if in Theorem 3.9 we add the assumption f ′s(r, s) ≥ 0 for any
r > 0 and s ∈ R, then u satisfies all the sign and symmetry properties stated
in Theorem 3.2.

Next we want to focus our attention on the condition λ < λ1(M) re-
quired in (f3). If this condition is dropped, then existence of nontrivial con-
stant sign solutions may fail as shown in the following

Proposition 3.12. Let (M, g) be the n-dimensional Riemannian model defined
by (1.1) with n ≥ 3 and ψ satisfying assumption (H). Let f be in the form
f(r, s) = λs + h(r, s) with λ > λ1(M) and suppose it satisfies (f3) and
(f4). Furthermore, suppose that (i)-(iii) in Theorem 3.9 hold true with W
as in (f3). Then (3.1) does not admit any nontrivial constant sign solution
u ∈ H1(M).

In Proposition 3.12 we assumed that λ > λ1(M) so that one may ask
what happens when λ = λ1(M). A partial answer can be found in [24, The-
orem 1.1] where nonexistence of positive H1(Hn)-solutions is proved when
(M, g) coincides with the hyperbolic space Hn and f(r, s) = λ1(Hn)s+|s|p−1s.
We conclude this section with the following open problem:

Open problem 3.13. In order to guarantee existence of least energy solutions
we made two different kinds of assumptions: either the weakly homogeneity
and the bounded geometry of M in Proposition 3.7 or the compactness of
the embedding H1(M) ⊂ Lp+1(M ;W ) in Theorem 3.9. Both the results do
not cover the case in which M is a Riemannian model (1.1) with nonconstant
curvature and f(r, u) = |u|p−1u, 1 < p < 2∗ − 1 in (3.1). As far as we are
aware, the existence of a least energy solution for the equation

−∆gu = |u|p−1u in M , 1 < p < 2∗ − 1 (3.14)

is still an open problem when M is a general manifold different from Rn
or Hn. Note that u is a least energy solution of (3.14) if and only if u is a
minimizer of

Sp := inf
v∈H1(M)\{0}

∫
M
|∇gv|2g dVg(∫

M
|v|p+1 dVg

)2/(p+1)
.

We know that (3.14) admits a positive radial solution which is a minimizer
for

Sp,r := inf
v∈H1

r (M)\{0}

∫
M
|∇gv|2g dVg(∫

M
|v|p+1 dVg

)2/(p+1)
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where H1
r (M) denotes the space of radial functions in H1(M), see [8, The-

orem 2.5]. We ask whether the two constants Sp and Sp,r coincide. This
question is strictly related with Open Problem 3.5. Indeed, once proved the
existence of a minimizer u for Sp, then one way to establish the validity of
the identity Sp = Sp,r is to check whether or not u is a radially symmetric
function.

4. Proof of Theorem 3.2 and Proposition 3.3

We first prove some preliminary lemmas which we shall apply in the proof of
the symmetry result.

Lemma 4.1. Suppose that ψ satisfies (H) and f satisfies (f1)− (f2). Then,
any least energy solution to (3.1) belongs to C2(M) and it is either strictly
positive or strictly negative in M .

Proof. Let u be a least energy solution of (3.1). Standard Brezis-Kato type
estimates [11] combined with elliptic regularity estimates yield u ∈ C1,α(M)
for any α ∈ (0, 1). Then, assumption (f1) combined with classical Schauder
estimates yields u ∈ C2(M). In order to prove that u does not change sign
we first show that Φ(u) = c = inf

v∈N
Φ(v) > 0. Indeed by (f2) and a simple

integration by parts we infer 2F (r, s)− f(r, s)s < 0 for any r > 0 and s 6= 0,
and hence since u ∈ N we obtain

c = Φ(u) = −1

2

∫
M

[2F (r, u)− f(r, u)u] dVg > 0 .

To show that u is positive or negative, let u+ := max{u, 0} and u− :=
−min{u, 0} denote the positive and negative part of u. Suppose that u+, u−

are not identically equal to zero in M . Testing (3.5) with u+ and u−, one
gets u+,−u− ∈ N . Then,

c = Φ(u) = Φ(u+) + Φ(−u−) ≥ 2c,

a contradiction with c = Φ(u) > 0. Hence, we have u ≥ 0 or u ≤ 0. An
application of the strong maximum principle yields the strict inequalities, see
[21]. �

For every Θ0 ∈ Sn−1, let

HΘ0
:= {(r,Θ) : r ≥ 0, Θ ·Θ0 ≥ 0} ,

and H := {HΘ0 : Θ0 ∈ Sn−1}. For Θ0 ∈ Sn−1, we define pHΘ0
: M → M

by pHΘ0
(r,Θ) = (r,Θ − 2(Θ · Θ0)Θ0). For simplicity, we also put H = HΘ0

and x = pH(x) for x ∈ M when the underlying HΘ0
is understood. For a

measurable function v : M → R, we define the polarization vH of v relative
to H by

vH(x) =

{
max{v(x), v(x)}, x ∈ H,
min{v(x), v(x)}, x ∈M \H.

(4.1)
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Lemma 4.2. Suppose that ψ satisfies (H) and f satisfies (f1) − (f2). Let u
be a (positive) least energy solution to (3.1) and H ∈ H. Then, one of the
following is true:

(i) u > u ◦ pH in int(H),

(ii) u < u ◦ pH in int(H),

(iii) u ≡ u ◦ pH in M .

Proof. Let us define M+ := {x ∈ M : u(x) ≥ uH(x)} and M− := {x ∈ M :
u(x) < uH(x)}. Similarly to [29, Proposition 2.3], by (1.1) we have

∇guH(x) =

∇gu(x) a.e. on (H ∩M+) ∪ [(M \H) ∩M−]

∇gu(pH(x)) a.e. on (H ∩M−) ∪ [(M \H) ∩M+] .

(4.2)
By (1.1), (4.2) and the change of variable y = pH(x) we obtain∫

M

|∇guH |2g dVg =

∫
H∩M+

|∇gu|2g dVg +

∫
(M\H)∩M−

|∇gu|2g dVg (4.3)

+

∫
H∩M−

|∇gu(pH(x))|2g dVg(x) +

∫
(M\H)∩M+

|∇gu(pH(x))|2g dVg(x)

=

∫
H∩M+

|∇gu|2g dVg +

∫
(M\H)∩M−

|∇gu|2g dVg

+

∫
(M\H)∩M+

|∇gu(y)|2g dVg(y) +

∫
H∩M−

|∇gu(y)|2g dVg(y)

=

∫
M

|∇gu|2g dVg .

In the same way we also obtain∫
M

F (r, uH) dVg =

∫
M

F (r, u) dVg ,

∫
M

f(r, uH)uH dVg =

∫
M

f(r, u)u dVg .

(4.4)
Combining (4.3) and (4.4) we deduce that if u ∈ N is a minimizer of Φ on
N , then also uH ∈ N is a minimizer of Φ on N . Therefore, it follows that uH
is a (positive) least energy solution of (3.1), see Lemma 5.5 for more more
details. Following [6], we consider

w : H → R , w := |u− u ◦ pH | = 2uH − (u+ u ◦ pH) .

By Lemma 4.1 we have that w ∈ C2(M). Furthermore, from (f1) and the
fact that pH is an isometry in M , we deduce

−∆gw = −2∆guH + ∆gu+ ∆g(u ◦ pH) = 2f(r, uH)− f(r, u) + (∆gu) ◦ pH
= [f(r, uH)− f(r, u)] + [f(r, uH)− f(r, u ◦ pH)] ≥ 0 on H .

For every x ∈ H, let Bx be a ball such that x ∈ Bx ⊂ H. By the strong
maximum principle for elliptic operators, see [21], we deduce that either w ≡ 0
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in Bx or w > 0 in Bx and hence we conclude that either u ≡ u ◦ pH on H or
|u− u ◦ pH | > 0 on int(H). �

For any Θ0 ∈ Sn−1 we now define

H(Θ0) := {H ∈ H : Θ0 ∈ int(H)}.
We will prove Theorem 3.2 with the help of the following characterization
that can be deduced by [31, Proposition 2.4].

Lemma 4.3. Let Θ0 ∈ Sn−1. A continuous function v : M → R is foliated
Schwarz symmetric with respect to Θ0 if and only if v = vH for every H ∈
H(Θ0).

Proof of Theorem 3.2. It is not restrictive assuming that u is a positive
least energy solution to (3.1) since otherwise one may define ũ = −u and
obtain a positive least energy solution of

−∆gũ = f̃(r, ũ) in M

where f̃(r, s) := −f(r,−s) defined for any r > 0 and s ∈ R satisfies assump-
tions (f1)− (f2).

Take Θ0 ∈ Sn−1 such that

u(1,Θ0) = max{u(1,Θ) : Θ ∈ Sn−1} .
Then, for any H ∈ H(Θ0) there exists y ∈ int(H) such that u(y) ≥ u(pH(y))
and hence by Lemma 4.2 we deduce that only case (i) or (iii) in the same
lemma may occur; in both situations this yields

u = uH for every H ∈ H(Θ0).

Hence, u is foliated Schwarz symmetric with respect to Θ0 by Lemma 4.3.
Therefore we can write u = u(r, σ), where σ = arccos(Θ ·Θ0). It remains to
prove that

either u is radial, or u(r, σ) is strictly decreasing in σ ∈ (0, π) for r > 0.
(4.5)

We follow the argument in [22, p.204]. We already know that no half-space
H ⊂ H(Θ0) satisfies property (ii) of Lemma 4.2. Moreover, if property (i)
of this lemma holds for all half-spaces H ⊂ H(Θ0), then u(r, σ) is strictly
decreasing in σ ∈ (0, π) for every r > 0. It remains to consider the case where
property (iii) of Lemma 4.2 holds for some H0 ⊂ H(Θ0). Let 0 < σ0 < π/2
be the angle formed by Θ0 and the hyperplane ∂H0. Let Θ1 = pH0

(Θ0).
Then arccos(Θ1 ·Θ0) = 2σ0. Moreover, (iii) implies that u(r,Θ1) = u(r,Θ0)
for r > 0. Since u is nonincreasing in the angle σ ∈ (0, π), we conclude
that u(r, σ) = u(r, 0) for all σ ≤ 2σ0. From Lemma 4.2 we then deduce that
(iii) holds for all H ⊂ H(Θ0) for which the angle between Θ0 and H is less
then 2σ0. Then, by the same argument as before, u(r, σ) = u(r, 0) for all
σ ≤ min{4σ0, π}. Arguing successively, in a finite number of steps we obtain
u(r, σ) = u(r, 0) for all σ ≤ π. This shows that u is radial and completes the
proof of (4.5). �
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Proof of Proposition 3.3. We exploit the idea of [22, Remark 6.3]. It is
not restrictive to assume u > 0. By contradiction, let u(r, σ) = R(r)h(σ) > 0.
Since we are also assuming that u is not radial, then by Theorem 3.2 we
deduce that h is strictly decreasing in [0, π]. Few computations yield

− ψ2(r)

ψn−1(r)R(r)

∂

∂r

(
R′(r)ψn−1(r)

)
− 1

sinn−2(σ)h(σ)

∂

∂σ

(
h′(σ) sinn−2(σ)

)
= ψ2(r)

f(r,R(r)h(σ))

R(r)h(σ)
.

If 0 ≤ σ1 < σ2 ≤ π, then h(σ1) > h(σ2) and hence for any r > 0 there exists
L > 0 such that

0 < b(σ1)− b(σ2) = ψ2(r)

(
f(r,R(r)h(σ2))

R(r)h(σ2)
− f(r,R(r)h(σ1))

R(r)h(σ1)

)
≤ ψ2(r)LR(r)(h(σ1)− h(σ2)) for any r ∈ (0, r) ,

where b(σ) := 1
sinn−2(σ)h(σ)

∂
∂σ

(
h′(σ) sinn−2(σ)

)
. Namely, there exists C > 0

such that R(r) ≥ Cψ−2(r) for any r ∈ (0, r). This gives a contradiction as
r → 0 since u is a classical solution of (3.1) in view of Lemma 4.1. �

5. Proof of Theorem 3.9 and Proposition 3.12

We first state some basic facts. Let w, v0, v1 : Rn → (0,∞) be measurable
locally bounded functions. For q ≥ 1, we denote by Lq(Rn;w) the set of all
measurable functions u on Rn such that∫

Rn
|u(y)|qw(y) dy <∞ ,

and by W 1,2(Rn; v0, v1) the set of all functions u ∈ L2(Rn; v0) such that
|∇u| ∈ L2(Rn; v1). Then, we associate to Sobolev and Lq spaces on the
model manifold M suitable weighted Sobolev and Lq spaces on Rn.

Lemma 5.1. Set φ(r) := ψ(r)
r and suppose that φ(r) ≥ 1 for all r > 0. For

every n ≥ 3, the following hold:

(i) ‖u‖Lq(M) = ‖u‖Lq(Rn;φn−1) 1 ≤ q <∞;
(ii) ‖u‖H1(M) ≥ ‖u‖W 1,2(Rn;φn−1,φn−3) .

Proof. The equality (i) is an immediate consequence of the formula for the
Riemannian measure in polar coordinates. To prove (ii) notice that∫

M

|∇gu|2g dVg =

∫ +∞

0

∫
Sn−1

[u2
r +

1

ψ2
|∇Sn−1u|2]ψn−1 dr dΘ

≥
∫ +∞

0

∫
Sn−1

[u2
r +

1

r2
|∇Sn−1u|2] rn−1

(ψ
r

)n−3
dr dΘ

= ‖∇u‖2L2(Rn;φn−3) .

�
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We will exploit the following

Proposition 5.2. Let n ≥ 3, 1 < p ≤ 2∗ − 1 and w, v0, v1 : Rn → (0,∞)
be locally bounded radial weights on Rn, i.e. measurable and a.e. positive
functions in Rn. Suppose there exists R > 0, a positive measurable function
δ defined on Rn \B(0, R), cδ ≥ 1 and k0 > 0 such that

(i) k0

(
v1(x)
v0(x)

)1/2

≤ δ(x) ≤ |x|3 for a.e. x ∈ Rn \B(0, R);

(ii) c−1
δ ≤

δ(y)
δ(x) ≤ cδ for a.e. x ∈ Rn \B(0, R) and y ∈ B(x, δ(x)) .

Assume furthermore that there exist two positive measurable functions b0, b1
defined on Rn \B(0, R) such that

w(y) ≤ b0(x) , b1(x) ≤ v1(y) for a.e. x ∈ Rn \B(0, R) and y ∈ B(x, δ(x)) .
(5.1)

If

lim
m→+∞

sup
|x|≥m

b0(x)
1
p+1

b1(x)1/2
δ(x)

n
p+1−

n
2 +1 = 0 , (5.2)

then the embedding W 1,2(Rn; v0, v1) ⊂ Lp+1(Rn;w) is continuous and if 1 <
p < 2∗ − 1, the embedding is also compact.

Proof. The proof follows by slightly modifying the proof of [26, Theorem
18.7]. �

By combining Lemma 5.1 with Proposition 5.2 we get

Lemma 5.3. Let n ≥ 3, 1 < p ≤ 2∗ − 1 and (M, g) be the n-dimensional
Riemannian model defined by (1.1) with ψ satisfying assumption (H). Let
W ∈ L∞loc

(
[0,∞)

)
be a nonnegative function such that (i)-(iii) of Theorem

(3.9) hold. Then, the embedding H1(M) ⊂ Lp+1(M ;W ) is continuous and if
1 < p < 2∗ − 1, the embedding is also compact.

Proof. By Lemma 5.1 (ii) we have that H1(M) ⊂W 1,2(Rn;φn−1, φn−3). On
the other hand, by applying Proposition 5.2 with R = 3 and

δ(x) = φ−1(|x|) , w(x) = φn−1(|x|)W (|x|) ,
v0(x) = v0(|x|) = φn−1(|x|) , v1(x) = v1(|x|) = φn−3(|x|) ,
b0(x) = φn−1(|x|+ δ(x))W (|x|+ δ(x)) , b1(x) = φn−3(|x| − δ(x)) ,

we deduce that the embedding W 1,2(Rn;φn−1, φn−3) ⊂ Lp+1(Rn;φn−1W ) is
continuous and if 1 < p < 2∗ − 1, it is also compact. This, combined with
Lemma 5.1 (i), proves the statement. �

Let us consider the Nehari manifold N defined in (3.3) and let us define
the functional I : H1(M)→ R by

I(u) := 〈Φ′(u), u〉 for any u ∈ H1(M) ,
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where Φ′ denotes the Fréchet derivative of Φ. In this way we have N = I−1(0)
and thanks to condition (f2) we also have I ′(u) 6= 0 for any u ∈ N . In the
sequel we use the notation

S := {v ∈ H1(M) : ‖v‖H1 = 1} . (5.3)

In the next lemma we prove some properties of the Nehari manifold exploiting
in the proofs the results contained in [30].

Lemma 5.4. Suppose that all the assumptions of Theorem 3.9 are satisfied.
Then we have

(i) the functional Φ introduced in (3.2) is well defined on H1(M) and it is
of class C1 over H1(M);

(ii) the set N defined in (3.3) is nonempty and for any v ∈ H1(M) \ {0}
there exists a unique tv > 0 such that tvv ∈ N ;

(iii) if for any v ∈ H1(M) \ {0} we define φv(t) := Φ(tv) for any t > 0, then
φv ∈ C1(0,∞) and it satisfies φ′v(t) > 0 for any t ∈ (0, tv), φ

′
v(tv) = 0

and φ′v(t) < 0 for any t > tv;
(iv) the following estimates hold true:

inf
v∈N

Φ(v) > 0 , inf
v∈N
‖v‖H1 > 0 , sup

v∈K
‖tvv‖H1 < +∞

for any K ⊂ S compact in S with S as in (5.3);
(v) the map

m : S → N , m(v) := (tvv)|S

is a homeomorphism from S onto N such that m−1(v) = v/‖v‖H1 for
any v ∈ S.

Proof. (i) By (f3) we have that

|f(r, s)| ≤ C
(
|s|+ W (r)

p |s|
p
)

and |F (r, s)| ≤ C
(
s2

2 + W (r)
p(p+1) |s|

p+1
)
(5.4)

for any r > 0 and s ∈ R. Combining these two estimates with Lemma 5.3 the
proof of (i) follows in a standard way.

(ii)-(iii) Consider an arbitrary nontrivial function v ∈ H1(M) and con-
sider the function φv(t) := Φ(tv) defined for any t > 0. By (5.4), Lemma 5.3
and the fact that λ < λ1(M) we obtain

Φ(u) ≥ C1‖u‖2H1 − C2‖u‖p+1
H1 for any u ∈ H1(M) (5.5)

for some suitable constants C1, C2 > 0. This shows that Φ is strictly positive
in a neighborhood of u = 0 and, in turn, also the function φv is positive in
a right neighborhood of t = 0. On the other hand by (f4) and integration it
follows

H(r, s) ≥ Υ(r)|s|µ for any r > 0 and |s| ≥ σ
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where σ > 0 is fixed arbitrarily and Υ(r) := min
{
H(r,σ)
σµ , H(r,−σ)

σµ

}
> 0.

Therefore, for v ∈ H1(M) \ {0} we have

φv(t) = Φ(tv) ≤ 1

2

(∫
M

|∇gv|2g dVg − λ
∫
M

v2dVg

)
t2 (5.6)

−
∫
{|tv|<σ}

H(r, tv) dVg −

(∫
{|tv|≥σ}

Υ(r)|v|µdVg

)
tµ → −∞

as t → +∞ being µ > 2 and
∫
{|tv|<σ}H(r, tv) dVg = O(t2) as t → +∞

in view of (5.4) and since, by (i) and (iii) in Theorem 3.9, W is globally
bounded. Summarizing φv ∈ C1(0,∞), φv(0) = 0, φv is positive in a right
neighborhood of t = 0 and eventually negative as t → +∞ and hence there
exists tv > 0 such that φ′v(tv) = 0. This implies tvv ∈ N thus proving that
N 6= ∅. It remains to prove that tv is the unique stationary point of φv in
(0,+∞). To this purpose, for any v ∈ H1(M) \ {0} we define the function
χv(t) := I(tv) for any t > 0 in such a way that stationary points of φv
coincide with zero points of χv. By (f2) we have

〈I ′(u), u〉 = 2

∫
M

|∇gu|2g dVg −
∫
M

f ′s(r, u)u2dVg −
∫
M

f(r, u)u dVg (5.7)

=

∫
M

[f(r, u)u− f ′s(r, u)u2] dVg < 0 for any u ∈ N .

This implies that if v ∈ H1(M) \ {0} and t > 0 is such that χv(t) = 0 then
tv ∈ N and χ′v(t) = 1

t 〈I
′(tv), tv〉 < 0 thus proving that χv admits a unique

positive zero point. This completes the proof of (ii) and (iii).
(iv) The first two inequalities in (iv) follows from (5.5) and (iii). In order

to prove the third inequality let us proceed by contradiction by supposing
that there exists a sequence {vk} ⊂ K such that vk → v ∈ K and tvk → +∞
as k → +∞. For simplicity in the rest of the proof we write tk in place of
tvk . Proceeding as in (5.6), as k → +∞ we obtain

Φ(tkvk) ≤ 1

2

(∫
M

|∇gvk|2g dVg − λ
∫
M

v2
kdVg

)
t2k (5.8)

−
∫
{|tkvk|<σ}

H(r, tkvk) dVg −

(∫
{|tkvk|≥σ}

Υ(r)|vk|µdVg

)
tµk → −∞

since

lim
k→+∞

(∫
M

|∇gvk|2g dVg − λ
∫
M

v2
k dVg

)
=

∫
M

|∇gv|2g dVg − λ
∫
M

v2dVg ,

∫
{|tkvk|<σ}

H(r, tkvk) dVg = O(t2k) as k → +∞ , and

lim inf
k→+∞

∫
{|tkvk|≥σ}

Υ(r)|vk|µdVg ≥
∫
M

Υ(r)|v|µdVg > 0
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where we used the strong convergence vk → v in H1(M) and the Fatou
Lemma. The proof is complete since (5.8) contradicts the fact that φ is pos-
itive on N .

(v) It follows immediately applying Proposition 8 in [30]. Indeed as-
sumptions (A2)-(A3) in [30] are an immediate consequence of (iii) and (iv).

�

Next we define Ψ : S → R by putting Ψ(v) := Φ(m(v)) for any v ∈ S.
We say that a sequence {vk} ⊂ S is a Palais-Smale sequence for Ψ if {Ψ(vk)}
is bounded and Ψ′(vk)→ 0 as k → +∞, i.e.

lim
k→+∞

sup
w∈TvkS

|〈Ψ′(vk), w〉|
‖w‖H1

= 0

where TvkS denotes the tangent space to S at vk. In the next result we show
that there is a strict relationship between Palais-Smale sequences for Ψ and
Φ.

Lemma 5.5. Suppose that all the assumptions of Theorem 3.9 are satisfied.
Then we have

(i) if {uk} ⊂ S is Palais-Smale sequence for Ψ then {m(uk)} is a Palais-
Smale sequence for Φ;

(ii) if u ∈ S is a critical point for Ψ then m(u) is a nontrivial critical point
for Φ;

(iii) if u ∈ N is a constrained critical point for Φ then u is a critical point
for Φ.

Proof. The proof of (i)-(ii) follows immediately applying Corollary 10 in [30].
Indeed assumptions (A2)-(A3) in [30] are an immediate consequence of (iii)
and (iv) in Lemma 5.4. In order to prove (iii) we observe that if u ∈ N is
a constrained critical point for Φ then by the Lagrange Multiplier Method
there exists κ ∈ R such that Φ′(u) = κI ′(u). In particular

0 = I(u) = 〈Φ′(u), u〉 = κ〈I ′(u), u〉

and by (5.7) we know that 〈I ′(u), u〉 6= 0 thus proving that κ = 0 and, in
turn, that Φ′(u) = 0. �

Then we prove that the functional Φ satisfies the Palais-Smale condition.

Lemma 5.6. Suppose that all the assumptions of Theorem 3.9 are satisfied.
Then the functional Φ satisfies the Palais-Smale condition.

Proof. Let {vk} be a Palais-Smale sequence for Φ. We first prove that {vk} is
bounded in H1(M). Since {Φ(vk)} is bounded and Φ′(vk) → 0 is (H1(M))′
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as k → +∞, then by (f3)− (f4) we obtain

C1 + o(‖vk‖H1) ≥ µΦ(vk)− 〈Φ′(vk), vk〉

=
µ− 2

2

(∫
M

|∇gvk|2g dVg − λ
∫
M

v2
k dVg

)
+

∫
M

[h(r, vk)vk − µH(r, vk)] dVg ≥ C2‖vk‖2H1

for some suitable positive constants C1, C2. This proves boundedness of {vk}.
Then, up to a subsequence, we may assume that there exists v ∈ H1(M) such
that vk ⇀ v weakly in H1(M). Hence, by Lemma 5.3 vk → v in Lp+1(M ;W ).

By (f3)− (f4) we deduce that

0 ≤ h(r, s)s ≤ W (r)

p
|s|p+1 for any r > 0 and s ∈ R

and by the strong convergence vk → v in Lp+1(M ;W ) we obtain

lim
k→+∞

∫
M

h(r, vk)vk dVg =

∫
M

h(r, v)v dVg , (5.9)

lim
k→+∞

∫
M

h(r, vk)w dVg =

∫
M

h(r, v)w dVg for any w ∈ H1(M) .

By (5.9) and the fact that {vk} is a weakly convergent Palais-Smale sequence,
we infer

lim
k→+∞

(∫
M

|∇gvk|2g dVg − λ
∫
M

v2
k dVg

)
(5.10)

= lim
k→+∞

(
〈Φ′(vk), vk〉+

∫
M

h(r, vk)vk dVg

)
(5.11)

=

∫
M

h(r, v)v dVg = lim
k→+∞

(
〈Φ′(vk), v〉+

∫
M

h(r, v)v dVg

)
=

∫
M

|∇gv|2g dVg − λ
∫
M

v2 dVg .

Since λ < λ1(M) then the map w 7→
(∫
M
|∇gw|2g dVg − λ

∫
M
w2 dVg

)1/2
is

an equivalent norm in H1(M) and hence (5.10), together with the weak
convergence vk ⇀ v, yields vk → v strongly in H1(M). This completes the
proof of the lemma. �

Proof of Theorem 3.9. Let {wk} ⊂ N be a minimizing sequence for Φ
on N and for any k ∈ N define ŵk := wk/‖wk‖H1 . Then {ŵk} is a mini-
mizing sequence for Ψ on S. By a classical argument based on the Ekeland
Variational Principle we deduce that there exists a sequence {vk} ⊂ S such
that Ψ(vk) ≤ Ψ(ŵk), ‖ŵk − vk‖H1 → 0 and Ψ′(vk) → 0 as k → +∞ (see
for example [16, Corollary A3] for more details). This means that {vk} is a
Palais-Smale sequence for Ψ on S and hence by Lemma 5.5 (i) it follows that
{uk} ⊂ N is a Palais-Smale sequence for Φ where we put uk := m(vk) for
any k ∈ N. By Lemma 5.6 we deduce that up to a subsequence {uk} strongly
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converges in H1(M) to a function u ∈ H1(M). This proves that u ∈ N , u
is a minimizer for Φ on N and by Lemma 5.5 (iii) u is a nontrivial critical
point for Φ. �

Proof of Proposition 3.12. We follow closely the argument used in the
proof of Theorem 1.1 in [24]. For completeness we give here the details. First
of all using a standard truncation argument one can show that the space
C∞c (M) of C∞ functions with compact support is dense in H1(M). Then we
show that lim

R→+∞
λ1(BR) = λ1(M) with

λ1(BR) := inf
v∈H1

0 (BR)\{0}

∫
BR
|∇gv|2g dVg∫
BR

v2 dVg
.

Clearly the map R 7→ λ1(BR) is nonincreasing and λ1(M) ≤ λ1(BR) for any
R > 0 and moreover by density of C∞c (M) in H1(M) it follows that for any
ε > 0 there exists v ∈ C∞c (M) such that∫

M
|∇gv|2g dVg∫
M
v2 dVg

< λ1(M) + ε .

Taking R > 0 large enough such that supp v ⊂ BR we obtain λ1(BR) <
λ1(M) + ε.

Using the same argument introduced in the proof of Theorem 3.2 it is
not restrictive assuming that (3.1) admits a positive solution u ∈ H1(M).
For any R > 0 denote by ϕ1,R ∈ H1

0 (BR) a positive eigenfunction of −∆g

corresponding to the first eigenvalue λ1(BR). Then by (f4) and integration
by parts we obtain

0 ≤
∫
BR

h(r, u)ϕ1,R dVg

=

∫
BR

(−∆gϕ1,R − λϕ1,R)u dVg + ψn−1(R)

∫
Sn−1

u(R,Θ)
∂ϕ1,R

∂r
(R,Θ) dΘ

≤ [λ1(BR)− λ]

∫
BR

uϕ1,R dVg

which yields λ1(BR) ≥ λ being
∫
BR

uϕ1,R dVg > 0 . Passing to the limit as

R→ +∞ we obtain λ1(M) ≥ λ, a contradiction. �

6. Proof of Proposition 3.7

Since V∞ < λ1(M) the Hilbert space H1(M) may be endowed with the
following equivalent norm

‖u‖∗ :=

(∫
M

|∇gu|2g dVg − V∞
∫
M

u2 dVg

)1/2

.
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We also introduce the functional

Φ∞(u) =
1

2
‖u‖2∗ −

∫
M

H(u) dVg

and then corresponding Nehari manifold

N∞ := {v ∈ H1(M) \ {0} : 〈Φ′∞(u), u〉 = 0} .

We also put c∞ := inf
v∈N∞

Φ∞(v).

We observe that the assumptions (3.9)-(3.13) are completely similar to
(f2) − (f4) of Theorem 3.9 so that one may follow closely the first part of
the proof of Theorem 3.9 and prove the existence of a bounded Palais-Smale
sequence {uk} ⊂ N for Φ such that Φ(uk)→ c. Up to subsequences we may
suppose that {uk} is weakly convergent in H1(M).

We divide the proof into two cases.

Case 1. Suppose that uk ⇀ u with u 6≡ 0. Then in a standard way one
can show that u is a nontrivial solution of (3.7). This means that u ∈ N .
It remains to show that u is a least energy solution of (3.7). Since {uk} is a
bounded Palais-Smale sequence, by (3.13) and the Fatou Lemma we have

c = lim
k→+∞

(
Φ(uk) +

1

2
〈Φ′(uk), uk〉

)
= lim
k→+∞

1

2

∫
M

[h(uk)uk − 2H(uk)] dVg

≥ 1

2

∫
M

[h(u)u− 2H(u)] dVg = Φ(u) +
1

2
〈Φ′(u), u〉 = Φ(u) .

This proves that u is a least energy solution.

Case 2. Suppose that uk ⇀ 0. By the continuous embedding H1(M) ⊂
L2∗(M) we also have uk ⇀ 0 in Lp+1(M) with p as in (3.11). We claim that
uk 6→ 0 in Lp+1(M). By (3.11) we deduce that for any ε > 0 there exists Cε
such that

|h(s)s| ≤ εs2 + Cε|s|p+1 . (6.1)

If we suppose by contradiction that uk → 0 in Lp+1(M) then by (6.1) with
ε < λ1(M)− supV we obtain

lim sup
k→+∞

(∫
M

|∇guk|2g dVg − (supV + ε)

∫
M

u2
k dVg

)
≤ lim sup

k→+∞

(
〈Φ′(uk), uk〉+ Cε

∫
M

|uk|p+1 dVg

)
= 0

thus proving that uk → 0 strongly in H1(M). This is absurd since N is
bounded away from zero as one can show proceeding as in the proof of Lemma
5.4 (iv). In the geometric assumptions of this proposition, by [3, Lemma 2.26]
there exists a uniformly locally finite covering of M by balls of a fixed radius.
Then we can apply [15, Lemma 2.1.2] to deduce that there exist δ > 0 and
{yk} ⊂M such that ∫

B(yk,1)

u2
k dVg ≥ δ



22 Elvise Berchio, Alberto Ferrero and Maria Vallarino

where B(yk, 1) denotes the geodesic ball of radius 1 centered at yk. The se-
quence {yk} is necessarily unbounded since otherwise we would have uk ⇀
u 6= 0. Hence it is not restrictive assuming, up to subsequences, that d(yk, o)→
+∞ where o is a point of M fixed arbitrarily. Since M is weakly homogeneous
there exists a sequence of isometries {γk} such that d(γk(yk), o) ≤ D for some
D > 0. Then, for any k ∈ N, we define ûk(x) := uk(γ−1

k (x)) so that {ûk} is
bounded in H1(M) and

∫
B(o,D+1)

û2
k dVg ≥ δ. This shows that ûk ⇀ û 6= 0

in H1(M) up to subsequences.

We first complete the proof of the theorem when V is a constant func-
tion. In this way {ûk} is still a Palais-Smale sequence for Φ such that Φ(ûk)→
c and its weak limit û is nontrivial. We found a nontrivial critical point of
Φ which is also a least energy solution as one can prove by proceeding as in
Case 1.

It remains to consider the general case when V is not necessarily con-
stant. By (3.10) we deduce that û is a nontrivial critical point for the func-
tional Φ∞ and in particular û ∈ N∞ and Φ∞(û) ≥ c∞. Therefore by (3.13)
and Fatou Lemma

c = lim
k→+∞

(
Φ(uk)− 1

2
〈Φ′(uk), uk〉

)
= lim
k→+∞

1

2

∫
M

[h(uk)uk − 2H(uk)] dVg

(6.2)

= lim
k→+∞

1

2

∫
M

[h(ûk)ûk − 2H(ûk)] dVg ≥
1

2

∫
M

[h(û)û− 2H(û)] dVg

= Φ∞(û) ≥ c∞ .

On the other hand, by (3.9) and (3.13) we have that c and c∞ admits the
following minimax characterization

c = inf
v∈H1(M)\{0}

max
t>0

Φ(tv) and c∞ = inf
v∈H1(M)\{0}

max
t>0

Φ∞(tv) (6.3)

see Lemma 5.4 (iii) for more details. But Φ(v) ≤ Φ∞(v) for any v ∈ H1(M)
and hence by (6.3) we obtain c ≤ c∞ which combined with (6.2) gives c = c∞.

As shown above in the case V constant, the functional Φ∞ admits a
least energy solution w ∈ N∞. Proceeding as in Lemma 4.1 on can show that
w does not change sign and moreover it is either strictly positive or strictly
negative as a consequence of (3.13) and the strong maximum principle for
variational solutions, see [21, Section 8.7]. Therefore, if V is not constant, i.e.
V > V∞ on set of positive measure, we have

Φ(w) =

∫
M

|∇gw|2g dVg −
∫
M

V (x)w2 dVg −
∫
M

H(w) dVg

<

∫
M

|∇gw|2g dVg − V∞
∫
M

w2 dVg −
∫
M

H(w) dVg = Φ∞(w) = c∞ .

This implies c ≤ Φ(w) < c∞ a contradiction. �
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7. Proof of Proposition 3.8

In the sequel we use the following notations:

B(x,R) := {y ∈M : d(y, x) < R} , S(x,R) := {y ∈M : d(y, x) = R} .

where d is the geodesic distance.

We first prove that the scalar curvature K is necessarily constant in
M . Let D > 0 and Γ be as in Definition 3.6. Let ρ > D be fixed arbitrarily
and let y ∈ M be such that d(o, y) = ρ. Then there exists γ ∈ Γ such that
d(o, γ(y)) ≤ D. Moreover γ(o) 6= o and d(γ(o), o) ≥ ρ − D. Indeed if we
assume by contradiction that d(γ(o), o) < ρ−D then we would have

ρ = d(y, o) = d(γ(y), γ(o)) ≤ d(γ(y), o) + d(o, γ(o)) < D + ρ−D = ρ

and this is absurd. Let x := γ(o) 6= o and denote by ρx the distance of x
from the pole. Since K is constant on S(o,R) for any R > 0 and since γ is
an isometry then K is constant on S(x,R) for any R > 0. We denote by KR

this constant value.

Let 0 < R < ρx be fixed arbitrarily and consider the ball B(x,R). Let
z ∈ B(x,R), ρz := d(o, z). We observe that

B(x,R) ∩ {tx : t ∈ R} =

{
t

ρx
x : t ∈ (ρx −R, ρx +R)

}
and hence − ρz

ρx
x 6∈ B(x,R); but − ρz

ρx
x ∈ S(o, ρz) so that S(o, ρz) 6⊆ B(x,R)

and in particular S(o, ρz) ∩ S(x,R) 6= ∅.
Since K is constant on S(x,R) and on S(o, ρz) and z ∈ S(o, ρz) then

K(z) = KR. We have proved that K(z) = KR for any z ∈ B(x,R) and for
any 0 < R < ρx. Moreover we also have K(z) = KR for any z ∈ B(o,R) and
for any 0 < R < ρx thanks to the rotational symmetry of (M, g) with respect
to o. In particular KR = K(o) for any R ∈ (0, ρx) and hence K(z) = K(o)
for any z ∈ B(o, ρx). But we recall that ρx ≥ ρ−D and hence one may find x
such that ρx is arbitrarily large simply choosing ρ large enough. In this way
one proves that K is a constant κ over all M .

By (H) and (2.2) we then have2ψ′′(r) + (n− 2)
(ψ′(r))2 − 1

ψ
+ βψ(r) = 0

ψ(0) = 0 , ψ′(0) = 1 , ψ′′(0) = 0 .
(7.1)

where we put β = κ/(n− 1). We prove that (7.1) admits a unique solution.

Let ψ1, ψ2 be two solutions of (7.1). Define φi(r) := ψi(r)/r for i = 1, 2
so thatφ′′i (r) +

n

r
φ′i(r) +

n− 2

2r2

φ2
i (r)− 1

φi(r)
+
n− 2

2

(φ′i(r))
2

φi(r)
+
β

2
φi(r) = 0

φi(0) = 1 , φ′i(0) = 0 .

(7.2)
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Then we define w(r) = φ1(r)− φ2(r) and we obtain{
w′′ + n

rw
′ = −n−2

2r2

φ1(r)φ2(r)+1
φ1(r)φ2(r) w − n−2

2

[
(φ′1(r))2

φ1(r) −
(φ′2(r))2

φ2(r)

]
− β

2w

w(0) = 0 , w′(0) = 0 .
(7.3)

Multiplying by rn and integrating we obtain

w′(r) = r−n
∫ r

0

{
−n−2

2
φ1φ2+1
φ1φ2

tn−2w − n−2
2

[
(φ′1)2

φ1
− (φ′2)2

φ2

]
tn − β

2 t
nw
}
dt .

Since limt→0+
φ1(t)φ2(t)+1
φ1(t)φ2(t) = 2 and since the function of two real variables

(z1, z2) 7→ z2
1/z2 is lipschitzian in a neighborhood of (0, 1), we deduce that

for any ε > 0 there exist C > 0 and δ > 0 such that for any r ∈ (0, δ) we
have

|w′(r)| ≤ r−n(n− 2 + ε)

∫ r

0

tn−2|w(t)|dt+ Cr−n
∫ r

0

tn
[
|w(t)|+ |w′(t)|

]
dt

≤
(
n− 2 + ε

n− 1

1

r
+

C

n+ 1
r

)
sup
t∈[0,r]

|w(t)|+ C

∫ r

0

|w′(t)|dt .

Since w(t) =
∫ t

0
w′(s)ds we obtain

|w′(r)| ≤
(
n− 2 + ε

n− 1

1

r
+

C

n+ 1
r + C

)∫ r

0

|w′(t)|dt for any r ∈ (0, δ) .

Up to shrinking δ if necessary we may assume that n−2+ε
n−1

1
r + C

n+1r + C <
n−2+2ε
n−1

1
r for any r ∈ (0, δ) in order to obtain

|w′(r)| ≤ n− 2 + 2ε

n− 1

1

r

∫ r

0

|w′(t)|dt for any r ∈ (0, δ) . (7.4)

If we put h(r) =
∫ r

0
|w′(t)|dt then by (7.4) it follows

h′(r) ≤ n− 2 + 2ε

n− 1

1

r
h(r) for any r ∈ (0, δ) .

This implies that the map r 7→ r−
n−2+2ε
n−1 h(r) is nonincreasing in (0, δ) and

hence if we choose ε = 1
2 , for any r ∈ (0, δ) we have

0 ≤ r−1h(r) ≤ lim
t→0+

t−1h(t) = lim
t→0+

∫ t
0
|w′(s)|ds
t = lim

t→0+
|w′(t)| = 0 .

This proves that h ≡ 0 in (0, δ) and hence, in turn, we also have w′ ≡ 0; since
w(0) = 0 then w ≡ 0 in (0, δ) and by the definition of w, φ1, φ2 we finally
obtain ψ1 ≡ ψ2 in (0, δ). The fact that ψ1 and ψ2 coincide over all (0,+∞)
follows immediately from classical uniqueness for Cauchy problems.

We claim that κ ≤ 0, otherwise if κ > 0, by uniqueness, we would have

ψ(r) = α−1 sin(αr) where we put α =
√

κ
n(n−1) , in contradiction with (H).

The two alternatives in Proposition 3.8 follow as well. �
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Birkhäuser, Boston, 2007

17. M.P. do Carmo, Riemannian geometry. Mathematics: Theory and Applications.
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