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Abstract: Among nonextensive statistical approaches, those proposed by Constantino Tsallis and Giorgio 

Kaniadakis had been involved in the study of several physical phenomena. Here, we will discuss the case of the 

polytropic solutions of self-gravitating fluid spheres used in astrophysics as approximate stellar models. We will see 

how, in this problem, Tsallis and Kaniadakis entropic measures are related. After, following the same approach, we 

will find the links between generalized logarithms and exponential functions of the abovementioned entropic 

measures.  
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1. Introduction 

The nonextensive statistical mechanics is a research 

on foundations of statistical mechanics, which is 

based on the generalization of the well-known 

Boltzmann--Gibbs theory. This statistical mechanics, 

which is formulated with different approaches, 

enables the study of systems with long-range 

interactions, long-term memories or multi-fractal 

structures [1]. The Tsallis and Kaniadakis approaches 

are two of the nonextensive generalizations of 

statistical mechanics, which had been involved in the 

discussion of several phenomena [1,2]. Among the 

possible examples, here we consider one from 

astrophysics. It is related to polytropes, the polytropic 

solutions of the Lane–Emden equation. This is an 

equation which gives the pressure as a function of 

density [3]. These solutions are modelling self-

gravitating fluid spheres that are called “polytropes” 

too, which are objects used as approximation to more 

realistic stellar models [4]. The solution of the Lane-

Emden equation, a dimensionless form of Poisson's 

equation for the gravitational potential, depends on a 

parameter known as the polytropic index n. It is 

usually written as 
nnKP )1(   , where P  is 

pressure,   is density and K  a constant. If stellar 

structure is approximated with a polytrope having a 

given index,  two scaling parameters are needed to 

express the structure in physical units [5]. The two 

parameters that we can use are a constant related to 

the entropy and the stellar mass. Since Boltzmann 

distribution yields unphysical results, a generalized 

entropy, the Tsallis entropy, was used in [6] instead 

of Boltzmann entropy. The use of Kaniadakis entropy 

had been recently proposed too, in [7]. Here we will 

see that these two entropic measures are related in 

polytropic solutions, and that the result given in [7] 

can be easily obtained from [6]. After, following the 

same approach used for polytropes, we will see how 

the generalized logarithms and exponential functions, 

used in these two nonextensive methods, are linked. 

Of course, this procedure can be easily repeated for 

all the generalized functions, based on the 

abovementioned measures.  

 

2. The entropies 

Well-known is the entropy proposed by Claude 

Shannon in 1948 [8]. He defined the entropy H of a 

discrete random variable X, as the expected value of 

the information content:   i ibi ppXH log)(

. The probability of i-event is ip  and b is the base of 

the used logarithm. However, several entropies exist 

which are generalizing Shannon entropy. Among 

them we have Tsallis and Kaniadakis entropies 

[9,10], which are defined, with a corresponding 

choice of measurement units equal to 1, as follow:  
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In (1) and (2) we have the entropic indices q and  . 

For its generalized additivity, the Kaniadakis entropy 

requires another function, defined as follow: 

2/p(p 
i

)
κ1

i
κ1

i  
. A detailed discussion of 

the generalized additivity of Tsallis and κ-entropy is 

given in [11]. 

Tsallis and Kaniadakis entropies are linked:   

 

,
2

TT
K(3)

κ1κ1
κ




  

 

Where:  

 

κ

1
p

κ

1
κ)1T(q 

  
κ

1
p

κ

1
κ)1T(q

i

κ1
i

i

κ1
i









 

 

Eq.(3) is a simpler form of an expression given in 

[12,13]. However, besides this relation, because of 

the generalized additivity possessed by the 

Kaniadakis entropy, we need also another relation:  
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In (3) and (4), we have Kaniadakis functions 

expressed by Tsallis entropy. As shown in [14], we 

can also write T expressed by means of Kaniadakis 

functions: 
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Let us have: q1κ  . From (5) we have 

immediately the relation between Tsallis entropy and 

Kaniadakis entropic measures: 
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3. With polytropes 

The relation (6) between Tsallis and Kaniadakis 

entropies can be useful in several problems. Here we 

consider its use in polytropes. In the previous 

equations, we have ip  denoting the probability 

distribution. In Ref.6, it is used letter f for 

probability. From now on, we will use this notation. 

In [6], the measure from Tsallis entropy is:  
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We can write Eq.7 in the following manner:
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Of course, (7) and (8) are the same equation. Therefore, Kaniadakis measures are linked to Tsallis measure by:    
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Where: 

   ff q1q1f q1q1f qq f1,g,kK,tT    

 

From [6], a relation exists between polytrope index 

and entropic Tsallis index:  
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As a special case, for 1q  , we find the isothermal 

situation. To have Eq.6, as shown in [14], we need 

q1κ  or 1qκ  . Then, from (10), 

considering that we have for the Kaniadakis index 

1κ1  , we find: 
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In fact, (11) is the relation that we find in [7].  Using 
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then the relation between Tsallis and Kaniadakis 

measures we can easily finds results concerning 

several applications. Polytropes are an example of 

such possible approach. 

 

4. Logarithms 

Following the example of polytropes, we can 

investigate the relation between generalized 

logarithms. In the framework of Tsallis approach, the 

logarithm is defined as:  
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In the Kaniadakis approach:  

 

2κ

ff
(f)ln   (13) 

κκ
K
κ


  

 

Let us write (13), with q1κ  : 
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As we did for polytropes:
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Here we find again, in (15), the measures found in (8). Then, we can write, as we did in (9): 
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In (16), we have the relation between Tsallis and Kaniadakis generalized logarithms. 

 

5. Exponentials 

In the framework of Tsallis approach, the exponential is defined as:  
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Therefore, we have also the relation (considering q1κ  ): 
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f
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In (18) we have an expression of the generalized logarithm, containing the Kaniadakis measure κg , where   


f κκ g . (18) is in agreement with (16). 

Let us consider the exponential from Kaniadakis measure: 
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We have also f(f))(lne   KK  , and then: 
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Let us remember that we have defined:  
f κκf κκ g,kK . 

However: 
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Then, we can find the following relation between the Tsallis exponential and the Kaniadakis measures: 
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This is a link between Tsallis exponential function and Kaniadakis measures. In fact: 

 

 
q)(11

q)(11q)-(1K
q1

K
q1

T
q

T
q fq)(11(f))ln(ee(f)e 




 







  

 

In the previous discussion, following the same 

approach used for polytropes, we have seen that 

generalized logarithms and exponential functions, 

used by Tsallis and Kaniadakis entropic measures, 

are linked. Of course, the same approach can be used 

for all the generalized functions that we can obtain in 

the framework of the abovementioned measures.  
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