
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Cross-layer reliability evaluation, moving from the hardware architecture to the system level: A CLERECO EU project
overview / Vallero, Alessandro; Tselonis, S.; Foutris, N.; Kaliorakis, M.; Kooli, M.; Savino, Alessandro; Politano,
GIANFRANCO MICHELE MARIA; Bosio, A.; Di Natale, G.; Gizopoulos, D.; DI CARLO, Stefano. - In:
MICROPROCESSORS AND MICROSYSTEMS. - ISSN 0141-9331. - STAMPA. - 39:8(2015), pp. 1204-1214.
[10.1016/j.micpro.2015.06.003]

Original

Cross-layer reliability evaluation, moving from the hardware architecture to the system level: A
CLERECO EU project overview

Publisher:

Published
DOI:10.1016/j.micpro.2015.06.003

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2624569 since: 2016-09-16T18:06:43Z

Elsevier

Cross-Layer Reliability Evaluation, moving from the Hardware Architecture to the System
level: a CLERECO EU Project overview

A. Valleroa, S. Tselonisb, N. Foutrisb, M. Kaliorakisb, M. Koolic, A. Savinoa, G. Politanoa, A. Bosioc, G. Di Natalec, D.
Gizopoulosb, S. Di Carloa,∗

aDepartment of Control and Computer Engineering Politecnico di Torino, Torino, Italy
bDepartment of Informatics and Telecommunications University of Athens, Athens, Greece

cLIRMM (Université Montpellier / CNRS UMR 5506), Montpellier, France

Abstract

Advanced computing systems realized in forthcoming technologies hold the promise of a significant increase of computational
capabilities. However, the same path that is leading technologies toward these remarkable achievements is also making electronic
devices increasingly unreliable. Developing new methods to evaluate the reliability of these systems in an early design stage has
the potential to save costs, produce optimized designs and have a positive impact on the product time-to-market.

CLERECO European FP7 research project addresses early reliability evaluation with a cross-layer approach across different
computing disciplines, across computing system layers and across computing market segments. The fundamental objective of the
project is to investigate in depth a methodology to assess system reliability early in the design cycle of the future systems of the
emerging computing continuum. This paper presents a general overview of the CLERECO project focusing on the main tools and
models that are being developed that could be of interest for the research community and engineering practice.

Keywords: Reliability evaluation, fault injection, statistical models

1. Introduction

Most things we rely on in our everyday life contain
electronic-based information and have enough computing
power to run embedded software applications, which connect
to the Internet and remote advanced computing services to get
access to virtually unlimited resources. This future computing
continuum, composed of a wide set of heterogeneous platforms,
promises to be a fertile environment to engineer advanced ser-
vices with high added value.

Radiation effects, wear-out, aging and variability throughout
the operational period of a system, extreme scaling processes
that move towards 12nm manufacturing process nodes and be-
yond, the high design complexity, and a fast time-to-market de-
mand are expected to make system components extremely unre-
liable. As an example, the single bit error rate of a six-transistor
SRAM that is in the order 1.5 × 10−6 for a 22nm technology is
expected to increase up to 5.5 × 10−5 in 16nm technology and
2.6 × 10−4 in 12nm technology [1].

From a reliability perspective, system designers have to meet
precise reliability requirements. These requirements are highly
domain dependent and are influenced by the criticality of the
considered system or component (e.g., aerospace and medical
applications require very low failure rates). Reliability is there-
fore increasingly driving several design decisions at the tech-
nology, hardware and software level.

∗Corresponding Author: S. Di Carlo, email: stefano.dicarlo@polito.it, tel.:
+39 011 090 7080, Fax.: +39 011 090 7099

1

Error management solutions at all design/implementation
levels are feasible. Technology can be hardened [2–8], hard-
ware architectures may include redundancy [9–19], and finally
all software layers may implement error detection and recovery
mechanisms [20–26]. On the one hand, this enables design-
ers to apply cross-layer holistic design approaches to manage
errors in their systems. On the other hand, this enlarges the
design space making design optimization complex.

Nowadays, the dominant approach to design reliable sys-
tems consists in worst-case design. However, it is well known
that several reliability-oriented design decisions lead to costs in
terms of area, complexity, performance and energy budget [27].
Reliability engineers and system architects need to be provided
with adeguate tools to cope with this complexity and to take
design decision able to enable reliability targets to be met with
minimum cost. Moreover, these decision must be taken as early
as possible in the design process when redesign and optimiza-
tions are still affordable. Products failing to reach the reliability
objectives in the late stage of the design may lead to commer-
cial failure with severe economical consequences.

Current reliability analysis approaches strongly rely on mas-
sive and time-consuming RTL fault injection campaigns, which
are becoming a bottleneck due the increasing complexity of
computing systems. Simulating a complete system composed
of microprocessors and accelerators embedding several tens of
processing cores and memory blocks, and executing complex
applications is becoming prohibitive. Fault injection at the RTL
level can require several months of CPU time. This strongly im-
pacts the project TTM and poses a serious threat on the success

Preprint submitted to Microprocessors and Microsystems December 1, 2015

of a product in case the target reliability levels are not reached
and redesign of part of the system is required. Moreover RTL
fault injection requires a full system already designed and can
be applied only in the late stages of the design process. At
these stages, design modifications to improve reliability are ex-
cessively costly.

The FP7 Collaboration Project CLERECO addresses early
system reliability evaluation with a cross-layer approach [28–
30]. The fundamental objective of the project is to investigate
methodologies to accurately perform system reliability analysis
focusing on the early stages of the design cycle for the future
systems of the emerging computing continuum [31].

This paper presents an overview of the CLERECO project
at the end of the first year of its research activity. It focuses
on the tools that are being developed that could be of interest
for the research community and engineering practice. Given
the limited space, the paper does not provide detailed descrip-
tions of all developed models and tools. The emphasis of the
paper is instead to present CLERECO’s perspective on the way
system reliability analysis can be performed with a cross-layer
approach considering the main layers that constitute a modern
digital system.

The paper is organized as follows: Section 2 introduces the
cross-layer approach to evaluate the system reliability. Section
3 overviews CLERECO’s general methodology to perform sys-
tem reliability analysis, and sections 4 and 5 describe tools to
evaluate the hardware and software contribution to the system
reliability. Eventually, Section 6 presents final considerations
and future perspectives for the system reliability estimation.

2. A cross-layer approach for system reliability evaluation

Performing cross-layer system reliability analysis, requires
a deep understanding of the layers where faults appear in the
system, how faults generate errors, and how errors propagate
across layers, eventually impacting the final mission of the sys-
tem.

Figure 1 provides a graphical representation of how faults
may be generated and propagated in a system. Following the
Computing Community Consortium Visioning Study on Cross-
Layer Reliability [32], a system can be seen as a stack go three
main layers:

1. the technology layer that accounts for the raw technology
used to build its hardware blocks,

2. the hardware layer that accounts for the hardware blocks
and their architectures built on top of the technology, and

3. the software layer that includes the system and user appli-
cations executed on the hardware platform.

The technology used to build hardware components is the
main root of hardware faults due to effects such as physical
fabrication defects, aging or degradation (e.g., NBTI), envi-
ronmental stress (e.g., radiations), fabrication variability, etc.
Within CLERECO we focus on how these faults propagate
through the other layers composing the system. After a raw
fault manifests in a hardware block, it can be propagated

Raw error
rates

Time Vulnerability
Factor (TVF)

Cell Vulnerability
Factor (TVF)

µ Architecture Vulnerability
Factor (µAVF)

Architecture Vulnerability
Factor (AVF)

Software Vulnerability
Factor (SVF)

System	
 Failures

Figure 1: Cross-layer error propagation. Faults manifests in the technology and
then propagate through the hardware and software layers. During this propa-
gation different masking effects may block the error propagation thus reducing
their impact on the final system’s reliability.

through the different hardware structures composing the sys-
tem. Several masking effects can mitigate the impact of these
faults. We define as vulnerability factor the conditional proba-
bility of a component to produce an erroneous result given the
occurrence of a raw error in one of the lower layers of the design
hierarchy. Several vulnerability factors do exist in a system.

Faults can be mitigated at the technology level by timing
effects that prevent erroneous values to be sampled by mem-
ory elements (Time Vulnerability Factor - TVF) [33–35], or by
logic masking effects (Cell Vulnerability Factor - CVF). Faults
that manage to cross the technology layer and enter the hard-
ware architecture layer can still be masked both at the micro-
architecture level (µ Architecture Vulnerability Factor - µAVF)
or at the architecture level (Architecture Vulnerability Factor)
[36–38]. Finally those faults that are not masked at the hard-
ware layer enter the software layer of the system by corrupting
either data or instructions of software applications. These errors
can damage the correct software execution by producing erro-
neous results if the computation is completed, or by preventing
the execution of the application by causing exceptions, inter-
rupts, abnormal terminations or applications hang-up. Never-
theless, the software stack can also play an important role in
masking errors, introducing a further error masking effect (Soft-
ware Vulnerability Factor - SVF), which may further improve
the system reliability [39–46]

Performing system reliability analysis means calculating the
different vulnerability factors associated with the components
of a system, and then understanding how all masking effects
work together and how they influence the behavior of the sys-
tem. Figure 2 provides a high-level view of the CLERECO
cross-layer reliability evaluation flow. The key concept ex-
ploited in CLERECO is to analyze the three system layers sepa-
rately computing different vulnerability factors for the different
blocks. Vulnerability factors are then statistically combined in

2

order to infer reliability measures at the system level. Analyz-
ing the layers in isolation has the main advantage to reduce the
complexity of the analysis focusing on the peculiar masking
effects each layer can provide. As reported in Figure 2, each
layer defines an interface with the upper layer, which in turn
sets how faults can be propagated from one layer to the next
one. For each layer, in CLERECO, we devise to identify a set
of tools and models able to perform this characterization.

Spice models to analyze
failure modes of future

technologies

Architectural fault injection for
complex functional modules

(e.g., microprocessors,
accelerators)

Software virtualization coupled
with software fault injection

So#ware	
 fault	
 models	

Hardware	
 fault	
 models	

TVF	

CVF	

AVF	

μAVF	

SVF

Statistical
models

System	

Reliability	

Evalua=on	

Figure 2: CLERECO Cross-Layer Reliability Evaluation Flow.

Among the three layers composing the system, the technol-
ogy layer is probably the most well studied layer. Studying
faults that may affect new technologies such as FinFET [47],
starts from the definition of predictive models [48] for the tech-
nology and requires the development of models for the basic
cells (e.g., memory cells, boolean gates, etc.) that need to be an-
alyzed. Resorting to these models, electrical simulations (e.g.,
Spice, TCAD) can be used to compute failure probability and
to derive the TVF that will be required for the analysis of the
next layers of the stack.

In this paper we focus on the vulnerability factors introduced
by microprocessors and software routines and on the statistical
models used to combine those vulnerability factors.

3. System level reliability modeling

Early system reliability analysis requires the identification of
a proper high level statistical model enabling to represent the
system and its vulnerability factors and to perform statistical
reasoning.

Fault Tree Analysis (FTA) is a very common statistical re-
liability analysis [49]. FTA is a top down, deductive failure
analysis in which an undesired state of a system is analyzed us-
ing Boolean logic to combine a series of lower-level events. It
is mainly used in the fields of safety engineering and reliabil-
ity engineering to understand how systems can fail. Another
very similar technique that is usually employed to statistically
investigate the reliability of a system is Reliability Block Di-
agram (RBD). The most fundamental difference between FTD

and RBD is that RBD works in the ”success space”, and thus
looks at system successes combinations, while FTD works in
the ”failure space” and looks at system failure combinations.
Both FTD and RBD do not enable to model reliability interac-
tions among components or subsystems, or to represent system
reliability configuration changes [50].

Markov chains represent a significant alternative to FTD or
RBD analysis [51]. A Markov chain is a random process that
undergoes transitions from one state to another on a state space.
The probability distribution of the next state only depends on
the current state (Markov property). Markov chains have sev-
eral modeling issues when applied to reliability analysis. First,
the whole system is modeled as a set of states, which may ex-
plode in complex systems. Second, the Markov property limits
the possibility to fully analyze the propagation of errors among
states.

Recently Bayesian Networks (BN) are gaining interest in
modeling system reliability in hardware devices [52]. BNs are
a statistical model to represent multivariate statistical distribu-
tion functions. They can model relationships among random
variables and their respective probability density functions by
means of conditional probability functions. They main advan-
tage with respect to the previous techniques is the degree of
freedom they have to define input causes of failure. The system
can be described in terms of blocks and not just states. Blocks
can be studied locally to populate the model, leaving the analy-
sis of the interaction of the blocks to a high-level statistical rea-
soning. Bayesian networks have been selected in CLERECO as
basic model to build early system reliability analysis.

HW Layer

SW Layer

Flip-Flop Technology SRAM. Technology

Tech. Layer

L1 Cache Register File

X86 microprocessor

RAM

DRAM Technology

Wrong Data In Operand

Func.1
Func.2

Application

•  Spice simulations
•  Analysis of real

devices

•  Micro-architectural fault
injection

•  Analytical model
•  Average estimation for

different application domains

•  Software fault-injection (e.g.
LLVM)

Figure 3: System level reliability evaluation using Bayesian a bayesian model
of the system. Nodes of the model represent system resources (e.g., technology,
hardware, software), while edges represent how these resources influence each
other when faults arise in the system.

Figure 3 shows a very simplified example of Bayesian system
modeling. It is important to highlight that this is not an example
of a real model. Real models can account for up to hundreds
of nodes and arcs. However, this simplified example can be
used to introduce the basic modeling concepts and to show how

3

statistical reasoning on system reliability can be implemented.
System modeling using a BN starts by identifying the net-

works nodes. Network nodes model the components of the sys-
tem. They can be split into technology nodes, hardware nodes
and software nodes following the three layers introduced in Fig-
ure 2. Each node is associated to a state. The state space can
be either discrete or continue. For the sake of simplicity in this
example we simply consider a binary state space including the
failure and success space.

The technology layer plays an active input role. Technology
nodes are the root of the system model. Each node identifies
a specific technology process used to build a certain hardware
block embedded in the system. Each technology node is char-
acterized by the raw failure probability with respect to the tar-
get fault model (e.g., soft error rate). It can be either provided
by manufacturers or estimated through electrical simulations on
predictive models.

Hardware nodes are intermediate nodes of the network that
define the hardware resources assembled together to compose
the hardware infrastructure. Each hardware node is connected
to a technology node to model the relationship between the
hardware architecture and the underlying technology. More-
over, hardware nodes can be connected to other hardware nodes
to model error propagations or masking between components.
Each intermediate node is characterized by a Conditional Prob-
ability Table (CPT). This table considers all possible combina-
tions of states of the parents nodes (instantiations). For each
distinct instantiation of parent nodes, the CPT defines the prob-
ability of the node to be in a certain state (e.g., failure or suc-
cess) given the instantiation of the parents nodes.

In order to decouple the analysis of the software nodes from
the one of the hardware nodes special attention is required to
define the interface between the two layers. In CLERECO
we have identified a set of high level Software Fault Models
(SFMs), which model how hardware errors propagate to soft-
ware (see Section 5). They mainly rely on alterations that have
an impact on the Instruction Set Architecture (ISA) of the mi-
croprocessor. They are modeled as additional nodes that repre-
sent an intermediate layer between the hardware nodes and the
software nodes (e.g., wrong data in operand node in Figure 3).

Eventually, the software nodes are the final players of the
system model. Errors generated in the technology can be prop-
agated up to the software. At this level they can further propa-
gate during the computation, mainly based on how the software
manipulates data or on the way the flow of execution follows
its proper path. Software nodes represent software functions or
portions of software functions. Arcs at this level model propa-
gation of errors among different portions of the software. Again
each node must be characterized using a CPT expressing the
failure probability of the node given the instantiations of the
parent nodes.

Once a Bayesian system reliability model is built, the model
can be used to reason about the overall reliability properties of
the system.

Bayesian networks provide full representations of probabil-
ity distributions over their variables. That implies that they can
be conditioned upon any subset of their variables, supporting

any direction of reasoning. For example, one can perform diag-
nostic reasoning, i.e., reasoning from symptoms to cause, such
as when we observe a failure in the application, we can up-
date our belief about the contribution of each node to this fail-
ure, thus identifying those nodes that most likely contribute to
the failure. Note that this reasoning occurs in the opposite di-
rection to the network arcs. Differently, one can perform pre-
dictive reasoning, starting from the information about causes
(i.e., raw technology failure rates) to new beliefs about effects
(i.e., application failures), following the directions of the net-
work arcs. Statistical reasoning resorting to Bayesian models
is a well known statistical approach and the reader may refer to
[53] for more detailed descriptions.

By resorting to the proposed high-level statistical reasoning,
system designer are provided with a tool enabling to perform
early estimation of the overall system reliability. Moreover, us-
ing diagnostic reasoning, weak components can be probabilis-
tically identified. This provides means to drive the reliability
design effort toward the most critical components of the system
thus optimizing the overall system. Nevertheless, computing
the conditional probabilities that populate the Bayesian model
is still a complex task that requires dedicated tools to be com-
pleted. These probabilities represent the vulnerability factors
introduced in Section 1. Next sections overview two of the main
tools developed in CLERECO to accomplish this task.

4. Evaluating the hardware contribution to system’s relia-
bility through micro-architectural simulation

Functional modules such as microprocessors, accelerators
(e.g., GPUs, APUs) and memory controllers represent the
most complex hardware components of modern digital system.
Therefore, they are likely to provide a major impact on the hard-
ware vulnerability factors of a system. For this reason creating
tools able to characterize them in the framework of the pre-
sented system reliability model is one of the most critical tasks
considered in CLERECO.

In general, there are two categories of tools that enable to
study these complex modules:

1. RTL-simulators, and
2. micro-architectural simulators.

RTL simulators enable to consider several circuit-level char-
acteristics facilitating accurate hardware reliability estimations.
However, their low simulation throughput is a limiting factor.

Micro-architectural simulators have the ability of executing
faster simulations than RTL simulators. It is widely known that
many important components modeled in micro-architectural
simulators have a very direct relation to the actual hardware
implementation. Such components are mainly storage-related
components like DRAMs, SRAMs (caches), registers and reg-
ister files, buffers and queues. In a micro-architectural sim-
ulator these structures are implemented as single or double-
dimensional arrays of variables in the programming language
used to implement the simulator. It is widely known that many

4

important components modeled in micro-architectural simula-
tors have a very direct relation to the actual hardware imple-
mentation. Fault injection analysis through micro-architectural
simulators for these structures very closely model the hardware
components and a major effort has been devoted in the project
for the development of these type of tools. On the other hand,
control logic blocks and functional components are very sim-
ply implemented on architectural simulators and different ap-
proaches are under investigation to compensate for this inaccu-
racy.

MAFin is the CLERECO fault injector framework created
on top of the MARSSx86 micro-architecture level simulator
[54]. MARSSx86 [55] is a full system simulator built on top of
PTLsim simulator [56] and incorporating the QEMU emulator.
PTLsim simulates the details of an x86 microprocessor while
QEMU provides to MARSSx86 its full system capabilities.

We selected MARSSx86 as the base of the development of
our fault injector tool because it is a full system simulator that
models accurately x86 architectures (cycle accurate), it is pub-
licly available and regularly supported. Moreover, MARSSx86
models both a complex out-of-order and a simpler in-order
(Atom-like model) single core architecture, as well as multi-
core x86 architectures. Thus, the features and capabilities of the
original MARSSx86 model coupled with our extensions cover
the characterization of microprocessors employed in both High
Performance Computing and Embedded Computing and based
on the widespread x86 ISA.

The fault injection infrastructure provides users with the ca-
pability of tracing the propagation of a fault in a hardware struc-
ture at the micro-architectural level, till its manifestation at the
ISA, operating system or application level [54].

Figure 4 summarizes all structures at the micro-architectural
level that can be studied through fault injection. A complete
reliability study for all storage arrays is fully supported. These
storage arrays are significantly more vulnerable to faults than
control logic (in particular for transient faults). Moreover, the
issue queues, i.e., the data-structures which facilitate the out-
of-order execution in modern microprocessors can be studied
as well.

4.1. Fault models

The fault injection infrastructure enables injection of both
single faults and multiple faults. Single faults can be transient,
intermittent and permanent. Multiple faults can be every possi-
ble combination of single faults in the form of spatial faults or
temporal faults. For instance, spatial faults may represent the
effect of a single particle strike that flips the state of multiple
storage elements on a contiguous rectangle or square. Tempo-
ral faults may instead be the effect of multiple but independent
single-event upsets that are distributed over time.

Transient faults are modeled by flipping (XOR) the value of
a randomly selected bit in a randomly selected clock cycle dur-
ing simulation. Intermittent faults are modeled by setting the
state of storage elements to 1 (OR) or 0 (AND), in a randomly
selected cycle, for a random period. Permanent faults are mod-
eled by setting persistently to 1 (OR) or to 0 (AND) the value

Legend:

Valid bit of TLB

Issue Queues Tag Array of TLB Tag Array of Caches

Valid bit of Caches

L1-D
(32k)

L1-I
(32k)

L2
(1MB)

L3
(4 to 8 MB for i7)

DTLB ITLB

ROB

Instruc(on	

Prefetcher	
 of	
 L1-­‐I	

Instruc(on	

Prefetcher	
 of	
 L1-­‐D	

BTB LSQ FP
Register

File

INT
Register

File

x86_64 Out of Order

Figure 4: Structures at the micro-architectural level that can be studied through
fault injection. All structures can be arbitrary sized in order to meet the require-
ments of the final design.

of a randomly selected storage element for the entire simulation
time.

In general, the set of fault models considered by the injector
is flexible enough to reproduce a wide set of real fault models
identified during the characterization of the technology layer.

4.2. Fault Injection Framework
Figure 5 shows the general architecture of MaFIN.

Fault
database

Fault
Generator

MARSSx86

Stats
database

Controller

Stats Handler

Fault Handler

Workload

Parser

Processing

Vulnerability
factors

Figure 5: MaFIN high-level block diagram.

For the development of our tool, we extended the original
version of MARSSx86 by adding data arrays in caches as well
as by making all the necessary extensions to support compre-
hensive fault injection campaigns. Our extensions increase the
simulation time but these modifications are necessary to realize
fault injections in these important missing arrays. Overhead in
simulation time due to the fault injection infrastructure was kept
to a minimum to enable fast vulnerability factors computation.
To perform a micro-architectural fault injection campaign for
a given workload, four steps are required to obtain the desired
results.

Step 1. This is a preliminary step used to create a so called
checkpoint chk x for the given workload. A checkpoint in-
cludes the output as well as other parameters (e.g. execution

5

time) related to the execution of the workload without inject-
ing any fault. chk x represents the golden execution used to
classify the effect of the injected faults as reported in Step 4.

Step 2. After chk x is calculated, the Fault Generator can per-
form its task. It is executed every time a new injection campaign
must be performed. Its main goal is to generate a database of
faults (fault database) according to the fault injection require-
ments. More specifically, every single injection experiment is
characterized by a fault mask that is built according to the tar-
get fault model. The fault mask embeds several fault attributes
including:

1. processor id: the targeted processor in a multicore ar-
chitecture.

2. module id: the targeted micro-architecture module in the
processor.

3. fault mask: the set of bits that may change the value in
a storage array.

4. fault type: transient, intermittent and permanent. It de-
termines the type of bitwise operation that is executed be-
tween the fault masks and the targeted storage arrays (i.e.,
for stuck-at-0 AND, for stuck-at-1 OR, for bit flip XOR).
In the case of multiple faults,different sets of fault mask
bits do exist.

5. duration: used in the case of intermittent faults to spec-
ify for how many clock cycles the fault is active.

6. activation cycle: the point in time during the simula-
tion in which the fault is injected in the targeted structure.

As soon as a fault mask for a single experiment is generated,
it is stored into a database containing all fault masks needed
for the fault injection campaign. The Fault mask generation
process is very flexible since it allows to generate a large set of
fault models.

Step 3. At this point, the fault injection campaign is ready to
start. The Fault Handler and the Stats Handlers are responsible
for two independent processes:

1. The Fault Handler manages the fault injection campaign,
i.e., it manages the fault injection experiments. Each fault
injection experiment consists in the execution of the work-
load during which faults are injected according to fault
masks. In details, the set of fault mask attributes are
passed through the Injection Interface from the fault mask
database to the extended MARSSx86 simulator.

2. The Stats Handler manages the collection of information
related to fault injection experiments required to classify
the outcome of the system. In particular, it collects the
following files for any given fault injection experiment: (i)
the output of the application, (ii) the file that includes the
redirected std err, (iii) the file of statistics, (iv) the file
with logs.

The injection campaign ends when all fault injection exper-
iments have been executed to the end. At this point, the most
time consuming part of the overall process is complete.

Step 4. Last step is to establish the final outcome of each fault
injection experiment so that statistics about fault injection can
be collected. More specifically the Parser is responsible for
comparing the files provided by the Stats Handler with the
checkpoint chk x. The outcome of each experiment is clas-
sified according to the categories reported in Table 1 and vul-
nerability factors for the different structures can be computed
based on these results and used to feed the presented system
reliability model.

Table 1: Set of categories in which results of a fault injection experiment can
be classified.

Hangs The application does not terminate within a
reasonable time interval.
(we have set this interval to 3x of the execution
time of the fault-free case).

SDC The output of application has been corrupted.
DUE An unexpected exception, assertion, or

segmentation fault, deadlock or interrupt occurred.
Simulator crashes, either during simulation or
emulation phase, are also clustered into this
category.

Masked No mismatch at the application output.

5. Evaluating the software contribution to system’s reliabil-
ity through software virtualization

The software stack plays an important role in masking errors,
thus enabling to improve the system reliability. In order to de-
couple the analysis of software masking probabilities from the
target hardware architecture, therefore enabling refuse of com-
puted statistics, we need to investigate methods and tools to:

• describe the software independently from the target hard-
ware architecture, and

• study how errors in the hardware resources propagate
through the software routines and possibly impact the cor-
rect behavior of the applications.

Figure 6 summarizes the main concepts used in CLERECO
to analyze the software vulnerability factor of a system.

When analyzing software applications independently from
the target hardware layer, the Instruction Set Architecture (ISA)
used to encode the program, which represents the main link be-
tween the hardware and the software domain, is still undefined.
It cannot therefore be exploited to analyze the fault propagation
through the software stack.

In CLERECO, we rely on the concept of software virtualiza-
tion as an efficient, flexible and cost saving solution to enable
the abstraction of the ISA from the hardware layer. The soft-
ware vulnerability factor will depend on a Virtual Instruction
Set Architecture (VISA) used to describe complex programs,

6

as well as on a set of Software Fault Models describing the way
hardware errors can manifest in a program.

Resorting to these two basic building blocks, fault injection
of software fault models in a virtual environment can be ef-
ficiently exploited to analyze how faults propagate through the
software application, and how they impact the correctness of the
results. It is worth remembering that performing fault injection
campaigns at the software layer is far less computational inten-
sive than performing similar campaigns at the architectural or
RTL level. This enables us to characterize realistic applications
in a limited computational time.

Hardware Layer

Software Fault
Models

Software Layer

Application Software

Operating System

Virtual ISA

Figure 6: Software stack

5.1. Virtual Instruction Set Architecture

Different virtualization systems implementing VISAs are
available in the literature: Java [57], .NET [58] / Mono [59],
and LLVM [60].

Java is widely used in web-based applications. However, it
has the disadvantage of not being really suitable for both High
Performance Computing and Embedded Applications. More-
over, the Java virtual machine is restricted to the Java program-
ming language, thus limiting the spectrum of software that can
be analyzed.

The .NET framework consists of a virtual machine able to
execute programs written using the Common Language Infras-
tructure (CLI) defined by Microsoft and standardized by ISO
and ECMA. To the best of our knowledge, no fault injection
environment is actually available for this framework.

LLVM (Low Level Virtual Machine) is a framework that uses
virtualization with Virtual Instruction Sets to perform complex
analysis of full software applications on different architectures.

LLVM is a compiler framework designed to support trans-
parent, life-long program analysis and transformation for ar-
bitrary programs, by providing high-level information to com-
piler transformations at compile-time, link-time, run-time, and
in idle-time between runs. In addition to the full tool chain re-
quired for software design (e.g., compiler, optimizer), LLVM
provides a set of additional tools explicitly devoted to perform
investigation of different software properties.

LLVM uses the Intermediate Representation (IR) as a form
to represent code in the compiler. It symbolizes the most im-
portant aspect of the framework, because it is designed to host
mid-level analysis and transformations found in the optimizer
section of the compiler. The LLVM IR is independent from
the source language and the target machine. It is easy for a
front-end to generate, and expressive enough to permit impor-
tant optimizations to be performed for real targets.

Given these premises LLVM represents a very promising vir-
tualization platform for the analysis of the Software Vulnera-
bility Factor of complex applications. It has therefore been se-
lected as target VISA for the CLERECO project.

5.2. Software Fault Models

Research approaches that try to consider the impact of soft-
ware in the reliability of a full system still start from low level
hardware faults [61, 62], trying to propagate them through the
hardware architecture to the software layers in order to evaluate
their impact on the final system outcome [63–65]. This prop-
agation method requires complex and time consuming simula-
tions of hardware models that do not enable to analyze complex
software stacks.

CLERECO software analysis approach starts from a set of
software fault models defined at the VISA level that can be di-
rectly linked to the effect of faults arising at the hardware level.
Table 2 reports a preliminary list of identified Software Fault
Models considered in CLERECO. Software fault models can
be grouped in three main categories:

• Data fault models: they enable to model errors corrupting
data processed by a software application. They include: (i)
Wrong Data in a Operand, (ii) Not-accessible Operand,
and (iii) Operand Forced Switch.

• Code fault models: they enable to model errors that cor-
rupt the set of instructions composing a program. They
include: (i) Instruction Replacement, (ii) Faulty Instruc-
tion, (iii) Control Flow Error.

• System fault models: they enable to model both timing er-
rors and communication/synchronization errors during the
software execution. They include: (i) External Peripheral
Communication Error, Signaling Error, Execution timing
Error, Synchronization Error.

5.3. LLVM based fault injector

LLVM already comprises two projects aimed at developing
LLVM based fault injectors: (i) LLFI [66, 67] and (ii) KULFI

7

Table 2: Software Fault Models

Software Fault Model Description
Wrong Data in a Operand An operand of the ISA instruction

changes its value
Not-accessible Operand An operand of the ISA instruction

cannot change its value
Source Operand Forced An operand is used in place of
Switch another
Instruction Replacement An instruction is used in place

of another
Faulty Instruction The instruction is executed incorrectly
Control Flow Error The control flow is not respected

(control-flow faults)
External Peripheral An input value (from a peripheral)
Communication Error is corrupted or not arriving
Signaling Error An internal signaling (exception,

interrupt, etc.) is wrongly raised
or suppressed.

Execution timing Error An error in the timing management
(e.g. PLL) interferes with the correct
execution timing.

Synchronization Error An error in the scheduling processes
causes an incoherent synchronization
of processes/tasks.

[68]. Nevertheless, both projects do not fit CLERECO require-
ments. Their main limitation is the set of considered fault mod-
els, which are mainly limited to bit-flips in the microprocessor
and do not consider high level fault models as the one defined in
Table 2. Moreover, both LLFI and KULFI define the outcome
of the fault simulation as the impact of the hardware faults on
the whole system while in CLERECO we are interested on eval-
uating the impact of the defined software fault models on the
software execution, decoupling this analysis from the hardware
architecture.

We therefore designed an ad-hoc fault injection infrastructure
on top of the LLVM virtualization framework. The tool is able
to process the following information items:

• The original target source code written in any program-
ming language supported by LLVM [69] (e.g., C, C++,
Objective-C, Fortran, Python).

• An input file containing the fault injection parameters: the
set of software fault models to inject and the correspond-
ing number of simulations to perform, as well as the list
of variables to monitor after the injection and their corre-
sponding location.

• A set of parameters that enable to tune how the simulation
results are compared against a golden execution to identify
classes of faulty software behaviors.

As an output the tool provides a set of statistics on the iden-
tified software faulty behaviors as classified in Table 1.

Figure 7 presents the structure of the fault injector environ-
ment. Starting from the original source code, the tool generates

FI Parameters:
•  Fault Models
•  Number of Injections
•  Variables to monitor

Original Source Code

LLVM Compilation

LLVM Code

Fault Injection

LLVM Code LLVM Code LLVM Code LLVM Faulty Code

Outputs:
•  Execution time
•  Standard / Variables Output
•  Errors

Outputs:
•  Execution time
•  Standard / Variables Output
•  Errors

Outputs:
•  Execution time
•  Standard / Variables Output
•  Errors

Outputs:
•  Execution time
•  Standard / Variables Output
•  Errors

Execution

Golden Execution

Software Faulty Behaviors

Analysis

Figure 7: Design of the Fault Simulator.

the LLVM code that is used in the whole process of injection
and analysis. Three main steps are then performed.

Step 1. Software fault models are injected into the LLVM code
respecting the input parameters. A LLVM file representing a
faulty program is generated for each fault.

Step 2. The faulty programs are executed and each output is
saved in a log file. Also the original LLVM code is executed
and its output is redirected to a golden file.

Step 3. The final step is the analysis, where the log files cor-
responding to the outputs of the fault injection are compared
with the golden output in order to evaluate the different soft-
ware behaviors. Based on these statistics, vulnerability factors
for the different software functions can be easily computed and
eventually used to populate the system level reliability model
proposed in Section 3

6. Conclusions

Reliability is a key challenge for the next generation comput-
ing systems, and its precise evaluation in the early stage of the
design process is pivotal for the design of high optimized and
efficient future systems.

Current tools and models are still not mature to provide early
reliability evaluations for a large set of applications as the ones
that will be expected in the upcoming computing continuum.
By closing this gap, significant improvements in the products
performance and quality will be expected.

In this paper we have presented a very high level overview of
the preliminary achievements obtained by the FP7 CLERECO
project. We are aware that, due to limits in space several tech-
nical details on the specific methodology could not be included.
Nevertheless, the paper should give the reader an indication on
the roadmap followed in the project to implement cross-layer

8

early reliability evaluation tools. Results presented in this pa-
per are related to the first year of activity of the project. Several
activities are still on-going and new tools and models are ex-
pected to be delivered in the upcoming months in order to build
a full framework enabling reliability evaluation starting from
the technology up to the full system.

To conclude we would like to emphasize that CLERECO so-
lutions are not intended to replace reliability validation tech-
niques employed at the end of the design to assess the final
reliability of a product before its commercialization (e.g., stress
tests, radiation tests, etc.). Instead they work at the beginning
of the design cycle to help reliability engineers taking decisions
able to optimize the designed systems and to increase the prob-
ability of success of the designed products.

7. ACKNOWLEDGMENT

This paper has been fully supported by the 7th Frame-
work Program of the European Union through the CLERECO
Project, under Grant Agreement 611404.

8. References

[1] S. R. Nassif, N. Mehta, Y. Cao, A resilience roadmap, in: Proceedings
of the Conference on Design, Automation and Test in Europe, European
Design and Automation Association, 2010, pp. 1011–1016.

[2] S. Krishnamohan, N. R. Mahapatra, Analysis and design of soft-error
hardened latches, in: Proceedings of the 15th ACM Great Lakes sym-
posium on VLSI, 2005, pp. 328–331.

[3] M. Hosseinabady, P. Lotfi-Kamran, G. Di Natale, S. Di Carlo, A. Benso,
P. Prinetto, Single-event upset analysis and protection in high speed cir-
cuits, in: Eleventh IEEE European Test Symposium, 2006. ETS ’06.,
IEEE, 2006, pp. 29–34.

[4] R. Rodrı́guez-Montañés, D. Arumı́, S. Manich, J. Figueras, S. Di Carlo,
P. Prinetto, A. Scionti, Defective behaviour of an 8t sram cell with
open defects, in: Advances in System Testing and Validation Lifecycle
(VALID), 2010 Second International Conference on, 2010, pp. 81–86.
doi:10.1109/VALID.2010.19.

[5] E. Taylor, Overview of new and emerging radiation resistant materials for
space environment applications, in: Aerospace Conference, 2011 IEEE,
2011, pp. 1–11. doi:10.1109/AERO.2011.5747389.

[6] H. Villacorta, V. Champac, S. Bota, J. Segura, Finfet sram hardening
through design and technology parameters considering process variations,
in: Radiation and Its Effects on Components and Systems (RADECS),
2013 14th European Conference on, 2013, pp. 1–7. doi:10.1109/

RADECS.2013.6937372.
[7] Z. Diggins, N. Gaspard, N. Mahatme, S. Jagannathan, T. Loveless,

T. Reece, B. Bhuva, A. Witulski, L. Massengill, S.-J. Wen, R. Wong,
Scalability of capacitive hardening for flip-flops in advanced technology
nodes, Nuclear Science, IEEE Transactions on 60 (6) (2013) 4394–4398.
doi:10.1109/TNS.2013.2286272.

[8] M. McLain, D. Hughart, D. Hanson, M. Marinella, Effects of ionizing
radiation on taox-based memristive devices, in: Aerospace Conference,
2014 IEEE, 2014, pp. 1–9. doi:10.1109/AERO.2014.6836501.

[9] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita,
T. Muta, T. Motokurumada, S. Okada, H. Yamashita, Y. Satsukawa,
A. Konmoto, R. Yamashita, H. Sugiyama, A 1.3ghz fifth generation
sparc64 microprocessor, in: Proceedings of the 40th annual Design Au-
tomation Conference, 2003, pp. 702–705.

[10] C. Zambelli, M. Indaco, M. Fabiano, S. Di Carlo, P. Prinetto, P. Olivo,
D. Bertozzi, A cross-layer approach for new reliability-performance
trade-offs in mlc nand flash memories, in: Design, Automation Test
in Europe Conference Exhibition (DATE), 2012, 2012, pp. 881–886.
doi:10.1109/DATE.2012.6176622.

[11] J. Guo, L. Xiao, Z. Mao, Q. Zhao, Novel mixed codes for multiple-cell
upsets mitigation in static rams, Micro, IEEE 33 (6) (2013) 66–74. doi:
10.1109/MM.2013.125.

[12] M. Fabiano, M. Indaco, S. D. Carlo, P. Prinetto, Design and opti-
mization of adaptable {BCH} codecs for {NAND} flash memories,
Microprocessors and Microsystems 37 (4–5) (2013) 407 – 419.
doi:http://dx.doi.org/10.1016/j.micpro.2013.03.002.
URL http://www.sciencedirect.com/science/article/pii/

S0141933113000471

[13] B. Maric, J. Abella, M. Valero, Analyzing the efficiency of l1 caches for
reliable hybrid-voltage operation using edc codes, Very Large Scale In-
tegration (VLSI) Systems, IEEE Transactions on 22 (10) (2014) 2211–
2215. doi:10.1109/TVLSI.2013.2282498.

[14] J. Guo, L. Xiao, Z. Mao, Q. Zhao, Enhanced memory reliability against
multiple cell upsets using decimal matrix code, Very Large Scale Inte-
gration (VLSI) Systems, IEEE Transactions on 22 (1) (2014) 127–135.
doi:10.1109/TVLSI.2013.2238565.

[15] J. Walker, M. Trefzer, S. Bale, A. Tyrrell, Panda: A reconfigurable archi-
tecture that adapts to physical substrate variations, IEEE Transactions on
Computers 62 (8) (2013) 1584–1596, cited By 4.
URL http://www.scopus.com/inward/record.

url?eid=2-s2.0-84880147752&partnerID=40&md5=

5b62cc78d6c464cefa96d4d069d253f9

[16] A.-M. Rahmani, K. Vaddina, K. Latif, P. Liljeberg, J. Plosila, H. Ten-
hunen, High-performance and fault-tolerant 3d noc-bus hybrid ar-
chitecture using arb-net-based adaptive monitoring platform, IEEE
Transactions on Computers 63 (3) (2014) 734–747, cited By 1.
URL http://www.scopus.com/inward/record.

url?eid=2-s2.0-84897489220&partnerID=40&md5=

b75a3fe16782f14f93b72b022d2e6518

[17] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, A watchdog processor to
detect data and control flow errors, in: 9th IEEE On-Line Testing Sympo-
sium, 2003. IOLTS 2003., IEEE, 2003, pp. 144–148.

[18] S. D. Carlo, G. D. Natale, R. Mariani, On-line instruction-checking in
pipelined microprocessors, in: Asian Test Symposium, 2008. ATS ’08.
17th, 2008, pp. 377–382. doi:10.1109/ATS.2008.47.

[19] S. Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta, A. Vallero, A
novel methodology to increase fault tolerance in autonomous fpga-based
systems, in: On-Line Testing Symposium (IOLTS), 2014 IEEE 20th In-
ternational, 2014, pp. 87–92. doi:10.1109/IOLTS.2014.6873677.

[20] Y. Huang, C. Kintala, Software implemented fault tolerance technologies
and experience, in: Proceedings of the 23rd International Symposium on
Fault-Tolerant Computing, 1993, pp. 2–9, cited By 33.
URL http://www.scopus.com/inward/record.

url?eid=2-s2.0-0027796299&partnerID=40&md5=

e0dbd36e41c3d62d1d09e9a44fb9b24b

[21] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L. Tagliaferri, Control-
flow checking via regular expressions, in: 10th Asian Test Symposium,
2001. Proceedings., IEEE, 2001, pp. 299–303.

[22] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L. Taghaferri, Data crit-
icality estimation in software applications, in: Test Conference, 2003.
Proceedings. ITC 2003. International, Vol. 1, 2003, pp. 802–810. doi:

10.1109/TEST.2003.1270912.
[23] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L. Tagliaferri, C. Tibaldi,

Promon: a profile monitor of software applications, in: 8th IEEE Inter-
national Workshop on Design and Diagnostics of Electronic Circuits and
Systems 2005. DDECS 2005., IEEE, 2005, pp. 81–86.

[24] A. Piotrowski, D. Makowski, G. Jabłoński, S. Tarnowski, A. Napieralski,
Hardware fault tolerance implemented in software at the compiler level
with special emphasis on array-variable protection, in: Proceedings of
The 15th International Conference Mixed Design of Integrated Circuits
and Systems, MIXDES 2008, 2008, pp. 115–119, cited By 0.
URL http://www.scopus.com/inward/record.

url?eid=2-s2.0-56349110001&partnerID=40&md5=

97a98a388e6768530e72097c363c7f27

[25] A. Piotrowski, D. Makowski, G. Jabónski, A. Napieralski, The automatic
implementation of software implemented hardware fault tolerance algo-
rithms as a radiation-induced soft errors mitigation technique, in: IEEE
Nuclear Science Symposium Conference Record, 2008, pp. 841–846,
cited By 2.
URL http://www.scopus.com/inward/record.

9

http://dx.doi.org/10.1109/VALID.2010.19
http://dx.doi.org/10.1109/AERO.2011.5747389
http://dx.doi.org/10.1109/RADECS.2013.6937372
http://dx.doi.org/10.1109/RADECS.2013.6937372
http://dx.doi.org/10.1109/TNS.2013.2286272
http://dx.doi.org/10.1109/AERO.2014.6836501
http://dx.doi.org/10.1109/DATE.2012.6176622
http://dx.doi.org/10.1109/MM.2013.125
http://dx.doi.org/10.1109/MM.2013.125
http://www.sciencedirect.com/science/article/pii/S0141933113000471
http://www.sciencedirect.com/science/article/pii/S0141933113000471
http://dx.doi.org/http://dx.doi.org/10.1016/j.micpro.2013.03.002
http://www.sciencedirect.com/science/article/pii/S0141933113000471
http://www.sciencedirect.com/science/article/pii/S0141933113000471
http://dx.doi.org/10.1109/TVLSI.2013.2282498
http://dx.doi.org/10.1109/TVLSI.2013.2238565
http://www.scopus.com/inward/record.url?eid=2-s2.0-84880147752&partnerID=40&md5=5b62cc78d6c464cefa96d4d069d253f9
http://www.scopus.com/inward/record.url?eid=2-s2.0-84880147752&partnerID=40&md5=5b62cc78d6c464cefa96d4d069d253f9
http://www.scopus.com/inward/record.url?eid=2-s2.0-84880147752&partnerID=40&md5=5b62cc78d6c464cefa96d4d069d253f9
http://www.scopus.com/inward/record.url?eid=2-s2.0-84880147752&partnerID=40&md5=5b62cc78d6c464cefa96d4d069d253f9
http://www.scopus.com/inward/record.url?eid=2-s2.0-84880147752&partnerID=40&md5=5b62cc78d6c464cefa96d4d069d253f9
http://www.scopus.com/inward/record.url?eid=2-s2.0-84897489220&partnerID=40&md5=b75a3fe16782f14f93b72b022d2e6518
http://www.scopus.com/inward/record.url?eid=2-s2.0-84897489220&partnerID=40&md5=b75a3fe16782f14f93b72b022d2e6518
http://www.scopus.com/inward/record.url?eid=2-s2.0-84897489220&partnerID=40&md5=b75a3fe16782f14f93b72b022d2e6518
http://www.scopus.com/inward/record.url?eid=2-s2.0-84897489220&partnerID=40&md5=b75a3fe16782f14f93b72b022d2e6518
http://www.scopus.com/inward/record.url?eid=2-s2.0-84897489220&partnerID=40&md5=b75a3fe16782f14f93b72b022d2e6518
http://dx.doi.org/10.1109/ATS.2008.47
http://dx.doi.org/10.1109/IOLTS.2014.6873677
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027796299&partnerID=40&md5=e0dbd36e41c3d62d1d09e9a44fb9b24b
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027796299&partnerID=40&md5=e0dbd36e41c3d62d1d09e9a44fb9b24b
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027796299&partnerID=40&md5=e0dbd36e41c3d62d1d09e9a44fb9b24b
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027796299&partnerID=40&md5=e0dbd36e41c3d62d1d09e9a44fb9b24b
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027796299&partnerID=40&md5=e0dbd36e41c3d62d1d09e9a44fb9b24b
http://dx.doi.org/10.1109/TEST.2003.1270912
http://dx.doi.org/10.1109/TEST.2003.1270912
http://www.scopus.com/inward/record.url?eid=2-s2.0-56349110001&partnerID=40&md5=97a98a388e6768530e72097c363c7f27
http://www.scopus.com/inward/record.url?eid=2-s2.0-56349110001&partnerID=40&md5=97a98a388e6768530e72097c363c7f27
http://www.scopus.com/inward/record.url?eid=2-s2.0-56349110001&partnerID=40&md5=97a98a388e6768530e72097c363c7f27
http://www.scopus.com/inward/record.url?eid=2-s2.0-56349110001&partnerID=40&md5=97a98a388e6768530e72097c363c7f27
http://www.scopus.com/inward/record.url?eid=2-s2.0-56349110001&partnerID=40&md5=97a98a388e6768530e72097c363c7f27
http://www.scopus.com/inward/record.url?eid=2-s2.0-67649211970&partnerID=40&md5=b15279ca10edb0b1bbda3e918cc5c40e
http://www.scopus.com/inward/record.url?eid=2-s2.0-67649211970&partnerID=40&md5=b15279ca10edb0b1bbda3e918cc5c40e
http://www.scopus.com/inward/record.url?eid=2-s2.0-67649211970&partnerID=40&md5=b15279ca10edb0b1bbda3e918cc5c40e
http://www.scopus.com/inward/record.url?eid=2-s2.0-67649211970&partnerID=40&md5=b15279ca10edb0b1bbda3e918cc5c40e

url?eid=2-s2.0-67649211970&partnerID=40&md5=

b15279ca10edb0b1bbda3e918cc5c40e

[26] O. Goloubeva, M. Rebaudengo, M. Reorda, M. Violante, Software-
implemented hardware fault tolerance, Springer, 2006, cited By 40.
URL http://www.scopus.com/inward/record.

url?eid=2-s2.0-84889800114&partnerID=40&md5=

a82b5c68512e252785f5b8540f221c6a

[27] A. DeHon, N. Carter, H. Quinn, Final report for ccc cross-layer reliability
visioning study, [Online] (March 2011).
URL http://www.relxlayer.org/FinalReport?action=

AttachFile&do=get&target=final_report.pdf

[28] CLERECO Consortium, Cross-layer early reliability evaluation for the
computing continuum official website, [Available Online]: http://www.
clereco.eu (2013).

[29] S. Di Carlo, A. Vallero, D. Gizopoulos, G. Di Natale, A. Grasset, R. Mar-
iani, F. Reichenbach, Cross-layer early reliability evaluation for the com-
puting continuum, in: Digital System Design (DSD), 2014 17th Euromi-
cro Conference on, 2014, pp. 199–205. doi:10.1109/DSD.2014.65.

[30] S. Di Carlo, A. Vallero, D. Gizopoulos, G. Di Natale, A. Gonzalez,
R. Canal, R. Mariani, M. Pipponzi, A. Grasset, P. Bonnot, F. Reichen-
bach, G. Rafiq, T. Loekstad, Cross-layer early reliability evaluation: Chal-
lenges and promises, in: On-Line Testing Symposium (IOLTS), 2014
IEEE 20th International, 2014, pp. 228–233. doi:10.1109/IOLTS.

2014.6873704.
[31] D. Buchholz, J. Dunlop, The future of enterprise computing: Prepare for

compute continuum, [Online] (May 2011).
URL http://goo.gl/KYb0H8

[32] Computing Community Consortium, Ccc visioning study on cross-layer
reliability (2015).
URL http://xlayer.org/Home

[33] A. Bramnik, A. Sherban, N. Seifert, Timing vulnerability factors of
sequential elements in modern microprocessors, in: On-Line Testing
Symposium (IOLTS), 2013 IEEE 19th International, 2013, pp. 55–60.
doi:10.1109/IOLTS.2013.6604051.

[34] N. Seifert, N. Tam, Timing vulnerability factors of sequentials, Device
and Materials Reliability, IEEE Transactions on 4 (3) (2004) 516–522.
doi:10.1109/TDMR.2004.831993.

[35] M. Ghahroodi, M. Zwolinski, R. Wong, S.-J. Wen, Timing vulnerability
factors of ultra deep-sub-micron cmos, in: European Test Symposium
(ETS), 2011 16th IEEE, 2011, pp. 202–202. doi:10.1109/ETS.2011.
40.

[36] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, T. Austin, A sys-
tematic methodology to compute the architectural vulnerability factors
for a high-performance microprocessor, in: Proceedings of the 36th an-
nual IEEE/ACM International Symposium on Microarchitecture, IEEE
Computer Society, 2003, p. 29.

[37] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
K. Flautner, Razor: circuit-level correction of timing errors for low-power
operation, IEEE Micro 24 (6) (2004) 10–20.

[38] V. Sridharan, D. R. Kaeli, Using hardware vulnerability factors to enhance
avf analysis, SIGARCH Comput. Archit. News 38 (3) (2010) 461–472.
doi:10.1145/1816038.1816023.
URL http://doi.acm.org/10.1145/1816038.1816023

[39] A. Savino, S. Carlo, G. Politano, A. Benso, A. Bosio, G. Di Natale, Statis-
tical reliability estimation of microprocessor-based systems, Computers,
IEEE Transactions on 61 (11) (2012) 1521–1534. doi:10.1109/TC.

2011.188.
[40] S. K. S. Hari, S. V. Adve, H. Naeimi, P. Ramachandran, Relyzer: Ex-

ploiting application-level fault equivalence to analyze application re-
siliency to transient faults, SIGPLAN Not. 47 (4) (2012) 123–134. doi:
10.1145/2248487.2150990.
URL http://doi.acm.org/10.1145/2248487.2150990

[41] L. Rashid, K. Pattabiraman, S. Gopalakrishnan, Towards understanding
the effects of intermittent hardware faults on programs, in: Dependable
Systems and Networks Workshops (DSN-W), 2010 International Confer-
ence on, 2010, pp. 101–106. doi:10.1109/DSNW.2010.5542613.

[42] R. Vadlamani, J. Zhao, W. Burleson, R. Tessier, Multicore soft error
rate stabilization using adaptive dual modular redundancy, in: Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2010,
IEEE, 2010, pp. 27–32.

[43] M.-L. Li, P. Ramachandran, U. Karpuzcu, S. K. S. Hari, S. Adve, Accu-

rate microarchitecture-level fault modeling for studying hardware faults,
in: High Performance Computer Architecture, 2009. HPCA 2009. IEEE
15th International Symposium on, 2009, pp. 105–116. doi:10.1109/

HPCA.2009.4798242.
[44] V. Sridharan, D. Kaeli, Eliminating microarchitectural dependency from

architectural vulnerability, in: High Performance Computer Architecture,
2009. HPCA 2009. IEEE 15th International Symposium on, 2009, pp.
117–128. doi:10.1109/HPCA.2009.4798243.

[45] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, Y. Zhou,
Understanding the propagation of hard errors to software and implications
for resilient system design, SIGOPS Oper. Syst. Rev. 42 (2) (2008) 265–
276. doi:10.1145/1353535.1346315.
URL http://doi.acm.org/10.1145/1353535.1346315

[46] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, Static analysis of seu
effects on software applications, in: Test Conference, 2002. Proceedings.
International, 2002, pp. 500–508. doi:10.1109/TEST.2002.1041800.

[47] P. Mishra, A. Muttreja, N. K. Jha, Finfet circuit design, in: Nanoelectronic
Circuit Design, Springer, 2011, pp. 23–54.

[48] Y. Cao, Predictive Technology Model for Robust Nanoelectronic Design,
Springer, 2011.

[49] R. M. Sinnamon, J. D. Andrews, Fault tree analysis and binary decision
diagrams, in: Reliability and Maintainability Symposium, 1996 Proceed-
ings. International Symposium on Product Quality and Integrity., Annual,
IEEE, 1996, pp. 215–222.

[50] S. Distefano, A. Puliafito, Dynamic reliability block diagrams vs dy-
namic fault trees, in: Reliability and Maintainability Symposium, 2007.
RAMS’07. Annual, IEEE, 2007, pp. 71–76.

[51] C. Ciufudean, B. Satco, C. Filote, Reliability markov chains for security
data transmitter analysis, in: Availability, Reliability and Security, 2007.
ARES 2007. The Second International Conference on, IEEE, 2007, pp.
886–894.

[52] S. Zhai, S. Z. Lin, Bayesian networks application in multi-state system
reliability analysis, Applied Mechanics and Materials 347 (2013) 2590–
2595.

[53] D. Heckerman, D. Geiger, D. M. Chickering, Learning bayesian net-
works: The combination of knowledge and statistical data, Machine
learning 20 (3) (1995) 197–243.

[54] N. Foutris, M. Kaliorakis, S. Tselonis, D. Gizopoulos, Versatile
architecture-level fault injection framework for reliability evaluation: A
first report, in: On-Line Testing Symposium (IOLTS), 2014 IEEE 20th
International, IEEE, 2014, pp. 140–145.

[55] A. Patel, F. Afram, S. Chen, K. Ghose, Marss: a full system simulator
for multicore x86 cpus, in: Proceedings of the 48th Design Automation
Conference, ACM, 2011, pp. 1050–1055.

[56] M. T. Yourst, Ptlsim: A cycle accurate full system x86-64 microarchitec-
tural simulator, in: Performance Analysis of Systems & Software, 2007.
ISPASS 2007. IEEE International Symposium on, IEEE, 2007, pp. 23–34.

[57] T. Lindholm, F. Yellin, G. Bracha, A. Buckley, The java virtual machine
specification, [Available Online] (February 2013).
URL http://docs.oracle.com/javase/specs/jvms/se7/html/

[58] Microsoft Corporation, .net framework 4, [Available Online] (Dec.
2014).
URL http://msdn.microsoft.com/enus/library/vstudio/

w0x726c2%28v=vs.100%29.aspx

[59] Xamarin, Mono project, [Available Online] (Dec. 2014).
URL http://www.mono-project.com

[60] C. Lattner, V. Adve, Llvm: A compilation framework for lifelong pro-
gram analysis & transformation, in: Code Generation and Optimization,
2004. CGO 2004. International Symposium on, IEEE, 2004, pp. 75–86.

[61] M. Bushnell, V. D. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits, Vol. 17, Springer, 2000.

[62] S. Mukherjee, Architecture design for soft errors, Morgan Kaufmann,
2011.

[63] N. J. Wang, S. J. Patel, Restore: Symptom-based soft error detection in
microprocessors, Dependable and Secure Computing, IEEE Transactions
on 3 (3) (2006) 188–201.

[64] H. Cha, E. M. Rudnick, J. H. Patel, R. K. Iyer, G. S. Choi, A gate-level
simulation environment for alpha-particle-induced transient faults, Com-
puters, IEEE Transactions on 45 (11) (1996) 1248–1256.

[65] S. Mirkhani, M. Lavasani, Z. Navabi, Hierarchical fault simulation us-
ing behavioral and gate level hardware models, in: Test Symposium,

10

http://www.scopus.com/inward/record.url?eid=2-s2.0-67649211970&partnerID=40&md5=b15279ca10edb0b1bbda3e918cc5c40e
http://www.scopus.com/inward/record.url?eid=2-s2.0-67649211970&partnerID=40&md5=b15279ca10edb0b1bbda3e918cc5c40e
http://www.scopus.com/inward/record.url?eid=2-s2.0-84889800114&partnerID=40&md5=a82b5c68512e252785f5b8540f221c6a
http://www.scopus.com/inward/record.url?eid=2-s2.0-84889800114&partnerID=40&md5=a82b5c68512e252785f5b8540f221c6a
http://www.scopus.com/inward/record.url?eid=2-s2.0-84889800114&partnerID=40&md5=a82b5c68512e252785f5b8540f221c6a
http://www.scopus.com/inward/record.url?eid=2-s2.0-84889800114&partnerID=40&md5=a82b5c68512e252785f5b8540f221c6a
http://www.scopus.com/inward/record.url?eid=2-s2.0-84889800114&partnerID=40&md5=a82b5c68512e252785f5b8540f221c6a
http://www.relxlayer.org/FinalReport?action=AttachFile&do=get&target=final_report.pdf
http://www.relxlayer.org/FinalReport?action=AttachFile&do=get&target=final_report.pdf
http://www.relxlayer.org/FinalReport?action=AttachFile&do=get&target=final_report.pdf
http://www.relxlayer.org/FinalReport?action=AttachFile&do=get&target=final_report.pdf
http://dx.doi.org/10.1109/DSD.2014.65
http://dx.doi.org/10.1109/IOLTS.2014.6873704
http://dx.doi.org/10.1109/IOLTS.2014.6873704
http://goo.gl/KYb0H8
http://goo.gl/KYb0H8
http://goo.gl/KYb0H8
http://xlayer.org/Home
http://xlayer.org/Home
http://xlayer.org/Home
http://dx.doi.org/10.1109/IOLTS.2013.6604051
http://dx.doi.org/10.1109/TDMR.2004.831993
http://dx.doi.org/10.1109/ETS.2011.40
http://dx.doi.org/10.1109/ETS.2011.40
http://doi.acm.org/10.1145/1816038.1816023
http://doi.acm.org/10.1145/1816038.1816023
http://dx.doi.org/10.1145/1816038.1816023
http://doi.acm.org/10.1145/1816038.1816023
http://dx.doi.org/10.1109/TC.2011.188
http://dx.doi.org/10.1109/TC.2011.188
http://doi.acm.org/10.1145/2248487.2150990
http://doi.acm.org/10.1145/2248487.2150990
http://doi.acm.org/10.1145/2248487.2150990
http://dx.doi.org/10.1145/2248487.2150990
http://dx.doi.org/10.1145/2248487.2150990
http://doi.acm.org/10.1145/2248487.2150990
http://dx.doi.org/10.1109/DSNW.2010.5542613
http://dx.doi.org/10.1109/HPCA.2009.4798242
http://dx.doi.org/10.1109/HPCA.2009.4798242
http://dx.doi.org/10.1109/HPCA.2009.4798243
http://doi.acm.org/10.1145/1353535.1346315
http://doi.acm.org/10.1145/1353535.1346315
http://dx.doi.org/10.1145/1353535.1346315
http://doi.acm.org/10.1145/1353535.1346315
http://dx.doi.org/10.1109/TEST.2002.1041800
http://docs.oracle.com/javase/specs/jvms/se7/html/
http://docs.oracle.com/javase/specs/jvms/se7/html/
http://docs.oracle.com/javase/specs/jvms/se7/html/
http://msdn.microsoft.com/enus/library/vstudio/w0x726c2%28v=vs.100%29.aspx
http://msdn.microsoft.com/enus/library/vstudio/w0x726c2%28v=vs.100%29.aspx
http://msdn.microsoft.com/enus/library/vstudio/w0x726c2%28v=vs.100%29.aspx
http://www.mono-project.com
http://www.mono-project.com

2002.(ATS’02). Proceedings of the 11th Asian, IEEE, 2002, pp. 374–379.
[66] A. Thomas, K. Pattabiraman, LLFI: An intermediate code level fault in-

jector for soft computing applications, in: Workshop on Silicon Errors in
Logic - System Effects (SELSE), 2013.

[67] J. Wei, A. Thomas, G. Li, K. Pattabiraman, Quantifying the accuracy of
high-level fault injection techniques for hardware faults, in: Dependable
Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP International
Conference on, 2014, pp. 375–382. doi:10.1109/DSN.2014.2.

[68] V. Sharma, A. Haran, Z. Rakamaric, G. Gopalakrishnan, Towards for-
mal approaches to system resilience, in: Dependable Computing (PRDC),
2013 IEEE 19th Pacific Rim International Symposium on, 2013, pp. 41–
50. doi:10.1109/PRDC.2013.14.

[69] C. Lattner, The LLVM compiler infrastructure.
URL www.llvm.org

11

http://dx.doi.org/10.1109/DSN.2014.2
http://dx.doi.org/10.1109/PRDC.2013.14
www.llvm.org
www.llvm.org

	Introduction
	A cross-layer approach for system reliability evaluation
	System level reliability modeling
	Evaluating the hardware contribution to system's reliability through micro-architectural simulation
	Fault models
	Fault Injection Framework

	Evaluating the software contribution to system's reliability through software virtualization
	Virtual Instruction Set Architecture
	Software Fault Models
	LLVM based fault injector

	Conclusions
	ACKNOWLEDGMENT
	References

