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Tsallis and Kaniadakis Entropic Measures in
Polytropic, Logarithmic and Exponential
Functions

Amelia Carolina Sparavigna'

!Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy

Abstract: Among nonextensive statistical approaches, those proposed by Constantino Tsallis and Giorgio
Kaniadakis had been involved in the study of several physical phenomena. Here, we will discuss the case of the
polytropic solutions of self-gravitating fluid spheres used in astrophysics as approximate stellar models. We will see
how, in this problem, Tsallis and Kaniadakis entropic measures are related. After, following the same approach, we
will find the links between generalized logarithms and exponential functions of the abovementioned entropic

measures.
Keywords: Entropy, Generalized Entropies

1. Introduction

The nonextensive statistical mechanics is a research
on foundations of statistical mechanics, which is
based on the generalization of the well-known
Boltzmann--Gibbs theory. This statistical mechanics,
which is formulated with different approaches,
enables the study of systems with long-range
interactions, long-term memories or multi-fractal
structures [1]. The Tsallis and Kaniadakis approaches
are two of the nonextensive generalizations of
statistical mechanics, which had been involved in the
discussion of several phenomena [1,2]. Among the
possible examples, here we consider one from
astrophysics. It is related to polytropes, the polytropic
solutions of the Lane—-Emden equation. This is an
equation which gives the pressure as a function of
density [3]. These solutions are modelling self-
gravitating fluid spheres that are called “polytropes”
too, which are objects used as approximation to more
realistic stellar models [4]. The solution of the Lane-
Emden equation, a dimensionless form of Poisson's
equation for the gravitational potential, depends on a
parameter known as the polytropic index n. It is

usually written as P =Kpo™D/M where P s

pressure, p is density and K a constant. If stellar

structure is approximated with a polytrope having a
given index, two scaling parameters are needed to
express the structure in physical units [5]. The two
parameters that we can use are a constant related to
the entropy and the stellar mass. Since Boltzmann
distribution yields unphysical results, a generalized

entropy, the Tsallis entropy, was used in [6] instead
of Boltzmann entropy. The use of Kaniadakis entropy
had been recently proposed too, in [7]. Here we will
see that these two entropic measures are related in
polytropic solutions, and that the result given in [7]
can be easily obtained from [6]. After, following the
same approach used for polytropes, we will see how
the generalized logarithms and exponential functions,
used in these two nonextensive methods, are linked.
Of course, this procedure can be easily repeated for
all the generalized functions, based on the
abovementioned measures.

2. The entropies

Well-known is the entropy proposed by Claude
Shannon in 1948 [8]. He defined the entropy H of a
discrete random variable X, as the expected value of

the information content: H (X) :—Zi p; log, p;

. The probability of i-event is p; and b is the base of

the used logarithm. However, several entropies exist
which are generalizing Shannon entropy. Among
them we have Tsallis and Kaniadakis entropies
[9,10], which are defined, with a corresponding
choice of measurement units equal to 1, as follow:

@ Tsallis :

1
T=T,=——|1-YpY
| q—l[ %p'j
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(2) Kaniadakis (x - entropy) :
1+x 1«

Pi P

K. =—>—+ "
* % 2K

In (1) and (2) we have the entropic indices q and x .

For its generalized additivity, the Kaniadakis entropy

requires another function, defined as follow:
Szz‘,(pi1+K + pil_K)IZ. A detailed discussion of

i

the generalized additivity of Tsallis and k-entropy is

givenin [11].

Tsallis and Kaniadakis entropies are linked:

T, +T_
(3) KK: 1+K2 K!

Where:

T(q=1+1)=——5pke+ 1
K i K
1 o 1

TQ=1-0="Xpi "~
K i K

Eq.(3) is a simpler form of an expression given in
[12,13]. However, besides this relation, because of
the generalized additivity possessed by the
Kaniadakis entropy, we need also another relation:

~ _K 2
(4) 3= (_T1+K +T1 +j
2 K

f—fd 1
8 Cqh= a1 2q-D

(f2—q _fQ)_;

In (3) and (4), we have Kaniadakis functions
expressed by Tsallis entropy. As shown in [14], we
can also write T expressed by means of Kaniadakis
functions:

1 1
(5) Ky +7SK =T +—
K K

Let us have: k=1-q . From (5) we have
immediately the relation between Tsallis entropy and

Kaniadakis entropic measures:
Sl_q -1

(6) Tq = Kl—q + (1_q)

3. With polytropes

The relation (6) between Tsallis and Kaniadakis
entropies can be useful in several problems. Here we
consider its use in polytropes. In the previous
equations, we have p; denoting the probability

distribution. In Ref.6, it is used letter f for
probability. From now on, we will use this notation.
In [6], the measure from Tsallis entropy is:

_f01
@) <:q(f)=f(1q_f1 )

We can write Eq.7 in the following manner:

(2 +fq)+L
2(q-1) q-1

Of course, (7) and (8) are the same equation. Therefore, Kaniadakis measures are linked to Tsallis measure by:

©) tq(=Cq(M=

Where:

(F=f

f

_91q
791 g1

Tq :thq’ Kig :Zf Kigr Sig :ngl,q, 1=fo

From [6], a relation exists between polytrope index
and entropic Tsallis index:

3.1
10) n==+—
(10) 2 91

As a special case, for  — 1, we find the isothermal
situation. To have Eq.6, as shown in [14], we need
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k=1-q or k=Qq-1. Then, from (10),
considering that we have for the Kaniadakis index
—1<x<1, wefind:

(11 n:§+i
2 K

In fact, (11) is the relation that we find in [7]. Using
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then the relation between Tsallis and Kaniadakis In the Kaniadakis approach:
measures we can easily finds results concerning

several applications. Polytropes are an example of K fR_f§x
such possible approach. 13) Inc () =T

4. Logarithms . .
Following the example of polytropes, we can Let us write (13), with k=1-q :
investigate the relation between generalized

logarithms. In the framework of Tsallis approach, the fl-a _ga-1
logarithm is defined as: (14) In 1K_q O=—Fr
2(1-q)
T fa 1
(12) Ing ()= 1 As we did for polytropes:
—q
T 1- £ 1 1 s 1 1 sl 1
(15 IhqM= (FOF Ny ———(FO ) —

qg-1  2(q-1) 2(q-1) q-1
TR L | 129 4¢0 1
=In{q(+

=K =
20-9 ta-1 MO RaTy e

Here we find again, in (15), the measures found in (8). Then, we can write, as we did in (9):

1 G1gq 1

T =K PR
18 MqM=hig®+ 14

In (16), we have the relation between Tsallis and Kaniadakis generalized logarithms.

5. Exponentials
In the framework of Tsallis approach, the exponential is defined as:

A7) eq @) =[+@-gf¥CD

We have that: eg (In qT (fH)=f .So:

Y(-q)
el (In] () = 1+(1—q){|an_q(f)+l Jiq _Lﬂ

f(1-9 1-¢q

f

9 €]
=|(1-q)Iny, (f)+ 1“‘} =f

Therefore, we have also the relation (considering k =1—q):
K _ gK K
(18) «In" (f)_—T+f .
In (18) we have an expression of the generalized logarithm, containing the Kaniadakis measure ¢, , where

F = Zf g, - (18)is in agreement with (16).
Let us consider the exponential from Kaniadakis measure:

/x
(19) X (f) = W1+ 2F2 +Kf]l
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We have also e,'§ (In ,'j (f)) =f , and then:

2 Y«
NEL FR _fx [1 1 :|1/K
—_— | +tK— = =f

0) eKinK@®)=| 1+« g +kok,

2K 2K f f

Let us remember that we have defined: K = > K., S =D gy -

However:
(21) EgK +K%kK:|=fK g, +xk, =f

Then, we can find the following relation between the Tsallis exponential and the Kaniadakis measures:

Yo Y9

e (1)

(22) eq(f)=¢q (e Ing, () =|1+(1-0) ; r

This is a link between Tsallis exponential function and Kaniadakis measures. In fact:

_qy 1Y)
el () =ed € qinKq (M) = [1+ a-glfeo)® q)}

In the previous discussion, following the same 7) Bento, E.P; Silval,I JR.P.; Silva, R. (dZOl3)I-I Non-IGaussian
Statistics, Maxwellian Derivation and Stellar Polytropes.

approaqh used fo.r polytropes, we ha.ve Seen .that Physica A: Statistical Mechanics and its Applications 392.4

generalized quarlthms a_nd exponentla}l functions, (2013): 666-672. DOI: 10.1016/j.physa.2012.10.022

used by Tsallis and Kaniadakis entropic measures, 8) Shannon, C.E. (1948). A Mathematical Theory of

are linked. Of course, the same approach can be used Communication. B/e" System Technibcal Journal 2(3):379-

: ; [ 423. DOI: 10.1002/j.1538-7305.1948.tb01338.x
fﬁr ?” the gerl](er?“ﬁed ;unctlons .that(;Ne can obtain in 9) Tsallis, C. (1960). Possible Generalization of Boltzmann-
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